Genetic Algorithms for EQ-algebras Automatic
Generation

Hashim Habiballa, Vilem Novak, Martin Dyba

Centre of Excellence IT4Innovations - Division University of Ostrava Institute for Research
and Applications of Fuzzy Modeling
University of Ostrava
Czech Republic
{hashim.habiballa, vilem.novak, martin.dyba}@osu.cz

IT4Innovations d
national <:° >\

. & * EUROPEAN UNION . 2007-23
supercomputing rx EUROPEAN REGIONAL DEVELOPMENT FUND OP Research and
center bl INVESTING IN YOUR FUTURE Development for Innovation

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Table of contents

Introduction

EQ-algebras

Specific genetic algorithms for EQ-algebras design

Implementation

Hashim Habiballa, Viléem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Introduction

Motivation

Finite algebras generation with specific properties
Task specification

m n - number of algebra elements

m Algebra operations declaration

m Compulsory properties of operations
u

u

Optional properties of operations
Generate such algebra fulfilling requirements above

Manual creation with help of properties automated check

Brute force (combinatorial) approach

More sophisticated methods?

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Why not brute force?

m Example: n elements, k binary operations, [axioms (m elements
dependence)

N, = (n)k*™*" possible candidates

[axioms check - expression evaluations N, = [* (n™) for every
candidate

total expression evaluations N; = N, * N,

expression means dozens of simple (CPU level) instructions

current common computer about 10° — 1019 instructions per second
e.g. Intel Atom N270 - 3 GIPS, Intel Core i7 920 (Quad core) - 80
GIPS, SC IT4l (2015) cca 105 IPS (FLOPS)...

m Fixk=3,01=10,m =3

n=4,1{0,a,b,1}, N, =7.9%10%, N, =5.1 %103}
n=>5,{0,a,b,c,1}, N, = 2.6 x 1052, N; = 3.3 x 10%®
n=6, {0,a,b,c,d,1}, N. = 1.0 x 1034, N, = 2.4 x 1087
n=17,1{0,a,b,cd,e 1}, N.=16%10'2* N, =5.8x10127

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Why not brute force?

m "Hard" computing fails on superexponentiality of the problem
(although many optimizations are possible, o(n™) remains)

Candidates and expression evaluations
(exponential view)

1,0E4288 -
1,0E4264
1,0E4240 -
1,0E4216
1,0E4192 -
1,0E4168 -
1,0E4144 -
1,0E+120 - =—Nc(exp)
1,0E496 -
1,0E472 -
1,0E+48 -
1,0E424
1,0E+00 s

4 5 6 7 8 9 10

Nt(exp)

T T T T T T 1
11 12 13 14 15 16

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Genetic algorithms (GA)

m Genetic algorithms - successful softcomputing method based on
evolutionary principles

m User may select such parameters of GA to achieve "optimal" (not
necessarily best) results in "reasonable" time in contrast to brute
force

m Main characteristics:

m Population member (candidate solution), its fitness function
(evaluates suitability)

m Population - set of members, starting population (random)

m New generation created from previous by selection, crossover and
mutation

m Generate new populations until stop condition is fulfilled (fix number
of iterations - populations, predefined member fitness being optimal
etc.)

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Genetic Algorithm Flowchart

Initial population

Fitness evaluation L
. Termination .
for population " Extract solution
(current generation) ol

Generation of new
population —
selection, crossover

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Population and Population Member (GA)

m Candidate solution p (Population Member / PM) represented by its
properties (usually stored in "chromosomes" - bit array, integer array
etc.)

