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C h a p t e r  1  

1 Introduction. 
The first-order theory is well known notion among mathematicians and computer scientists. It 

is a suitable formal representation for expressing knowledge and deducing theorems. Although it 
is very popular and clear way, the problem of automated theorem proving is not so simple. If you 
want to enjoy the power of logic, you have to perform many transformations, before you can use 
any deductive system. These transformations destroy the meaning of the formula and may 
produce high amount of clauses (in case of clausal resolution). Of course, it has decisive 
advantages such as the efficiency of the proof. Nevertheless, I believe from the theoretical point 
of view it is a very interesting investigation to search for a deductive system, which is free of the 
need of destructive transformations. 

First-order logic covers many deductive systems and methds. In spite of high diversity of these 
systems, most of them have one essential fault. They are determined to narrow class of formulas. 
Clearly there is for example the method of semantic tableaux, which is not disadvantageous in 
this manner. This method provides us with complete process of proving without the need of 
transformations. It brings set of rules for decompostion of a formula into several branches, of 
which we can decide, if they are closed or not. This procedure enables to decide about 
inconsistency of a formula, but such a proof will not be of our interest. We will be looking for a 
classical theory with set of special and logical axioms together with inference rules. The proof is 
then supposed to be a sequence of formulas, which are either axioms or derived from them by 
usage of inference rule. And as it is obvious in automated theorem proving, we will stand on 
refutational proving i.e on proofs based on negated goals leading to denial of a set of axioms and 
goal. Then it is not surprising, that the focus of the thesis slip into a theory of resolution. The 
conventional view of resolution is closely related with clausal normal form of formula and with 
skolemization in predicate logic. It is not very difficult to obtain a clausal normal form of any 
formula (particularly for non-quantified formulas), however as it was written, result is logically 
equivalent (with respect to satisfiability), but it is unacceptable with respect to the structure of 
original statement. 

I was disappointed from this fault and I looked for some solution to this problem. There was a 
lot of papers on the Internet concerning to resolution and among these papers I found a technical 
report “A theory of resolution” [Ba97], which presents detailed exploration of the possibilities, 
how to perform deduction on skolemized formulas of predicate logic. Though the paper describes 
far more than the base extension of resolution rule, I used the paper mainly as a source of 
inspiration for further research of strategies for suppressing the redundancy of an inference and 
handling existential variables. The controversy, if the exploration of generally valid resolution 
rule is valuable, may be answered by following simplified analogy. In mathematics there are 
exact analytical methods and numerical methods for similar problems. At first sight one can say 
that the first sort of methods is not significant, because numerical ones are more universal, 
eficient and simpler for automated utilization. Nevertheless I’m not in doubt that everybody 
understands benefit of further research of analytical approaches. 

But the theoretical contribution is not the only argument. After the proving application became 
functional, the fact, that it can prove some elementary theorems almost instantly and clausal 
prover spent a lot of time on them, was logical, but surprising. In the section concerned to 
examples you will find that a relatively short sequence of equivalencies may flood a clausal 
prover with resolvents and the non-clausal prover solved the problem in one resolution step (with 
no more than 5 redundancy check steps). Clearly I cannot base the advocacy of a methodology in 
one or several cases, however I would like to criticise such positions that put forward the 
efficiency of the proof and simultaneously allow to solve simple problems inefficiently. The 
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complexity never can be perfect but only optimal and that’s why every approach has to be 
considered, even if it seems to be not universal. 

 
The inseparable part of this thesis is the computer application, which has to illustrate presented 

resolution techniques. This application is not a full coverage of theoretically proposed deductive 
system. I hope that it is together with the mentioned theoretical extensions a small contribution to 
the knowledge in automated theorem proving. It should provide the reader with a tool for his test 
with general resolution as well as test of resolution strategies. I ask users of the system to be 
benevolent to it. Please, realise that the program was elaborated and tested by one person under 
the pressure of study and professional duties. It is only co-objective of the thesis and that’s why it 
can’t be compared with systems designed by a team of theoretical specialists and programmers. 

The second chapter introduces some common notions (first-order logic, deductive systems). I 
expect the thesis is intended for mathematicians and computer scientists, who are familiar with 
basics of logic, deduction and resolution. Therefore these introduction are straight without 
useless details. Chapter three defines general resolution and brings some examples, it also 
contains some modifications and extensions improving standard definitions both undertaken and 
self-devised. In this section there are some proofs especially the proof of completeness of general 
resolution, which tries to be original and so it could be a hole of the thesis. Chapter four shows 
the problem of high amount of resolvents generated during inference process and gives some 
common solutions and consequence checking specially modified for the purposes of this thesis. 
General resolution gives a good chance to detect redundant formulas by its own power. The fifth 
chapter describes application data structures and algorithms used for inference process in detail. 
It uses the Pascal programming language to demonstrate algorithmical solutions and Pascal 
comments to make the source code clearer. Since the source code exceeds 100 KB and this thesis 
is presented at mathematical department, the chapter is as short as possible. The sixth chapter 
produces the description of the computer application called GEneralized Resolution Deductive 
System (GERDS). GERDS supports my research in resolution techniques and it is not user 
application in the right meaning. The sufficient and brief guide to the GERDS is given in this 
section. It is also controversial section however needful for practical automated theorem proving 
with general resolution. The section seven will show some examples of general resolution, which 
is probably the most suitable way to understand methods and power of general resolution. It tries 
to show off interesting properties of general resolution and its advantages and disadvantages in 
comparison with common resolution rule. 

The main intended contribution of the paper is to extend and illustrate previously founded 
generalizations of non-clausal deduction. It should bring the general deductive system, which 
may process general formulas of predicate logic and the only actual need is the notion of 
extended polarity, which do not require any transformation, but only counting of some 
characteristics of every subformula. Such a counting can be performed during the construction of 
the parse tree, that is the most suitable representation for computer processing anyway. If we 
consider only non-existential formulas, then the resolution is completely trivial and does not 
require anything special. The problem of existency in conjuction with equivalence is an open 
problem and gives space for further work.. 

I decided to write the thesis in English, even my skills are low, since I hope that it makes the 
paper more understandable and therefore there is as few useless words as possible.  
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C h a p t e r  2  

2 Preliminaries. 

2.1 First-Order Logic. 
Before we start with the explanation of the general resolution, it is necessary to introduce some 

common notations from first-order theory. It will be used the notation close to logic 
programming. At first, it has to be shown the alphabet of the first-order predicate logic language. 
Brief and pregnant explanation can be found in [Kl67] , [Ri89] or [No99]. It consists of: 
- Variables: Character string starting with a capital letter or underscore; containing 

alphanumeric character or underscore, e.g. My_First_Var, _trash1. 
- Functors and predicate names: Character string starting with a lower case letter e.g. sqrt, 

is_a_Child. It is not actually needed to use a separate notion of the constant, because they 
can be treated as 0-ary functors. 

- Logical connectives: ý - conjunction, ü - disjunction, ô - implication, ó - equivalence, ¬ - 
negation. 

- Logical constants: ç - false, ä - true. It is not used any special symbols in the source set for 
logical constants in the application, but there is a flag indicating logical value of the 
subformula in the result and it is represented by ç and ä too. 

- Quantifiers: ÷ - universal and ö - existential. 
- Special symbols: (, ) , and Ý, ß, <, >, =, á. The comparing characters have no special 

handlers and serve as predicates for user usage.  
The best way to define the language of the predicate logic (PL) is the introduction of the 

grammar in Backus –Naur Form: 

Definiton 2.1.: Syntax of predicate logic by BNF. 

<Formula> ::= <Imp> { ó <Imp> } 
<Imp> ::= <Dis> { ô <Dis> } 
<Dis> ::= <Con> { ü <Con> } 
<Con> ::= <Subformula> { ý <Subformula> } 
<Subformula> ::= ¬ <Subformula> | <Quantifier section> <Subformula> | ‘[‘ <Formula> ‘]’ | 

<Predicate>  
<Quantifier section> ::=  <Quantifier character> <Variable> { , <Variable> } {<Quantifier 

character> <Variable> { , <Variable> } } 
<Predicate>  ::= <Predicate name> <List of parameters> | <Term> <InfixPred> <Term> 
<Term> ::= <Term2>  { <+/- operator> <Term2> } 
<Term2> ::= <Base> { <*// operator> <Term2> } 
<Base> ::= <Variable> | <Function> | <StrLit> | <Number> | + <Number> | - <Number> | ( 

<Term> ) 
<Functor> ::= <Lower case> {<Alphanumeric>} 
<Predicate name> ::= <Lower case> {<Alphanumeric>} 
<List of parameters> ::= { ( <Term> { , <Term> } ) }  
<Function> ::= <Functor> <List of parameters> 
<Variable> ::= <Upper case> {<Alphanumeric>} 
<Number> ::= <Integer> {. <Integer>} { e <+/- operator> <Integer>} 
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<StrLit> ::= “ {<Alphanumeric>} “ 
<InfixPred> ::= Ý | ß | < | > | = | á   
<Quantifier character> ::= ÷ | ö   
<+/- operator> ::= + | - , <*// operator> ::= * | /  
<Lower case> ::= a | .. | z, <Upper case> ::= A | .. | Z | _  
<Alphanumeric> ::= <Lower case> | <Upper case> |  <Numeric> , <Integer> ::= <Numeric> { 

<Numeric> } , <Numeric> ::= 0 | .. | 9 
 As you could see, the language is common. It is constructed of atoms connected by logical 

connectives and incorporating quantifiers. Atoms are predicates (standard or infix) and they are 
represented by predicate names and list of parameters e.g. child(mary, john), where child is a 
predicate name and mary and john are parameters. It is important to mention, that the difference 
between function and predicate (in logical meaning) may be a source of confusion, because they 
can start with lower case letter both. That’s why function can refer to both predicate and term. 
However, there is not a possibility to mistake the term for a predicate in a formula, because when 
we reach the level of atom with name starting with lower case letter, it is a predicate, and all the 
inferior levels must contain only terms.  We can also understand a predicate as a function 
returning logical value, if we feel something wrong in this notation of syntax. Logical constants 
are passed away, since they aren’t needful. 

It fully satisfies the definition of the syntax from the programmer’s view and now we can give 
mathematical definitions of well formed formulas of PL. 

Definition 2.2.: Terms of predicate logic. 

i. A variable X or nulary functor (constant) c is an (atomic) term. 
ii. Let f be a n-ary functor, +, -, *, / be 2-ary functors and t1, ..., tn be terms. Then the 

expressions f(t1, .., tn), t1 + t2 , t1 - t2 , t1 * t2 , t1 / t2 , (t1)  are terms. 

Definition 2.3.: Formulas of predicate logic. 

i. The logical constants ç , ä are (atomic) formulas. 
ii. Let p be an n-ary predicate name and t1, .., tn be terms, then the expression p(t1, .., tn) is an 

(atomic) formula. 
iii. If A and B are formulas then A ý B, A ü B, A ô B, A ó B,  ¬ A, [ A ] are fomulas. 
iv. If X is variable and A is formula then ÷ X A and ö X A are formulas. 
(Atomic formulas or its negations are obviously called literals.) 

 
Now we must discuss some problems related to it. The first problem results from the usage of 

existential variables. The base of non-clausal resolution described on [Ba97] requires only 
ground cases of formulas i.e. skolemized formulas with variables substituted by a term without 
variables. The fully unrestricted resolution demands some restrictions to substitution of terms 
into variables. These notations are assumed to express occurence and substitution: E[E’] means 
that the expression E contains E’ as a. The result of simultaneous replacement of all occurrences 
of E’ by E’’ is denoted by E[E’/E’’] . They are also considered partial substitutions – E[E’|E’’] 
represents replacing of one occurrence of E’ by E’’.  

Because an unusual method of a substitution is given in the application, there is not a problem 
with free and bound variables like it is obvious in standard PL. In PL we speak about 
substitutibility of a term into a variable. The term t is substitutible to X if there is not a variable in 
t which could become bound after substitution. In the application every bounded variable is 
considered to be unique object with its memory address and it can’t be mistaked by another 
variable with the same name e.g. ÷X a(X) ü öX b(X), where we have two different X variables. 
If we substitute X from b(X) into X from a(X), it is an invalid operation, because existential 
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meaning of X became universal. But it only occurs if we print this result to the user. Internal 
representation of a formula handles unique memory addreses instead of names for example the 
first. Although it is simply solved, there still is the question of substitution existential variables 
into universal ones. It was found solution, which will be discussed below, but for short it can 
described as complete checking, if all the variables over its scope are assigned a value e.g. We 
have ÷XöY p(X,Y)  and we can assign Y anywhere only if X has assigned a value. When you 
examine it, you will find, that it is the right meaning of existential variable. Existence of such Y 
is strictly depending on specific X. 

Now we briefly summarize the semantics of first-order logic. First it is introduced the notion 
of Interpretation. 

Definition 2.4.: Interpretation structure and rules for language of PL. 

The interpretation structure is M = <D, f1, .., fn, p1, .., pn>, where D is a non-empty set called 
universe, fk represents functions, used in formulas, of the form f : Dp ô D and pk represents 
relations of predicates p ⊆ Dp ;to each functor and predicate name is assigned appropriate object 
from D, we can call this mapping Denot. Further it is defined mapping e as variables evaluation 
from the set of all variables into an object of D. 
  

Value of term t in M with evaluation e – t[e] is: 
i. if t is a constant c, c = c, where c as a language expression refers to an object c from D. 

ii. if t is a variable X, then t[e] = e(X). 
iii. if the term is of the form f(t1,..,tn), then t[e] = f (t1[e],..,tn[e]), where f = Denot(f). 

for infix operators of +, -, *, / we may consider Denot mapping to assign standard arithmetic 
functions. 
 
