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Abstract
Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, pos-
sesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the

large subunit of the enzyme RuBisCO (rbcL). Here we provide new data illuminating the

putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein

sequence is extremely divergent compared to its homologs from the photosynthetic rela-

tives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E.
gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS) as

a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly diver-

gent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is

very low compared to E. gracilis. No RBCSmonomers could be detected in E. longa, sug-
gesting that processing of the precursor polyprotein is inefficient in this species. The abun-

dance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic

translation by cycloheximide has no immediate effect on the RBCS stability in photosynthet-

ically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our

results revealed signatures of evolutionary degradation (becoming defunct) of RuBisCO in

E. longa and suggest that its biological role in this species may be rather unorthodox, if any.

Introduction
The plastid is a semi-autonomous organelle. Its functionality depends on coordinated expres-
sion of nuclear and plastid genes. One of the best known examples of such coordination is ribu-
lose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), an enzyme catalyzing the very first
reaction of the Calvin-Benson cycle, in which CO2 is incorporated into organic matter [1].
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RuBisCO also catalyzes a competing reaction, oxygenation of ribulose-1,5-bisphosphate in the
photorespiration pathway [2]. The plastid RuBisCO holoenzyme is composed of octamers of
two different subunits. The only known exceptions were documented in dinoflagellates and
chromerid algae, where RuBisCO comprises just one nuclear genome-encoded subunit (form
II RuBisCO). In these lineages, the Rbc gene was acquired from a bacterium by horizontal gene
transfer [3]. In all other cases, the large subunit, possessing the catalytic activity of the holoen-
zyme, is always encoded in the plastid genome by the rbcL gene and synthesized on the plastid
ribosomes in the stroma [4,5]. The rbcS gene, encoding the small non-catalytic RuBisCO sub-
unit, is also located in the plastid genome in glaucophytes, rhodophytes and organisms with
rhodophyte-derived secondary plastids. However, in green algae and land plants (Chloroplas-
tida), and organisms with green algal-derived plastids, the small subunit is encoded in the
nucleus, synthesized on the cytoplasmic ribosomes and post-translationally imported into the
plastid [6,7]. The biological functions of the small subunit are not well understood. It plays a
structural role by stabilizing the mature holoenzyme and is required for maximal catalytic
activity and specificity of the large subunit [4,8]. The small subunit may also be responsible for
assembling RuBisCO in pyrenoids and may serve as a CO2 reservoir [5,9].

The genus Euglena is the eponymous taxon of euglenophytes, an algal group nested in the
phylum Euglenozoa comprising mostly plastid-less organisms such as kinetoplastids, diplone-
mids, and primarily aplastidic euglenids [10]. It is now established that euglenophytes have
evolved from a phagotrophic euglenid ancestor by acquisition of a plastid through engulfment
of a green alga related to the extant prasinophyte genus Pyramimonas via secondary endosym-
biosis [11,12]. Most euglenophytes, including the best studied species Euglena gracilis, harbor
photosynthetically active plastids, but can also grow heterotrophically (osmotrophically [13]).
Interestingly, several euglenophyte lineages independently resorted to the exclusively hetero-
trophic nutritional mode by losing photosynthesis (e.g. Cyclidiopsis acus, Euglena hyalina).
The fate of the plastid in most of these species has not been investigated [14]. However, at least
one of the secondarily non-photosynthetic euglenophytes, Euglena longa (previously known as
Astasia longa), apparently harbors a cryptic plastid, as evidenced from a complete plastid
genome sequence [15].

Euglena longa is a close relative of E. gracilis [14], hence this species pair provides a unique
opportunity for investigations of evolution and function of non-photosynthetic plastids. The
difference between the two species is reflected in the size of their plastid genomes–the one from
E. longa comprises 73.345 kb, which is half the size of the genome of the photosynthetic plastid
from E. gracilis (143.170 kb) [15,16]. The sets of genes encoding proteins involved in transcrip-
tion and translation are nearly identical, except for the rps18 gene missing from E. longa. In
both species the genome harbors a region comprising three tandemly arrayed operons, each
including the 16S, 23S, and 5S rDNA genes, as well as one additional adjacent stand-alone
copy of the 16S rDNA gene [15,16]. However, all the genes encoding photosynthesis-related
proteins are absent from the plastid genome of E. longa, with the salient exception of the rbcL
gene [15,17]. This gene contains seven group II introns, whereas its ortholog in E. gracilis pos-
sesses nine introns. The amino acid identity of the RBCL proteins in these two species is 82%
and the expression of the rbcL gene in E. longa was confirmed by northern and western blotting
analyses [17].

