
Genetic Algorithms for EQ-algebras Automatic
Generation

Hashim Habiballa, Vilém Novák, Martin Dyba

Centre of Excellence IT4Innovations - Division University of Ostrava Institute for Research
and Applications of Fuzzy Modeling

University of Ostrava
Czech Republic

{hashim.habiballa, vilem.novak, martin.dyba}@osu.cz

21.10.2013

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 1 / 32



Table of contents

1 Introduction

2 EQ-algebras

3 Speci�c genetic algorithms for EQ-algebras design

4 Implementation

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 2 / 32



Introduction

Motivation

Finite algebras generation with speci�c properties

Task speci�cation

n - number of algebra elements
Algebra operations declaration
Compulsory properties of operations
Optional properties of operations
Generate such algebra ful�lling requirements above

Manual creation with help of properties automated check

Brute force (combinatorial) approach

More sophisticated methods?

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 3 / 32



Introduction

Why not brute force?

Example: n elements, k binary operations, l axioms (m elements
dependence)

Nc = (n)k∗n∗n possible candidates
l axioms check - expression evaluations Nev = l ∗ (nm) for every
candidate
total expression evaluations Nt = Nc ∗Nev

expression means dozens of simple (CPU level) instructions
current common computer about 109 − 1010 instructions per second
e.g. Intel Atom N270 - 3 GIPS, Intel Core i7 920 (Quad core) - 80
GIPS, SC IT4I (2015) cca 1015 IPS (FLOPS)...

Fix k = 3, l = 10,m = 3

n = 4, {0, a, b, 1}, Nc
.
= 7.9 ∗ 1028, Nt

.
= 5.1 ∗ 1031

n = 5, {0, a, b, c, 1}, Nc
.
= 2.6 ∗ 1052, Nt

.
= 3.3 ∗ 1055

n = 6, {0, a, b, c, d, 1}, Nc
.
= 1.0 ∗ 1084, Nt

.
= 2.4 ∗ 1087

n = 7, {0, a, b, c, d, e, 1}, Nc
.
= 1.6 ∗ 10124, Nt

.
= 5.8 ∗ 10127

. . .

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 4 / 32



Introduction

Why not brute force?

"Hard" computing fails on superexponentiality of the problem
(although many optimizations are possible, o(nn) remains)

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 5 / 32



Introduction

Genetic algorithms (GA)

Genetic algorithms - successful softcomputing method based on
evolutionary principles

User may select such parameters of GA to achieve "optimal" (not
necessarily best) results in "reasonable" time in contrast to brute
force

Main characteristics:

Population member (candidate solution), its �tness function
(evaluates suitability)
Population - set of members, starting population (random)
New generation created from previous by selection, crossover and
mutation
Generate new populations until stop condition is ful�lled (�x number
of iterations - populations, prede�ned member �tness being optimal
etc.)

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 6 / 32



Introduction

Genetic Algorithm Flowchart

Initial population

Fitness evaluation 
for population 

(current generation)

Termination 
condition?

No

Generation of new 
population – 

selection, crossover
Mutation

Yes Extract solution

End

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 7 / 32



Introduction

Population and Population Member (GA)

Candidate solution p (Population Member / PM) represented by its
properties (usually stored in "chromosomes" - bit array, integer array
etc.)

Fitness function of candidate solution f , f(x) ∈ 〈0, 1〉, x is PM - the
keystone of time complexity of the task (possible parallelism)

Population - �x or variable number of PM

Population member (candidate solution), its �tness function
(evaluates suitability)
Population - sets of PMs, best PM, worst PM, median PM
Generation - sequence of populations called generations G0, . . . , Gr,
where Gi = {pi,j |i, j ∈ N}, i is generation index, j is PM index in
population
Starting Generation G0 is randomly (partially randomly) generated

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 8 / 32



Introduction

Genetic operators (GA)

Selection - simply into next generation or further processing

Elitist - usually best m PM from Gi is directly copied into Gi+1

Selection for crossover (SC) - some PMs from Gi are selected for
generation of new children for Gi+1,
SC should inhere probability of selection probSC(p) for PM p
non-decreasing with respect to �tness function:
f(p1) ≥ f(p2)⇒ probSC(p1) ≥ probSC(p2)

Crossover - combination of several PMs to generate new PMs for
next generation

Simple - two old PMs pold1, pold2 generate two children, where �rst
portion of chromosome is from pold1 and second from pold2 and
contrary
Exponential - if we can distinguish several portions of chromosome we
can generate more children than parents (every possible combination)

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 9 / 32



Introduction

Genetic operators (GA)

Mutation - randomly selected PMs from new generation are
"altered"

Mutation rate - probability of selection PM for mutation
Point - single element of chromosome is altered
Interval - interval of chromosome elements are altered
Overall - whole chromosome is altered

Termination - we have to end iterative application of operators to
new generations

