
Fuzzy Predicate Logic
Generalized Resolution Deductive System

Hashim Habiballa ?

Institute for Research and Applications of Fuzzy Modeling
and Department of Computer Science

University of Ostrava
30. dubna 22

Ostrava, Czech Republic
Hashim.Habiballa@osu.cz

http://www.volny.cz/habiballa/index.htm

Abstract. The article presents the implementation of the refutational resolution theorem
proving system for Fuzzy Predicate Logic based on the general (non-clausal) resolution rule.
The implementation called Fuzzy Predicate Logic Generalized Resolution Deductive System is
intended for Fuzzy Logic with Evaluated Syntax and utilizes also originally developed proof-
search heuristics called Detection of Consequent Formulas.

keywords: automated theorem proving, non-clausal resolution, general resolution, automated
theorem proving, fuzzy logic.

1 Introduction

The Fuzzy Predicate Logic of First-Order (FPL) forms a powerful generalization of the
classical two-valued logic [11]. This generalization brings several hard problems with auto-
mated theorem proving especially when utilizing the widely used resolution principle. The
resolution-based reasoning in its usually preferred way of application uses the clausal form
formulas. In the FPL the standard properties related to the clausal form transformation do
not hold. Although there are some attempts to apply the resolution principle in the fuzzy
propositonal calculus [10] we will present more general and more straightforward way. We
will present the refutational resolution theorem proving system for FPL (RRTPFPL) based
on general (non-clausal) resolution principle in first-order logic (FOL) [1]. It requires more
complex unification algorithm based on the polarity criteria and the quantifier mapping.
The below presented idea has its origin in implementation of non-clausal resolution theorem
prover [5].

2 General resolution and unification extensions for existentiality

For the purposes of (RRTPFPL) we will use generalized principle of resolution, which is
defined in the handbook [2].

General resolution

F [G] F ′[G]
F [G/⊥] ∨ F ′[G/>]

(1)

where F and F’ are formulas - premises of first-order logic and G represents an occurrence
of a subformula of F and F’.

When trying to refine the general resolution rule for first-order logic and description logic,
it is important to devise a sound and complete unification algorithm. Standard unification
? This work was supported by research project of MSMT - MSM 6198898701

algorithms require variables to be treated only as universally quantified ones. We will present
a more general unification algorithm, which can deal with existentially quantified variables
without the need for those variables be eliminated by skolemization. It should be stated that
the following unification process doesn’t allow an occurrence of the equivalence connective. It
is needed to remove equivalence by the following rewrite rule: A ↔ B ⇔ [A → B]∧ [B → A].

We assume that the language and semantics of FOL is standard. We use terms - indi-
viduals (a, b, c, ...), functions (with n arguments) (f, g, h, ...), variables (X, Y, Z, ...), predi-
cates(with n arguments) (p, q, r, ...), logical connectives (∧,∨,→,¬), quantifiers (∃,∀) and
logical constants (⊥,>). We also work with standard notions of logical and special axioms
(sets LAx, SAx), logical consequence, consistency etc. as they are used in mathematical
logic.

Definition 1. Structural notions of a FOL formula
Let F be a formula of FOL then the structural mappings Sub (subformula), Sup (superfor-
mula), Pol (polarity) and Lev (level) are defined as follows:

F = G ∧H or F = G ∨H Sub(F) = {G, H}, Sup(G) = F , Sup(H) = F
Pol(G) = Pol(F), Pol(H) = Pol(F)

F = G → H Sub(F) = {G, H}, Sup(G) = F , Sup(H) = F
Pol(G) = −Pol(F), Pol(H) = Pol(F)

F = ¬G Sub(F) = {G}, Sup(G) = F
Pol(G) = −Pol(F)

F = ∃αG or F = ∀αG Sub(F) = {G}, Sup(G) = F
(α is a variable) Pol(G) = Pol(F)

Sup(F) = ∅ ⇒ Lev(F) = 0, Pol(F) = 1,
Sup(F) 6= ∅ ⇒ Lev(F) = Lev(Sup(F)) + 1
For mappings Sub and Sup reflexive and transitive closures Sub∗ and Sup∗ are defined
recursively as follows:
1. Sub∗(F) ⊇ {F}, Sup∗(F) ⊇ {F}
2. Sub∗(F) ⊇ {H|G ∈ Sub∗(F)∧H ∈ Sub(G)}, Sup∗(F) ⊇ {H|G ∈ Sup∗(F)∧H ∈ Sup(G)}

These structural mappings provide framework for assignment of quantifiers to variable
occurrences. It is needed for the correct simulation of skolemization (the information about
a variable quantification in the prenex form). Subformula and superformula mappings and
its closures encapsulate essential hierarchical information of a formula structure. Level gives
the ordering with respect to the scope of variables (which is also essential for skolemization
simulation - unification is restricted for existential variables). Polarity enables to decide the
global meaning of a variable (e.g. globally an existential variable is universal if its quan-
tification subformula has negative polarity). Sound unification requires further definitions
on variable quantification. We will introduce notions of the corresponding quantifier for a
variable occurrence, substitution mapping and significance mapping (we have to distinguish
between original variables occurring in special axioms and newly introduced ones in the
proof sequence).

