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Introduction

Motivation

Finite algebras generation with specific properties
Task specification

m n - number of algebra elements

m Algebra operations declaration

m Compulsory properties of operations
u

u

Optional properties of operations
Generate such algebra fulfilling requirements above

Manual creation with help of properties automated check

Brute force (combinatorial) approach

More sophisticated methods?
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Why not brute force?

m Example: n elements, k binary operations, [ axioms (m elements
dependence)

N, = (n)k*™*" possible candidates

[ axioms check - expression evaluations N, = [ * (n™) for every
candidate

total expression evaluations N; = N, * N,

expression means dozens of simple (CPU level) instructions

current common computer about 10° — 1019 instructions per second
e.g. Intel Atom N270 - 3 GIPS, Intel Core i7 920 (Quad core) - 80
GIPS, SC IT4l (2015) cca 105 IPS (FLOPS)...

m Fixk=3,01=10,m =3

n=4,1{0,a,b,1}, N, =7.9%10%, N, =5.1 %103}
n=>5,{0,a,b,c,1}, N, = 2.6 x 1052, N; = 3.3 x 10%®
n=6, {0,a,b,c,d,1}, N. = 1.0 x 1034, N, = 2.4 x 1087
n=17,1{0,a,b,cd,e 1}, N.=16%10'2* N, =5.8x10127
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Why not brute force?

m "Hard" computing fails on superexponentiality of the problem
(although many optimizations are possible, o(n™) remains)

Candidates and expression evaluations
(exponential view)

1,0E4288 -
1,0E4264
1,0E4240 -
1,0E4216
1,0E4192 -
1,0E4168 -
1,0E4144 -
1,0E+120 - =—Nc(exp)
1,0E496 -
1,0E472 -
1,0E+48 -
1,0E424
1,0E+00 s

4 5 6 7 8 9 10

Nt(exp)

T T T T T T 1
11 12 13 14 15 16

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras



Genetic algorithms (GA)

m Genetic algorithms - successful softcomputing method based on
evolutionary principles

m User may select such parameters of GA to achieve "optimal" (not
necessarily best) results in "reasonable" time in contrast to brute
force

m Main characteristics:

m Population member (candidate solution), its fitness function
(evaluates suitability)

m Population - set of members, starting population (random)

m New generation created from previous by selection, crossover and
mutation

m Generate new populations until stop condition is fulfilled (fix number
of iterations - populations, predefined member fitness being optimal
etc.)
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Genetic Algorithm Flowchart

Initial population

Fitness evaluation L
. Termination .
for population " Extract solution
(current generation) ol

Generation of new
population —
selection, crossover
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Population and Population Member (GA)

m Candidate solution p (Population Member / PM) represented by its
properties (usually stored in "chromosomes" - bit array, integer array
etc.)

m Fitness function of candidate solution f, f(x) € (0,1), x is PM - the
keystone of time complexity of the task (possible parallelism)

m Population - fix or variable number of PM

m Population member (candidate solution), its fitness function
(evaluates suitability)
m Population - sets of PMs, best PM, worst PM, median PM

m Generation - sequence of populations called generations Gy, ..., G,
where G; = {p; j|i,j € N}, i is generation index, j is PM index in
population

m Starting Generation G is randomly (partially randomly) generated
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Genetic operators (GA)

m Selection - simply into next generation or further processing
m Elitist - usually best m PM from G; is directly copied into G,
m Selection for crossover (SC) - some PMs from G; are selected for
generation of new children for G; 1,
m SC should inhere probability of selection probsc(p) for PM p
non-decreasing with respect to fitness function:
f(p1) > f(p2) = probsc(p1) > probsc(p2)
m Crossover - combination of several PMs to generate new PMs for
next generation
m Simple - two old PMs pg41, pora2 generate two children, where first
portion of chromosome is from p,;41 and second from p,;40 and
contrary
m Exponential - if we can distinguish several portions of chromosome we
can generate more children than parents (every possible combination)
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Genetic operators (GA)

= Mutation - randomly selected PMs from new generation are
"altered"

Mutation rate - probability of selection PM for mutation
Point - single element of chromosome is altered

Interval - interval of chromosome elements are altered
Overall - whole chromosome is altered

m Termination - we have to end iterative application of operators to
new generations

Best PM (average, median) - best PM in last population has fitness
greater or equal to predefined value

Step - fixed number of steps (generations) is produced

Suitable PMs - predefined number of PMs with required fitness is
generated

Time - time elapsed restriction to iteration

Peak - peak fitness is achieved and m next generations has worse
fitness (or more sophisticated dependence on fitness)
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Task - EQ-algebras generation