We define, that the formula F is true in M with evaluation e - M é F[e] as follows: 
i. if F is a predicate of the form p(t1,..,tn), then M é F[e] holds iff (t1,..,tn) ∈ p, p = Denot(p). 

ii. if F is of the form ¬G then, M é F[e] iff M é G[e] doesn‘t hold. 
iii. if F is one of the form G ý H, G ü H, G ô H, G ó H, then M é F[e] holds, depending on 

the connective:  
 G ý H : iff M é G[e] holds and M é H[e] holds, 
 G ü H : iff M é G[e] holds or M é H[e] holds, 
 G ô H : iff M é G[e] doesn’t hold or M é H[e] holds 
 G ó H : iff M é (G ô H)[e] holds and M é (H ô G)[e] holds 

iv. if F is of the form ÷X G, where G is a formula of the language, then M é F[e] holds iff for 
every object m ∈ D : M é G[e] holds, where e(X) = m . 

v. if F is of the form öX G, where G is a formula of the language, then M é F[e] holds iff 
there is a object m ∈ D : M é G[e] holds, where e(X) = m. 

 
Formula F is satisfiable in M, if for some e M é F[e] holds. F is satisfied (valid) in M - M é F, if 
M é F[e] for every e. If the formula is satisfied in every interpretation, then it is (logically) true. 

  
Clausal form of a formula is a notion, which we will use in definitions and try to avoid, so it is 

reasonable to introduce it. 

 Definition 2.5.: PL-formula in clausal form. 

Formula of predicate logic is in clausal form if it is of the form ÷X1..÷Xn [A], where: 
i. X1..Xn are all of the variables from formula A 



 
6 

ii. A is in the conjunctive normal form (CNF) i.e. A is conjunction of finite number disjuncts 
and  disjunct is a disjunction of finite number literals, where there is no mutually 
complementar pair of literals in each disjunct. 

Theorem 2.1.: Existence of clausal form for PL-formula. 

For every PL-formula A there is a formula B in clausal form, where A is satisfiable iff B is 
satisfiable. 

 

2.2 Deductive systems and principles. 
Let’s have a look to two deductive systems of first-order logic to see the advantages and 

disadvantages of them. A detailed description of these systems can be found in [Lu95] or [Ce81]. 
Deductive (Axiomatic) system consists of : 
1. Language. 
2. Axioms – source formulas (schemas) for inferring theorems. 
3. Rules  - enabling to derive theorems from axioms. 

Since it is a basic subject matter, it will not be described exact grammar of a system. And by 
reason that we are interested in theorem proving from the set of special axioms, we stay on 
discussing about the construction of formulas and inference rules. 

First let’s stop with the Hilbert’s axiomatic system. 
It has two allowed connectives – negation and implication. Although it is known that negation 

and implication forms complete set of connectives i.e. every formula can be rewritten to it, the 
lucidity of the proof is low. We can dispute about some special cases such as Horn clauses: a1 ý .. 
ý an ô b. They are simply and clearly transformable into a1 ô( ..ô (an ô b)), but some simple 
cases with equivalence or negation in superior levels like ¬(a ü b)  (⇒ ¬(¬a ô b)) have the 
meaning of the formula hardly recognizable. The first transformation is quite close to Hilbert 
style: “ if a1  holds and ..  and an  holds then b holds too” transforms to “if a1 holds then if .. then 
if an hold then b holds too. The second one is recondite “it doesn’t hold a or b” (in the other 
words a doesn’t hold and b doesn’t hold) transforms  to “ it doesn’t hold that if a doesn’t hold 
then b holds”.  

In the other hand the modus ponens rule looks smart, as we can understand it : ”if holds the 
theorem of the form - if a then b and if a holds, then b must hold too.” The axiom of specification 
ensures the possibility of  transformations of formulas into their ground cases.  

The second deductive system uses the best known principle, it is the resolution deductive 
system with the resolution principle.  Language of the system accepts formulas in conjunctive 
normal form. The resolution rule is notoriously known:  

Consider two clauses of the form C1 ü l and C2 ü l’, where l and l’ are mutually 
complementary. Then it can be deduced from the two above clauses the clause C1 ü C2 . This 
type of a rule also has a reasonable sense. Let’s take the modus ponens rule and try to see it as a 
specialization of the resolution rule. A ô B could be rewritten to ¬A ü B and that’s why the MP 
rule has the resolution form: ¬A ü B and A faces to B. The resolution rule can be also considered 
in the implicative form and then it can viewed as transitive rule A ü B , ¬B ü C ⇒ ¬A ô B , B 
ô C, which gives ¬A ô C that is A ü C. So the complementary couple of atoms is redundant 
and can be omitted, if we construct new implicative theorem. It consents to the clausal meaning. 
The two complementary atoms in the conjunction have no gain, because there is no model 
depending only on these two literals. So that’s why every model of  ( C1 ü l ) ý ( C2 ü l’ )  on C1 
or C2 only. In the other words ( C1 ü l ) and ( C2 ü l’ )  must be both true in such model, but then 
C1 must be true if l is false or C2 must be true if l is true and no other case exists. This is a little 
less clear explanation than an implicative form, I’m convinced.   
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When we considered these two systems, we didn’t speak about predicate logic modifications 
of these systems deeply. It was a wilful omission. These extended versions do not require a lot of 
effort to devise. It is the question of finding the right way to make formulas ground and to handle 
existence. The first one is solved with unifiers (in resolution based systems) or rules of 
specialization (in Hilbert system) and the second one is solved by skolemization (transformation 
of existential variable to a new function with superior variables as arguments) or implicitly by 
special functors (in Clausal Form Logic). 
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C h a p t e r  3  

3 General Resolution. 

3.1 Definitions and examples. 
When we use refutational theorem proving, we deduce new formulas from given ones and 

negated goal and search for a contradiction. The widely used inference rule is resolution, 
originally introduced by Robinson. Now we present the results from [Ba97] to show the power of 
general resolution that applies to general formulas. Because hereinbefore we discussed that it is 
possible to stay on propositional case and then only find suitable unification method to extend it, 
let’s start with propositional forms of rules as presented in [Ba97]. 

For the purposes of mentioned article, there were introduced some notions. Inference rule is an 
n-ary relation on expressions, where n Ý 1. The elements of such relation are written as 

E1 .. En-1  
———— 

E 
 
and called inferences. The expressions E1 .. En-1 are called premises, and E is the conclusion, 

of the inference. An inference system is a collection of inference rules. 
An inference is sound if the conclusion is a logical consequence of the premises, i.e., E1 .. En-1 

é E . The following definition of resolution for formulas is sound. 

Definition 3.1: General resolution. 

F[G]  F‘[G] 
————————— 
F[G / ç] ü F’[G / ä] 

 
It is the resolution on G and the conclusion of the inference is called resolvent of the two 

premises. It is also called F the positive, F’ the negative premise, and G the resolved subformula. 
As you see, the rule is highly general, since it allows resolving on whole subformulas. 
Nevertheless, it will be used only resolution on atomic subformulas in this thesis. The proof of 
the soundness of the rule is similar to clausal resolution rule proof. Suppose the Interpretation I in 
which both premises are valid. In I, G is either true or false. If G (¬G) is true in I, so is F[G / ä] 
(F[G / ç ]). From this point of view, it shows, that the resolution rule is nothing more that 
assertion of the type: If we have two formulas holding simultaneously and they contain the same 
formula, then we can deduce that either the common subformula is true in this interpretation then 
the truthfulness is assured by the first formula or the second formula in the opposite case. Now 
we can have a look to the question, how these facts influence the view of clausal resolution. 

Consider following table showing various cases of resolution on the similar clauses. 
Premise1 Premise2 Resolvent Simplified Comments 

a ü b b ü c (a ü ç) ü (ä ü c) ä no sense 
a ü ¬b b ü c (a ü ä) ü (ä ü c) ä redundant 
a ü b ¬b ü c (a ü ç) ü (ç ü c) a ü c right resolution 

a ü ¬b ¬b ü c (a ü ä) ü (ç ü c) ä no sense 
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As you see the order of premises is important! When you want to make a reasonable resolvent 
you have to consider, which formula has to be taken as positive premise. In the clausal case, it is 
trivial question, it is the atom without negation. As you find, the non-clausal case will be also 
very simple. 

Let’s have a look into an example of a non-clausal refutation. 

Example 3.1 

(1) a ý c ó b ý d   (axiom) 
(2) a ý c   (axiom) 
(3) ¬ [b ý d]   (axiom) – negated goal 
(4) [a ý ç] ü [a ý ä]    (resolvent from (2),(2) on c) ⇒  

      a 
(5) [a ý ç] ü [a ý ä ó b ý d]  ((2),(1) on c) ⇒ 

a ó b ý d 
(6) ç ü [ä ó b ý d]  ((4),(5) on a) ⇒ 

b ý d 
(7) ç ý d ü ä ý d  ((6), (6) on a) ⇒ 

      d  
(8) b ý ç ü b ý ä  ((6), (6) on b) ⇒ 

      b  
(9) ç ü ¬ [ä ý d]   ((8),(6) on b) ⇒ 

¬ d 
(10) ç ü ¬ä  ((7),(9) on d) ⇒ ç (refutation) 
 
In the above example, you can see how simply it is to handle general formulas. Of course, 

something of used manipulations was not discussed (how to select formulas order to not produce 
redundant resolvents).  Simplification used above is also not an essential need, but it was 
performed only for lucidity. It is eventual to retain the resolvents unsimplified until it is 
completely empty of atoms and then to determine logical value of the resolvent.  

There is an important case of  resolution called self-resolution describing resolution on one 
formula. 

Definition 3.1: General self-resolution. 

F[G] 
————————— 

F[G / ç] ü F[G / ä] 
 
This type of rule allows us to perform “strange”, but in some cases efficient, way of refutation 

the set of formulas as a whole formula. Again, consider the set from example 3.1. 

Example 3.2 

a ý c ó b ý d   (axiom) 
a ý c   (axiom) 
¬ [b ý d]   (axiom) – negated goal 
Now we translate it to one formula: 
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(1) [a ý c ó b ý d]ý[a ý c]ý¬ [b ý d] 
(2) [ç ý c ó b ý d]ý[ç ý c]ý¬ [b ý d] ü [ä ý c ó b ý d]ý[ä ý c]ý¬ [b ý d] (resolving 

on a) ⇒ 
      [c ó b ý d]ý cý¬ [b ý d] 

(3) [ç ó b ý d]ýç ý¬ [b ý d] ü [ä ó b ý d]ý ä ý¬ [b ý d]  (resolving on c) ⇒  [b ý 
d]ý¬ [b ý d] 

(4) [ç ý d]ý¬ [ç ý d] ü [ä ý d]ý¬ [ä ý d]   (resolving on b) ⇒   
      dý¬ d 

(5) çý¬ ç ü äý¬ ä (resolving on d) ⇒  
      ç    (refutation)  
 
This type of resolution has two advantages as you saw in the example. It leads to the refutation 

quickly and without the need of deciding, if the resolvent will be redundant or not. 
Unfortunately, the self-resolution is not suitable for huge formulas and non-propositional 
instances. 

 

3.2 Modifications. 
The general resolution defined above is the base for refining other special cases. These 

modified versions are used in the application, in order to attain the best solving time for non-
propositional cases. First modification resolves at one occurrence of the resolving subformula in 
the negative premise. 

Definition 3.2: Partial General Resolution. 

F[G]  F‘[G] 
————————— 
F[G / ç] ü F’[G | ä] 

 
In the Partial resolution in the negative premise, all the resolved subformulas remain with 

exception of one occurrence. Let’s consider an example generated automatically by the GERDS 
application. 

Example 3.3 

Source formulas (axioms) :  
F0 : ¬aý¬býcýdü¬aý¬bý¬cýd.  
F1 (¬query) : ¬[¬aý¬b].  
Deduction by partial resolution: 
______________________________ 
R0 [F1&F0] : bü¬aý¬bý¬cýd. (resolves on a, but the second a from F0 retains 

in R0) 
R1 [R0&F0] : ¬aý¬cýdü¬aý¬bý¬cýd.  
R2 [R1&F1] : b.  
R3 [R2&F0] : ¬aý¬bý¬cýd.  
[R3&R2] :  YES. (refutation) 
 
In this example, you can see resolvents in simplified form and processed by factoring rule. For 

the details about the results, see the section describing the programming of the application.  
Another modification resolves only one occurrence of the subformula G in both premises. 
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Definition 3.3: Restricted General Resolution. 

F[G]  F‘[G] 
————————— 
F[G | ç] ü F’[G | ä] 

 

Example 3.4 

Source formulas (axioms) :  
F0 : ¬aý¬býcýdü¬aý¬bý¬cýd.  
F1 (¬query) :  ¬[¬aý¬b].  
______________________________ 
R0 [F1&F0] : bü¬aý¬bý¬cýd.  
R1 [R0&F1] : b.  
R2 [R1&F0] : ¬aý¬bý¬cýd.  
R3 [R2&F1] : a.  
R4 [R3&F0] : ¬aý¬býcýd.  
[R4&R3] :  YES. 
 
Since the example is propositional, the next its general resolution deduction  is shorter. 
F0 : ¬aý¬býcýdü¬aý¬bý¬cýd.  
F1 (¬query) : ¬[¬aý¬b].  
______________________________ 
R0 [F1&F0] : b.  
[R0&F0] :  YES. 
 
Are these refined rules sound? Consider the proof of the general resolution. Suppose 

interpretation I, in which both premises are valid. Now if G is true in I, then F[G | ä] is true in I, 
because substituted G has to be true in I, all other occurrences of G remains unchanged and these 
occurrences still remains true in I and it is not significant how many occurrences we substitute. 
Identically we can solve the contrary case (false). It can be also understood as an simpler instance 
of general resolution.   

 

3.3 Polarity-Based Restrictions. 
When we apply the inference rule to some premises, it is a natural question, how the resolvent 

arisen from them can influence the inference process. First, we have look in an approach 
presented in [Ba97]. Since it is a simple way to avoid the combinatorial explosion of resolvents, 
we will stop on it, though it is practically used another self-devised technique. Initially the notion 
of polarity is given. 

Definition 3.4: Polarity. 

A subformula F’ in E[F’] is said to be positive (resp. negative) if E[F’/ä] (resp. E[F’/ç) is a 
tautology. In that case F’ (resp. ¬F’) implies E. 

 
For example, in a disjunction A ü B both A and B are positive, whereas in a conjunction A ý 

B the two subformulas A and B are neither positive nor negative. A subformula may occur both 
positively and negatively (e.g., A in A ü ¬A or A ó A), in which case the formula is said to be a 
tautology. The determining whether an atom A is positive or negative in E requires to check if 
E[A / ä] or E[A / ç]. It can be simply done by these criteria: 
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Theorem 3.1: Polarity criteria. 

