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Abstract: In our previous work we established a T7 polymerase-driven Tetracycline-inducible protein expression system in Leishma-
nia mexicana (Biagi, 1953). We used this system to analyse gene expression profiles during development of L. mexicana in procyclic 
and metacyclic promastigotes and amastigotes. The transcription of the gene of interest and the T7 polymerase genes was significantly 
reduced upon cell differentiation. This regulation is not locus-specific. It depends on untranslated regions flanking open reading frames 
of the genes analysed. In this paper, we report that the previously established conventional inducible protein expression system may 
not be suitable for studies on differentiation of species of Leishmania Ross, 1903 and protein expression systems might have certain 
limitations.
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Leishmania mexicana (Biagi, 1953) is a flagellated pro-
tist of the family Trypanosomatidae causing human cutane-
ous leishmaniosis, a disease that represents a public health 
risk in many tropical and subtropical countries (Magill 
1995). The genome sequence of this medically important 
parasite is available (Rogers et al. 2011), but our better un-
derstanding of its biology, as well as the evaluation of suit-
able drug targets still critically depends on functional anal-
ysis of proteins of L. mexicana (see Myler 2008). Recently, 
we have established a T7 polymerase-driven, tetracycline 
(Tet)-inducible expression system in L. mexicana that was 
considered suitable for such analyses (Kraeva et al. 2014). 
Importantly, the application of Tet in trypanosomatid flag-
ellates is not associated with deleterious effects, as is the 
case in most other eukaryotes (Hashimi et al. 2016).

Leishmania Ross, 1903 and related trypanosomatid par-
asites utilise an unusual mechanism of gene expression, 
as a varying number of tandemly arranged genes is tran-
scribed into a single polycistronic precursor (Myler 2008). 
Subsequently, individual mRNAs are cleaved from this 

precursor and further processed by trans-splicing at the 5' 
end and polyadenylation at the 3' end of each mRNA mol-
ecule (Campbell et al. 2003). Due to the polycistronic tran-
scription and the lack of conventional RNA polymerase II 
promoters, these protists rely on regulating their gene ex-
pression post-transcriptionally (Fernandez-Moya and Es-
tevez 2010, Requena 2011). For example, 3' untranslated 
regions (UTRs) of the protein-coding genes are implicated 
in regulation at the level of mRNA stability and/or transla-
tion (McNicoll et al. 2005, Haile et al. 2008). 

Gene expression in dixenous (= two hosts) trypanoso-
matids must be tightly regulated to allow parasites’ fast 
adaptation to the drastically different environmental con-
ditions they encounter in the vertebrate and invertebrate 
hosts (Lukeš et al. 2014). The life cycle of Leishmania spp. 
consists of three main developmental stages: extracellular 
procyclic and metacyclic promastigotes colonising intesti-
nal tract of the female sandflies of the genera Phlebotomus 
Loew or Lutzomyia França, and intracellular amastigotes 
multiplying in the phagolysosomes of mammalian mac-
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rophages (Bates 1994a). Metacyclics and amastigotes are 
pathogenic and thus can be used for identification of viru-
lence factors of species of Leishmania in vitro and in vivo. 

In this work we used the established transgenic L. mex-
icana T7TR system and followed the fate of the overex-
pressed protein during differentiation of parasites in vitro 
(Kraeva et al. 2014). The gene of interest was a catalase 
which is conspicuously absent from all species of Leish-
mania investigated thus far. This is one of the most potent 
enzymes on the Earth with Kcat reaching 107 molecules of 
H202 per second. Its presence in all monoxenous relatives 
of Leishmania (species of Leptomonas Kent, 1880, Crith-
idia Léger, 1902 and Lotmaria Evans et Schwarz, 2014 of 
the subfamily Leishmaniinae – see Jirků et al. 2012) re-
quires further investigation (Kraeva et al. 2015, Flegontov 
et al. 2016). The entire open reading frame of the catalase 
gene, PCR-amplified from DNA of the H10 isolate of Lep-
tomonas pyrrhocoris Zotta, 1912 (Votýpka et al. 2012), 
was integrated into the β-tubulin locus and expressed in 
a T7 polymerase-dependent, Tet-inducible way. 

Parasites were differentiated in vitro by changing the 
temperature and pH of the media (Bates 1994b). Proper 
separation of developmental stages of L. mexicana was 
confirmed by expression analysis of selected stage-regulat-
ed genes using qPCR as described earlier (Záhonová et al. 
2014). The genes encoding PFR1D (LmxM.08_29.1750, 
LmxM.08_29.1760), SHERP (LmxM.23.1050, 
LmxM.23.1061) and Amastin (LmxM.08.0800, 
LmxM.08.0840, LmxM.08.0850) were used as promastig-
otes- (procyclics and metacyclics), metacyclics- and amas-

tigotes-specific gene markers, respectively (Rochette et al. 
2008, Sádlová et al. 2010) (Fig. 1A). A homolog of the 
60S ribosomal protein L7a (LmxM.07.0510) was chosen 
as a reference based on our whole-transcriptome analysis 
of developmental stages of L. mexicana (Flegontov et al. 
2016). 