Definition 2. Variable assignment, substitution and significance
Let F be a formula of FOL, G = p(t1, ..., tn) ∈ Sub∗(F) atom in F and α a variable
occurring in ti. Variable mappings Qnt(quantifier assignment), Sbt (variable substitution)
and Sig(significance) are defined as follows:

Qnt(α) = QαH,whereQ = ∃ ∨Q = ∀,H, I ∈ Sub∗(F), QαH ∈ Sup∗(G),
∀QαI ∈ Sup∗(G) ⇒ Lev(QαI) < Lev(QαH).

F [α/t′] is a substitution of term t′ into α in F ⇒ Sbt(α) = t′.
A variable α occurring in F ∈ LAx ∪ SAx is significant w.r.t. existential substitution,
Sig(α) = 1 iff variable is significant, Sig(α) = 0 otherwise.

Note that with Qnt mapping (assignment of first name matching quantifier variable in
a formula hierarchy from bottom) we are able to distinguish between variables of the same
name and there is no need to rename any variable. Sbt mapping holds substituted terms
in a quantifier and there is no need to rewrite all occurrences of a variable when working
with this mapping within unification. It is also clear that if Qnt(α) = ∅ then α is a free
variable. These variables could be simply avoided by introducing new universal quantifiers to
F. Significance mapping is important for differentiating between original formula universal
variables and newly introduced ones during proof search (an existential variable can’t be
bounded with it).

Before we can introduce the standard unification algorithm, we should formulate the
notion of global universal and global existential variable (it simulates conversion into prenex
normal form).

Definition 3. Global quantification
Let F be a formula without free variables and α be a variable occurrence in a term of F .

1. α is a global universal variable (α ∈ V ar∀(F)) iff (Qnt(α) = ∀αH
∧Pol(Qnt(α)) = 1) or (Qnt(α) = ∃αH ∧ Pol(Qnt(α)) = −1)

2. α is a global existential variable (α ∈ V ar∃(F)) iff (Qnt(α) = ∃αH
∧Pol(Qnt(α)) = 1) or (Qnt(α) = ∀αH ∧ Pol(Qnt(α)) = −1)

V ar∀(F) and V ar∃(F) are sets of global universal and existential variables.

It is clear with respect to the skolemization technique that an existential variable can
be substituted into an universal one only if all global universal variables over the scope of
the existential one have been already substituted by a term. Skolem functors function in the
same way. It means the substitution of an existential variable into universal one produces
a logically consequent formula. Now we can define the most general unification algorithm
based on recursive conditions (extended unification in contrast to standard MGU).

Definition 4. Most general unifier algorithm
Let G = p(t1, ..., tn) and G′ = r(u1, ..., un) be atoms. Most general unifier (substitution
mapping) MGU(G, G’) = σ is obtained by following atom and term unification steps or the
algorithm returns fail-state for unification. For the purposes of the algorithm we define the
Variable Unification Restriction (VUR).

Variable Unification Restriction

Let F1 be a formula and α be a variable occurring in F1, F2 be a formula, t be a term
occurring in F2 and β be a variable occurring in F2. Variable Unification Restriction (VUR)
for (α,t) holds if one of the conditions 1. and 2. holds:

1. α is a global universal variable and t 6= β, where β is a global existential variable and α
not occurring in t (non-existential substitution)

2. α is a global universal variable and t = β, where β is a global existential variable and
∀F ∈ Sup∗(Qnt(β)), F = QγG, Q ∈ {∀,∃}, γ is a global universal variable, Sig(γ) = 1
⇒ (Sbt(γ) = r′) ∈ σ, r′ is a term (existential substitution).

Atom unification

1. if n = 0 and p = r then σ = ∅ and the unifier exists (success-state).
2. if n > 0 and p = r then perform term unification for pairs (t1, u1), . . . , (tn, un); If for

every pair unifier exists then MGU(G, G′) = σ obtained during term unification (success
state).

3. In any other case unifier doesn’t exist (fail-state).

Term unification (t′, u′)

1. if u′ = α, t′ = β are variables and Qnt(α) = Qnt(β) then unifier exists for (t′, u′)
(success-state) (occurrence of the same variable).

