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Statistical methods in research 
Petr Bujok, 2020 

What is statistics? 
Karl Pearson: 'Statistics is the grammar of science.' 

Statistic covers methods used for gathering, organising (transforming and cleansing), analysing, and 

publishing results from measured data. Data represent specific parts of World which are observed and 

measured. Necessary note that data are represented by numbers (values) or symbols (strings). 

 

Figure 1 - Relation between data, information and knowledge 

Measured data, stored typically in digital form, could be structured in tables, but they do not bring 

news and facts about measured part of World. On the other hand, if data are used in the (statistical) 

computational process, provided results could be called information. The information enables typically 

answer questions 'who', 'where', 'what', etc. Finally, the interpretation of information and providing a 

comprehensive summary of the observed research area is known as knowledge.  

Statistics enables to analyse measured data to extract knowledge and use it in conclusions. More 

exactly, factors influencing answering questions 'who', 'where', 'what' are detected, predicted and 

controlled. Statistics typically covers the analytic part where analysis is mentioned as a process to break 

down whole data to components or answers [1].  

Statistical data are usually stored in the table where columns represent measured variables 

(temperature, weight, speed, etc.) and rows contain observed cases (individuals, objects). All objects 

of defined (mentioned) part of World are called population, but in many cases, it is not possible to 

measure the whole population. In these cases, the sample file of sufficient size is extracted from the 

population, where each object has the same (uniform) probability to be selected.  
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Main reasons for using statistics in research 
At first, it is important to say that statistics are not necessarily used in all field of research and science. 

In the field of research where no numerical or categorical data (values) are provided statistics has no 

usage. On the other hand, experimental research provides such data which should be statistically 

analysed. In these research areas, statistics are used to provide a numerical or graphical overview of 

measured data or illustrate the significance of the difference between achieved new results and state-

of-the-art results.  

Statistics methods – descriptive or inferential? 
At first, if the main goal of the analysis is to summarise and describe measured data, the basic 

characteristics are used (descriptive statistics). In the case of analysis, where given facts need to be 

generalised above and beyond measured data, more sophisticated methods of inferential statistics 

are employed. Inferential statistics is also important in cases where the newly achieved approach has 

to be compared with the old existing approach. The differences observed between numerical results 

of both approaches are often very small, and here inferential statistics brings clear decision based on 

measured data. Deep insight into the introduction to data analysis provides monography [2] 

Descriptive statistics 
Descriptive statistic describes the relationship between measured variables from a sample or 

population. Results of descriptive statistics are represented typically as values (tables) or figures 

(plots). 

 
Figure 3 - Empirical histogram and theoretical Gaussian density function 

Both forms of results provide an overview of data in the form of basic characteristics. Beside 

frequencies (measures of frequency), the most common numerical characteristics are divided into two 

groups: measures of central tendency (minimum, maximum, arithmetic mean, median, mode, etc.), 

and measures of variation (range, standard deviation, variance, etc.). 

In figure 3, the most common descriptive characteristic – frequency - is illustrated. The frequencies 

enable to modelling the distribution of measured variables. The bars of the plot represent numbers of 

objects with given pain tolerance. The plot is called histogram because 'pain tolerance' variable is 

measured as a quantitative variable. On the right side of this figure, the theoretical probability density 

function is illustrated to compare achieved distribution with theoretical Gaussian distribution. 

We illustrate the aim of descriptive statistics when analysing data of dependency between physical 

activity (PA) and body mass index (BMI). At first, basic descriptive characteristics are depicted in table 

1 for both variables. These values clearly describe both measured variables from example. Both 

variables are measured completely, values of PA are between 3 and 14, and for BMI between 14 and 

35 (it helps to recognise mistakes in data known as outliers).  
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Table 1 - Example of descriptive statistics - basic characteristics 

   Physic.Activity  BMI  

Valid   100   100   

Missing   0   0   

Mean   8.6   23.9   

Median   8.4   24.5   

Std. Deviation   2.3   3.9   

Range   11.0   20.9   

Minimum   3.2   14.2   

Maximum   14.2   35.1   

25th percentile   6.8   21.1   

50th percentile   8.4   24.5   

75th percentile   10.3   26.8   
 

Similarly, the basic characteristics are used to compare the variable in two independent groups of 

objects (see table 2). Heart rate (beats per minute) was measured on 800 people, and basic descriptive 

characteristics were computed for male and female independently. From these results, it is clear that 

male participants have lower average heart rate (see the mean values) and more similar observed 

values (see standard deviation values). It can indicate that male participants better cope with heart 

rate in the training exercises compared to female participants. 

 

Table 2 - Example of descriptive statistics: Heart Rate and gender 

   Female  Male  

Valid   400  400  

Missing   0  0  

Mean   132  117  

Std. Deviation   22.7 19.8  

Minimum   78  69  

Maximum   196  172 
 

Although the provided values are exact and correct, the graphical form of descriptive statistics is often 

more absorbable. Figure 4 briefly illustrates the basic characteristics of BMI in one plot know as box-

plot (or whiskers plot). This plot provides minimum, maximum, median, and 25th and 75th percentiles 

in the compact view. 
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Figure 4 - Box-plot of BMI 

Box-plots are very useful in the tasks where the variable is measured in two or more groups of objects. 