1. F is a positive subformula of F. 
2. If ¬G is a positive (resp. negative) subformula of F, then G is a negative (resp. positive) 

subformula of F. 
3. If G ü H is a positive subformula of F, then G and H are both positive subformulas of F. 
4. If G ý H is a negative subformula of F, then G and H are both negative subformulas of F. 
5. If G ô H is a positive subformula of F, then G is a negative subformula and H is a positive 

subformula of F. 
6. If G ô ç is a negative subformula of F, then G is a positive subformula of F. 

 
The proof of the theorem is trivial and it is established on the notoriously known sense of 

logical connectives. Now it is possible to state two restrictions based on above. 

Theorem 3.2: Redundancy of general resolution. 

An inference by general resolution is redundant if the negative premise contains a positive 
occurrence of the resolved atom or if the positive premise contains a negative occurrence of the 
resolved atom.  

 
Proof:  If the negative premise contains a positive occurrence of the resolved atom A, then the 

resolvent appears as follows: F[A / ç] ü F’[A / ä] ⇒ F[A / ç] ü  ä ⇒ ä. If the positive premise 
contains a negative occurrence of the resolved atom A, then the resolvent appears as follows: F[A 
/ ç] ü F’[A / ä] ⇒ ä ü F’[A / ç] ⇒ ä. In both these instances resolvents degenerate to 
tautologies. In the refutational proof, such cases are improductive, i.e. from these resolvents can’t 
be deduced false. 

Theorem 3.3: Redundancy of general self-resolution. 

An inference by general self-resolution is redundant if the resolved atom occurs positively or 
negatively in the premise.  

 
Proof:  If the premise contains a positive occurrence of the resolved atom A, then the resolvent 

appears as follows: F[A / ç] ü F[A / ä] ⇒ F[A / ç] ü  ä ⇒ ä. If the premise contains a 
negative occurrence of the resolved atom A, then the resolvent appears as follows: F[A / ç] ü 
F[A / ä] ⇒ ä ü F[A / ç] ⇒ ä. In both these instances resolvents degenerate to tautologies. In 
the refutational proof, such cases are improductive, i.e. from these resolvents can’t be deduced 
false. 

Example 3.5 

Let’s consider two premises: 
1. ¬A – A is negative. 
2. A ý B – A is neither positive nor negative. 

The resolvent of 1. and 2. is ¬ç ü [ä ý B] ⇒ ä. 
 

3.4 Extended Polarity. 
As it was noticed above, it is important to decide which of the two premises to be taken as 

positive. It has been developed a simple way to decide it during making of this thesis. It is an 
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extended notion of polarity, which is similar to definition of Murray (1982), but the usage is 
different here.  

Definition 3.5: Extended Polarity. 

The subformula F is said to be positive (resp. negative) in E if after the transformation of E to 
conjunction-normal form, where F is treated as an atom, F would not be negated (would be 
negated). 

 
It is clear, that every subformula has some polarity and if some of its superior connectives is 

equivalence, then it is both positive and negative. Following theorem gives algorithm for 
determination of polarity. 

Theorem 3.4: Extended Polarity criteria. 

1. F is a positive subformula of F. 
2. If ¬G is a positive (resp. negative) subformula of F, then G is a negative (resp. positive) 

subformula of F. 
3. If G ü H is a positive (resp. negative) subformula of F, then G and H are both positive (resp. 

negative) subformulas of F. 
4. If G ý H is a positive (resp. negative) subformula of F, then G and H are both positive (resp. 

negative) subformulas of F. 
5. If G ô H is a positive (resp. negative) subformula of F, then G is a negative (resp. positive) 

subformula and H is a positive (resp. negative)  subformula of F. 
6. If G ó H is a subformula of F, then every subformula of G and H is  positive and negative 

subformula of F. 
  
Then it is possible to set the formula with positive polarity as the positive premise. This solves 

the problem of wrong order of premises i.e. it avoids redundant resolvents. 

Example 3.6 

Source formulas (axioms) :  
F0 : aüb.  
F1 : ¬büc.  
F2 (¬query) :  ¬[aüc].  
______________________________ 
R0 [F2&F2] : ¬c.  
R1 [F2&F1] : ¬b.  
R2 [F2&F0] : b.  
R3 [F1&F2] : ¬b.  
R4 [F1&F0] : cüa. ( c as negative premise) 
R5 [F0&F2] : b.  
R6 [F0&F1] : aüc. ( a as positive premise) 
[R5&R3] :  YES. 
 
R4 was created as resolvent of F1 and F0 where F1 was treated as a negative premise: (¬ä ü 

c) ü (a ü ç). 
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3.5 Simplification. 
In the above subsections, it was applied the obvious notion of  simplification for formulas. 

Although it is the clear process, the rewrite rules, which are the sources for the simplification, are 
stated here. 

At the beginning, we mention the rules for eliminating logical constants from conjunctions, 
disjunctions and negations: 

A ý ç  ⇒  ç       ç ý A  ⇒  ç 
A ý ä  ⇒  A       ä ý A  ⇒  A 
A ü ç  ⇒  A       ç ü A  ⇒  A 
A ü ä  ⇒  ä       ä ü A  ⇒  ä 

¬ç  ⇒  ä       ¬ä  ⇒  ç 
 

For other connectives, there are similar rules: 
A ô ç  ⇒  ¬A       ç ô A  ⇒  ä 
A ô ä  ⇒  ä       ä ô A  ⇒  A 

A ó ç  ⇒  ¬A       ç ó A  ⇒  ¬A 
A ó ä  ⇒  A       ä ó A  ⇒  A 

 
Another important rule reducing the length of a formula is the factoring rule. The clausal form 

of the rule could be presented as follows: 
a1 ü  .. ü an ü a ü a 

————————— 
a1 ü  .. ü an ü a  

where ax and a are arbitrary atoms and the order of the atoms is insignificant. 
This rule can be used also in the general case (general formulas) as a partial simplification 

technique.  
 

3.6 Lifting of Inferences. 
Before we start with explanation it should be stated that the following unification process 

doesn’t allow an occurrence of the equivalence connective. It is needed to remove them by the 
following rewrite rule: 

A ó B ⇒  [ A ô B ] ý [ B ô A ] 
The general resolution presented was based on the propositional calculus. The lifting of 

resolution inferences to formulas with indiscriminated variables into universal and existential 
ones follows below.  

For instance, general resolution. 
 

F[G]  F‘[G] 
————————— 
F[G / ç] ü F’[G / ä] 

 
is lifted to 

 
F[G1,...,Gk]   F‘[G’1,...,G’n] 

———————————— 
Fσ[G / ç] ü F’σ[G / ä] 
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where σ is the most general unifier (mgu) of the atoms G1,...,Gk , G’1,...,G’n , G = G1σ, and in 

contrast with [Ba97] it is not supposed renaming of the variables for the purposes of the 
application. We can suppose, that every variable occurring in a quantifier has its own identifier 
(for example memory address), which is assigned to variable occurrence. Technical details can 
be found in the section describing the programming of the application. 

For this open problem it has been devised the extension of most general unifier. At first it is 
needed to introduce some supporting notions: 

The following discrimination of existential and universal variables is needed for the Variable 
Unification Restriction definition: 

When we speak about existential and universal variables, it is related to its notion with respect 
to the scope of the whole formula e.g. In öX÷Y p(X,Y) ô a(Z) Y variable to be treated as an 
existential variable, because the p(X,Y) subformula has negative extended polarity. It means, if 
we translate the formula into clausal form, Y would transform into existential variable. We define 
the discrimination as follows. 

Definition: Discrimination of variables 
Variable quantified by existential (resp. universal) quantifier is said to be globally existential 

(resp. globally universal), if the extended polarity of the subformula, which owns the quantifier 
(the quantifier prefixes it), is positive and it is said to be globally universal (resp. globally 
existential), if the the extended polarity is negative. If the polarity is both negative and positive, 
the variable is both globally existential and universal, but it only occurs if there is an equivalence 
connective in the formula. Since we required to remove this connectives by rewriting, there is not 
any problem for further definitions. If we speak about variables over scope of another variable, it 
means that the quantifiers of variables are located in superior nodes of the syntactical tree of the 
formula (in prenex form they prefixes the quantifier of mentioned variable). 

 
Definition: Variable Unification Restriction  
Variable Unification Restriction holds if one of the conditions i. or ii. is satisfied: 
One of the terms is only a globally universal variable and the second one is not a globally 

existential variable. (non-existential case) 
One of the terms is a globally universal variable, the second one is a globally existential 

variable, and every globally universal variable over the scope of the existential one has assigned 
some term. 

 
This restriction performs the same job as skolem constants in clausal form. The unifiability of 

a gl. existential variable into a gl. universal variable is possible only if every gl. universal 
variable, which the existential variable depends on, has been substituted by a term already. 
Remark: The above definition determines, that two globally existential variables can’t be unified, 
that is clear. 

Basically, the mgu idea is following: 
Definition: Most general unifier.  
When both the terms, which have to be unified, are of the type string, number or functor 

without parameters then they are unifiable iff its type is the same (e.g. string and string and so 
on) and their identifiers match. 

When one of the terms is a variable then it is unifiable with the second one iff Variable 
Unification Restriction holds. Then it is supposed that mgu substitutes the first variable to the 
second one and we do not require renaming, as it is obvious. If both the variables are globally 
universal then it is not significant, which is selected as the first one. If one of them is existential, 
we select it as the first. 

If  both the terms are of the type functor with arguments, then they are unifiable iff all the 
arguments are unifiable by the same procedure from the point i. ( The order of unification to be 
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mentioned with respect to unification of variables, so it tries to unify the atom until it expands the 
mgu from the first ununified term.) 

There is no other possibility to unify two terms, except that two object of unification are the 
same physically (e.g. during the self-resolution the occurrence of two variables points to the same 
variable). 

 
Let’s have a look in an example of well-known facts: 
It doesn’t hold ÷XöY p(X, Y) é öY÷X p(X,Y) and 
it holds öY÷X p(X, Y) é ÷XöY p(X,Y).  
( General Y for all X can’t be deduced from Y specific for X but contrary it holds. ) 
 
Source formulas (axioms) :  
F0 : ÷XöY p(X, Y).  
F1 (¬query) : ÷YöX ¬p(X, Y).  
______________________________ 
[F1&F1] :  çü ä.  
[F0&F0] :  çü ä. 
 
In this sample F0 and F1 can’t resolve, since  ÷XöY p(X, Y) and ÷YöX ¬p(X, Y) have no 

unifier. It is impossible to substitute universal X from F0 with X from F1, because X from F1 is 
existential and its superior variable Y is not assigned with a value. Counter-example with 
variable Y is the same instance and it is not allowed to substitute anything into an existential 
variable.  

However, in the next example a unifier exists. 
Source formulas (axioms) :  
F0 : öY÷X p(X, Y).  
F1 (¬query) :  öX÷Y ¬p(X, Y).  
______________________________ 
[F1&F0] :  YES. 
[F0&F1] :  YES. 
 
Hereinabove the universal variable X from F0 could be assigned with existential Y because Y 

in F1 has no superior variable. Then existential Y from F0 can substitute the universal Y from F1 
for the same reason.  
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F0 F4 F1 F3 F2

R0 R4 R3 R2 R1 

R8 R7 R6 R5 R9

R10 R11 

Yes 

R12 Yes

Yes 

Yes

Yes 

C h a p t e r  4  

4 Resolution strategies. 

4.1 Refutation. 
As it has been written, the theorem proving method, which is used, is called refutational proof. 

Firstly the goal is negated, it is added to the set of axioms and then one searches for false formula 
using inference rules. Completeness of the refutational resolution proof is almost done by the 
proof for clausal instance presented in [Lu95]. It only should be replaced the conception of 
clauses by general formulas and consider the proof of soundness of the general resolution rule. 

In next sections, several types of resolution strategies are presented, which may avoid 
generating huge amount of resolvents. In the beginning breadth-first and depth-first search are 
recalled, then important characteristics of linear search, filtration strategy and support-set strategy 
are summarized, in the end it is presented self-devised algorithm to reduce redundancy. Very 
good source of information about these strategies can be found in [Ma93]. 

 

4.2 State Space Search. 
Breadth-first search lies in generating all resolvents, which are possible to generate from the 

source set of formulas and they are called first-order resolvents. After it continues resolution of  
all the resolvents of the second order, which are resolved from at least one premise of first-order 
resolvents and so on. We can see such proof here: 

Example 4.1 

Source formulas (axioms) :  
F0 : [a(X)ýg(X)ôb(X)].  
F1 : [b(X)ýg(X)ôc(X)].  
F2 : a(a).  
F3 : g(a).  
F4 (¬query) :   ¬c(Y).  
______________________________ 
R0 [F4&F1] : ¬[b(Y)ýg(Y)].  
R1 [F3&F1] : [b(a)ôc(a)].  
R2 [F3&F0] : [a(a)ôb(a)].  
R3 [F2&F0] : [g(a)ôb(a)].  
R4 [F1&F0] : 

[[g(X)ôc(X)]ü¬[a(X)ýg(X)]].  
R5 [R4&F4] : [¬g(X)ü¬[a(X)ýg(X)]].  
R6 [R4&F3] : [c(a)ü¬a(a)].  
R7 [R3&F3] :  b(a).  
R8 [R3&R1] : [¬g(a)üc(a)].  
R9 [R1&F4] :  ¬b(a).  
R10 [R1&R7] :  c(a).  
R11 [R0&R7] :  ¬g(a).  
[R11&F3] :  YES. 
Y = a. 
[R10&F4] :  YES. 
Y = a. 
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[R9&R7] :  YES. 
Y = a. 
R12 [R9&R2] :  ¬a(a).  
[R7&R9] :  YES. 
Y = a. 
[R12&F2] :  YES. 
Y = a. 
 
Figure 4.1. shows how the resolvents were obtained. You can see that there are four levels of 

resolvents. 
 