Other genes with similar expression patterns – ubiquitin 
hydrolase (UbH, LmxM.08_29.2300), short chain 3-hy-
droxyacyl-CoA dehydrogenase (LmxM.36.1140), serine 
acetyltransferase (LmxM.33.2850), and 60S ribosomal 
protein L17 (LmxM.24.0040) – were analysed in parallel. 
Normalisation to these genes did not significantly change 
the results (data not shown). The expression of catalase 
of L. pyrrhocoris in differentiated stages was analysed by 
qPCR and Western blotting. Both, the mRNA and protein 
levels were strikingly decreased in metacyclics and amas-
tigotes (Fig. 1B). Comparison of the catalase and the T7 
polymerase expression profiles at different developmen-
tal stages revealed a similar pattern (Fig. 1C). This is not 
surprising, provided that the transcription of catalase is T7 
polymerase-driven.

To verify that the decrease of gene expression in meta-
cyclics and amastigotes is not sequence-specific, we re-
placed the T7 polymerase open reading frame by that of 
mCherry as described previously (Kraeva et al. 2015). The 
construct was integrated into the same 18S rRNA locus 
(Kushnir et al. 2005) and expression of the mCherry pro-
tein was confirmed by fluorescence microscopy (data not 
shown). The differentiation of the transgenic culture and 
proper separation of the life cycle stages were verified by 
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Fig. 1. Heterologous gene expression of the T7TR-HA3-catalase in Leishmania mexicana (Biagi, 1953). A – in vitro differentiation 
of L. mexicana. qPCR quantification of Pfr1D, Sherp and Amastin gene expression used as markers for promastigotes (both pro- and 
metacyclics), metacyclics, and amastigotes, respectively; B – qPCR quantification and Western blot analysis of the HA3-catalase ex-
pression in the differentiated cells after induction with 10 µg/ml of Tetracycline for 24 hours. Whole cell extracts were probed with 
α-HA and α-isocitrate dehydrogenase antibodies with the latter as a loading control; C – qPCR quantification of the T7 RNA polymer-
ase expression analysed as above. Data for three independent biological replicates normalised to the LmxM.07.0510 are shown in all 
cases. Detailed protocols were described previously (Kraeva et al. 2014, Záhonová et al. 2014). Primer sequences used for qPCR are 
available from authors upon request. 
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qPCR as described above. Next, we examined the expres-
sion profile of the mCherry transcript in differentiated pro-
cyclics, metacyclics and amastigotes and confirmed it to be 
similar to that of the catalase and T7 polymerase (Fig. 2A). 

The mCherry, T7 polymerase and Tet-repressor genes 
were all integrated into the 18S rRNA locus. Previous 
studies showed a 5 to 20-fold decrease in transcription of 
several RNAs derived from this locus during Leishmania 
donovani (Laveran et Mesnil, 1903) differentiation (Sax-
ena et al. 2007). To exclude an influence of the rRNA lo-
cus-dependent regulation on the reporter genes expression, 
we compared mCherry expression profile normalised to 
the 18S and LmxM.07.0510 genes (Fig. 2A,B). Similar pat-
terns of the mCherry mRNA expression suggest that gene 
expression regulation in our system is not locus-specific. 
As a control, we analysed expression of the 18S rRNA and 
confirmed it to be stable throughout development (Fig.2C). 

Although the molecular mechanisms governing ex-
pression of developmental genes during the promastig-
ote-to-amastigote differentiation are not well understood 
and characterised, a number of reports have demonstrated 
that protein abundance is chiefly controlled by mRNA sta-
bility. It depends on the sequences present in both 5' and 3' 
UTRs (Aly et al. 1994, Charest et al. 1996, Garcia-Estrada 
et al. 2008). 

In our study, the mCherry, T7 polymerase, and Tet-re-
pressor genes were flanked by the UTRs derived from the 
calmodulin (LtaP.09.0940) intergenic regions of Leishma-
nia tarentolae Wenyon, 1921 (Breitling et al. 2002, Kush-

nir et al. 2005). Whole-transcriptome profiling revealed 
that calmodulin mRNA abundance in species of Leishma-
nia is developmentally regulated. It is reduced by 1.5–2 
fold upon differentiation from procyclics to metacyclics 
and amastigotes (Aslett et al. 2010, Dillon et al. 2015). 
Patterns of the expression of reporter genes upon differen-
tiation of L. mexicana followed those of calmodulin. The 
discrepancy in the degree of downregulation can be ex-
plained by differences in calmodulin expression regulation 
in L. tarentolae and L. mexicana. 

In summary, here we would like to draw attention of the 
parasitology community to the potential limitations that 
conventional gene expression systems might have in the 
studies of the development of species of Leishmania. 
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Fig. 2. A,B – mCherry gene expression in Leishmania mexicana (Biagi, 1953). mRNA expression level of mCherry in differentiated 
procyclics, metacyclics, and amastigotes. LmxM.07.0510 and 18S rRNA genes were used for normalisation in A and B, respectively; 
C – expression of the 18S rRNA is stable throughout development of L. mexicana. Results of three independent biological replicates are 
presented. Detailed protocols were described previously (Kraeva et al. 2014, Záhonová et al. 2014). Primer sequences used for qPCR 
are available from authors upon request. 
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