Naturally, the same variable measured in the same units has to be compared in one plot. Figure 5 

depicts the relation of the weight of 16 people before and after eight-week calories-intake. Higher 

weight after the procedure is the obvious and more sophisticated procedure can detect the 

significance of this weight-gap. 

 

Figure 5 - Box-plot for comparison of the variable in two groups 

Necessary note that basic (descriptive) characteristics do not indicate the relation between PA and 

BMI what was probably the main aim of the research. To illustrate the relationship between two 

variables, scatter plots are widely used. Figure 6 shows an example of a scatter plot for the relation 

between PA and BMI variables. 
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Figure 6 - Relation between BMI and physic.activity 

Typically, only the middle part of this plot is provided, and marginal (top and right) parts are hidden 

(these plots represent achieved distribution curves of variables). In the middle of this plot, points 

representing each measured object (PA and BMI values) are depicted. In the good cases, these points 

are formed close to the linear curve (represented as a blue line).  In real cases are achieved plots like 

Figure 4, which are without the estimated auxiliary linear line not very useful. In this case, the blue line 

indicates a rather negative relation between PA and BMI. It means smaller values of BMI for bigger PA 

values (people without physical activity have bigger body mass index and vice versa). Further, we can 

analyse this first-view relation more sophistically computing widely-used correlation coefficient. 

The main aim of descriptive statistics is a description of the values measured on the objects. Although 

these techniques are very useful and important in many fields of research and science, mostly, it is 

necessary to support descriptive statistics by strict decisions provided by inferential statistics. 

Inferential statistics  
As was mentioned previously, newly presented numerical (empirical) experiments require 

unambiguous answers to the research questions. Results of descriptive statistics are often not strongly 

clear to make a decision without doubts. In these situations, methods of inferential statistics can help 

accept or reject the research hypothesis. The null hypothesis (H0) is constructed for each research 

hypothesis as an opposite ('men are higher than women' and H0 is' men have the same height as 

women'). 

A paradigm of inferential statistics typically uses sampled data from a given population. It means that 

only a portion of objects from the population are selected to describe and make inferences about the 

whole population [3]. This methodology can be influenced by a wrong decision (the null hypothesis is 

true, and the results reject it, and vice versa). In these cases, we specified error type I (reject the true 

hypothesis) and type II (non-reject the false hypothesis). In this principle, the probability of error type 

I is corrected by input parameter 𝛼 called significance level. Unfortunately, decreasing the value of 𝛼 

the probability of error type II is increased. Statisticians recommended using values from 𝛼 = 0.05 in 

standard cases, to 𝛼 = 0.001 in the cases where the decision is very important. 

The 𝛼 value plays a crucial role in the null hypothesis decision-make process when using statistical 

software. In these cases, a significance or more often p-value (p-level, probability level or p) is 

computed. Simply said, this p-value can be imagined as 'probability of trust in the null hypothesis'. If 

the p-value in the test is too small (smaller than given 𝛼), then the null hypothesis should be rejected, 

and vice versa. 
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To make a correct decision about the given null hypothesis, data and appropriate test are needed. 

There is a lot of statistical tests for different statistical tasks. At first, the tests are divided into two 

groups based on the shape of the distribution of the data. When data are distributed normally 

(Gaussian distribution), parametric tests are recommended to test the null hypothesis. In other cases, 

nonparametric methods should be employed. To get the information about the distribution of the 

data, another hypothesis (H0: 'data are from Gaussian distribution') is tested. 

Most often used methods in inferential statistics 
Obviously, for different research tasks, different statistical tests are used. In some tasks, it is possible 

even to use more variants of methods to prove a fact about measured data. Here, only the most 

common methods used in inferential statistics will be briefly described. For more information and 

more specific methods, readers should study some more comprehensive articles or books [4]. 

Dependency of variables 
The first group of statistical methods is focused on the evaluation of dependency between two or more 

variables. These methods strongly vary when different types of variables are measured in experiments 

– one qualitative and one quantitative variable, both qualitative variables, and both quantitative 

variables. 

If both measured variables are qualitative (typically from categorical scales), the most popular method 

for evaluating dependency of the variables is Pearson chi-square test of independence. We introduce 

this method when evaluating the dependency of hair length (-1 denotes short hair) on gender (-1 

represents male). 