2. if t′ = α is a variable and (Sbt(α) = v′) ∈ σ then perform term unification for (v′, u′);
The unifier for (t′, u′) exists iff it exists for (v′, u′) (success-state for an already substituted
variable).

3. if u′ = α is a variable and (Sbt(α) = v′) ∈ σ then perform term unification for (t′, v′);
The unifier for (t′, u′) exists iff it exists for (t′, v′) (success-state for an already substituted
variable).

4. if t′ = a, u′ = b are individual constants and a = b then for (t’,u’) unifier exists (success-
state).

5. if t′ = f(t′1, ..., t
′
m), u′ = g(u′1, ..., u

′
n) are function symbols with arguments and f = g

then unifier for (t′, u′) exists iff unifier exists for every pair (t′1, u
′
1), ..., (t′n, u′n) (success-

state).
6. if t′ = α is a variable and VUR for (t′, u′) holds then unifier exists for (t′, u′) holds and

σ = σ ∪ (Sbt(α) = u′) (success-state).
7. if u′ = α is a variable and VUR for (u′, t′) holds then unifier exists for (t′, u′) holds and

σ = σ ∪ (Sbt(α) = t′) (success-state).
8. In any other case unifier doesn’t exist (fail-state).

MGU(A) = σ for a set of atoms A = {G1, . . . , Gk} is computed by the atom unification for
(G1, Gi), σi = MGU(G1, Gi),∀i, σ0 = ∅, where before every atom unification (G1, Gi), σ is
set to σi−1.

With above defined notions it is simple to state the general resolution rule for FOL
(without the equivalence connective). It conforms to the definition from [1].

Definition 5. General resolution for first-order logic (GRFOL)

F [G1, , ..., Gk] F ′[G′
1, ..., G

′
n]

Fσ[G/⊥] ∨ F ′σ[G/>]
(2)

where σ = MGU(A) is the most general unifier (MGU) of the set of the atoms A =
{G1, . . . , Gk, G

′
1, . . . , G

′
n} , G = G1σ. For every variable α in F or F ′, (Sbt(γ) = α)∩σ = ∅

⇒ Sig(α) = 1 in F or F ′ iff Sig(α) = 1 in Fσ[G/⊥] ∨ F ′σ[G/>]. F is called positive
and F’ is called negative premise, G represents an occurrence of an atom. The expression
Fσ[G/⊥] ∨ F ′σ[G/>] is the resolvent of the premises on G.

Note that with Qnt mapping we are able to distinguish variables not only by its name
(which may not be unique), but also with this mapping (it is unique). Sig property enables
to separate variables, which were not originally in the scope of an existential variable. When
utilizing the rule it should be set the Sig mapping for every variable in axioms and negated
goal to 1. We present a very simple example of existential variable unification before we
introduce the refutational theorem prover for FOL.

Example 1. Variable Unification Restriction
We would try to prove if ∀X∃Y p(X, Y) ` ∃Y ∀Xp(X, Y)? We will use refutational proving
and therefore we will construct a special axiom from the first formula and negation of the
second formula:
F0 : ∀X∃Y p(X, Y). F1(¬query) : ¬∃Y ∀Xp(X, Y).
There are 2 trivial and 2 non-trivial combinations how to resolve F0 and F1 (combinations
with the same formula as the positive and the negative premise could not lead to refutation
since they are consistent):
Trivial cases: R[F1&F1] : ⊥ ∨ > and R[F0&F0] : ⊥ ∨ >. Both of them lead to > and the
atoms are simply unifiable since the variables are the same.
Non-trivial cases:[F1&F0] : no resolution is possible.
Y ∈ V ar∀(F1) and Y ∈ V ar∃(F0) can’t unify since VUR for (Y, Y) doesn’t hold - there is
a variable X ∈ Sup∗(Qnt(Y))(over the scope), X ∈ V ar∀(F0), Sbt(X) = ∅); the case with
variable X is identical.
[F0&F1] : no resolution is possible (the same reason as above).
No refutation could be derived from F0 and F1 due to VUR.

Further we would like to prove ∃Y ∀Xp(X, Y) ` ∀X∃Y p(X, Y).
F0 : ∃Y ∀Xp(X, Y). F1 (¬query) : ¬∀X∃Y p(X, Y)
In this case we can simply derive a refutation:
R[F1&F0] : ⊥ ∨ ¬>(refutation)
X ∈ V ar∀(F0) and X ∈ V ar∃(F1) can unify since VUR for (X, X) holds - there is no global
universal variable over the scope of X in F1; Sbt(X) = X and Sbt(Y) = Y .