As in other eukaryotes with a “green” plastid, all euglenophyte plastid genomes sequenced
to date lack an rbcS [18], so a nuclear version (RbcS, using a standard notation for nuclear
genes) is expected to be present in these species. This has primarily been investigated in E. gra-
cilis, where the nuclear genome-encoded small subunit of RuBisCO (RBCS) is synthesized as a
polyprotein with a molecular weight of approximately 130 kDa [19]. Very recently, partial
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RbcS cDNA sequences from various euglenophytes were reported, but without any detailed
analysis [20].

The E. gracilis RBCS polyprotein includes an array of eight small subunits separated by
linker decapeptides. The N-terminal region of the nascent polyprotein represents a tri-partite
targeting sequence [19,21]. It starts with a signal peptide, which directs the pre-protein to the
endoplasmic reticulum, where it is presumably cleaved off. The second part is a stop-transfer
sequence, which is believed to anchor the protein in the membrane of a transport vesicle en
route to the plastid. The third part is represented by the transit peptide mediating the import of
the polyprotein into the plastid stroma, and is found at the N-terminus of the first subunit
[21]. Upon translocation to the stroma, the RBCS polyprotein is finally processed by removing
the transit peptide and by excision of the linker decapeptides [19,22]. Mature RuBisCO small
subunits of E. gracilis have a molecular weight of approximately 15 kDa and together with large
subunits compose the RuBisCO holoenzyme [23].

The presence of an apparently functional rbcL gene in the E. longa plastid genome raises a
question about its actual biological role in the absence of a photosynthetic apparatus in this
species. This is the only protein-coding gene in the E. longa plastid genome with a function not
directly related to gene expression. Thus, this gene might be the raison d'etre for maintaining
the plastid genome by E. longa. Importantly, the rbcL gene has been kept by some other non-
photosynthetic plastids (for example in those species from the plant parasitic family Oroban-
chaceae) [24–26]. As a step towards understanding the biological significance of the plastid
RuBisCO in E. longa (and in non-photosynthetic eukaryotes in general), here we present new
data on its expression and individual subunits' stability.

Materials and Methods

Culture conditions, RNA isolation and cDNA synthesis
Euglena longa strain CCAP 1204-17a and E. gracilis strain Z (hereafter denoted as heterotro-
phic EL and mixotrophic EG+, respectively) were cultivated statically under constant illumina-
tion at 23°C in Cramer-Myers medium [27] supplemented with ethanol (0.8% v/v). E. gracilis
strain Z was also cultivated photosynthetically, i.e. without addition of ethanol or any other
source of organic carbon (hereafter denoted as EG-). The cultures of E. longa were not
completely axenic, but the contaminating bacteria were kept at as low level as possible. RNA
was isolated using RNeasy Plus Universal Mini Kit (Qiagen, Hilden, Germany). cDNA synthe-
sis was carried out with random hexanucleotide primers using Transcriptor First Strand cDNA
Synthesis Kit (Roche, Basel, Switzerland).

PCR and quantitative reverse-transcription PCR
Sequences of all primers used are listed in S1 Table. The RbcS was amplified from 10 ng of
E. longa cDNA using primers RbcS_F1 and RbcS_R and Herculase II Fusion DNA Poly-
merase (Agilent Technologies, Santa Clara, USA), and PCR conditions as follows: 95°C
for 1 min; 30 cycles of 95°C for 20 sec, 65°C for 20 sec, 68°C for 5 min, and the final exten-
sion at 68°C for 4 min. The most abundant band was purified from the gel and sequenced
directly.

Quantitative RT-PCR experiments were performed according to the manufacturer’s instruc-
tions using LightCycler1 480 SYBRGreen Master mix (Roche) as described earlier [28]. All
measurements were done in triplicates. Standard curve method for relative quantification and
expression of the 18S ribosomal RNA gene was used for normalization [29].