Table 3 - Contingency table: hair length and gender 

 hair length  

Sex     -1  1  Total  

-1  
Count  15  1 16  

Expected count  8  8  16  

 residuals 2.5 -2.5 0 

1  
Count  1  15  16  

Expected count  8  8  16  

 residuals -2.5 2.5 0 
 

Table 3 illustrates that 15 male participants have short hair and one long hair, and 15 female 

participants have long hair and one short hair (rows Count). Expected counts represent theoretical 

counts achieved if hair length is not dependent on gender. The main aim of the test is to evaluate the 

difference between the reals counts and expected counts. If the difference (regarding all count cells) 

is big (using Chi-square distribution), null hypothesis about independency of the variables is rejected. 

Here (see table 4), the p-value is significantly lower than 0.001. Therefore the length of hair is 

significantly dependent on the sex of participants. Studying standardised residuals (Table 3), they are 

a lot of male participants with short hair (2.5 is positive and bigger than quantile 1.96) and a lot of 

female participants with long hair (the same reason). Negative residuals bigger than quantile -1.96 

denote significantly small numbers of truly observed cases (small real counts compared with expected 

counts). 
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Table 4 - Chi-square Pearson test and significance level 

   Value  df  p  

Χ²  24.50   1   < .001  

N  32        
 

For evaluate the relationship between one quantitative and one qualitative variable, one-sample, 

paired, and two-sample tests are employed. These tests are used for data (i.e. quantitative variable) 

from Gaussian distribution, and they are known as the t-test. For other cases, nonparametric variants 

should be used (signed, Wilcoxon, Mann-Whitney or other tests). The one-sample t-test can be used 

for comparison of the mean value of a variable from one population with a given value. For example, 

we need to test if the mean value of IQ is bigger than 100 or not. The null hypothesis is 'Mean value of 

IQ is equal to 100', and if we reject the null hypothesis, we can prove our research idea. 

   N  Mean  SD  SE  

IQ   32   115.13   12.16   2.15   
 

Average IQ in a sample of size 32 is 115, and when we compare this sample with a given value 100, 

parametric t-test rejects null hypothesis (p<0.001). Similarly, the nonparametric one-sample Wilcoxon 

test can be used if the data are not from Gaussian distribution. Although IQ values in our sample are 

from Gaussian distribution, the Wilcoxon test achieves the same decision as a t-test (p<0.001). Finally, 

the mean value of IQ in our population is significantly higher than a given value of 100. 

   Test  Statistic  df  p  

IQ   Student   7.03   31   < .001   

    Wilcoxon   457.00     < .001   
 

The paired test enables to compare the difference between the mean values of the variable measured 

in two moments. For example, we analyse the difference between the weight of 16 participants before 

and after 8-week calories intake. We can see that the average weight is bigger after this procedure 

(155 compared to 144 lb before). 

   N  Mean  SD  

Weight Before   16   144.64   22.70    

Weight After   16   155.04   21.44    
 

A parametric paired t-test is applied such that the difference of two observed weight values for each 

participant is computed, and then one-sample t-test is applied to differences. The null hypothesis is 

'difference of weight has zero mean value'. P-value of the t-test is less than 0.001; therefore, weight is 

significantly increased. Similarly, the nonparametric Wilcoxon test is applied (data are from Gauss 

distribution) with the same decision (p<0.001). Calories intake significantly increases the weight of 

participants. 

Test  Statistic  df  p  

 Student   -10.84   15   < .001   

 Wilcoxon   0.00     < .001   
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Finally, the two-sample test is employed when the difference between the mean values of the variable 

measured in two independent populations is studied. The main idea of this method will be illustrated 

on example, where the difference between swimming speed (in seconds for 500 meters) and gender 

(-1 = male).  

   Group  N  Mean  SD  SE  

swimming   -1   16   87.38   5.19   1.30   

    1   16   75.63   3.18   0.80   
 

Because data are from two independent populations, the difference between variances of these 

populations is tested at first. Because the provided p-value is less than 0.05, we reject equality of 

variances (it serves for the selection of more appropriate test statistics). 

   F  df  p  

swimming   5.77   1   0.02   
 

Based on previous results, the null hypothesis ('there is no difference between swimming speed of 

males and females') is tested. The provided significance level is lower than 0.001; the null hypothesis 

is rejected. Similarly, the null hypothesis is rejected by the nonparametric two-sample Mann-Whitney 

test, where the same level of significance was achieved (p<0.001). There is a significant difference 

between swimming speed of males and females. The females achieved better results (females have a 

higher mean value of speed). 

 Test  Statistic  df  p  

 Student   7.72   30   < .001   

 Mann-Whitney   252.00     < .001   
 

In the cases, where the quantitative variable is not dichotomous (more than two various values are 

observed), one-way analysis of variance (ANOVA) test is employed. Test ANOVA is a generalised 

variant of the two-sample test, and it is used for example for evaluating dependency of pain tolerance 

(higher value means higher tolerance) on hair colour (for different types). We can see, people with 

light blond hair have the highest tolerance, and dark brunette people have the least tolerance. 