3 Fuzzy Predicate Logic and refutational proof

The fuzzy predicate logic with evaluated syntax is a flexible and fully complete formalism,
which will be used for the below presented extension [11]. In order to use an efficient form of
the resolution principle we have to extend the standard notion of a proof (provability value
and degree) with the notion of refutational proof (refutation degree). For the purposes of the
fuzzy resolution principle extension the Modus ponens rule was considered as an inspiration
[4]. We suppose that set of truth values is Lukasiewicz algebra. Therefore we assume standard
notions of conjunction, disjunction etc. to be bound with Lukasiewicz operators.

We will assume Lukasewicz algebra to be

L L = 〈[0, 1],∧,∨,⊗,→, 0, 1〉

where [0, 1] is the interval of reals between 0 and 1, which are the smallest and greatest
elements respectively. Basic and additional operations are defined as follows:

a⊗ b = 0 ∨ (a + b− 1) a → b = 1 ∧ (1− a + b) a⊕ b = 1 ∧ (a + b) ¬a = 1− a

The biresiduation operation ↔ could be defined a ↔ b =df (a → b) ∧ (b → a), where ∧ is
infimum operation. The following properties of L L will be used in the sequel:
a⊗ 1 = a, a⊗ 0 = 0, a⊕ 1 = 1, a⊕ 0 = a, a → 1 = 1, a → 0 = ¬a, 1 → a = a, 0 → a = 1
The syntax and semantics of fuzzy predicate logic is following:

– terms t1, ..., tn are defined as in FOL
– predicates with p1, ..., pm are syntactically equivalent to FOL ones. Instead of 0 we write
⊥ and instead of 1 we write >, connectives - &&& (Lukasiewicz conjunction), ∧ (conjunc-
tion), ∇∇∇ (Lukasiewicz disjunction), ∨ (disjunction), ⇒⇒⇒ (implication), ¬ (negation), ∀X
(universal quantifier),∃X (existential quantifier) and furthermore by FJ we denote set
of all formulas of fuzzy logic in language J

– FPL formulas have the standard semantic interpretations
– for every subformula defined above Sub, Sup, Pol, Lev,Qnt, Sbt, Sig and other derived

properties defined in section 2 hold (Lukasiewicz connetives has the same mapping value).

Graded fuzzy predicate calculus assigns grade to every axiom, in which the formula is
valid. It will be written as a

/
A where A is a formula and a is a syntactic evaluation. We

use several standard notions defined in [11] namely: inference rule, formal fuzzy theory with
set of logical and special axioms, evaluated formal proof.

Definition 6. Evaluated proof, refutational proof and refutation degree
An evaluated formal proof of a formula A from the fuzzy set X ⊂∼ FJ is a finite sequence of
evaluated formulas w := a0

/
A0, a1

/
A1, ..., an

/
An such that An := A and for each i ≤ n,

either there exists an m-ary inference rule r such that
ai

/
Ai := revl(ai1 , ..., aim)

/
rsyn(Ai1 , ..., Aim), i1, ..., im < n or ai

/
Ai := X(Ai)

/
Ai.

We will denote the value of the evaluated proof by V al(w) = an.
An evaluated refutational formal proof of a formula A from X is w, where additionally
a0

/
A0 := 1

/
¬A and An := ⊥. V al(w) = an is called refutation degree of A.

Definition 7. Provability and truth
Let T be a fuzzy theory and A ∈ FJ a formula. We write T `a A and say that the formula
A is a theorem in the degree a, or provable in the degree a in the fuzzy theory T .

T `a A iff a =
∨
{V al(w)| w is a proof of A from LAx ∪ SAx} (3)

We write T |=a A and say that the formula A is true in the degree a in the fuzzy theory T .

T |=a A iff a =
∧
{D(A) | D |= T}, where the condition D |= T holds

if for every A ∈ LAx : LAx(A) ≤ D(A), A ∈ SAx : SAx(A) ≤ D(A) (4)

Definition 8. General resolution for fuzzy predicate logic (GRFPL)

rGR :
a
/
F [G1, , ..., Gk], b

/
F ′[G′

1, ..., G
′
n]

a⊗ b
/
Fσ[G/⊥]∇∇∇F ′σ[G/>]

(5)

where σ = MGU(A) is the most general unifier (MGU) of the set of the atoms A =
{G1, . . . , Gk, G

′
1, . . . , G

′
n} , G = G1σ. For every variable α in F or F ′, (Sbt(γ) = α)∩σ = ∅

⇒ Sig(α) = 1 in
F or F ′ iff Sig(α) = 1 in Fσ[G/⊥]∨F ′σ[G/>]. F is called positive and F’ is called neg-

ative premise, G represents an occurrence of an atom. The expression Fσ[G/⊥]∨F ′σ[G/>]
is the resolvent of the premises on G.