m Fitness function of candidate solution f, f(x) € (0,1), x is PM - the
keystone of time complexity of the task (possible parallelism)

m Population - fix or variable number of PM

m Population member (candidate solution), its fitness function
(evaluates suitability)
m Population - sets of PMs, best PM, worst PM, median PM

m Generation - sequence of populations called generations Gy, ..., G,
where G; = {p; j|i,j € N}, i is generation index, j is PM index in
population

m Starting Generation G is randomly (partially randomly) generated

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Genetic operators (GA)

m Selection - simply into next generation or further processing
m Elitist - usually best m PM from G; is directly copied into G,
m Selection for crossover (SC) - some PMs from G; are selected for
generation of new children for G; 1,
m SC should inhere probability of selection probsc(p) for PM p
non-decreasing with respect to fitness function:
f(p1) > f(p2) = probsc(p1) > probsc(p2)
m Crossover - combination of several PMs to generate new PMs for
next generation
m Simple - two old PMs pg41, pora2 generate two children, where first
portion of chromosome is from p,;41 and second from p,;40 and
contrary
m Exponential - if we can distinguish several portions of chromosome we
can generate more children than parents (every possible combination)

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Genetic operators (GA)

= Mutation - randomly selected PMs from new generation are
"altered"

Mutation rate - probability of selection PM for mutation
Point - single element of chromosome is altered

Interval - interval of chromosome elements are altered
Overall - whole chromosome is altered

m Termination - we have to end iterative application of operators to
new generations

Best PM (average, median) - best PM in last population has fitness
greater or equal to predefined value

Step - fixed number of steps (generations) is produced

Suitable PMs - predefined number of PMs with required fitness is
generated

Time - time elapsed restriction to iteration

Peak - peak fitness is achieved and m next generations has worse
fitness (or more sophisticated dependence on fitness)

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Task - EQ-algebras generation

EQ-algebras as truth value structure for EQ-logics

Key operation - Fuzzy Equality
3 basic binary operations fulfilling several properties

m Infimum A
m Multiplication ®
m Fuzzy Equality ~
m One possible additional unary operation
m Delta A
m One derivable binary operation
m Supremum (maximum) V
m Additional supporting (directly following) connectives

m Implication —
m Negation -
m LessOrEqual <

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Task - EQ-algebras definition

EQ-algebra £ - algebra of type (2, 2, 2, 0), £ = (E, A\, ®,~, 1)

(E1) (E,A,1) is a commutative idempotent monoid (i.e. A-semilattice
with top element 1). We put a < b iff a A b = a, as usual.

(E2) (E,®,1) is a monoid and ® is isotone w.r.t. <.

(E3) a~a=1 (reflexivity axiom)
(E4) ((aAb)~c)®@(d~a)<c~ (dAD) (substitution axiom)
(E5) (a~b)®@(c~d)<(a~c)~(b~d) (congruence axiom)
(E6) (anbAc)~a<(aNb)~a (monotonicity axiom)
(E7) a®b<a~b (boundedness axiom)

Hashim Habiballa, Viléem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

EQ-algebra - Additional operations

® Implication - a - b= (aAb) ~a

m Negation - If £ contains also the bottom element 0 then we put
—a = a ~ 0 and call —a a negation of a € FE.

= Maximum (supremum) - V is derived from A preserving this
condition: (a Ab=a) = (aVb=">) (details in algorithms).

m Delta - EQ-algebra £ extended by a unary additional operation
A: E — E fulfilling the following axioms:

(EA1l) A1=1

EA2) Aa < AAa

EA3) A(a ~b) < Aa ~ Ab
EA4) A(aAb) = Aa N Ab

)
)
)
EA5) Aa = Aa® Aa

(
(
(
(

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Special EQ-algebras

Let £ be an EQ-algebra and a,b,c,d € E. We say that £ is:

separated if foralla € £, a~b=1 implies a =0b.

goodifa~1=a.

residuated if for all a,b,c € E, (a®b)Ac=a®b iff
aN((bAc)~b)=a.

involutive (IEQ-algebra) if for all a € E, ——a = a.

prelinear if for all a,b € E, sup{a — b,b — a} = 1.

@ lattice EQ-algebra ((EQ-algebra) if it is a lattice and
((aVvb)~c)®(d~a)<(dVb)~c

linear if for all a,b € E ((a Ab) =a) or ((a Ab) =b).