Hair Color  Mean  SD  N  

Dark Blond   51.20   9.28   5   

Dark Brunette   37.40   8.32   5   

Light Blond   59.20   8.53   5   

Light Brunette   42.50   5.45   4   
 

Now, the null hypothesis 'there is equal pain tolerance in all groups of hair colour' will be tested by 

parametric ANOVA test (data are from Gaussian distribution). The achieved p-value is lower than 0.05, 

the null hypothesis is rejected, and at least one group of hair colour differs from the remaining groups. 
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Cases  Sum of Squares  df  Mean Square  F  p  

Hair Color   1360.73   3   453.58   6.79   4.11e -3   

Residuals   1001.80   15   66.79         
 

Post-hoc tests are using to detect the difference between individual pairs of groups. There are several 

types of these tests, here results of Tukey test are presented. Provided p-values of post-hoc tests show 

two significant differences in pain tolerance: between people with light blond and dark brown hair, 

and light blond and light brown (as was expected). There is a significant influence of hair colour on pain 

tolerance; people with light blond hair have the biggest tolerance. 

 

 

  Mean Difference  SE  t  p tukey  

Dark, Blond   Dark, Brunette   13.80   5.17   2.67   0.07   

    Light, Blond   -8.00   5.17   -1.55   0.44   

    Light, Brunette   8.70   5.48   1.59   0.41   

Dark, Brunette   Light, Blond   -21.80   5.17   -4.22   3.71e -3   

    Light, Brunette   -5.10   5.48   -0.93   0.79   

Light, Blond   Light, Brunette   16.70   5.48   3.05   0.04   
 

Similarly, nonparametric Kruskal-Wallis test is employed for test null hypothesis that 'the mean values 

in all groups of hair colour are equal'. Computed p-value (0.01) enables to reject the null hypothesis, 

and pain tolerance is influenced by hair colour. 

Factor  Statistic  df  p  

Hair Color   10.59   3   0.01   
 

Standard one-way ANOVA enables to detect the influence of one qualitative variable on the 

quantitative variable. In many tasks, where it is necessary to use more than one factor to compare the 

populations' mean values, more-way ANOVA is used (typically two-way or three-way). Two-way 

ANOVA is used when the dependence of shoe size of people on the country (Scandinavia and 

Mediterranean), and length of hair (short and long) is studied. 

country  hair  Mean  SD  N  

mediterr   long   36.71   2.50   7   

    short   43.14   1.77   7   

scandinavia   long   37.29   1.11   7   

    short   42.71   3.59   7   
 

In ANOVA table are evaluated three independent factors influencing shoe size. Computed p-values 

show that country is not aa significant factor and hair is a significant factor. It means that shoe size 

differs only for people with different hair length. 
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Cases  Sum of Squares  df  Mean Square  F  p  

country   0.04   1   0.04   9.65e -3   0.92   

Residuals   22.21   6   3.70         

hair   246.04   1   246.04   41.92   < .001   

Residuals   35.21   6   5.87         

country ✻ hair   1.75   1   1.75   0.37   0.57   

Residuals   28.50   6   4.75         
 

The post-hoc test shows (see p-values of Holm test) that only groups of people with different hair 

length have significantly different shoe size. 

 

  Mean Difference  SE  t  p holm  

scandinavia, short   mediter, short   -0.43   1.10   -0.39   1.00   

    scandinavia, long   5.43   1.23   4.41   2.63e -3   

    mediter, long   6.00   1.17   5.13   1.46e -3   

mediter, short   scandinavia, long   5.86   1.17   5.01   1.46e -3   

    mediter, long   6.43   1.23   5.22   1.34e -3   

scandinavia, long   mediter, long   0.57   1.10   0.52   1.00   
 

Similarly, nonparametric Friedman test provides a decision of the null hypothesis in ANOVA with more 

than one factor (the same decision was achieved). 

Factor  Chi-Squared  df  p  Kendall's W  F  df num  df den  p F  

country   0.14   1   0.71   -27.27   0.13   3   20   0.94   

hair   8.73   1   3.13e -3   -46.26   14.22   3   20   < .001   
 

Correlation coefficient evaluates the relationship between two quantitative variables by values from 

𝜌 ∈ 〈−1, 1〉, where values close to 0 mean weak or none dependency. There exist two versions of the 

coefficient – Pearson and Spearman. Pearson correlation coefficient should be used in cases where 

both variables are continuous or quantitative at least. On the other hand, if data are not continuous 

(are typically qualitative), Spearman correlation should be applied.  

 

Figure 7 - Scatter plot of dependency between earnings and the amount of beer 
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We can illustrate this difference in an example where dependency between annual earnings (in €) and 

the amount of consumed beer (per year in litres) is studied. Figure 7 shows that the relationship is 

rather positive, i.e. higher consumption of beer means higher earnings (see blue line). Nevertheless, 

measured objects are not very close to the optimal linear dependency. In table 3, both types of 

correlation coefficients are computed with p-values. 