Depth-first search generates resolvent from two premises of source set and then applies 

resolution on the result and other formula (resolvent or axiom) and then recursively until no 
resolvent can be generated. Then the algorithm returns to previous level (performs backtracking) 
and continues with another possible resolvent. This type of strategy is not complete i.e. it could 
stay in an infinite loop for inconsistent set and then no refutation is found, but it can lead to a 
false formula quicker than with breadth-first search. Next example is proved using linear 
strategy, which is an instance of depth-first search. 

 

Example 4.2 

Source formulas (axioms) :  
F0 : [a(X)ýg(X)ôb(X)].  
F1 : [b(X)ýg(X)ôc(X)].  
F2 : a(a).  
F3 : g(a).  
F4 (¬query) :   ¬c(Y).  
________________________ 
R0 [F4&F1] : ¬[b(Y)ýg(Y)].  
R1 [R0&F3] :  ¬b(a).  
R2 [R1&F0] : ¬[a(a)ýg(a)].  
R3 [R2&F3] :  ¬a(a).  
[R3&F2] :  YES. 
Y = a. 
R4 [R2&F2] :  ¬g(a).  
[R4&F3] :  YES. 
Y = a. 
 
Figure 4.2. illustrate the simplicity of linear proof in comparison to previous example. 
 

4.3 Common strategies. 
Common strategies to reduce the set of resolvents include the wide-used  Linear strategy. 

Example 4.2 was produced using this type of strategy. Linear strategy utilizes last generated 
clause as one of the premises. Linear strategies preserve the sequence of a proof. It is a base 
technique for logic programming. Other strategies  are primarily intended for breadth-first search, 
but can be also invoked in depth-first search. Already mentioned disadvantage implies from its 
incompleteness. In the application, we use two different notions of linear search – linear, which 
generates resolvents only from goal and modified linear search, which is not restricted only to 
goal. 

F0 F4 F1F3F2

R0 

R4 R3

R2 

R1 

Yes Yes 
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The Support Set Strategy is simple, but also incomplete strategy. It rises from the fact that 
there is an consistent subset in every source set of formulas. It is obvious that the resolvents from 
this subset can’t lead to false formula. That’s why this strategy allows to resolve such premises, 
from which one is the goal or its descendant. Let’s again have a look in an example for the same 
set of formulas as above. 

Example 4.3 

R0 [F4&F1] : ¬[b(Y)ýg(Y)].  
R1 [R0&F3] :  ¬b(a).  
R2 [R0&F0] : [¬g(Y)ü¬[a(Y)ýg(Y)]].  
R3 [R2&F3] :  ¬a(a).  
R4 [R2&F2] :  ¬g(a).  
[R4&F3] :  YES. 
Y = a. 
[R3&F2] :  YES. 
Y = a. 
 
Support set strategy in this example is far more efficient than the unoptimized search. 
 
The filtration strategy is the next resolvent reducing method. Two premises A,B can be 

resolved only if one of these conditions holds: 
1. A or B is from the source set of formulas 
2. A is a descendant of B or B is descendant of A. 

( Descendant notion refers to the resolution tree.) 
It is complete strategy, although it is not so efficient as last strategy.  

Example 4.4 

With filtration: 
Source formulas (axioms) :  
F0 : aôbýg.  
F1 : býgôc.  
F2 (¬query) :  ¬[aôc].  
__________________________ 
R0 [F2&F2] : ¬c.  
R1 [F2&F1] : ¬[býg].  
R2 [F2&F0] : býg.  
R3 [F1&F0] : [gôc]ü¬a.  
R4 [R3&F2] : ¬gü¬a.  
R5 [R3&F0] : cü¬a.  
R6 [R2&F1] : gôc.  
R7 [R2&R6] : c.  
[R7&F2] :  YES. 
 
 

4.4 Resolution strategies and redundant resolvents. 
In this paragraph we will discuss the method which is the main point of the work on any 

automated prover.  There is a lot of strategies which makes proofs more efficient when we use 
refutational proving, i.e. in proofs where it is added negated goal into the set of axioms and the 
empty formula (false) as a final resolvent detects a successful proof. We consider well-known 

F0 F4 F1 F3F2

R0 

R4 R3

R2 R1 

Yes Yes 

F0 F1 F2

R0 R3 R2 R1

R7
R6 R5 R4 

Yes
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strategies – filtration s., support set s.  or their modifications. One of the most effective strategies 
is eliminating of consequent formulas. It means the check if a resolvent is not a consequence of a 
source formula or a previous resolvent. Then it is reasonable to not include the resolvent into the 
set of resolvents, because if the refutation can be deduced from it, then so it can be deduced from 
the older resolvent, which it imply of. The clausal case is trivial. Consider these two clauses 
p(X,a) and p(b,a) ü r(Y). It is clear that the second clause implies from the first (if we suppose 
that set of constant objects is closed – only b as the first argument in p predicate is considered). It 
has been devised an algorithm for the non-clausal case based on self-resolution rule. This 
algorithm highly reduces solving time, as it was proved in the application. Before it was 
introduced into the inference core, proofs were useless, due to their complexity. The method 
requires plenty of time; nevertheless the gain is high. If we want to express it simply: ”Almost 
everything is better than to accept redundant resolvent”. As we will see, there is such instance – 
infinite loop. The idea is quite simple and can be expressed in the following definition and 
theorem. 

 
Definition: Consequent formula. 
Formula F is a consequent formula in a refutational proof if there is a formula G in the set of 

resolvents or source formulas, where G ô F holds. 
 
Theorem: Detection of consequent formulas (DCF). 
Formula F is a consequent formula of G if it is continually performed self-resolution on the 

formula ¬[G ô F] until it has logical value and this logical value is false. 
 
Proof: We can refer to a proof of completeness of the refutational resolution. When we have 

an inconsistent set of formulas, it is assured by the completeness that we reach a false formula. 
And since one formula forms a set and the self-resolution is a special case of general resolution, 
we can say that if  ¬[G ô F] is inconsistent then we prove it by self-resolution i.e. we prove that 
G ô F is a tautology. We can argue, what happens if the formula is not a consequent formula. 
But from the properties of self-resolution it is clear, that the algorithm must finish with true or 
false in the propositional case, because self-resolution erases atoms in sequence until none retains 
(propositional logic is decidable). The non-propositional case is more complicated, but the 
solution to the eventuality, that the expression ¬[G ô F] could never resolve to logical value, is 
clear. We may accept for exceptional instances that a consequent formula will be added to the set 
of resolvents rather than the possibility to end in an infinite loop. This is better alternative, so we 
can limit the theorem iterations by time or certain number. Then we assure that the theorem 
procedure is finite and in the worst case the redundant resolvent is added. It is the user 
responsibility to find proper limitation in the application. The experience with the prover says 
that such a restriction will not affect proofs almost anyhow. 

The proof of completeness of the general resolution was not exactly done yet in this paper. 
Let’s have a look at the idea of an original one. In the clausal case the proofs of completeness 
may vary, but we take the proof based on the number of excess literals presented in [2]. It is an 
inductive method.  The parameter excess(S) = number of literals in S – number of clauses in S, 
where S is a set clauses.  The completeness is stated as follows: If S is an unsatisfiable set of 
clauses, then there exists a refutation of S. Suppose that S is unsatisfiable. 

For excess(S)=0: Either S consists of empty clause only or there are only literals in S. In this 
case there are 2 atoms mutually negative and we can resolve empty clause from them. 

For excess(S)=n (n>0): S must contain clause C with more than one literal. S = S‘ + C. C = L 
ü C‘. L is literal. {L ü C‘} + S‘ is unsatisfiable, if (1) C‘ + S‘ and (2) L + S‘ is unsatisfiable. 
From induction hypothesis we have assured it is provable (1) and (2), because excess parameter 
is less than n. If we apply the proof for (1) to S we deduce either empty clause or L. If L is 
deduced we can continue with applying proof of (2) and we must deduce empty clause. So the 
induction is finished. 
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We can simply lift this proof for non-clausal instances. We suppose that the set of general 
formulas is unsatisfiable. It could be simply proved that every formula has its (logically) 
equivalent clausal representation. After the transformation into clausal rep. it should be discussed 
what form has the general resolution rule. With respect to complexity of formulas the general 
resolution represents one or more resolution steps in the clausal case. The excess(S)=0 case is the 
same, but if we have it assured for excess(S‘)=m < excess(S)=n, then it works in different way. 
The literal L may occur in more than one clause. So we must differentiate that S = S‘ + C1 + C2 
+ ... + Cn. The proof then must consist of a sequence in which we resolve every occurrence of L 
subsequently, after we use (1) deduction sequence on particular Ck.  

 
Example: 
Consider the formula [a ü b] ý [¬b ü c] and we prove that [a ü c]  is a consequence of it. 
¬[[aüb]ý[¬büc]ôaüc] 
¬[[ çüb]ý[¬büc]ô çüb]ü¬[[ äüb]ý[¬büc]ô äüb]  ⇒  ç 
It was used the factoring rule for the simplification on the line (2). It is clear that consequences 

are redundant in refutational sequence in contrast to direct proofs.  
 
Example: 
Formula  aýb  is a consequence of [aób]ýa. 
¬[[aób]ýaôaýb] 
[¬[[ äób]ý äô äýb]ü¬[[ çób]ý çô çýb]]ý[¬[[ çób]ý çô çýb]ü¬[[ äób]ý äô 

äýb]] ⇒  ç 
Formula (2) divides into conjunction of two resolvents, where both the combinations of 

positive and negative premise are created. 
 
The important aspect of the theorem DCF lies in its simple implementation into an automated 

theorem prover based on general resolution. The prover handles formulas in the form of 
syntactical tree. It is programmed a procedure performing general resolution with two formulas 
on an atom. This procedure is also used for the implementation of the theorem. A ”virtual” tree is 
created from candidate and former resolvent (axiom) connected by negated implication. Then it 
remains to perform self-resolution on such formula until a logical value is obtained. 

Let’s compare the efficiency of standard strategies and the above-defined one. Consider 
following examples. It was also used modified notion of partially performed general resolution 
i.e. not every atom in a premise was replaced by a logical value. This modification may shorten 
proofs in some cases. 

Rn means n-th resolvent and the expression in brackets represents premises of it. 
 
F0 : aóbýg.  F1 : býgóc.  F2 (¬query) : ¬[aóc]. 
R0 [F2&F1] : [¬aü¬[býg]]ý[aübýg].  R1 [R0&F2] : ¬[býg]üc.  
R2 [R1&F0] : ¬gücü¬a.  R3 [R2&F2] : ¬gü¬a.  
R4 [R3&F2] : ¬güc.  R5 [R4&F0] : cü¬a.  
R6 [R5&F2] : ¬a.  R7 [R6&F2] : c.  
R8 [R7&F1] : býg.  R9 [R8&F1] : góc.  
R10 [R9&F2] : [güa]ý[¬gü¬a].  R11 [R10&F1] : aü[bóc].  
R12 [R11&R6] : bóc.  R13 [R12&F2] : [büa]ý[¬bü¬a].  
R14 [R13&F0] : aü[aóg].  R15 [R14&F2] : ¬gü¬c.  
R16 [R15&F1] : ¬c.  R17 [R16&F2] : a.  
[R17&R6] :  YES. 
Solving time : 0.22 s.   
None of standard above-mentioned strategies was able to limit proof but DCF was. Their 

proof sequence was cancelled after several seconds when it contained more than 300 resolvents. 
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Most of them were the same formulas or its clones. We can argue, if such formulas can’t be 
avoided simply by comparison of their symbols.  With respect to possible combinations of atoms 
it couldn’t be a good strategy, because it does not work with interpretation of formulas, but DCF 
does. 

 
F0 : aý¬býcýdüaý¬bý¬cýdü¬aý¬býcýdüaý¬bý¬cýdüaý¬býcýd.  
F1 (¬query) : ¬[¬aý¬büaý¬b].  
______________________________ 
R0 [F1&F1] : b.  
R1 [F1&F0] : bü¬býcýdü¬bý¬cýdü¬bý¬cýdü¬býcýd.  
R2 [F0&F1] : ¬býcýdüb.  
R3 [F0&F0] : ¬býcýdü¬býcýdü¬bý¬cýdü¬bý¬cýdü¬býcýd.  
[R3&F1] :  YES. 
Solving time : 0.05 s. 
(without restriction) 
R0 [F1&F1] : b.  
R1 [F0&F0] : ¬býcýdü¬býcýdü¬bý¬cýdü¬bý¬cýdü¬býcýd.  
[R1&F1] :  YES. 
(with DCF) 
 
F0 has the form of DNF, so it is not suitable for clausal representation and despite of this fact 

the proof is short. 
Another method to shorten proofs is implemented and it follows from trivial property of self-

resolution (SR) discussed within DCF. We can simply apply SR to the resolvent itself and then 
we can decide if the formula is contradictory or logically valid. In the same way it is needed to 
limit such algorithm by some way, due to partial decidability of PL. The example of this method 
is presented in the first one of the section 4. When the reference to this method is marked, it is 
used notion of SR-check. But the SR-check also refers to the one step of the theorem DCF 
application. 
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C h a p t e r  5  

5 Algorithms and programming interface. 

5.1 Programming tools. 
It was exploited excellent development environment for the production of the application 

performing theoretically presented manipulations in the previous chapters. The Borland Delphi 2 
with the Object Pascal language is thought as this tool offering many objective extensions to 
standard Pascal. This language is utilized to present the algorithms for the inference techniques. 
It is supposed that the reader has an essential knowledge of Pascal. First we start with the data 
structures, the construction of parse trees and then we focus to resolution methods. To get an 
introduction to Pascal language see [Ji88] or electronic help of Delphi 2. There is a very good 
source of information about data structures such as stack in [Be71]. 

 

5.2 Data structures. 
The General resolution deductive system has the frame for every logic program, which may 

contain source formulas and goals. It is divided to two windows – for the program and for results 
of inference. Whole frame is represented by TEditForm class and it encapsulates Editor for 
program and Output for results, both TMemo objects. We omit these objects, since they have no 
meaning for inference process and they are only visual components. We start with one member 
of TEditForm representing internally the logic program. It is the TPLProgram class. 