Definition 9. Refutational resolution theorem prover for FPL
Refutational non-clausal resolution theorem prover for FPL (RRTPFPL) is the inference
system with the inference rule GRFPL and sound simplification rules for ⊥, > (standard
equivalencies for logical constants). A refutational proof by definition 6 represents a proof of
a formula G (goal) from the set of special axioms N. It is assumed that Sig(α) = 1 for ∀α
in F ∈ N ∪¬G formula, every formula in a proof has no free variable and has no quantifier
for a variable not occurring in the formula.

Definition 10. Simplification rules for ∇∇∇,⇒⇒⇒

rs∇∇∇ :
a
/
⊥∇∇∇A

a
/
A

and rs⇒⇒⇒ :
a
/
>⇒⇒⇒ A

a
/
A

Lemma 1. Provability and refutation degree for GRFPL

T `a A iff a =
∨
{V al(w)| w is a refutational proof of A from LAx ∪ SAx}

Theorem 1. Completeness for fuzzy logic with rGR, rs∇∇∇, rs⇒⇒⇒ instead of rMP

Formal fuzzy theory, where rMP is replaced with rGR, rs∇∇∇, rs⇒⇒⇒, is complete i.e. for every A
from the set of formulas T `a A iff T |=a A.

Proofs could be found in [6]. Proof of the lemma and completeness theorem are construc-
tive and the soundness reduces to the proof of soundness of rGR by induction on standard
inference rule equations.

Example 2. Proof of child’s happiness by rGR

Consider the following knowledge (significantly simplified in contrast to the reality) about
child’s happiness. We suppose that a child is happy in the degree 0.8 if it has mother and
father. Further we suppose that a child is happy in the degree 0.5 if it has a lot of toys
(we suppose parents are a bit more important for children). We will present several proofs
and then we mark the best provability degree from the following axioms. It was used the
automated theorem prover of the author for classical logic [5]. Xa. steps represent application
of simplification rules for ⊥ and >.

Common proof members (axioms):
1. 0.8

/
∀X[∃Y [child(X, Y)&&& female(Y)]

&&&∃Y [child(X, Y)&&& male(Y)]⇒⇒⇒ happy(X)] (happy with parents - 0.8)
2. 0.5

/
∀X[toys(X)⇒⇒⇒ happy(X)] (happy with toys - 0.5)

3. 1
/
child(johana, hashim) (clear crisp fact)

4. 1
/
child(johana, lucie) (clear crisp fact)

5.1
/
male(hashim) (clear crisp fact)

6.1
/
female(lucie) (clear crisp fact)

7.0.9
/
toys(johana) (johana has a lot of toys - 0.9)

8.1
/
¬happy(johana) (negated goal - is johana happy?)

Proof 1:
9. 0.9⊗ 0.5

/
⊥∇∇∇[>⇒⇒⇒ happy(johana)]

9a. 0.4
/
happy(johana) (rGR on 7.,2., Sbt(X) = johana)

10. 1⊗ 0.4
/
⊥∇∇∇¬>

10a. 0.4
/
⊥ (rGR on 9.,8.)

(happy(johana) is provable in 0.4)

Proof 2:
9. 0.8⊗ 1

/
[∃Y [child(johana, Y)&&& female(Y)]

&&&∃Y [child(johana, Y)&&& male(Y)]⇒⇒⇒ ⊥]∇∇∇¬>
9a. 0.8

/
¬[∃Y [child(johana, Y)&&& female(Y)]

&&&∃Y [child(johana, Y)&&& male(Y)]] (rGR on 1.,8., Sbt(X) = johana)
10. 0.8⊗ 1

/
¬[[child(johana, lucie)&&&>]

&&&∃Y [child(johana, Y)&&& male(Y)]]∇∇∇⊥
10a. 0.8

/
¬[child(johana, lucie)

&&&∃Y [child(johana, Y)&&& male(Y)]] (rGR on 6.,9., Sbt(Y) = lucie)
11. 0.8⊗ 1

/
¬[child(johana, lucie)

&&&[child(johana, hashim)&&&>]]∇∇∇⊥
11a. 0.8

/
¬[child(johana, lucie)

&&& child(johana, hashim)] (rGR on 5.,10., Sbt(Y) = hashim)
12. 0.8⊗ 1

/
¬[>&&& child(johana, hashim)]∇∇∇⊥

12a. 0.8
/
¬[child(johana, hashim)] (rGR on 4.,11.)