Table 5 - Comparison of Pearson and Spearman correlation coefficient 

Variable   coefficient earn  

beer   Pearson's r  0.42  

  p-value  0.02  

  Spearman's rho  0.34  

  p-value  0.06  
 

Both coefficients are represented by positive and similar values, but p-values promise different 

decisions. For each coefficient (estimated from the sample data) the null hypothesis is tested H0: 

'Population correlation coefficient equals to zero' (i.e. dependency between variables is not 

significant). We can see that for the Pearson correlation coefficient, the null hypothesis was rejected 

(p-value < 0.05), but Spearman coefficient was not evaluated as significant (p>0.05). 

Although correlation is successfully used in many real data analysis, regression analysis provides more 

detailed results in cases where more than one variable influence dependent variable. The most widely 

used kind of regression is called linear regression model (LRM) where the dependent variable and 

mostly independent variables are quantitative. In this model, there is one dependent variable and one 

or more independent variables (regressors, covariates). The relationship is not both-way as in 

correlation, here only the dependent variable is described by changes of regressors. Briefly, Least 

Squares Method is employed to compute parameters of LRM, the significance of each regressor is 

estimated, and suitability (or quality) of the overall model is evaluated by Index of determination (𝑅2 ∈

〈0, 1〉 where 0 is for poor model and 1 for best model). LRM is used, for example, when studying 

dependency of earnings on three human factors (shoe size, age and beer consumption).  

   N  Mean  SD  SE  

earnings   32   27437.50   8929.61   1578.55   

shoes   32   39.91   3.90   0.69   

age   32   34.44   9.52   1.68   

beer   32   249.50   90.60   16.02   
 

In the following table, tests of significance for each regressor are depicted. For each regressor, the one-

sample t-test is applied to test hypothesis 'parameter of regressor is equal to zero' (regressor is not 

significant), and if it is rejected (p-value < 0.05) the regressor is significant. Here, all regressors are 

significant, i.e. influencing dependent variable earnings. 

Model     Coeff.  Std Error  t  p  

H₁   (Intercept)   12176.99   5865.35    2.08   0.05   

    shoes   -668.12   185.51    -3.60   1.21e -3   

    age   858.16   54.92    15.63   < .001   

    beer   49.58   7.61    6.51   < .001   
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Quality of this model is estimated in the following table where 𝑅2 = 0.92 is close to maximal quality 

value 1. The earning of people is dependent on shoe size, age and annual consumption of beer. Sign 

of estimated coefficient (see the previous table) illustrate positive (+) or negative (-) dependency. For 

example, positive value for beer (49.58) means higher beer consumption higher earnings. For more 

information about linear regression, more comprehensive papers and books are provided. 

Model  R  R²  Adjusted R²  RMSE  

H₁   0.96   0.92   0.91   2726.00   
 

 

 

There exist more other kinds of regression models. Next, logistic regression will be briefly introduced. 

The main difference between linear and logistic regression (LOR) is in the type of dependent variable. 

The dependent variable in LOR is dichotomous with two possible values (true/false) – i.e. sex or success 

in the examination. Here, an example of LOR where gender (sex, M-male, F-female) is dependent on 

the size of shoes (standard EU values). The plot of relation between gender and size of shoes is 

illustrated in Figure 8 a). It is visible that the points in this plot do not form to the continuous area 

(compare with Figures 7). Therefore, LRM will provide poor results (blue line estimated rough LRM 

between these variables). This task is very similar to the two-sample test, where mean values of the 

quantitative variable (size of shoes) are compared in two groups (gender). 

    
Figure 8-a) relation between the size of shoes and gender, b) LOR model 

LOR provides a model of dependency of the dichotomous variable on one or several variables. 

Similarly, as in LRM, only significant covariates (regressors) are evaluated by a p-value less than 0.05. 

Moreover, LOR provides a decision-make mechanism enabling distribute data objects into two groups 

(of gender) based on values of regressors. Finally, if the estimated parameters of the LOR model are 
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appropriate and accurate (learned model), newly added data objects without the value of dependent 

(dichotomous) variable are also classified to most appropriate (gender) group. It is clear, the success 

of classification of the real LOR models is less than 100 %. Estimated values of gender (probability to 

be Female) are depicted in Figure 8 b). In Table 6, the number of data objects classified to a given 

gender group and has its own (true) gender are illustrated. Columns 'predicted' denote estimated 

values of gender (based on the size of shoes) and rows illustrate true gender values (known from data). 

Here, all data objects are classified successfully, i.e. true male participants were estimated (based on 

the size of shoes) as male and vice versa.  

Table 6 - Confusion matrix of estimated gender from LOR model 

Confusion matrix  

 Predicted  

Observed  M  F  

M   16   0   

F  0   16   

 

In Table 7, estimated values of LOR coefficients are provided. These values serve to estimate the 

gender of newly added data objects only with knowledge of the size of shoes (where true gender is 

not known). Value of shoe size put into simple linear combination (869 − 21.2 ∗ 𝑠ℎ𝑜𝑒𝑠_𝑠𝑖𝑧𝑒) and 

resulting value compare with a given limit value (probability), typically set as 0.5 (it classifies data 

object as male if p<0.5 or female p>0.5).  