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

EQ-algebras

EQ-algebras - former support tool

Manual algebras design with automated axioms check (complicated for
larger EQ-algebras)

7 Eq-Algebras

Hle Help

[

Define Seilattice

[Product operalion—————————|

Check associativity
Check isctonicity

[Other properties |

Check meet distibutivity
Check *- substitution
Check >
Iattice X
- isataricity
Fussion property

Comment. |EQ-Algebra Number of elements: |3

Fuemequly

Digfine fuzay equality
Check tiansiiviy
Check substiion [E4)

Fuzpinplication |

Show fuzzy mplication

Check isotaricity [E6)
Check antitoricity (E7)

Check (81
Check congruence (E5)

[~Deka operstion

Define delta |

Define maximum |

Substitution axiom F4
(aAb)~c)*(d~a)| <= |c~(dAb)

Boundedness E
a*h| <= |a~b

No ermrors.

E

Mo errors

Specific genetic algorithms for EQ-algebras design

Basic principles

m Object oriented model of EQ-algebras as GA Population Members
= GA Population (Generation) as list of PMs

m Fitness function based on relative fulfilment of mandatory and
optional axioms

m EQ-algebras fulfilling additional criteria called Winners
m Winners are stored during GA process

= Very important is detection of previously generated (identical)
candidates (removal)

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Specific genetic algorithms for EQ-algebras design

PM and operations data structures

OperationTriple= array[l..3] of char;
OperationCouple= array[l..2] of char;

PEQAlgebra = “TEQAlgebra;
TEQAlgebra = class
public

NElements : integer;
Elements : arrayl[l..MaxNElements] of char;
NSemilatticeArguments: integer; {number of different tuple
in semilattice}
SemiLattice : array [1..MaxNArguments] of OperationTriple;
{only specific triples (x, y, x o y) in a triangle without
of the operation square are stored}

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Specific genetic algorithms for EQ-algebras design

Population data structure

PEQPopulation = “TEQPopulation;
TEQPopulation = class(TList)
public

parent, child : PEQPopulation;
ElementsNo : integer;

constructor Create();overload;

procedure GenerateRandom(populationsize, elementsize:integ
procedure CrossOver(iteml, item2:PEQAlgebra; target:PEQPop
procedure Mutate(prob:real);

procedure RecomputeFit (win:PEQPopulation);

procedure RemoveEqual();

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

GA algorithm detailed

Random (starting) population partially built to fulfil simple properties
(e.g. infimum is commutative)
m Fitness evaluation - two phases:

m Mandatory properties evaluation (e.g. boundedness axiom -
a®b<a~b)
m Optional properties evaluation (e.g. goodness - a ~ 1 = a)

String representing a candidate algebra
Removal of same candidates (based on the string representation)

Sort of PMs in population through fitness

Termination condition:
m Fixed number of steps performed
m Fixed number of EQ-algebras with required properties
m Manual (user) termination

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

EQCreator application

Algorithms implemented in the form of PC application EQCreator
GUI based application for MS Windows 32-bit platform
Former EQAlgebras tool written in Object Pascal language

Minor usage of code - for backward compactibility (enables to load
and save older eqa format

Uses abstract types of Visual Component Library (TList)

Main purpose:
m Selection of various properties for candidate EQ-algebras
m Evolution of algebras to attain EQ-algebras even with specific
properties
m Automated check of properties and generation
m Saving of resulting optimal solutions in suitable form

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Implementation

EQCreator - basic functions

m Fundamental settings

EQ Creator v1 build 2013-05-14-09:30

Elements number:|5 vi EQ Optional Properties s yeight |15 vI ¥ Max [Delta

ey Fequired elms. .,
Papulation limit |15'J vi [|3 vl i |3 3-

Generations steps: I'IEIDDEI vi i ™ Han I Commutative [~ Mo

Stop after| 100 5 [0 = unlimited] [~ Involutive [~ Mon [~ Fesiduated [~ Mo

[Prelingar [~ Mon [~ Latice EQ [~ Mo

I? Remove EquaIMembelrs) [SemiSeparsted [~ Non & Linear = Ho
Childien [%] Crass (%) Mutation (%] W ™ Hon
|99 B |1nu 5 |3n | [~ Equality over ProdE quality

7 [~ Sup-Prod distributivity
Current Population

m Algebra elements number - support size (2 - 28)

m Population limit - max. number of algebras in population

m Generation steps - max. number of GA steps until one run stops
(except stopped manually) (0 - unlimited)

m Stop after certain number of EQ-algebras found

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

EQCreator - Genetic algorithms settings

m Children ratio (0 - 100%) - crossover resulting new members relative
count (how large portion of new population to be new children,
others are old members copied from previous generation)

m Cross ratio (0 - 100%) - portion of BEST members to have
possibility to crossover (it is not crossover probability!)