13. 0.8⊗ 1
/
¬>∇∇∇⊥

13a. 0.8
/
⊥ (rGR on 3.,12.)

(happy(johana) is provable in 0.8)
We have stated two different proofs and it is clear that several other proofs could be

constructed. Let us note that these proofs either consist of redundant steps or they are
variants of Proof 1 and Proof 2, where only the order of resolutions is different. So we can
conclude that it is effectively provable that Johana is a happy child in the degree 0.8.

4 Implementation

There are already several efficient strategies proposed by author (mainly Detection of Conse-
quent Formulas (DCF) adopted for the usage also in FPL). With these strategies the proving
engine can be implemented in ”real-life” applications since the complexity of theorem prov-
ing in FPL is dimensionally harder than in FOL (the need to search for all possible proofs
- we try to find the best refutation degree). The DCF idea is to forbid the addition of a
resolvent which is a logical consequence of any previously added resolvent. For refutational
theorem proving it is a sound and complete strategy and it is emiprically very effective.
Completeness of such a strategy is also straight-forward in FOL:

(Rold ` Rnew) ∧ (U,Rnew ` ⊥) ⇒ (U,Rold ` ⊥)

Example: Rnew = p(a), Rold = ∀x(p(x)), Rold ` Rnew.
DCF could be implemented by the same procedures like General Resolution (we may

utilize self-resolution). Self-resolution has the same positive and negative premise and needs
to resolve all possible combinations of an atom. It uses the following scheme:

Rold ` Rnew ⇔ ¬(Rold → Rnew) ` ⊥
Even the usage of this teachnique is a semidecidable problem, we can use time or step

limitation of the algorithm and it will not affect the completeness of the RRTPFOL.
Example: Rnew = p(a), Rold = ∀x(p(x)), ¬(∀x(p(x)) → p(a))
MGU: Sbt(x) = a, Res = ¬(⊥ → ⊥) ∨ ¬(> → >) ⇒ ⊥
We have proved that Rnew is a logical consequence of Rold.

In FPL we have to enrich the DCF procedure by the limitation on the provability degree.
if U `a Rold ∧ U `b Rnew ∧ b ≤ a then we can apply DCF. DCF Trivial check performs

a symbolic comparison of Rold and Rnew we use the same provability degree condition. In
other cases we have to add Rnew into the set of resolvents and we can apply ”DCF Kill”
procedure. DCF Kill searches for every Rold being a logical consequence of Rnew and if
U `a Rold ∧ U `b Rnew ∧ b ≥ a then Kill Rold (resolvent is removed).

Above mentioned theoretical framework is already implemented in the of a computer ap-
plication called Fuzzy Predicate Logic Generalized Resolution Deductive System (FPLGERDS).
It enables to edit knowledge bases of FPL with evaluated syntax and performing deduction
on required goals. The fig. 1 shows GERDS’s GUI.

Fig. 1. Frame of GERDS

Axioms are written in common mathematical notion and results of inference provide
proof sequence with marked premises, which particular resolvent was derived from. It can
present the terms used for unification in goal’s variables (PROLOG like). It also offer several
types of resolution strategies as visible on the upper panel and several unification and
resolution restrictions as well as statistics of inference.

In contrast with clausal resolution prover the implementation of non-clausal prover re-
quires more complex pointer-based data structures for internal formula representa-
tion. At the first sight it may be observed as a significant disadvantage, since simple data
structures of CNF representation are easy to create, store and handle and therefore their
algorithms should have reasonable time and space complexity.

It could be observed from the fig. 2, how the formula data structure is constructed. After
compilation the syntactical tree is constructed without variable occurrences links to specific

quantifier. The hierarchy of syntactical elements could be specified in Backus-Naur form
(for details see [3]). Abstract class TSub represents general subformula of FOL, which has
its specifications according to specific type of logical connective (e.g. TCon - conjunction,
TImp - implication etc.).

TSub = class
Neg : boolean; { Flag of logical negation. }
Ev : shortint; { Indicator of the subformula logical value. }
Pol : shortint; { Stores the polarity of the node. }
L : TSub;
R : TSub; { Left and right subtree. }
Ac : TObject; { Parent object (logical connective). }
Q : TQuant; { Quantifier containing variables at this level. }
...

end;

Constructed tree is built and linked in three basic levels:

– Object hierarchy - provides standard linkage of parent-child relations.

– Parent connective - enables to quickly evaluate and simplify the tree.

– Atomic level - provides access to atoms (literals) in linear time for simpler general reso-
lution rule application.