Table 7 - LOR estimated coefficients 

   Estimate  Standard Error  

(Intercept)   868.76   893053.97    

shoes   -21.72   22309.52    

 

Very popular statistical method belonging to multidimensional analysis approaches is discriminant 

analysis (DA). DA enables (similarly to LOR) to design a rule for classification data objects to 

independent groups. The optimal classification method is called Linear Discriminant Function (LDF) 

only if three assumptions have to be valid: 1. differences between group mean values have to be 

significant, 2. variances of variables in groups have to be statistically equal, and 3. data variables are 

from Gaussian distribution. A number of groups for classification is not required, but for simplicity, an 

example with two groups is illustrated. Classification rule is constructed using the size of shoes and 

speed of swimming where two groups for classification are defined by gender. Typically, a portion of 

data objects is taken as a training set, and remaining data are testing set (verification). In this case, 32 

data objects are divided into 26 for training and 6 for verification. 

 

Test of equality of mean values in groups rejects null hypothesis about group-similarity for both 

variables. Test of equality covariance matrices (variances) do not reject the null hypothesis, and this 

assumption is also verified. 
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Tests of Equality of Class Means  

   F  df1  df2  p  

shoes   166.99   1   30   < .001   

swimming   59.65   1   30   < .001   

 

Tests of Equality of Covariance Matrices  

   χ²  df  p  

Box's M   4.04   3   0.26   

 

Finally, six data objects (not used in training) are classified by estimated classification rule. We can 

see that all objects are classified successfully (males as males and vice versa). 

Confusion Matrix  

 Predicted  

      F  M  

Observed   F   3   0   

  M   0   3   

 

The illustration of objects-classification is depicted in Figure 9, where standardised values of measured 

variables (axes) are used, and LDF is also showed (border between coloured areas). This picture shows 

that in the cases where data points from two groups are not separated, LDF is not able to be 100 % 

successful. 

 

Figure 9 - Decision boundary matrix of DA 

In previous paragraphs, methods of classification of data objects into separate groups were introduced 

(we constructed a rule for classification). Now, the separation of objects into a given number of groups 

(clusters) will be proposed in cluster analysis (CA). There are two main approaches to cluster data 

objects in CA – hierarchical and non-hierarchical. 
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Figure 10 - Example of the dendrogram 

At the beginning of hierarchical (connectivity-based) CA, each data object is in one own cluster. Then, 

the two most similar clusters are joined together. The similarity is typically measured as the reciprocal 

distance between all pairs of clusters. There exist several various approaches to join the most similar 

clusters (single linkage, complete linkage, etc.). The joining of pairs of clusters continues until all data 

objects are in one cluster. The joining process is typically illustrated by the dendrogram. Here, an 

example of clustering data objects (people) based on earnings, and beer and wine consumption is 

illustrated in Figure 10. Information, how many clusters are the best for this model can be achieved 

from the task (two clusters representing gender, etc.). When the appropriate number of clusters is 

known, the cut of the dendrogram (red line for three clusters) divides data objects into three clusters 

(blue, green and purple). 

The most popular method in the non-hierarchical clustering approach is known as a k-means algorithm. 

The number of clusters (k) has to be known before clustering – from the task or numerical elbow 

method (Figure 11). Three different statistical criteria for an estimate the optimal number of clusters 

are depicted as the least value on curves in the vertical axis (redpoint for BIC criterion). For this 

example, the optimal number of clusters is k=3. 

 

Figure 11 - Results of elbow method for CA 

After that, all objects are clustered to the nearest of the three centroids, which were randomly selected 

from these objects (it exists variant, where centroids are selected as random coordinates in data area). 

Then, new centroids are re-computed (mean values of the clusters) and if any data object has to be re-
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allocated (current centroid is not the nearest one), the model is re-arranged. After this process, data 

are clustered. Because randomisation in the centroid initialisation, in some tasks, repeated analysis in 

the same data results in different re-arrangement (data classification). 

Here, the elbow method estimated three clusters as the optimal number. In Figure 12, the plot of 

labelled objects is illustrated with three clusters (some statistical software provides labels in 

dendrogram). 

 

Figure 12 - Illustration of data objects clustering in CA 

Interesting information provides a plot of clusters' mean values (Figure 13). All clusters are 

characterised by all variables, where the positive (bigger) value in the plot denotes bigger values for a 

given variable in this cluster. Cluster 1 is represented by small earnings, small consumption of beer and 

big consumption of wine, etc. 