 
TPLProgram = class 
  Owner : TEditForm;  
  ListF : TList;  { List of source formulas and queries. } 
  ListR : TList;  { List of resolvents. } 
  MGUn1  : TList;  { Temporal store for unification results. } 
  Err : ErrorType; { Temporal store for compilation error. } 
  Localpos : Longint; { Position of an error. } 
  Strategy : TObject; { Type of the resolution strategy. } 
  constructor Create(ow : TEditForm);  
  destructor Destroy; override; 
  procedure Generate; { Generates set of compiled formulas. } 
  procedure XComp(var infix : PChar; var F : TFALFormula);  
    { Compilation core. } 
  procedure ClearFormulas;  
  procedure PrintFormulas; 
  procedure ClearResolvents;  
  procedure Consist; { Encapsulates consistency of the ListF checking. } 
end; 

Here is visible the structure of the class. Key objects are ListF and ListR. They contain source 
formulas objects (resp. resolvents) represented by a parse tree of the class TFALFormula. 

 
TFALFormula = class 
   Cont : TSub; { Contents of the formula. } 
   Owner : TPLProgram; 
   Parent1 : TFALFormula; 
   Parent2 : TFALFormula; 
     { Parents of the formula in the meaning of resolution rule. } 
   MF, ML : TAtom; { First and last atom. } 
   Support : boolean;  { Indicator for the Support Set Strategy. } 
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   ... 
end; 

Cont stores a reference to a subformula of the class TSub. 
 
TSub = class 
    Neg : boolean;  { Flag of logical negation. } 
    Ev : shortint;  { Indicator of the subformula logical value. } 
    Pol : shortint; { Stores the polarity of the node. } 
    L : TSub; 
    R : TSub;         { Left and right subtree. } 
    Ac : TObject;    { Parent object (logical connective). } 
    Q : TQuant;     { Quantifier containing variables at this level. } 
    ... 
end; 

TSub is the base class for other descendants – TCon, TDis, TImp, TEqv and TAtom. They 
represent particular logical connectives. Every subformula has a reference to left and right 
subformulas. Ev may have three values: -1 – false, 1 – true, 0 – subformula is not evaluated. Ac 
stores pointer to the superior node ( the root of a formula points to TFALFormula object). TAtom 
has special member indeed. 

 
TAtom = class(TSub) 
      Id : TId; { Identifier of a formula. } 
      ... 
end; 

Id points to a Id term – predicate name. L and R inherited from the TSub object have different 
function here. It points to the next atom object (in the infix notation) instead of descendant 
logical object (TAtom has no logical descendant). TQuant class is a descendant of TList class. It 
contains list of variables quantified in a quantifier or additionally quantified free variables. TId 
has several descendants: 

 
TVariable = class(TId) 
  Id : TId; { Substitution of the variable by an expression. } 
  Ex : char;  { Indicates quantification of a variable. } 
  New : TVariable; { Temporal pointer used in copying of the variable. } 
  NewId : TId; { Temporal pointer determining substitution. } 
  Used : boolean; { Flag of variable usage in expressions. } 
  UnSub : boolean; { Flag determining substitution. } 
  Ap : Boolean; { Used during unification. } 
  Master : TSub; { Master subformula of the variable. } 
  Watch : TVariable; { Link to goal requested source variable. } 
  Name : string; { Logical name of the variable.} 
end; 

TVariable is the class representing certain variable quantified with a quantifier or quantified 
implicitly as a free variable. Id refers to a term substituted to the variable. Ex may obtain two 
values: cforall – constant of universal quantifier character ÷ or cexists – existential character ö. 
New is used, when a new copy of a formula is created. It points to newly created variable. NewId 
points to a term, which has to be substituted and from this term is created a copy assigned later to 
New variable. Master refers to the subformula, which quantifies the variable. Watch is the 
observing reference to the variable from the goal of the logic program. It is created, in order to 
show the assignment of  variables, which led to a contradiction. After direct compilation, all 
occurrences of a variable in terms are not assigned to one object of the class TVariable, but to 
another descendant of  TId – TVar. TVar consist of Name only and serves as temporal class, 
before the TVariable is assigned to an occurrence. 

Further TId descendants are: TStrLit, TReal, TInteger, TFunctor and TFunctora, which 
represent string, real number, integer, functor with arguments and functor without arguments. 
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Now let’s see into some illustrations of parse trees of  formulas. 
Consider this simple formula: 

Example 5.1 

÷X p(X,30) ý öY r("string",Y) ô q(const,X). 
Direct compilation: 
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After variable assignment: 
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The example of the object hierarchy of the parse tree shows, how the variables are assigned to 
particular occurrences of them. After variable assignment there is a new quantifier, which 
quantifies former free variable X. It was created in the root of the tree, since free variables have 
global scope. 

 

5.3 Parser. 
Last subsection analyzed the data structures of formulas and indicated that the parse tree plays 

the main role in the practical use of general resolution. The editor of the logic program source is 
accessible as a null-terminated string and the main parsing procedure TPLProgram.XComp uses 
this string. 

 
procedure TPLProgram.XComp; 
 begin 
  ... 
  StackInit;  
  cpos := 0; dontcare := 0;Error := OK;Getchar;  
  if (ch = '?')and(infix[cpos] = '-') then 
  begin 
   query := true;GetCharI; GetChar; 
  end; 
  if Error = OK then Eqv;  { Go to parser / generator. } 
  ... 
  if Error = endcomp then 
   begin 
      Error := OK;sub := TSub(VPSStack^.Node);dispose(VPSStack); 
      if query then F := TQuery.Create(self) 
      else F := TFALFormula.Create(self); 
      F.Cont := sub;sub.Ac := F;F.MF := FirstMol;F.ML := LastMol; 
      F.PostComp;GetChar; 
      if ch <> #0 then LocalPos := cpos-1 else LocalPos := cpos; 
   end 
  else 
     begin 
       if VPSStack <> nil then DestroyNode(VPSStack^.node); 
      DisposeStack;LocalPos := cpos-inum-1; 
     end; 
 err := error; 
 case error of 
  ... 
 end; 
end; 

Let’s specify particular steps of the algorithm. At the beginning there are some initializations – 
StackInit initializes the stack, where objects as atoms and terms are stored until they are assigned 
to their parent objects, parse variable has reference to logic program string, LastMol and FirstMol 
are used for right assignment of first and last atom of a formula after successful compilation. 
GetChar (resp. GetCharI ) gets into ch variable one lexical element from the editor ignoring 
blank characters (resp. inclusive blank chars). Then it decides if the formula is a goal. Then 
follows recursive parsing, which we will discuss in detail hereinafter. At the end the procedure 
checks for errors during compilation and if everything is right  then the root of the parse tree is 
extracted from the stack and the appropriate TFALFormula structure is generated else the error 
message occurs. 

Let’s see the recursive parse algorithm (well explained in [Dv92]). Recursive parsing lies on 
programming procedures exactly by the Backus-Naur form, where every non-terminal has its 
own procedure and there is GetChar calling before a terminal and particular procedure calling for 
a non-terminal inside the procedure. Iteration and branch on condition are solved identically in 
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BNF and algorithmical level. Of course, the requirement of LL(k) language defined by BNF is 
required i.e. decision which case to choose in a non-deterministic instance must be found by 
looking ahead k characters. In this instance, the LL(1) language is presented in the second 
chapter.  

 
procedure Eqv; 
begin 
 if Error = OK then 
   begin 
     Imp;  
     while (ch = ceqv)and(error = OK) do 
       begin 
        Getchar;  
        Imp;  
        if error = OK then AssignSub(TEqv.Create);  
       end;  
   end;  
end;  

 Here it is presented the procedure Eqv related to <Formula> non-terminal (expresses 
equivalence level with the lowest priority). It dives to Imp non-terminal procedure first and then 
continues zero or more times with the same non-terminal depending if some equivalence 
character is found. Every such equivalence is created and it has assigned L and R descendant by 
AssignSub procedure by the following way. 

 
procedure AssignSub(Ob : TObject);   { Assigns formula its subtrees. } 
begin 
  Put(Ob);pom := Cut; 
  TSub(pom^.node).R := TSub(VPSStack^.node); 
  TSub(VPSStack^.node).Ac := pom^.node; 
  garbage := Cut;dispose(garbage); 
  TSub(pom^.node).L := TSub(VPSStack^.node); 
  TSub(VPSStack^.node).Ac := pom^.node; 
  garbage := Cut;dispose(garbage);SInsert(pom); 
end; 

Put procedure creates a stack object, which encapsulates every object’s life in the stack and 
enables the logical object to be bounded in the stack with the succeeding object. Then it pops 
from stack with Cut procedure and it is stored in the pom variable. It is assigned the first object in 
the stack into the R pointer of pom object. Then the same is done with the second object. They 
are simultaneously removed from the stack since they are now elements of the parse tree. 
Resulting object is then put in the stack and waits until it is attached to its superior node. 

The procedure ICE related to <Subformula> fully demonstrates the recursive character of such 
algorithm. 

 
procedure ICE;  
begin 
if error = OK then 
 begin 
  case ch of 
   cneg : begin 
         Getchar; ICE;NegateF; 
       end; 
   cforall, cexists :  
        begin 
          Quant; ICE;  
          if Error = OK then AssignQtoSub;  
        end; 
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   'a'..'z', 'A'..'Z', '_', '0'..'9', '"', '(', '+', '-' :  
       begin 
         Atom;  
       end; 
    '[' : begin 
         GetChar; Eqv;  
         if (ch <> ']')and(error = OK) then Error := missbra;  
         Getchar;  
       end 
   else if error = OK then Error := missexp;  
   end;  
 end;  
end;  

The cneg case refers to a negated subformula and it recursively calls the same procedure. The 
second case of quantifiers does the similar work.  

The third case handles an occurrence of atom and it remains to solve the case of subformula 
enclosed in brackets. It is obvious that the other parser procedures are omitted, because they use 
the same principle. 

 

5.4 Postprocessing. 
There is still something undone after successful compilation. It is inevitable to assign variables 

instead of TVar objects for every occurrence of a variable, it is also needed to evaluate the 
extended polarity of nodes and it is useful to perform evaluation of constants connected by infix 
operators. These operations are encapsulated in the next procedure. 

 
procedure TFALFormula.PostComp; 
var TT1 : TAtom; 
begin 
  LastSub := nil; 
  Dive('4', VarReAssign, [nil]); { Assignment of variables. } 
  Dive('3', EvalBuilt, [nil]);  { Evaluation of infix operators. } 
  Cont.EvalPol; 
end; 

Dive procedure has three arguments. It is the general procedure, which helps to browse parse 
tree without the need to write the same code for different actions. The first argument determines 
the manner of browsing inside the tree e.g. ‘3’ – postorder (first go to subtrees and then performs 
a operation on the node, details in [Be71]). The second argument sends a reference to the 
procedure, which does the actions. Last argument may send some additional information in the 
form of variant array i.e. special item of Object Pascal language, which allows to work with 
variable number of arguments of changeable types. The executive procedure (second par.) must 
have this form: 
 

TDoProc = 
  function(o : TObject; var tp : char; argums : array of const) : TObject; 
     { Template for functions used as executive procedures 
       for the recursive browsing of the syntactical tree.(ST) } 

It accepts reference o to the current object, the currently valid mode of browsing and already 
mentioned variant arguments and it returns reference to an object, which will replace the 
assignment of the current  node if the modification is needed. 

Before we continue with the postprocessing, let’s have a look into an example of the 
implementation of the Dive procedure: 

 
function TSub.Dive; 
var i : longint; 
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begin 
  case tp of 
  '1' : 
    begin 
      Proc(self, tp, argums); 
      if Q <> nil then  Q.Dive(tp, proc, argums); 
      if L <> nil then  L.Dive(tp, proc, argums); 
      if R <> nil then  R.Dive(tp, proc, argums); 
    end; 
  ... 
    'r' : 
    begin 
      Result := TSub(ClassType.Create); 
      Result.Neg := Neg; Result.Ev := Ev;Result.Pol := Pol; 
      Result.Ac := Ancs; LastSub := Result; 
      if Q <> nil then 
      begin 
        Result.Q := Q.Dive(tp, proc, argums);  
        if Result.Q <> nil then 
        with Result.Q do 
        for i := 0 to Count-1 do 
          TVariable(Items[i]).Master := Result; 
      end; 
      Ancs := Result; LastSub := Result;  
      if L <> nil then Result.L := L.Dive(tp, proc, argums);  
      Ancs := Result; LastSub := Result; 
      if R <> nil then Result.R := R.Dive(tp, proc, argums); 
      LastSub := Result; 
      if Q <> nil then Q.Dive('q', proc, argums); 
    end; 
    ... 
end; 

Of course, a lot of code was cut short, but there still remains illustrative sample. The ‘1’ mode 
means preorder type of browsing i.e. First perform Proc (executive procedure) on the node and 
then go recursively into descendant trees. The ‘r’ mode expresses the action of copying the tree 
and as you see, the result variable assures the right assignment of new object members. 

If we return to the beginning of this subsection, we can continue with explanation of the 
PostComp procedure.  

 
{ Procedure for assignment of complex variable object for every occurrence of 
  the variable. } 
function VarReAssign(o1 : TObject; var tp : char; argums : array of const) 
                                                                 : TObject; 
var S1 : TSub; i : integer; O : TVariable; 
begin 
  Result := o1; 
  if o1 is TSub then 
  ... 
  else if (o1 is TVar) then 
  begin 
  S1 := LastSub; O := nil; 
  if S1.Q <> nil then 
    with S1.Q do 
    begin 
      for i := 0 to Count-1 do      { Searches for right TVariable object. } 
       if TVariable(Items[i]).Name = TVar(o1).Id  
       then O:=TVariable(Items[i]); 
    end; 
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    while not(S1.Ac is TFALFormula)and(O = nil) do 
    begin 
      S1 := TSub(S1.Ac); 
      if S1.Q <> nil then 
      with S1.Q do 
      begin 
        for i := 0 to Count-1 do 
          if TVariable(Items[i]).Name = TVar(o1).Id then 
                                      O := TVariable(Items[i]); 
      end; 
    end; 
    if O <> nil then 
    begin 
      o1.Free; 
    end 
    else 
    begin 
      if S1.Q = nil then S1.Q := TQuant.Create; 
      O := TVariable.Create(TVar(o1)); 
      O.Ap := false; 
      O.Master := S1;    { If not found, creates new variable on  } 
      o1.Free;           {  the top level.                        } 
      O.Ex := cforall;S1.Q.Add(O); 
    end; 
    Result := O; 
  end; 
end; 

It is important factor, which subformula is the nearest superior node in this executive 
procedure. It can be found from the LastSub variable. From this points it starts to search for the 
nearest variable, which match the name of the occurrence. It continues to the parent node and 
tries to match the name, but if it doesn’t succeed until the root is reached, it creates a new 
variable and appends it into the root quantifier. It set up the Master property of the variable, 
which points to the subformula, which includes the quantifier encapsulating the variable. 