Best PM (average, median) - best PM in last population has �tness
greater or equal to prede�ned value
Step - �xed number of steps (generations) is produced
Suitable PMs - prede�ned number of PMs with required �tness is
generated
Time - time elapsed restriction to iteration
Peak - peak �tness is achieved and m next generations has worse
�tness (or more sophisticated dependence on �tness)

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 10 / 32



EQ-algebras

Task - EQ-algebras generation

EQ-algebras as truth value structure for EQ-logics

Key operation - Fuzzy Equality

3 basic binary operations ful�lling several properties

In�mum ∧
Multiplication ⊗
Fuzzy Equality ∼

One possible additional unary operation

Delta ∆

One derivable binary operation

Supremum (maximum) ∨
Additional supporting (directly following) connectives

Implication →
Negation ¬
LessOrEqual ≤

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 11 / 32



EQ-algebras

Task - EQ-algebras de�nition

EQ-algebra E - algebra of type (2, 2, 2, 0), E = 〈E,∧,⊗,∼,1〉

(E1) 〈E,∧,1〉 is a commutative idempotent monoid (i.e. ∧-semilattice
with top element 1). We put a ≤ b i� a ∧ b = a, as usual.

(E2) 〈E,⊗,1〉 is a monoid and ⊗ is isotone w.r.t. ≤ .

(E3) a ∼ a = 1 (re�exivity axiom)

(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b) (substitution axiom)

(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) (congruence axiom)

(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a (monotonicity axiom)

(E7) a⊗ b ≤ a ∼ b (boundedness axiom)

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 12 / 32



EQ-algebras

EQ-algebra - Additional operations

Implication - a→ b = (a ∧ b) ∼ a
Negation - If E contains also the bottom element 0 then we put
¬a = a ∼ 0 and call ¬a a negation of a ∈ E.
Maximum (supremum) - ∨ is derived from ∧ preserving this
condition: (a ∧ b = a)⇒ (a ∨ b = b) (details in algorithms).

Delta - EQ-algebra E extended by a unary additional operation
∆ : E → E ful�lling the following axioms:

(E∆1) ∆1 = 1

(E∆2) ∆a ≤ ∆∆a
(E∆3) ∆(a ∼ b) ≤ ∆a ∼ ∆b
(E∆4) ∆(a ∧ b) = ∆a ∧∆b
(E∆5) ∆a = ∆a⊗∆a

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 13 / 32



EQ-algebras

Special EQ-algebras

Let E be an EQ-algebra and a, b, c, d ∈ E. We say that E is:

1 separated if for all a ∈ E, a ∼ b = 1 implies a = b.

2 good if a ∼ 1 = a.

3 residuated if for all a, b, c ∈ E, (a⊗ b) ∧ c = a⊗ b i�
a ∧ ((b ∧ c) ∼ b) = a.

4 involutive (IEQ-algebra) if for all a ∈ E, ¬¬a = a.

5 prelinear if for all a, b ∈ E, sup{a→ b, b→ a} = 1.

6 lattice EQ-algebra (`EQ-algebra) if it is a lattice and
((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ (d ∨ b) ∼ c.

7 linear if for all a, b ∈ E ((a ∧ b) = a) or ((a ∧ b) = b).

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 14 / 32



EQ-algebras

EQ-algebras - former support tool

Manual algebras design with automated axioms check (complicated for
larger EQ-algebras)

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 15 / 32



Speci�c genetic algorithms for EQ-algebras design

Basic principles

Object oriented model of EQ-algebras as GA Population Members

GA Population (Generation) as list of PMs

Fitness function based on relative ful�lment of mandatory and
optional axioms

EQ-algebras ful�lling additional criteria called Winners

Winners are stored during GA process

Very important is detection of previously generated (identical)
candidates (removal)

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 16 / 32



Speci�c genetic algorithms for EQ-algebras design

PM and operations data structures

OperationTriple= array[1..3] of char;

OperationCouple= array[1..2] of char;

PEQAlgebra = ^TEQAlgebra;

TEQAlgebra = class

public

NElements : integer;

Elements : array[1..MaxNElements] of char;

NSemilatticeArguments: integer; {number of different tuples of arguments

in semilattice}

SemiLattice : array [1..MaxNArguments] of OperationTriple;

{only specific triples (x, y, x o y) in a triangle without the diagonal

of the operation square are stored}

...

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 17 / 32



Speci�c genetic algorithms for EQ-algebras design

Population data structure

PEQPopulation = ^TEQPopulation;

TEQPopulation = class(TList)

public

parent, child : PEQPopulation;

ElementsNo : integer;

...

constructor Create();overload;

procedure GenerateRandom(populationsize, elementsize:integer);

procedure CrossOver(item1, item2:PEQAlgebra; target:PEQPopulation);

procedure Mutate(prob:real);

procedure RecomputeFit(win:PEQPopulation);

procedure RemoveEqual();

...