 

Figure 13 - Mean values of clusters in CA 

 

The last two multidimensional data analysis methods presented here are Principal Component 

Analysis (PCA) and Factor Analysis (FA). Both methods are focused on the reduction of data 

dimensionality, i.e. the decreasing number of measured variables. The main idea of PCA is to reduce 

the number of variables based on their variances. The total variance of the model is computed as the 

sum of variances of variables. The first newly constructed variable is called the first principal 

component (PC1), and it contains the biggest portion of the total model variance. Then the second 

principal component contains the biggest portion of the remaining part of the total variance, etc. The 

number of principal components is equal to the number of original variables, but only some PCs 
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contains a bigger portion of variability than the original variables. These components are interesting 

for PCA, and the number of such components typically means the new dimensionality of the task. 

Notice that each PC is created from all the original variables; therefore, the loss of dimensionality does 

not mean loss of the original variables. The number of new principal components is given by the task, 

or it is possible to estimate it using Eigenvalues. The Eigenvalues bigger than one denote component 

with a portion of variance bigger than the original variable. 

We apply PCA for data of eight variables measured on 32 people (height, weight, shoes, age, earn, 

beer, wine, swimming). 

Table 8 - Components characteristics in PCA 

   Eigenvalue  Proportion var.  Cumulative  

PC1   4.82   0.60   0.60   

PC2   1.63   0.20   0.81   

PC3   1.27   0.16   0.96   

 

In Table 8, component characteristics illustrate the number of PCs and their efficiency (size of 

Eigenvalues). When we reduce data of eight variables, then the sum of values in the correlation matrix 

is also eight. Then PC1 has efficiency almost as five original variables (≈ 5), PC2 and PC3 have efficiency 

more than the original variables. Three first PCs provides information about almost of the original data 

(sum of the Eigenvalues is 7.8), which is a good result. 

Similarly, the Eigenvalues of all PCs are depicted in Figure 14 (numbers are on the horizontal axis), for 

better illustration of the PCA model. Very good usage of PCA results is in case of scatter plot, where 

more than two variables. PCA reduces original data into two PCs, and these components are used for 

the construction of the scatter plot. 

 

Figure 14 - Plot of Eigenvalues in PCA 

 

Factor analysis also provides a reduction of data dimensionality, where newly constructed factors 

replace the original variable. In FA, the reduction is based on covariance between the original variables. 

Here, the main role is played by factor loadings (coefficient of a factor in the original data 

decomposition). Newly constructed factors (their number is known or achieved by PCA) are based on 

all original data variable, and each factor is loaded (i.e. loadings) by each variable in a given portion. In 

other words, each original variable divides its loadings among all factors. The factor is composed of 

variables, which achieves the biggest loadings for this factor.  
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Table 9 - Factor loadings for FA 

   Factor 1  Factor 2  Factor 3  Uniqueness  

height   0.95           0.03   

weight   0.95           0.05   

shoes   0.95           0.02   

age       0.88       0.00   

earn   0.51   0.81       0.08   

beer   0.83       -0.49   0.06   

wine           0.82   0.23   

swimming   0.92           0.06   

 

From Table 9 (factor loadings) is clear that factors are loaded relative unambiguously (only earn and 

beer are located in two factors). If the loadings of the variable are very similar, it is possible to use 

some rotation (Varimax, etc.). Better insight into factor loadings provides Path diagram (Figure 15). 

Here, the thickness of the arrow is based on the size of factor loadings (green for positive and red for 

negative). Factor 1 is for height, weight, size of shoes, beer and swimming. Factor 2 is for age and 

earnings, and Factor 3 is for wine consumption. Then we can name the factors by some logical labels. 

PCA and FA are not so exact methods of statistical tests because there is no decision (significance) of 

the achieved results. Researchers should carefully study the numerical results to achieve the most 

appropriate results. 

 

Figure 15 - Path diagram for FA 

Design of the experiment, measurement, analysis, conclusion 
To achieve appropriate answers for the predefined research questions, researchers have to abide by 

several rules. Previously introduced statistical methods are efficient when given assumptions are 

checked. 

Preparation of data measurement is a very important part of research before analysis because if data 

are measured in a wrong way or some data are missing, and even the best analytic is not able to 

construct appropriate conclusion of the analysis. Typically, a deeper consideration or discussion with 

an expert on data analysis is sufficient. It is possible to measure data in many ways, questionnaire or 

physical measuring (people, animals, machines, etc.) are the most typical ways.  

The steps performed before data analysis in the research are called experimental design or design of 

the experiment (DOE) [5]: 
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1. Definition of research interest is focused on questions, variables, and objects. The main idea 

before the measurement is what we want in the research to prove (‘Compare physiological 

aspects of male and female athletes in a given sport', 'Study the influence of digital devices on 

children behaviour in school', etc.). Although many researchers often deal with topics which 

are known for them, it is recommended to write this description (idea) exactly because it 

results in the next step. Naturally, variables are specified to be measured for support the goal 

of the research ('gender', 'height', 'weight', etc.). It is important to think about all possible 

aspects (features, characteristics) which can play a role in the research process. 