 
  { Evaluates infix operators. } 
function EvalBuilt(o : TObject; var tp : char; argums : array of const) 
                                                              : TObject; 
var r : extended; N0, N1 : TObject; fc : char; 
begin 
  Result := o; 
  if o is TFunctor then 
  begin 
    if (TFunctor(o).Functor[1] in infixoper) then 
    begin 
     N0 := (TFunctor(o).Params.Items[0]); 
     N1 := (TFunctor(o).Params.Items[1]); 
     while N0 is TVariable do 
        N0 := TVariable(N0).Id; 
     while N1 is TVariable do 
        N1 := TVariable(N1).Id; 
     if (N0 is TNumber)and(N1 is TNumber) then 
     begin 
       try 
       case TFunctor(o).Functor[1] of 
       '+' : r := TNumber(N0).GetNumber + 
              TNumber(N1).GetNumber; 
       '-' : r := TNumber(N0).GetNumber - 
              TNumber(N1).GetNumber; 
       '*' : r := TNumber(N0).GetNumber * 
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              TNumber(N1).GetNumber; 
       '/' : r := TNumber(N0).GetNumber / 
              TNumber(N1).GetNumber; 
       end; 
       except 
         on EMathError do Exit; 
       end; 
       TFunctor(o).RFree; 
       Result := TReal.CreateN(r); 
     end; 
    end; 
  end; 
end; 

If the functor object is the current, it checks for infix operator and if both first and second 
argument is a number. In that case the functor is replaced by the resulting number object. 

 
procedure TSub.EvalPol; 
begin 
  if Ac is TFALFormula then if Neg then Pol := -1 else Pol := 1 
  else 
  begin 
    if ((Ac is TImp)and(TSub(Ac).L = self)) then Pol := -TSub(Ac).Pol 
    else Pol := TSub(Ac).Pol; 
    if Neg then Pol := -Pol; 
  end; 
  if (self is TEqv)or(self is TAtom) then Exit 
  else { Equivalence causes zero priority. } 
  begin 
    if L <> nil then L.EvalPol; 
    if R <> nil then R.EvalPol; 
  end; 
end; 

 
The above procedure evaluates the (extended) polarity of the node. It utilizes the criteria from 

theorem 3.4. The first line of the procedure checks if it is the root of the parse tree and if so then 
it assigns polarity depending on the neg flag of the subformula. Then it copies the polarity from 
the superior node or if it is an antecedent of an implication, it copies the inverse value.  

 

5.5 Theorem proving. 
When one calls any type of proof of some source set of formulas with goals, the Generate 

procedure of TPLProgram object is called.  
  

procedure TPLProgram.Generate; 
var p1, p2 : longint; temp : PChar; Form, Form2 : TFALFormula; 
    t1, t2 : double; infstr : string; 
begin 
  p1 := 0; p2 := 0; temp := PChar(Owner.UpdateCont); 
  CurProg := self;ClearFormulas; 
  ... 
  while temp[0] <> #0  do         { Compiles until end is found. } 
  begin 
    Application.ProcessMessages;if stopf then Exit; 
    Form := nil;XComp(temp, Form); 
    if Form <> nil then 
    begin 
      Form.Simplify; 
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      if Form is TQuery then 
      begin 
        TQuery(Form).EvalQuery;   { Evals if it is query. } 
      end 
        else ListF.Add(Form);     { Or adds to ListF. } 
      p1 := LocalPos;temp := @(temp[p1]);p2 := p2+p1; 
    end 
    else begin 
      Owner.Editor.SelStart := p2+LocalPos+1; 
      ClearFormulas; temp := PChar(''); 
    end; 
  end; 
  ... 
end; 

The temp variable points to the editor’s text and it is passed through until no formula is 
generated. It may raise both by reaching the end of logic program or by a parse error. The 
XComp procedure returns the position directly after dot and blank characters terminating last 
formula. Source formulas are added to ListF container. If the generated formula is a query, then 
Generate calls its EvalQuery procedure, which is responsible for the proof. After solution of a 
goal, next query can be solved or succeeding source formulas may be compiled. 

  
procedure TQuery.EvalQuery; 
begin 
  NegQ;Owner.ListF.Add(self); 
  Support := true; 
  Dive('v', nil, [nil]); { Marks variables requested by a query. } 
  Owner.Consist; 
  Owner.ListF.Remove(self); 
  Free; 
end; 

At first the query is negated and it is added to ListF and its Support-set flag is set up. Mode ‘v’ 
for Dive procedure cause setting the Watch property of every variable in the goal to itself. It 
allows to all copies of a variable to sustain the reference to original query variable and it can be 
printed out after successful refutation. The TPLProgram procedure Consist includes several type 
of state-space search. Because it is a huge procedure, we will show only its part presenting linear 
strategy and we will also follow with linear strategy subprocedures. 

 
procedure TPLProgram.Consist; 
... 
begin 
  ... 
{ Linear strategy. } 
  if Strategy = Owner.Linear then 
  begin 
    rsv1 := 'F'+IntToStr(ListF.Count-1); 
    TFALFormula(ListF.Items[ListF.Count-1]).AllPosRes4; 
  end 
  else 
  ... 
end; 

 
Consist procedure calls AllPosRes procedure of the goal (last formula in the source set). 

AllPosRes tries to perform resolution rule on every formula of the source set and originated 
formulas. The procedure, which has to carry out the resolution of two formulas, is from the 
family of TryToRes procedures. Its function lies on passing through atoms of formulas and 
trying to find an unifier of them. If two atoms are unifiable, it checks for polarity and selects 
positive atom as positive premise (by setting up the premise flag). Then it calls Resolve 
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procedure, which produces the resolvent. If both the atoms have zero polarity, it is suitable to 
generate two resolvents (one with positive premise of first formula and second with positive 
premise of second formula) or to generate conjunction of such resolvents. The detail listing of 
TryToRes is improductive due to its length. There is a lot of variations and optimizations 
indicated in the theoretical sections. At first it inspect formulas eligibility for resolution 
(filtration, support-set) and it may also generate more than one resolvent from a couple of 
formulas (on different atoms). After resolution, the resolvent is simplified and it remits to check 
of consequence (equivalence), if needed. When the resolvent is generated and it is not redundant 
or logical value, the linear strategy continues and applies the AllPosRes to the resolvent. Let’s 
see to Resolve procedure. 

 
function TFALFormula.Resolve; 
... 
  if premise then tr1 := -1 else tr1 := 1; 
  if T1.neg then T1.Ev := -tr1 else T1.Ev := tr1; 
  if self <> X then if T2.neg then T2.Ev := tr1 else T2.Ev := -tr1; 
  { Resolves two matching atoms} 
  if (getAt)or(Owner.Owner.GreatCut1.Checked) then 
  { In the case of optimization, 
  it searches for all other possible matching atoms. } 
  begin 
    TT1 := T1;polar1 := false; 
    if (TT1 <> nil) then 
    begin 
        TT2 := MF; rs := 0; 
        while (TT2 <> nil) do 
        begin 
          rs := TT1.UnifySL(TT2); 
          if rs = 0 then TT2 := TAtom(TT2.R) 
          else 
          begin 
            if polar1 then TT2.Ev := -tr1 else TT2.Ev := tr1; 
            if TT2.neg then TT2.Ev := -TT2.Ev;rs := 0;TT2 := TAtom(TT2.R); 
          end; 
        end; 
    end; 
    if (self <> X)and 
      ((getat)or(Owner.Owner.General.Checked)) then 
    begin 
        ...  { Identical code, but for the second formula } 
    end; 
  end; 
  PrepareMgu;FL.Cont := F3; F3.Ac := FL;Ancs := F3; TN2 := T2; 
  F1 := Cont.Dive('r', nil, [nil]);   { Makes a copy of the first formula 
                                        with substituted variables. } 
  Ancs := F3; TM1 := LastMol; TN2 := nil; 
  if (self = X)   then 
  begin 
    invert := true;F2 := X.Cont.Dive('r', nil, [nil]);invert := false; 
  end 
  else F2 := X.Cont.Dive('r', nil, [nil]); 
  ... 
end; 

First mentioned lines perform assignment of a logical value to resolved atoms. It depends on 
premise flag, which indicate that the first formula – self has to be  treated as the positive premise 
and the second formula X has to be regarded as the negative premise. Of course, it is useless to 
evaluate the second atom, if self=X. Next it evaluates all atoms from the positive premise, if the 
user requires it by checking off the General cut (Partial resolution) item from the application 
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menu. If the general cut item is checked off, then all atoms from the second formula are 
evaluated and resolve procedure carries on general resolution. Otherwise it evaluates only two 
atoms and this is an implementation of restricted resolution. PrepareMgu assigns unifier 
substitution from the temporal TList store named mgu1 into the appropriate variable NewId 
property. Then new disjunction is created and copies of premises made by ‘r’ mode of the Dive 
procedure are assigned as L and R references to this disjunction. There is also special procedure 
for self-resolution called ResolveAWC.  

 

5.6 Unification. 
The key factor of lifting inferences to non-ground cases of formulas is the most general 

unifier. The function responsible for unification is TAtom.UnifyS and TAtom.UnifyId is its 
executive procedure, which unifies Id properties of two atoms.  

 
function TId.UnifyId; 
var varn : integer; 
begin 
  varn := mgu1.Count-1; 
  repeat 
    unres1 := 1;  { Tries to unify id terms until, it is clear that } 
    unres := 1;   { no more changes are done.                       } 
    varn := mgu1.count; 
    Dive('5', IdUnif, [X]); 
    if unres1 = 0 then unres := 0; 
  until  (varn = mgu1.count)or(unres <> 0); 
end; 
  

The ground or non-existential instance is trivial and one pass is enough, but in the existential 
case the order of arguments in functors is important. That’s why it tries to unify two terms until 
any substitution is not realized or the unification is completely impossible. What it means? The 
unres variable is set to zero, if two constant objects can’t be unified, while unres1 is set zero even 
if some variable can’t be unified. So if a variable was taken in a wrong order, we can still remain 
it ununified and wait for the next pass, which will occur only if some other variable was unified 
and it has sense to examine if the last unified variable could be unified under changed conditions. 
The dive procedure serves also unification as the mode ‘5’ with IdUnif procedure. 

 
function IdUnif(o : TObject; var tp : char; argums : array of const) : TObject; 
... 
begin 
  Result := o; 
  ...   
  if (o is TFunctor) then 
    ... { All arguments of a functor have to be unified.} 
    else if (o is TFunctora) then 
    begin 
      if not((argums[0].VObject is TFunctora)and 
        (TFunctora(argums[0].VObject).Functor = TFunctora(o).Functor)) 
        then unres := 0; 
    end 
    ... 
    else if (o is TVariable) then 
    begin 
      begin 
        if not(CurProg.Owner.Quant1.Checked)or(IsHigherObject(o, argums[0].VObject)) then 
        begin 
          mgu1.Add(o);mgu1.Add(argums[0].VObject); unres := 1; 



 
35 

        end 
        else begin unres1 := 0; end; 
      ... 

Here it is presented the unification algorithm from section 3.6. The special attention is given to 
variable unification. It depends on IsHigherObject. This function returns true, if Variable 
Unification Restriction holds. 

 

5.7 Simplification and Check of consequence. 
In order to reduce the formula length, the simplification rules described above are used. This is 

an implementation of these rules. 
 

function FSimplifyH(o : TObject; var tp : char; argums : array of const) 
                                                               : TObject; 
... 
begin 
  if (TSub(o).L <> nil)and(TSub(o).R <> nil) 
    and((TSub(o).L.Ev <> 0)or(TSub(o).R.Ev <> 0)) then 
  begin 
    inc(numSimX);x1 := TSub(o).L.Ev; x2 := TSub(o).R.Ev; 
    if o is TCon then xa := Min(x1, x2) 
    else if o is TDis then xa := Max(x1, x2) 
    else if o is TImp then xa := Max(-x1, x2) 
    else if o is TEqv then xa := Min(Max(-x1, x2), Max(x1, -x2)); 
    if (xa <> 0) then 
      begin 
        TSub(o).L.RFree; TSub(o).L := nil; 
        TSub(o).R.RFree; TSub(o).R := nil;TSub(o).Ev := xa; 
        { The case, that leads to complete evaluation of a node 
          e.g. (x and true) leads to x .} 
      end 
    else if (xa = 0) then 
      begin 
        negf := 0; 
        if ((o is TImp)and(x2 = -1)) then negf := 1 
        else  if ((o is TEqv)and((x1 = -1)or(x2 = -1))) then negf := 2; 
        if x1 = 0 then o := TSub(o).L.SubstTo else o := TSub(o).R.SubstTo; 
        if negf <> 0 then TSub(o).negate; 
        { The case, that leads to a partial evaluation of a node. 
          e.g. (x and false) leads to false .} 
      end; 
    if TSub(o).neg then TSub(o).Ev := -TSub(o).Ev; 
  end; 
  Result := o; 
end; 

At first it is evaluated the logical value of the subformula o depending on the connective based 
on (only for these purposes) three values- false, unknown, true. Then it is decided, whether the 
subformula will be completely removed or it will  be removed only its descendant. 