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 18 / 32



Speci�c genetic algorithms for EQ-algebras design

GA algorithm detailed

Random (starting) population partially built to ful�l simple properties
(e.g. in�mum is commutative)

Fitness evaluation - two phases:

Mandatory properties evaluation (e.g. boundedness axiom -
a⊗ b ≤ a ∼ b)
Optional properties evaluation (e.g. goodness - a ∼ 1 = a)

String representing a candidate algebra

Removal of same candidates (based on the string representation)

Sort of PMs in population through �tness

Termination condition:

Fixed number of steps performed
Fixed number of EQ-algebras with required properties
Manual (user) termination

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 19 / 32



Implementation

EQCreator application

Algorithms implemented in the form of PC application EQCreator

GUI based application for MS Windows 32-bit platform

Former EQAlgebras tool written in Object Pascal language

Minor usage of code - for backward compactibility (enables to load
and save older eqa format

Uses abstract types of Visual Component Library (TList)

Main purpose:

Selection of various properties for candidate EQ-algebras
Evolution of algebras to attain EQ-algebras even with speci�c
properties
Automated check of properties and generation
Saving of resulting optimal solutions in suitable form

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 20 / 32



Implementation

EQCreator - basic functions

Fundamental settings

Algebra elements number - support size (2 - 28)
Population limit - max. number of algebras in population
Generation steps - max. number of GA steps until one run stops
(except stopped manually) (0 - unlimited)
Stop after certain number of EQ-algebras found

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 21 / 32



Implementation

EQCreator - Genetic algorithms settings

Children ratio (0 - 100%) - crossover resulting new members relative
count (how large portion of new population to be new children,
others are old members copied from previous generation)

Cross ratio (0 - 100%) - portion of BEST members to have
possibility to crossover (it is not crossover probability!)

Mutation ratio (0 - 100%) - probability for new population member
to be mutated

Crossover probability is set arbitrary (�xed) - in descending ordered
(by �tness) population of the size N we set probability of member i
pi =

N−i
N∗(N+1)

2

for i = 0, ..., N − 1, where f(i) ≥ f(i+ 1) (�tness for

members)
e.g. for 5 members: p0 =

5
15 , p1 =

4
15 , ..., p4 =

1
15

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 22 / 32



Implementation

EQCreator - Optional settings

weight of optional properties - relative weight of special EQ-algebras
requirements (e.g. linear EQA, involutive EQA) - should be
signi�cantly less than for compulsory axioms (experimental best -
15%)

notion of colourfulness - required number of distinct elements in
variable positions for operator function values (some combinations
are determined e.g. a ∧ 0 = 0 in every EQA)

colourfulness assures non-trivial EQ-algebras to be generated e.g.
for fuzzy equality when 3 of 5 required - at least 3 di�erent elements
occur as functional values in non-determined cases

colourfulness experimentally needed for Product (⊗) and Fuzzy
Equality (∼) - higher means computationally harder!

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 23 / 32



Implementation

EQCreator - Optional settings

Extension of EQ-algebras - Max and Delta operators - some
additional axioms must hold for these operators!

Special EQ-algebras holding (or not holding) additional axioms as
optional selection:

Good Commutative Involutive Residuated
Prelinear Lattice Semiseparated Linear
Separated etc.

Important setting - removal of equal EQ-algebras from population!

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 24 / 32



Implementation

EQCreator - Population members or Winners (EQA)
Browsing

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 25 / 32



Implementation

EQCreator - Input and Output

Open old EQA format (user can use formerly created algebras)

Save both old EQA format of EQP - EQP is EQ-algebras (or general
algebras) Population List

EQP is in contrast to EQA readable text �le with operator tables

Number of GA steps could be limited

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 26 / 32



Implementation

EQCreator - EQP output

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 27 / 32



Implementation

EQCreator - EQP output with axiom ful�lment info

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 28 / 32



Implementation

EQCreator - Compulsory and Optional Axioms real-time
view

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 29 / 32



Implementation

EQCreator - time e�ciency

Tested on Pentium 4 - 2.8 GHz. In contrast to state space searching
signi�cant di�erence (no superexponentiality)

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 30 / 32



Implementation

Conclusions

Genetic algorithms made the task solvable in sensible time

Speci�c GA properties are required:

Elitism must be used at least of minimal level (5% was acceptable - of
course higher usage leads to worse convergence)
High mutation ratio must be set in contrast with traditional use of
GA (best results with 20 - 30%)
Optional axioms and requirements need to have signi�cantly less
weight (experimentally 15% has best results)
Optional properties negatively a�ect convergence
Colourfulness was de�ned to prevent trivial solutions (evolution tends
to most simple way of achieving results)

EQ Creator - software for EQ-algebras only, but we suppose to bring
fully general generator for algebras

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 31 / 32



Implementation

Thank you for attention.

Hashim Habiballa, Vilém Novák, Martin Dyba (IRAFM)Genetic Algorithms for Finite EQ-algebras Generation 32 / 32


	Introduction
	EQ-algebras
	Specific genetic algorithms for EQ-algebras design
	Implementation