= Mutation ratio (0 - 100%) - probability for new population member
to be mutated

m Crossover probability is set arbitrary (fixed) - in descending ordered
(by fitness) population of the size N we set probability of member i

pi = whmigy for i =0,...,N — 1, where f(i) > f(i + 1) (fitness for
2

members)
: 5
e.g. for 5 members: po = 1z, p1 = 15, P4 = 13

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

EQCreator - Optional settings

weight of optional properties - relative weight of special EQ-algebras
requirements (e.g. linear EQA, involutive EQA) - should be
significantly less than for compulsory axioms (experimental best -
15%)

notion of colourfulness - required number of distinct elements in
variable positions for operator function values (some combinations
are determined e.g. a A0 =0 in every EQA)

colourfulness assures non-trivial EQ-algebras to be generated e.g.
for fuzzy equality when 3 of 5 required - at least 3 different elements
occur as functional values in non-determined cases

colourfulness experimentally needed for Product (®) and Fuzzy
Equality (~) - higher means computationally harder!

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Implementation

EQCreator - Optional settings

m Extension of EQ-algebras - Max and Delta operators - some
additional axioms must hold for these operators!

m Special EQ-algebras holding (or not holding) additional axioms as
optional selection:

Good Commutative Involutive Residuated
Prelinear Lattice Semiseparated Linear
Separated etc.
m Important setting - removal of equal EQ-algebras from population!

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

EQCreator - Population members or Winners (EQA)

Browsing

Irfirnm

I T
Mahbci
aabca
bbbbhb
ccbco
Oabcl

2l =l =

Delta

Product

bl aimum

Oalhbal
0b1bh
0bbicc
0ahblcl

FE quality

alfl hlal 2 r0
Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

EQCreator - Input and Output

Save Beport Az | Show Graph | Open EQA filel Save EQA filel Current Edited Algebra
Population: 0 Tatal 0
Save Population .ﬂs..l Load Winnersl
: ID 3, .
Member: Tatal: 150
Save Pop. s EDAsl Load Last popl W Autaload Winners W Show Derived

Quick save Popul. | v Auto Save EQ Algebras Dump Eunentl [V Dump Froperties [w Play Tada
v Quicksave Directary: Stepz
Quick save EQAs | ICZ “temphEl Fleset Gi | Run | |1 ooao 3‘

Open old EQA format (user can use formerly created algebras)

Save both old EQA format of EQP - EQP is EQ-algebras (or general
algebras) Population List

EQP is in contrast to EQA readable text file with operator tables

Number of GA steps could be limited

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

uloooo- Ul oooo-
el AT W
T R I R L
o lomo 0 o looma oo
Elomgu glodnod
| I
lnblall lnblall
C“blall C“_h.lall @
ol AT ik]
R _ A h%
o | —40000 | = 00040 ol—~o000 M
P lomOo0A | lomg oA : loomnod m
E
S
c %}
8 I | | E
m l“ﬂ.abcl l“lllll l“ﬂ.abcl =
m . Ll i B e I ps L)
e S Alogo688 4|-do-cs A foQoaa S
E .m. bl e L I Fk e T g
=] = e oodas o | Hoooo (=il [== e = e W m
o ¥ |omO oA Wl Som O 0 ¥ oo o =
£
P W
<
L I I I S
| lnﬂ.a.h_cl 1“11111 lnﬂ.ah_.n._l =
— C“.Ua.._u_u_.n._ Cnlllll C“_Ua.._u_.n.__u m
.m el fadiar bt e e e =
% HEOT066 | oHHHH 6 o0.060 =
~ G O O e e | ' o | = 0.0.0.0 o o O | e e 1 N ...m
O s — 2
o: lomg0-d A lomg0d O |00 0 |
o 5 S :
w - = =
o
T