The decision about the redundancy implements the InsertToR procedure. 
At first it stores the result of self-resolving on the examined formula. If a logical value is 

obtained, check of consequence has no sense. Otherwise it performs the following actions for 
every source formula and resolvent until the redundancy is proved. It creates virtual formula with 
negated implication in the root, L reference is set up to source formula/resolvent root and R 
reference is set up to the examined formula. It doesn’t create any copy and after usage it is 
restored. It is performed self-resolution by OptimizeX procedure until it has a logical value and if 
the value is false then the formula is not added to the set of resolvents. 
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C h a p t e r  6  

6 Computer application. 

6.1 General information. 
As it has been noticed, the application, which should be able to demonstrate the capabilities of 

general resolution, was produced. It is called GEneral Resolution Deductive System and it is 
implemented on 32-bit Windows (95,98,NT) platform. If the system is accompanying the thesis, 
you will probably find thesis.exe self-extracting file, which can be executed and it creates Thesis 
directory with Program and Docs directories. The Docs directory contains this paper and 
Program is consisted of application source codes, executable file of the application, font and 
examples. The program executable file has the name GERDS.exe. The user interface of GERDS 
is quite simple. It is a MDI (Multiple document interface) application, which means that the user 
has possibility to open more than one set of source formulas at once. As it was noticed in the 
previous section, every independent frame has two parts – Editor for source formulas and Output 
for results of inference. Here is an example of the frame. 

The upper window - editor can accept source formulas of the form defined by the BNF in the 
section 2. The lower window – output shows the results of the inference. It may vary depending 
on the user demands. It shows the resolvents and their premise numbers. Let’s have a look to 
detailed description of source set and results. You can create new or open an existing frame by 
selecting command from the File menu as well as other standard operations (Save, close, exit). 

You can use the Window menu to select particular window or reorganize the window order. 
The Help menu gives you essential information about the program and keyboard layout for 
special character. 
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6.2 Input and Output.  
The editor (input) window accepts source formulas and goals by syntax of BNF from the 

section 2.1. Source formulas end by dot and one or more blank character ( space, return or other 
character with ASCII code between 1 and 32). The goal (query) is introduced by ‘?-‘ string and 
may occur several times in the editor. Every goal is proved using all preceding source formulas. 
Consider next example. 

Example 6.1 

a(X)ýg(X)ôb(X).  
b(X)ýg(X)ôc(X).  
a(a). ?-g(a). 
g(a). 
?-c(Y). 
There are two goals here. 
 
The result (output) window may contain a list of source formulas and goals (already negated), 

sequence of resolvents, unsimplified forms of resolvents, list of resolvents and some statistics. 
The items in the sequence of resolvents are of the form by this example:  

Let’s see to an example of the result to the previous source set. 

Example 6.2 

Source formulas (axioms) :  
F0 : [a(X)ýg(X)ôb(X)].  
F1 : [b(X)ýg(X)ôc(X)].  
F2 : a(a).  
F3 (¬query) :  ¬g(a).  
______________________________ 
Source formulas (axioms) :  
F0 : [a(X)ýg(X)ôb(X)].  
F1 : [b(X)ýg(X)ôc(X)].  
F2 : a(a).  
F3 : g(a).  
F4 (¬query) :   ¬c(Y).  
______________________________ 
R0 [F4&F1] : ¬[b(Y)ýg(Y)].  
R1 [R0&F3] :  ¬b(a).  
R2 [R1&F0] : ¬[a(a)ýg(a)].  
R3 [R2&F3] :  ¬a(a).  
[R3&F2] :  YES. 
Y = a. 

R0 [F4&F1] : ¬[b(Y)ýg(Y)].  Number of 
resolvent 

Number of 
premise 1  

(F = source 
formula) 

Number of 
premise 2 

Resolvent 
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R4 [R2&F2] :  ¬g(a).  
[R4&F3] :  YES. 
Y = a. 
Solving time : 0.22 s.  Used memory : 52956 B. 
The resolvent with YES means the false resolvent and Y = a represents the variable 

assignment performed during refutation (a = constant). Notice that the first goal has no solution, 
since g(a) follows after the goal. 

 
In both windows you can choose Edit submenu from the application menu and perform 

standard operations – select text, copy, cut, clear and paste selection, clear output and select font. 
Logical connectives can be added to the editor by holding Ctrl+Alt key and by pressing 

appropriate key: 
 Q - forall, W - exists, E - equivalence, I - implication,  
 C - conjunction, D - disjunction, N - negation, F - not equal, 
 L - less or equal, G - greater or equal. 
 

6.3 Proof. 
There are three additional menus for proving process. The Output menu defines formatting 

characteristics of the output. It has following items, which can be checked off: 
Axioms – adds source set formulas with labels (goals are negated). 
Progress – shows the sequence of the proof. 
Sources – adds labels of premises. 
Resolvents – summarizes generated resolvents. 
Time, Memory – adds time consumed and memory currently used by the application. 
Unsimplified – shows all resolvents in unsimplified form. 
Statistics – shows statistics about the proving process. 
The Prove theorem menu contains some specifications to a proof. The stop item causes the 

break of an inference. The linear search, breadth-first search, modified linear search starts the 
proving using appropriate strategy. Modified linear search utilizes derivations not only from 
goal, but also from source set formulas. Last four items are alternatively clickable in the panel 
below menu. One from further three radio items  is selectable. It allows you to choose the proof 
without resolvent redundancy check, with consequence check and equivalence check. Similar 
function belongs to next items: without restriction strategy, filtration strategy or support-set 
strategy. 

The Unification menu consists of  quantification – if checked off , the quantifiers are 
significant else they have the same meaning of universality. Further great cut command provides 
partial resolution and general cut provides general resolution else it is carried out the restricted 
resolution. Next three items determine, how many resolvents have to be generated from two 
premises. Exit on first unused creates one resolvents of any type. Exit on first match creates one 
resolvent, which doesn’t degrade to true or false or which is not redundant. Exit on last match 
performs all possible resolution form two premises. Last two items determine if one refutation or 
all refutations will be done.  
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C h a p t e r  7  

7 Examples. 

7.1 Demonstration. 
At the end, let’s consider some interesting examples generated by GERDS. We start with 

simple propositional examples. All examples were produced using Pentium 100 machine. 

Example 7.1 

Source formulas (axioms) :  
F0 :  a(X).  F1 :  b(X).  
F2 (¬query) : ¬[a(X)ýb(X)].  
______________________________ 
R0 [F2&F1] :  ¬a(X).  
[R0&F0] :  YES. 
R1 [F2&F0] :  ¬b(X).  
[R1&F1] :  YES. 
 

Example 7.2 

Source formulas (axioms) :  
F0 : aý¬b.  
F1 : ¬aýb.  
F2 (¬query) : ¬c.  
At first, we use linear strategy, which doesn’t lead to a contradiction, because it starts from 

goal and it is not provable only from combinations of the resolvents derived from goal and 
source formulas. Nevertheless the set of source formulas is inconsistent, so everything is 
provable, but we must use modified linear strategy (it uses source set formulas as both premises) 
or breadth-first search.  

R0 [F1&F1] : b.  
[F1&F0] :  YES. 
Of course, the refutation is obtainable by many other derivations. 

Example 7.3 

[aý¬b]ü[¬aýb]. 
?-¬aý¬b. 
Solution to ?- ¬[¬aý¬b].  
[F1&F1] : ¬[ äý¬b]ü¬[ çý¬b].  
[F1&F0] : ¬[ äý¬b]ü äý¬bü çýb.   
[F1&F0] : ¬[¬aý ä]üaý çü¬aý ä.  
Here the solution doesn’t exist so we can suppose that the goal is not valid. 

Example 7.4 

Source formulas (axioms) :  
F0 : aý¬býcýdü¬aýbý¬cýd.  
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F1 (¬query) :  ¬[¬aý¬b].  
______________________________ 
R0 [F1&F0] : bü¬býcýd.  
R1 [F1&F0] : aü¬aý¬cýd.  
R2 [F0&F0] : bý¬cýdü¬býcýd.  
R3 [F0&F0] : ¬aý¬cýdüaýcýd.  
R4 [F0&F0] : ¬aýbýdüaý¬býd.  
R5 [F0&F0] : aý¬býcü¬aýbý¬c. 
It is the next example of a goal, which is not provable.  

Example 7.5 

Source formulas (axioms) :  
F0 : aôbýg. F1 : býgôc. F2 : býgôa. F3 : côbýg.  
F4 (¬query) : ¬[aóc].  
______________________________ 
R0 [F4&F3] : aübýg.  R1 [R0&F4] : býgü¬c.  
R2 [R1&F2] : ¬cü[gôa].  R3 [R2&F1] : [gôa]ü¬[býg]. 
R4 [R3&F4] : ¬gü¬[býg]ü¬c.  R5 [R4&F3] : ¬bü¬c.  
R6 [R5&F4] : ¬büa.  R7 [R6&F3] : aü¬c.  
R8 [R7&F4] : ¬c.  R9 [R8&F4] : a.  
R10 [R9&F0] : býg.  R11 [R10&F1] : gôc.  
R12 [R11&F4] : ¬gü¬a.  R13 [R12&F0] : ¬a.  
R14 [R13&F4] : c.  [R14&R8] :  YES. 
Solving time : 0.48 s.  
 
Source formulas (axioms) :  
F0 : aóbýg. F1 : býgóc. F2 (¬query) : ¬[aóc].  
______________________________ 
R0 [F2&F1] : [¬aü¬[býg]]ý[aübýg].   
R1 [R0&F2] : ¬[býg]üc.  
R2 [R1&F0] : ¬gücü¬a.  R3 [R2&F2] : ¬gü¬a.  
R4 [R3&F2] : ¬güc.  R5 [R4&F0] : cü¬a.  
R6 [R5&F2] : ¬a.  R7 [R6&F2] : c.  
R8 [R7&F1] : býg.  R9 [R8&F1] : góc.  
R10 [R9&F2] : [güa]ý[¬gü¬a].  R11 [R10&F1] : aü[bóc].  
R12 [R11&F1] : aü¬cü¬g.  R13 [R12&F2] : ¬cü¬g.  
R14 [R13&F2] : ¬güa.  R15 [R14&F1] : aü¬c.  
R16 [R15&F2] : ¬c.  R17 [R16&F2] : a.  
[R17&R6] :  YES. 
Solving time : 0.54 s. 
 
Last two inferences were an example of strongly non-clausal resolution. As stated, the proof of 

aóc can be done both from implicative and equivalence based axioms.  

Example 7.6 

F0 : [a(X)ýg(X)ôb(X)].  
F1 : a(a).  
F2 : g(c).  
F3 (¬query) : ¬b(a).  
______________________________ 
R0 [F3&F0] : ¬[a(a)ýg(a)].  
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R1 [R0&F1] :  ¬g(a).  
Solving time : 0.06 s. 
b(a) is not provable, because g(a) doesn’t hold. When we add it, the proof exists. 
 
Source formulas (axioms) :  
F0 : [a(X)ýg(X)ôb(X)].  F1 : a(a).  
F2 : g(c).  F3 : g(a).  
F4 (¬query) : ¬b(a).  
______________________________ 
R0 [F4&F0] : ¬[a(a)ýg(a)].  R1 [F3&F0] : [a(a)ôb(a)].  
R2 [F2&F0] : [a(c)ôb(c)].  R3 [F1&F0] : [g(a)ôb(a)].  
R4 [R3&F4] :  ¬g(a).  R5 [R3&F3] :  b(a).  
R6 [R1&F4] :  ¬a(a).  [R6&F1] :  YES. 
Solving time : 0.27 s. 
There are interesting resolvents with implication, which show the lucidity of the proof (in 

contrast with clausal resolution), in this breadth-first search proof above. 

Example 7.7 

Source formulas (axioms) :  
F0 : [a(X)ýg(X)ôb(X)].  F1 : [b(X)ýg(X)ôc(X)].  
F2 : a(a).  F3 : g(a).  
F4 (¬query) :  ¬c(Y).  
______________________________ 
R0 [F4&F1] : ¬[b(Y)ýg(Y)].  R1 [F3&F1] : [b(a)ôc(a)].  
R2 [F3&F0] : [a(a)ôb(a)].  R3 [F2&F0] : [g(a)ôb(a)].  
R4 [F1&F0] : [[g(X)ôc(X)]ü¬[a(X)ýg(X)]].  
R5 [R4&F4] : [¬g(X)ü¬[a(X)ýg(X)]].  R6 [R4&F3] : [c(a)ü¬a(a)].  
R7 [R3&F3] :  b(a).  R8 [R3&F1] : [¬g(a)üc(a)].  
R9 [R3&R0] :  ¬g(a).  R10 [R1&F4] :  ¬b(a).  
R11 [R1&R7] :  c(a).   
[R11&F4] :  YES. Y = a. 
[R10&R7] :  YES. Y = a. 
R12 [R10&R2] :  ¬a(a).  
[R9&F3] :  YES. Y = a. 
[R7&R10] :  YES. Y = a. 
[R12&F2] :  YES. Y = a. 
Solving time : 1.72 s. 
 
This example is the first one with a goal requiring variables. There were five possibilities to 

refute the source set. 

Example 7.8 

Source formulas (axioms) :  
F0 : [a(X)ôa(X+1)].  F1 : a(0).  
F2 (¬query) : ¬a(5).  
______________________________ 
R0 [F1&F0] : a(1).  R1 [R0&F0] : a(2).  
R2 [R1&F0] : a(3).  R3 [R2&F0] : a(4).  
R4 [R3&F0] : a(5).  [R4&F2] :  YES. 
Solving time : 0.05 s. 
This is a sample of the usage of infix operators. 
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Example 7.9 

Source formulas (axioms) :  
F0 : 1<2.  F1 : 2<3.  
F2 : 3<4.  F3 : 4<5.  
F4 : 5<6.  F5 : [X<YýY<ZôX<Z].  
F6 (¬query) : ¬1<5.  
______________________________ 
R0 [F6&F5] : ¬[1<YýY<5].  R1 [R0&F3] :  ¬1<4.  
R2 [R1&F5] : ¬[1<YýY<4].  R3 [R2&F2] :  ¬1<3.  
R4 [R3&F5] : ¬[1<YýY<3].  R5 [R4&F1] :  ¬1<2.  
[R5&F0] :  YES. 
Solving time : 0.22 s. 
This proof illustrates transitivity, which is well solved by the application. 