Parser is based on LL(1) grammar for FOL and it is constructed using recursive descent
parsing technique (RDP). It produces a procedure for every non-terminal symbol according
to the string that is contained in production for particular syntactical structure. Advantage
of RDP lies mainly in the possibility to perform compilation phase simultaneously with
parsing. The algorithm in each non-terminal related procedure performs not only check of
syntactical correctness but also stack based creation of the tree (both on logical and term
level). In [3] it can be seen which procedures create the tree.

Once the original tree is built the postprocessing phase may continue. Its main aim is
to establish links (pointers) to appropriate quantifiers, to evaluate polarities of subformulas
and to evaluate infix operators in the formula. This implementation method provides as
with structure containing all necessary information built simultaneously in these
two phases.

∀Xp(X,30) ∧ ∃Yr(”string”,Y) → q(const,X)

Fig. 2. Example of formula data structure

Inference engine is based on general resolution rule procedure for production of resolvent
on two formulas of FOL. The base procedure controlling the process tries to resolve upon all
possible premises (it contains also filtrating mechanism of resolution strategies). It checks
the consistency of the axiom set with negated query formula. The core procedure performs
the general resolution rule. Creation of a resolvent is relatively simple. It requires only
creation of premise copies and unification procedure. When then unification exists it is
possible to link copies of premises by disjunction (TDis object) and to substitute
terms generated by unification (there is no need to replace all occurrences but only
quantifier object in one memory cell). DCF theorem may use existing general resolution
procedure since self-resolution is its special case.

User environment enables to work with two essential panels: Editor and Output. Editor
is intended for editing knowledge bases and goals while Output shows results of inference.

Fig. 3. Structure of Editor Panel

Special axioms and goals have the format described in fig. 3. Every special axiom or
goal is followed by semicolon. Special axioms consist of the formula and optional syntactic
degree as described in section 3. Syntactic degree ranges from 0 to 1. If no syntactic degree
is given then implicit degree of 1 is assigned. A goal cannot have syntactic degree. If all
axioms have no degree or their degree is equal to 1, then the inference process degrades to
classical two-valued logic.

Output serves for observation of inference results. User can choose from various types
of output information. The essential information consists of the axiom and resolvent list
together with identification of every formula and identification of source formulas for re-
solvents. If a refutation is found the word ”YES” is printed with appropriate refutation
degree.

Fig. 4. Structure of Output Panel

Knowledge base file format is plain text where the following table describes ASCII codes
of the logical characters. The user font ”Frame Logic” (MyFont.ttf) is prepared for screen
output based on the code mapping.

Character ASCII code
∀ 247
∃ 246
→ 244
↔ 243
6= 225
≤ 223
≥ 221
¬ 172
∧ 253
∨ 252

Tab. 1. Special characters ASCII mapping

5 User settings

FPLGERDS allows user to edit knowledge bases and perform inference upon them. It enables
to set up custom preferences which depends mainly on crisp/fuzzy type of the formulas. If
completely crisp knowledge base is supported then it is possible to use standard inference
strategies like Set of Support strategy while on fuzzy knowledge bases these setting have
not sense. Standard strategies are not complete under fuzzy logic.

User menu of the application includes standard items.

– File menu - creating, loading and saving of knowledge bases
– Edit menu - copying, cutting, inserting the text in Editor and Output panel
– Window menu - arranging of the windows (the application allows to work with several

knowledge bases simultaneously)

Further user can use special menus for controlling the inference process.
Output menu (output format specifications)

– Axioms - checking on will produce the list of axioms and goals (inputs of inference) at
the beginning of output

– Progress - checking on adds every produced resolvent into output
– Sources - includes identification marks for premises of resolution
– Resolvents - produces additional summarization of all resolvents produced during the

inference
– Time, Memory - incorporates time and space requirements for inference
– Unsimplified - every resolvent is additionally printed in raw form without any simplifi-

cation (no application of rewrite rules for ⊥,>)
– Statistics - prints at the end of output number of produced resolvents, removed tautolo-

gies, DCF consequent resolvents, DCF killed resolvents, unifications and simplifications.
– DCF - adds every successful application of DCF algorithm (with identification of resol-

vent which caused DCF)
– Interactive - when checked off the output information is printed only when inference

finishes and results are stored also to the file named with current knowledge base name
and extension + .out; when checked on all results are printed immediately (be aware
of outputs longer than 64 kBytes - they will be truncated and it should be used non-
interactive setting); when measuring time complexity of the inference use non-interactive
setting since printing significantly affects the time (especially for detailed outputs)

Prove theorem (controlling the inference)