2. Prepare a research hypothesis. In this phase, the research ideas are defined in more details. 

The global research idea is divided into several small research hypothesis – each one will be 

(statistically) tested in the analytical phase. Research hypothesis contains a particular 

statement regarding the research interest (i.e. 'Men athletes are heavier than women', 'Playing 

PC games causes worse study results', etc.). For each research hypothesis, the null hypothesis 

is constructed as a neutral statement ('Men and women athletes have similar weight', 'Playing 

PC games have no influence on children school results', etc.). The research hypothesis is also 

called the alternative hypothesis. 

3. Prepare the measurement of variables. Some research measurement decided this point 

because sometimes there is only one possible way to measure a given variable (gender is only 

Male or Female, etc.). But generally, measured variables are limited in several aspects. 

Researchers are often able to decide if the variable will be qualitative or quantitative (for 

example age can be represented as an exact number or category' 20-39', speed of the car can 

be an exact number or category '100-130 km/h', etc.). If it is possible, it is recommended to 

measure numerical variables as numbers that are simply transformed to a categorical scale. 

Unfortunately, the categorical variable is not possible to transform into a number. The 

accuracy of measurement varies according to the particular variable, i.e. if the variable range 

is (0, 0.1), accuracy should be at least two decimal places or more, etc.  

4. Definition of the experimental settings serves to provide significance of research results. If the 

research enables to measure an arbitrary number of objects, it is recommended to estimate 

an appropriate size of the sample. Generally, a higher number of objects means more 

significant results. Nevertheless, in many research areas, there is not possible to measure a lot 

of objects (it is expensive, time-consuming, etc.). All objects should be selected to data file 

randomly to achieve statistically significant results. Unfortunately, in the medical researches, 

the number of patients is very small to select some sub-groups. Some researches enable to 

divide objects into the treatment and control group to assess differences of measured 

variables.  

Data in the research are measured variously. It is necessary to guarantee the accuracy of measuring 

machines (meters) and settings of simulation devices, etc. The calibration is performed in many ways. 

The simplest way is to measure the known value using the device and compare the measured value 

with the true value. 

Before data analysis, data have to be cleaned, where spurious and outlying values are checked and 

corrected (third gender value, negative earnings, etc.). If the correction is not possible, the whole 

object or variable should be removed before analysis. Also, it is possible to transform variables to 

different units or scales to compare results with other research studies (km/h to mi/h, etc.). 

When data are clean, the decision and selection the most proper statistical methods (tests) are 

performed. Many researchers underestimate this step, and a lot of reports of research are rejected 

from publication because of the bad analytical part. Authors of study [6] proposed a complex survey 
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to avoid researchers from making the wrong steps in data analysis. Some methods were described in 

previous paragraphs. Nevertheless, in the case of more specific researches, more specific methods 

provide better results and insight into the research problem. 

When the analysis of measured data is completed, numerical and graphical results need to be enriched 

by clear description and interpretation. Here, researchers have to summarise ideas before, during and 

after performed research. Whether the expected goal was achieved, and if yes, how new ideas were 

achieved and what are reasons for the newly achieved level of the research area. The conclusion should 

help the reader to understand the main ideas of the presented part of the research. It should be clear, 

and it includes all the significant steps of performed research. Standardly, the conclusion contains new 

possible ways to extend current results. 

Statistical software 

Although it is possible to perform selected statistical tests manually (using calculator and tables of 

standard distributions), it is more comfortable and faster to employ some of the offered statistical 

packages (software). From a price point of view, statistical software is divided into licensed (user pay 

before using) and free (available without payment). From a user-interface point of view, software 

functions are controlled by a graphical menu or from the console. There are rather small technical 

(functional) differences between various licensed software, especially in graphical user interface and 

format of reports (results). The licensed statistical software is popular mainly in the commercial or 

academic sphere. Mostly, in the individual areas of research, different packages for the researchers 

are used (it is not a rule, but it is an adaptation the software to a researchers' requirements). Very 

popular licensed statistical packages with a graphical interface are MiniTab1, NCSS2, SPSS3, 

Statgraphics4, Stata5, Statistica6, Systat7, TriloByte8, etc. Commercial statistical software controlled by 

console is mainly Matlab9. Popular open-source software with a graphical interface is Gretl10, Jasp 11or 

Mystat (student version of Systat). Very popular open-source console statistical software is R project 
12often used with R studio 13interface. Besides these general statistical packages, researchers often use 

software focused on particular statistical methods. 

  

                                                           
1 http://www.minitab.com/en-us/ 
2 https://www.ncss.com/software/ncss/ 
3 https://www.ibm.com/products/spss-statistics 
4 https://www.statgraphics.com/ 
5 https://www.stata.com/ 
6 http://www.statsoft.com/ 
7 https://systatsoftware.com/ 
8 https://www.trilobyte.cz/ 
9 https://www.mathworks.com/products/matlab.html 
10 http://www.learneconometrics.com/gretl/index.html 
11 https://jasp-stats.org/ 
12 https://www.r-project.org/ 
13 https://rstudio.com/ 
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