Example 7.10 

Source formulas (axioms) :  
F0 : [a(X)ýg(Z)ôb(X)].  F1 : [b(X)ýg(Z)ôc(X)].  
F2 : a(a).  F3 : g(30).  
F4 (¬query) : ¬[c(Y)üg(Y)üb(Y)].  
______________________________ 
R0 [F4&F4] : ¬[g(Y)üb(Y)].  R1 [F4&F4] : ¬[c(Y)üb(Y)].  
R2 [F4&F4] : ¬[c(Y)üg(Y)].  
[F4&F3] :  YES. Y = 30. 
[F3&F4] :  YES. Y = 30. 
R3 [F3&F0] : [a(X)ôb(X)].  R4 [R3&F4] :  ¬a(X).  
R5 [R3&F2] :  b(a).  
[R2&F3] :  YES. Y = 30. 
[R1&R5] :  YES. Y = a. 
[R0&F3] :  YES. Y = 30. 
[R0&R5] :  YES. Y = a. 
[R5&F4] :  YES. Y = a. 
[R5&R1] :  YES. Y = a. 
[R5&R0] :  YES. Y = a. 
[R4&F2] :  YES. Y = a. 
Solving time : 0.54 s. 
 
Next example produces the Fibonacci sequence. 

Example 7.11 

Source formulas (axioms) :  
F0 : [f(I, A) ý f(I+1, B) ô f(I+2, A+B)].  
F1 : f(0, 1).  F2 : f(1, 1).  
F3 (¬query) :  ¬f(15, X).  
______________________________ 
R0 [F2&F0] : [f(2, B)ôf(3, 1+B)].  R1 [F1&F0] : [f(1, B)ôf(2, 1+B)].  
R2 [R1&F2] : f(2, 2).  R3 [R0&R2] : f(3, 3).  
R4 [R3&F0] : [f(4, B)ôf(5, 3+B)].  R5 [R2&F0] : [f(3, B)ôf(4, 2+B)].  
R6 [R5&R3] : f(4, 5).  R7 [R4&R6] : f(5, 8).  
R8 [R7&F0] : [f(6, B)ôf(7, 8+B)].  R9 [R6&F0] : [f(5, B)ôf(6, 5+B)].  
R10 [R9&R7] : f(6, 13).  R11 [R8&R10] : f(7, 21).  
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R12 [R11&F0] : [f(8, B)ôf(9, 21+B)].   
R13 [R10&F0] : [f(7, B)ôf(8, 13+B)].  
R14 [R13&R11] : f(8, 34).  R15 [R12&R14] : f(9, 55).  
R16 [R15&F0] : [f(10, B)ôf(11, 55+B)].  
R17 [R14&F0] : [f(9, B)ôf(10, 34+B)]. 
R18 [R17&R15] : f(10, 89).  R19 [R16&R18] : f(11, 144).  
R20 [R19&F0] : [f(12, B)ôf(13, 144+B)].  
R21 [R18&F0] : [f(11, B)ôf(12, 89+B)].  
R22 [R21&R19] : f(12, 233).  R23 [R20&R22] : f(13, 377).  
R24 [R23&F0] : [f(14, B)ôf(15, 377+B)].  
R25 [R22&F0] : [f(13, B)ôf(14, 233+B)].  
R26 [R25&R23] : f(14, 610).  R27 [R24&R26] : f(15, 987).  
[R27&F3] :  YES. X = 987. 
Solving time : 1.29 s. 
We found the fifteenth Fibonacci number, which is 987 (if zero number is 1). 

Another known sequence may be produced using factorial function. 
Source formulas (axioms) :  
F0 : [f(X, Y)ôf(X+1, Y*(X+1))].  F1 : f(1, 1).  
F2 (¬query) :  ¬f(10, Y).  
______________________________ 
R0 [F1&F0] : f(2, 2).  R1 [R0&F0] : f(3, 6).  
R2 [R1&F0] : f(4, 24).  R3 [R2&F0] : f(5, 120).  
R4 [R3&F0] : f(6, 720).  R5 [R4&F0] : f(7, 5040).  
R6 [R5&F0] : f(8, 40320).  R7 [R6&F0] : f(9, 362880).  
R8 [R7&F0] : f(10, 3628800).  
[R8&F2] :  YES. Y = 3628800. 
 
Now let’s have a look into simple quantified examples. As it was noticed, these simple 

examples are workable by the application.  
At first, consider several combinations of the base case, which illustrate the behaviour of 

existential variables. 

Example 7.12 

F0: ÷XöY p(X,Y). 
?-öY÷X p(X,Y). ?-öYöX p(X,Y). ?-÷XöY p(X,Y). ?-÷Y÷X p(X,Y). 
Solution to #1.  
Solution to #2.  
[F1&F0] :  YES. 
Solution to #3.  
[F1&F0] :  YES. 
Solution to #4.  
 
Case 1 and 4 have no solution, since they do not imply from F0. The opposite case follows. 
 
öY÷X p(X,Y). 
?-÷XöY p(X,Y). ?-öXöY p(X,Y). ?-÷X÷Y p(X,Y). 
Solution to #1.  
[F1&F0] :  YES. 
Solution to #2.  
[F1&F0] :  YES. 
Solution to #3. 
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Here case 1 and 2 lead to refutation. If we change the axiom, this result is obvious. 
 
öYöX p(X,Y). 
?-÷XöY p(X,Y). ?-öXöY p(X,Y). ?-÷X÷Y p(X,Y). 
Solution to #1.  
Solution to #2.  
[F1&F0] :  YES. 
Solution to #3.   
 
These examples show the simplest cases, but now let’s have a look into more complicated 

instance, where it is needed to perform more than one pass to unify two atoms. 

Example 7.13 

÷ZöY p(X,Y,Z). ?- ÷ZöY p(X,Y,Z). 
[F1&F0] :  YES. 
The unifying algorithm strikes on a problem, when it unifies these two atoms. It takes X 

without problems, but when it tries to substitute universal Y (with respect to polarity!) from F1, 
the existential Y from F0 has one superior variable Z. Z is not substituted yet, so we temporarily 
continue with next argument - Z variable. It can be substituted with existential Z (which has no 
superior variable) and then the next pass follows. In this pass, we are able to substitute Y, since 
Z is already substituted.    

Next samples show instances similar to example 7.12. 
÷ZöY p(X,Y,Z). ?- öY÷Z p(X,Y,Z). 
Solution to #1. 
and 
öY÷Z p(X,Y,Z). ?- ÷ZöY p(X,Y,Z). 
Solution to #1.  
[F1&F0] :  YES. 
 

Example 7.14 

This example is an illustration of more complicated formulas with existential variables. 
÷X a(X) ô öX b(X). ÷X a(X). 
?- b(a). 
Solution to ¬b(a). 
 
öX a(X)ô÷X b(X). a(a). 
?- b(c). 
Solution to ¬b(c).  
R0 [F2&F0] : ÷X ¬a(X).  
[R0&F1] :  YES.  
 

7.2 Comparison of GERDS with the clausal resolution through SPASS. 
The Max-Planck-Institut für Informatik in Germany has developed effective and really 

suitable software tool for theorem proving. Since it is a full first-order logic theorem prover with 
equality and GERDS currently doesn’t support equality all examples will be based on non-
equality problems. Comparing problems are taken from the SPASS [3] and they are specially 
selected to demonstrate advantages of non-clausal prover (GERDS). It is clear that SPASS is 
more practical prover than GERDS, nevertheless the GERDS has also some usage, I hope. 
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Original notation of SPASS for Pelletier's Problem No. 71: 
formula(equiv(P1,equiv(P2,equiv(P3,equiv(P4,equiv(P5,equiv(P1,equiv(P2,equiv(P3,equiv(P

4,P5)))))))))). 
and GERDS notation: 
?-p1ó[p2ó[p3ó[p4ó[p5ó[p1ó[p2ó[p3ó[p4óp5]]]]]]]]. 
This simple sequence of equivalencies seems to be valid, but how to prove it? If we utilise 

clausal prover (SPASS) 32 clauses are generated from the goal. Then it kept 494 clauses during 
the proving process. In contrast the GERDS produced a short proof by general resolution 
(including SR-check of the resolvent): 

Solution to ¬[p1óp2óp3óp4óp5óp1óp2óp3óp4óp5].  
SR_check:¬[p3óp4óp5óp3óp4óp5]ü[p3óp4óp5ó¬[p3óp4óp5]]ü[p3óp4ó

p5ó¬[p3óp4óp5]]ü¬[p3óp4óp5óp3óp4óp5].  
SR_check:¬[p4óp5óp4óp5]ü[p4óp5ó¬[p4óp5]]ü[p4óp5ó¬[p4óp5]]ü¬[p4

óp5óp4óp5]ü[p4óp5ó¬[p4óp5]]ü¬[p4óp5óp4óp5]ü¬[p4óp5óp4óp5]ü[p4ó
p5ó¬[p4óp5]].  

SR_check:¬[p5óp5]ü[p5ó¬p5]ü[p5ó¬p5]ü¬[p5óp5]ü[p5ó¬p5]ü¬[p5óp5]ü¬[
p5óp5]ü[p5ó¬p5]ü[p5ó¬p5]ü¬[p5óp5]ü¬[p5óp5]ü[p5ó¬p5]ü¬[p5óp5]ü[p5ó¬
p5]ü[p5ó¬p5]ü¬[p5óp5].  

SR_check: ç.  
[F0&F0] :  YES. 
Solving time : 0.00 s. Used memory for proof: 920 B. 
 
Let’s have a look to a non-propositional example (Pelletier's Problem No. 68): 
It consist of these axioms: 
÷U÷V t(i(U,i(V,U))). 
÷U÷V÷W t(i(i(U,i(V,W)),i(i(U,V),i(U,W)))). 
÷U÷V t(i(i(V,U),i(n(U),n(V)))). 
÷U÷V [t(i(U,V))ý[ t(U) ô t(V)]]. 
and this goal: 
?-÷U t(i(U,n(n(U)))). 
The SPASS had a short proof here, it kept 3 only clauses, but GERDS is also efficient: 
Solution to öU ¬t(i(U, n(n(U)))).  
[F4&F4] :  çü ä.  – improductive resolvent. 
[F4&F3] :  çü[ çý[t(U)ôt(n(n(U)))]].  
[F4&F3] :  YES. 
Solving time : 0.00 s. Used memory for proof: 2592 B. 
It was added unsimplified form of resolvent, in order to make the resolution more 

understandable. 
 
And another non-propositional example (Pelletier's Problem No. 60): 
?-÷U [f(U,f(U)) ó öV[÷W [f(W,V)ô f(W,f(U))]ýf(U,V)]]. 
Solution to öU¬[[f(U, f(U))ôöV[÷W[f(W, V)ôf(W, f(U))]ýf(U, V)]]ý[öV[÷W[f(W, 

V)ôf(W, f(U))]ýf(U, V)]ôf(U, f(U))]].  
[F0&F0] : öU¬[[ çô[÷W[f(W, f(U))ôf(W, f(U))]ý ç]]ý[öV[[f(U, V)ô ç]ýf(U, V)]ô 

ç]]üöU¬[[ äô[÷W[f(W, f(U))ôf(W, f(U))]ý ä]]ý[öV[[f(U, V)ô ä]ýf(U, V)]ô ä]].  
R0 [F0&F0] : öU, W¬[f(W, f(U))ôf(W, f(U))].  
[R0&R0] : öU, W¬[ çô ç]üöU, W¬[ äô ä].  
[R0&R0] :  YES. 
Solving time : 0.00 s. Used memory for proof: 2308 B. 
SPASS has kept 8 clauses in this example and GERDS has produced one resolvent. 
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Pelletier's Problem No. 50 – SPASS kept 4 clauses: 
?-÷U [f(a,U) ü ÷V f(U,V) ] ô öW÷X f(W,X). 
Solution to ¬[÷U[f(a, U)ü÷V f(U, V)]ôöW÷X f(W, X)].  
R0 [F0&F0] : ÷W#1öX#1 ¬f(W#1, X#1).  
[R0&F0] :  YES. 
R1 [F0&R0] : ÷X¬[÷V f(X, V)ôöW÷X f(W, X)].  
[R1&R0] :  YES. 
Solving time : 0.00 s. Used memory for proof: 1648 B. 
 
Pelletier's Problem No. 14 (from SPASS): 
SPASS notation goal: formula(equiv(equiv(P,Q),and(or(Q,not(P)),or(not(Q),P)))). 
?-[p ó q]ó[[qü¬p]ý[¬qüp]]. 
Solution to ¬[póqó[qü¬p]ý[¬qüp]].  
[F0&F0] : ¬[ äóqó[qü ç]ý[¬qü ä]]ü¬[ çóqó[qü ä]ý[¬qü ç]].  
Before:¬[ äó ä]ü¬[ çó ç]ü¬[ çó ç]ü¬[ äó ä].  
SR-check: ç.  
[F0&F0] :  YES. 
Solving time : 0.00 s. Used memory for proof: 592 B. 
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C h a p t e r  8  

8 Conclusions. 
The last chapter analyzed some examples, which were the best approach for reader to 

understand the theoretical power of general resolution. Although the general resolution is not 
efficient in comparison with clausal and Horn logic, it preserves the sequence of the proof. 
Achieved solving times are controversial. It is obvious, that these times grow quicker than for 
clauses. Even if we use some techniques of avoiding redundancy, the efficiency is still low for 
the serious usage in knowledge representation. Nevertheless, the proposed theoretical system 
may be a good source of training for persons interested in deductive systems as well as in logic 
generally. 

The existence handling methods are partially satisfied in the application, which is one of the 
results of the thesis, and they were shown in examples as functional extensions of ground general 
resolution. Also the check of consequence by self-resolution, which was proposed by the thesis, 
is strong result making the proving by general resolution applicable to machine-performed 
deduction and not only applicable for intuitive human-performed proofs.  

There are many further problems in theorem-proving and resolution techniques as its main 
branch. That’s why the thesis may lead to continual research in theory of resolution as well as in 
progressive sectors of logic (Fuzzy logic, Objective-oriented logics). Though it will not continue 
directly, it is an excellent starting point for designing another knowledge-based systems, which, I 
believe, will be the objective of my future work. It lies mainly in programming the application. It 
wasn’t an easy job to design and realize the GERDS and unfortunately, it is not so visible result 
as I imagined. The important contribution of the thesis is to remind, that there are essential items 
in logic, that are not emphasized in conventional studies, and it is interesting to deal with them.  
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