EQ-algebras as truth value structure for EQ-logics

Key operation - Fuzzy Equality
3 basic binary operations fulfilling several properties

m Infimum A
m Multiplication ®
m Fuzzy Equality ~
m One possible additional unary operation
m Delta A
m One derivable binary operation
m Supremum (maximum) V
m Additional supporting (directly following) connectives

m Implication —
m Negation -
m LessOrEqual <
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Task - EQ-algebras definition

EQ-algebra £ - algebra of type (2, 2, 2, 0), £ = (E, A\, ®,~, 1)

(E1) (E,A,1) is a commutative idempotent monoid (i.e. A-semilattice
with top element 1). We put a < b iff a A b = a, as usual.

(E2) (E,®,1) is a monoid and ® is isotone w.r.t. <.

(E3) a~a=1 (reflexivity axiom)
(E4) ((aAb)~c)®@(d~a)<c~ (dAD) (substitution axiom)
(E5) (a~b)®@(c~d)<(a~c)~(b~d) (congruence axiom)
(E6) (anbAc)~a<(aNb)~a (monotonicity axiom)
(E7) a®b<a~b (boundedness axiom)
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EQ-algebra - Additional operations

® Implication - a - b= (aAb) ~a

m Negation - If £ contains also the bottom element 0 then we put
—a = a ~ 0 and call —a a negation of a € FE.

= Maximum (supremum) - V is derived from A preserving this
condition: (a Ab=a) = (aVb=">) (details in algorithms).

m Delta - EQ-algebra £ extended by a unary additional operation
A: E — E fulfilling the following axioms:

(EA1l) A1=1

EA2) Aa < AAa

EA3) A(a ~b) < Aa ~ Ab
EA4) A(aAb) = Aa N Ab

)
)
)
EA5) Aa = Aa® Aa

(
(
(
(
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Special EQ-algebras

Let £ be an EQ-algebra and a,b,c,d € E. We say that £ is:

separated if foralla € £, a~b=1 implies a =0b.

goodifa~1=a.

residuated if for all a,b,c € E, (a®b)Ac=a®b iff
aN((bAc)~b)=a.

involutive (IEQ-algebra) if for all a € E, ——a = a.

prelinear if for all a,b € E, sup{a — b,b — a} = 1.

@ lattice EQ-algebra ((EQ-algebra) if it is a lattice and
((aVvb)~c)®(d~a)<(dVb)~c

linear if for all a,b € E ((a Ab) =a) or ((a Ab) =b).
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EQ-algebras

EQ-algebras - former support tool

Manual algebras design with automated axioms check (complicated for
larger EQ-algebras)

7 Eq-Algebras

Hle Help

[

Define Seilattice

[ Product operalion—————————|

Check associativity
Check isctonicity

[ Other properties |

Check meet distibutivity
Check *- substitution
Check >
Iattice X
- isataricity
Fussion property

Comment. |EQ-Algebra Number of elements: |3

Fuemequly

Digfine fuzay equality
Check tiansiiviy
Check substiion [E4)

Fuzpinplication |

Show fuzzy mplication

Check isotaricity [E6)
Check antitoricity (E7)

Check (81
Check congruence (E5)

[~Deka operstion

Define delta |

Define maximum |

Substitution axiom F4
(aAb)~c)*(d~a)| <= |c~(dAb)

Boundedness E
a*h| <= |a~b

No ermrors.

E

Mo errors




Specific genetic algorithms for EQ-algebras design

Basic principles

m Object oriented model of EQ-algebras as GA Population Members
= GA Population (Generation) as list of PMs

m Fitness function based on relative fulfilment of mandatory and
optional axioms

m EQ-algebras fulfilling additional criteria called Winners
m Winners are stored during GA process

= Very important is detection of previously generated (identical)
candidates (removal)
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Specific genetic algorithms for EQ-algebras design

PM and operations data structures

OperationTriple= array[l..3] of char;
OperationCouple= array[l..2] of char;

PEQAlgebra = “TEQAlgebra;
TEQAlgebra = class
public

NElements : integer;
Elements : arrayl[l..MaxNElements] of char;
NSemilatticeArguments: integer; {number of different tuple
in semilattice}
SemiLattice : array [1..MaxNArguments] of OperationTriple;
{only specific triples (x, y, x o y) in a triangle without
of the operation square are stored}
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Specific genetic algorithms for EQ-algebras design