EQCreator - EQP output with axiom fulfilment info

oooo: 1

fllabel *Dabetl 2Mebed m|D dbetl
N) gjooo0oan (o < = 0 - 08 & b e
all abaa all abaa alblaill alaaacil
b bbbb b0 B Obb blbalaa blbabgc1
clbabcc cli abcc clb1a11 clccced
10 a b el 1t a be T Iflbliaill 2 R s R
0 &k el ¥ B abel =

pLE L3 11 (0851 O o1

alb 1l a1l alg 18 1 % alb

= c O A I Bfp 4 1 & & blb

clblall o T T c|b

1lb1a1l11 16 0 @ 0B -]

Associative Infimum: 125-125 OK
Commutative Infimum: 25-25 OK
Heutral Infimum: 10-10 OK
Idenpotent Infimum: 55 O
Azzociative Product: 125-125 OK
Heutral Product: 1010 OK
Isotone Product: 125-125 CK
Reflexive FEQuality: 5-5 COK
Congruence: 625625 OF
Substitution: 6257625 OK
Honotone Implication: 125-125 COK
Boundedness: 2525 QK
Colourfulness: 3-3 0K
Hon—Goodness: 1.5, Errors: 4
Hon-Involutive: 1-/5, Errors: 4
Hon-Semiseparated: 3.5, Errors: 2
Hon-Separated: 19-25, Errors: 6
Hon-Residuated: 114125, Errors: 11
Commutative: 2525 OK

Linear: 25-25 OK

Lattice: 625625 QK

Prelinear: 2525 OK

Habiballa, Viléem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Implementation

EQCreator - Compulsory and Optional Axioms real-time

view

Azzociative Infimunt: 125/125 0K
Comrutative [nfimum; 25/25 OF
MHeutral Infirmum: 1010 0F
ldermpatent Infimum: 545 OF
lzatone product 1254125 0K
Azzociative product; 125/125 0K
Meutral product; 10410 0F,
Reflexive FEquality; 5/5 Ok,
Substitution; 625/625 DK
Congruence; B25/625 OF,
Manatone Implication: 125/125 0K,
Boundedness: 25/25 0K

Fithess ;1002

Colorfulness; 343 0K
Colorfulnes=[*] 4/3 0K

Mon-Goodness: 1/, Erors: 4
Mon-lreolutive: 145, Emors: 4
Maon-Semizeparated; 3/5, Enors: 2
Maon-Separated:; 19425, Errors: B
MHon-Residuated: 1144125, Emors: 11
Commutative: 25525 0K

Linear: 25425 Ok

Lattice: B25/6525 OF.

Frelinear, 25/25 OF

Sup-product distributivity; 125/125 0K
Mon-Eguality over ProdE quality: 6/125, Erorg; 119

Previous [et

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Implementation

EQCreator - time efficiency

100000 A
]
X 3

10000 X .

+
[]
1000 /i/
100 +
8

median

: -

1 T T
0 2 4 6

10 12

Tested on Pentium 4 - 2.8 GHz. In contrast to state space searching
significant difference (no superexponentiality)

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Implementation

Conclusions

m Genetic algorithms made the task solvable in sensible time

m Specific GA properties are required:

Elitism must be used at least of minimal level (5% was acceptable - of
course higher usage leads to worse convergence)

High mutation ratio must be set in contrast with traditional use of
GA (best results with 20 - 30%)

Optional axioms and requirements need to have significantly less
weight (experimentally 15% has best results)

Optional properties negatively affect convergence

Colourfulness was defined to prevent trivial solutions (evolution tends
to most simple way of achieving results)

m EQ Creator - software for EQ-algebras only, but we suppose to bring
fully general generator for algebras

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

Implementation

Thank you for attention.

Hashim Habiballa, Vilem Novak, Martin DGenetic Algorithms for Finite EQ-algebras

	Introduction
	EQ-algebras
	Specific genetic algorithms for EQ-algebras design
	Implementation