– Stop - stops the inference before completion
– DCF limit - sets number of steps before the DCF algorithm will be stopped
– Linear search - starts the inference searching proofs by linear search strategy (not com-

plete for general knowledge bases!)
– Breath-first search - starts the inference searching completely for every proof (complete

upon unification with every possible atom)
– Modified linear search - linear strategy starting from not only goal, but every axiom and

goal (not complete, but better than linear search)
– Trivial check only - filtrates resolvents by checking their exact symbolic representation
– DCF - performs DCF algorithm (checks if the resolvent is a logical consequence of any

previously generated one)
– DCF + Kill - performs DCF and also DCF Kill technique (any added resolvent may

”kill” other resolvents - logical consequences)
– Without restr. strategy - no additional inference strategy is applied (use for fuzzy knowl-

edge bases)
– Filtration strategy - Filtration inference strategy is applied (use only for crisp knowledge

bases)
– Support set strategy - Support Set strategy is applied (use only for crisp knowledge

bases)

Unification (controlling the unification)

– Quantification on - checking off will cause treating of every variable to be universally
quantified (ignoring quantifier); use this option for more efficient inference if no existen-
tiality is required

– General cut - every unifiable atom in premises is removed
– Exit on first unused - finishes generation of resolvents on two premises on first atomic

formula (use only for crisp knowledge bases - for fuzzy logic such inference is not com-
plete!)

– Exit on first match - finishes generation of resolvents from two premises on first unifiable
atomic formula (use only for crisp knowledge bases - for fuzzy logic such inference is not
complete!)

– Exit on last match - performs generation of all possible resolvents on all atoms in two
premises

– One refutation - searches only for first refutation (use only for crisp knowledge bases -
for for fuzzy logic such inference is not complete!)

– All refutations - searches for all possible refutations upon selected strategy

6 FPLGERDS package

The FPLGERDS package is obtainable from the http location:

http://www1.osu.cz/home/habibal/files/gerds.zip

The package could be directly decompressed to any folder and used on Windows 32 platform
(Windows 98 and higher, compactibility for Windows 95 is not tested). It produces two
folders - Program and Docs. Docs contains the file oldGerds.pdf file with documentation for
older version of GERDS intended for two-valued logic and also it contains documentation for
current FPLGERDS - FPLGERDS.pdf. Program directory contains executables and sources
for FPLGERDS and directory Data with sample knowledge bases. Sources are written in
Borland Delphi 3 Object Pascal. The list of files in Program directory:

– About.dfm, About.dcu, About.pas - Information window for the application
– FPLGERDS.dof, FPLGERDS.dpr, FPLGERDS.dsk, FPLGERDS.res - Project files
– FPLGERDS.exe - project executable
– Inference.pas, Inference.dcu - Core unit (no GUI sources)
– MdiEdit.pas, MdiEdit.dcu, MdiEdit.dfm - GUI of knowledge base window
– MdiFrame.pas, MdiFrame.dcu, MdiFrame.dfm - GUI of the basic application interface
– MyFont.ttf - true type font for logical symbols

References

1. Bachmair, L., Ganzinger, H. A theory of resolution. Technical report: Max-Planck-Institut für Infor-
matik, 1997

2. Bachmair, L., Ganzinger, H. Resolution theorem proving. In Handbook of Automated Reasoning, MIT
Press, 2001

3. Habiballa, H. Non-clausal resolution - theory and practice. Research report: University of Ostrava,
2000,
http://www.volny.cz/habiballa/files/gerds.pdf

4. Habiballa, H., Novák, V. Fuzzy general resolution. Research report: Institute for research and applica-
tions of fuzzy modeling, University of Ostrava, 2002,
http://ac030.osu.cz/irafm/ps/rep47.ps

5. Habiballa, H. Non-clausal Resolution Theorem Prover. Research report, No.64: University of Ostrava,
2005,
http://ac030.osu.cz/irafm/ps/rep64.ps.gz

6. Habiballa, H. Non-clausal Resolution Theorem Prover for Fuzzy Predicate Logic. Research report,
No.70: University of Ostrava, 2005,
http://ac030.osu.cz/irafm/ps/rep70.ps.gz

7. Habiballa, H. Non-clausal Resolution Theorem Proving for Description Logic. Research report, No.66:
University of Ostrava, 2005,
http://ac030.osu.cz/irafm/ps/rep66.ps.gz

8. Hájek, P. Metamathematics of fuzzy logic. Kluwer Academic Publishers - Dordrecht, 2000
9. Hájek, P. Making fuzzy description logic more general. Research report: Institute of Computer Science,

Czech Academy of Sciences, 2005
10. Lehmke, S. On resolution-based theorem proving in propositional fuzzy logic with bold connectives.

University of Dortmund, 1995
11. Novák, V., Perfilieva, I., Močkoř, J. Mathematical principles of fuzzy logic. Kluwer Academic Publishers,

1999