Population data structure

PEQPopulation = “TEQPopulation;
TEQPopulation = class(TList)
public

parent, child : PEQPopulation;
ElementsNo : integer;

constructor Create();overload;

procedure GenerateRandom(populationsize, elementsize:integ
procedure CrossOver(iteml, item2:PEQAlgebra; target:PEQPop
procedure Mutate(prob:real);

procedure RecomputeFit (win:PEQPopulation);

procedure RemoveEqual();
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GA algorithm detailed

Random (starting) population partially built to fulfil simple properties
(e.g. infimum is commutative)
m Fitness evaluation - two phases:

m Mandatory properties evaluation (e.g. boundedness axiom -
a®b<a~b)
m Optional properties evaluation (e.g. goodness - a ~ 1 = a)

String representing a candidate algebra
Removal of same candidates (based on the string representation)

Sort of PMs in population through fitness

Termination condition:
m Fixed number of steps performed
m Fixed number of EQ-algebras with required properties
m Manual (user) termination
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EQCreator application

Algorithms implemented in the form of PC application EQCreator
GUI based application for MS Windows 32-bit platform
Former EQAlgebras tool written in Object Pascal language

Minor usage of code - for backward compactibility (enables to load
and save older eqa format

Uses abstract types of Visual Component Library (TList)

Main purpose:
m Selection of various properties for candidate EQ-algebras
m Evolution of algebras to attain EQ-algebras even with specific
properties
m Automated check of properties and generation
m Saving of resulting optimal solutions in suitable form
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Implementation

EQCreator - basic functions

m Fundamental settings

EQ Creator v1 build 2013-05-14-09:30

Elements number:|5 vi EQ Optional Properties s yeight |15 vI ¥ Max [ Delta

ey Fequired elms. .,
Papulation limit |15'J vi [ |3 vl i |3 3-

Generations steps: I'IEIDDEI vi i ™ Han I Commutative [~ Mo

Stop after| 100 5 [0 = unlimited] [~ Involutive [~ Mon [~ Fesiduated [~ Mo

[ Prelingar [~ Mon [~ Latice EQ [~ Mo

I? Remove EquaIMembelrs ) [ SemiSeparsted [~ Non & Linear = Ho
Childien [%] Crass (%) Mutation (%] W ™ Hon
|99 B |1nu 5 |3n | [~ Equality over ProdE quality

7 [~ Sup-Prod distributivity
Current Population

m Algebra elements number - support size (2 - 28)

m Population limit - max. number of algebras in population

m Generation steps - max. number of GA steps until one run stops
(except stopped manually) (0 - unlimited)

m Stop after certain number of EQ-algebras found
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EQCreator - Genetic algorithms settings

m Children ratio (0 - 100%) - crossover resulting new members relative
count (how large portion of new population to be new children,
others are old members copied from previous generation)

m Cross ratio (0 - 100%) - portion of BEST members to have
possibility to crossover (it is not crossover probability!)

= Mutation ratio (0 - 100%) - probability for new population member
to be mutated

m Crossover probability is set arbitrary (fixed) - in descending ordered
(by fitness) population of the size N we set probability of member i

pi = whmigy for i =0,...,N — 1, where f(i) > f(i + 1) (fitness for
2

members)
: 5
e.g. for 5 members: po = 1z, p1 = 15, P4 = 13
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EQCreator - Optional settings

weight of optional properties - relative weight of special EQ-algebras
requirements (e.g. linear EQA, involutive EQA) - should be
significantly less than for compulsory axioms (experimental best -
15%)

notion of colourfulness - required number of distinct elements in
variable positions for operator function values (some combinations
are determined e.g. a A0 =0 in every EQA)

colourfulness assures non-trivial EQ-algebras to be generated e.g.
for fuzzy equality when 3 of 5 required - at least 3 different elements
occur as functional values in non-determined cases

colourfulness experimentally needed for Product (®) and Fuzzy
Equality (~) - higher means computationally harder!
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Implementation

EQCreator - Optional settings

m Extension of EQ-algebras - Max and Delta operators - some
additional axioms must hold for these operators!

m Special EQ-algebras holding (or not holding) additional axioms as
optional selection:

Good Commutative Involutive Residuated
Prelinear  Lattice Semiseparated Linear
Separated etc.
m Important setting - removal of equal EQ-algebras from population!
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EQCreator - Population members or Winners (EQA)

Browsing

Irfirnm

I T
Mahbci
aabca
bbbbhb
ccbco
Oabcl

2l =l =

Delta

Product

bl aimum

Oalhbal
0b1bh
0bbicc
0ahblcl

FE quality

alfl hlal 2 r0
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EQCreator - Input and Output

Save Beport Az | Show Graph | Open EQA filel Save EQA filel Current Edited Algebra
Population: 0 Tatal 0
Save Population .ﬂs..l Load Winnersl
: ID 3, .
Member: Tatal: 150
Save Pop. s EDAsl Load Last popl W Autaload Winners W Show Derived

Quick save Popul. | v Auto Save EQ Algebras Dump Eunentl [V Dump Froperties  [w Play Tada
v Quicksave Directary: Stepz
Quick save EQAs | ICZ “temphEl Fleset Gi | Run | |1 ooao 3‘

Open old EQA format (user can use formerly created algebras)

Save both old EQA format of EQP - EQP is EQ-algebras (or general
algebras) Population List

EQP is in contrast to EQA readable text file with operator tables

Number of GA steps could be limited
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EQCreator - EQP output with axiom fulfilment info

oooo: 1

fllabel *Dabetl 2Mebed m|D dbetl
N ) gjooo0oan (o < = 0 - 08 & b e
all abaa all abaa alblaill alaaacil
b bbbb b0 B Obb blbalaa blbabgc1
clbabcc cli abcc clb1a11 clccced
10 a b el 1t a be T Iflbliaill 2 R s R
0 &k el ¥ B abel =

pLE L3 11 (0851 O o1

alb 1l a1l alg 18 1 % alb

= c O A I Bfp 4 1 & & blb

clblall o T T c|b

1lb1a1l11 16 0 @ 0B -]

Associative Infimum: 125-125 OK
Commutative Infimum: 25-25 OK
Heutral Infimum: 10-10 OK
Idenpotent Infimum: 55 O
Azzociative Product: 125-125 OK
Heutral Product: 1010 OK
Isotone Product: 125-125 CK
Reflexive FEQuality: 5-5 COK
Congruence: 625625 OF
Substitution: 6257625 OK
Honotone Implication: 125-125 COK
Boundedness: 2525 QK
Colourfulness: 3-3 0K
Hon—Goodness: 1.5, Errors: 4
Hon-Involutive: 1-/5, Errors: 4
Hon-Semiseparated: 3.5, Errors: 2
Hon-Separated: 19-25, Errors: 6
Hon-Residuated: 114125, Errors: 11
Commutative: 2525 OK

Linear: 25-25 OK

Lattice: 625625 QK

Prelinear: 2525 OK
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Implementation

EQCreator - Compulsory and Optional Axioms real-time

view

Azzociative Infimunt: 125/125 0K
Comrutative [nfimum; 25/25 OF
MHeutral Infirmum: 1010 0F
ldermpatent Infimum: 545 OF
lzatone product 1254125 0K
Azzociative product; 125/125 0K
Meutral product; 10410 0F,
Reflexive FEquality; 5/5 Ok,
Substitution; 625/625 DK
Congruence; B25/625 OF,
Manatone Implication: 125/125 0K,
Boundedness: 25/25 0K

Fithess ;1002

Colorfulness; 343 0K
Colorfulnes=[*] 4/3 0K

Mon-Goodness: 1/, Erors: 4
Mon-lreolutive: 145, Emors: 4
Maon-Semizeparated; 3/5, Enors: 2
Maon-Separated:; 19425, Errors: B
MHon-Residuated: 1144125, Emors: 11
Commutative: 25525 0K

Linear: 25425 Ok

Lattice: B25/6525 OF.

Frelinear, 25/25 OF

Sup-product distributivity; 125/125 0K
Mon-Eguality over ProdE quality: 6/125, Erorg; 119

Previous [ et
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Implementation

EQCreator - time efficiency

100000 A
]
X 3

10000 X .

+
[ ]
1000 /i/
100 +
8

median

: -

1 T T
0 2 4 6

10 12

Tested on Pentium 4 - 2.8 GHz. In contrast to state space searching
significant difference (no superexponentiality)
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Implementation

Conclusions

m Genetic algorithms made the task solvable in sensible time

m Specific GA properties are required:

Elitism must be used at least of minimal level (5% was acceptable - of
course higher usage leads to worse convergence)

High mutation ratio must be set in contrast with traditional use of
GA (best results with 20 - 30%)

Optional axioms and requirements need to have significantly less
weight (experimentally 15% has best results)

Optional properties negatively affect convergence

Colourfulness was defined to prevent trivial solutions (evolution tends
to most simple way of achieving results)

m EQ Creator - software for EQ-algebras only, but we suppose to bring
fully general generator for algebras
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Implementation

Thank you for attention.
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