RuBisCO in Euglena longa
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Protein blotting, half-life determination and mass spectrometry
Cell cultures were treated with 20 μg/ml of cycloheximide (Sigma-Aldrich, St. Louis, USA) as
described elsewhere [30] and aliquots were taken at 0, 1, 4, 8, and 24 h post treatment. The
Euglena spp. cells were lysed in RIPA buffer (Thermo Scientific, Waltham, USA) with protease
inhibitor cocktail (Roche) as described previously [31].

Twenty-five μg of total protein were separated by SDS-PAGE and subjected to western blot-
ting and immunodetection using polyclonal rabbit anti-RBCS (AS07 222, 1:1,000), polyclonal
chicken anti-RBCL (AS01 017, 1:10,000), and polyclonal rabbit anti-Tubulin (AS10 680,
1:2,000) antibodies. All primary antibodies were from Agrisera, Vännäs, Sweden. For detection,
the HRP-labeled goat anti-chicken IgY H&L (1:10,000, ab97135, Abcam, Cambridge, UK) and
donkey anti-rabbit (1:5,000, RPN2108, GE Healthcare Bio-Sciences, Pittsburgh, USA) second-
ary antibodies were used. The membranes were treated with ECL™Western Blotting Analysis
System (GE Healthcare Bio-Sciences). For RBCL detection in the case of E. longa, the Super-
Signal West Femto Maximum Sensitivity Substrate kit (Thermo Scientific) was used.

Identity of the E. longa large subunit of RuBisCO was confirmed by mass spectrometry. A
band was dissected from a polyacrylamide gel in the region corresponding to the expected size
of the E. longa RBCL protein and eluted proteins were analyzed by mass spectrometry using
MALDI-TOF/TOF mass spectrometer TOF Impact II (Bruker Co, Billerica, USA) at the Prote-
omics Core Facility (Central European Institute of Technology, CEITEC, Brno, Czech
Republic).

Sequence searches and phylogenetic analyses
Homologs of the investigated proteins (RBCL, RBCS, RuBisCO activase RCA, and RuBisCO
assembly chaperone RAF) were identified by BLAST [32] in the non-redundant protein database
at NCBI, in transcriptome assemblies of relevant species generated by the Marine Microbial
Eukaryote Transcriptome Sequencing Project (http://marinemicroeukaryotes.org/) [33], and in
our unpublished transcriptome of E. longa obtained by assembling RNA-seq Illumina reads from
two differently treated cultures (details on the RNA preparation, RNA-seq, and transcriptome
assembly will be published elsewhere). The cDNA sequences corresponding to RCA and RBCS
proteins from E. longa were deposited at GenBank with accession numbers KT818573-KT818576.
Accession numbers of all sequences of RBCL, RBCS, and RCA proteins analyzed in this study are
listed in S2, S3, and S4 Tables, respectively. Sequences were aligned usingMAFFT 7 (Multiple
Alignment using Fast Fourier Transform) [34]. The alignment was manually refined using BioE-
dit 7.1.7 and ambiguously aligned positions were removed [35]. The resulting RBCL alignment
contained 53 sequences and 473 amino acid positions, the RBCS alignment contained 42
sequences and 122 amino acid positions, and the RCA alignment contained 30 sequences and 301
amino acid positions. Maximum likelihood (ML) trees were inferred from the alignments using
RAxML 8.1.11 employing the strategy of rapid bootstrapping followed by a "thorough" ML search
on the original dataset with the LG+Γ substitution model (1,000 bootstrap replicates) [36]. In
addition, a Bayesian phylogeny was inferred using PhyloBayes 3.3b with the following parameters:
15,000 generations under the C20 model with Poisson exchange rate, sampling every 100 genera-
tions, and maximum divergence allowed set to 0.1 [37].

Results

The RBCL sequence of E. longa is extremely divergent
A recent paper reported phylogenetic analyses of Calvin-Benson cycle enzymes in eugleno-
phytes, but the RBCL protein was not analyzed in that study [20]. Therefore, as a starting point
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for our analysis, we inferred a phylogenetic tree of a set of RBCL proteins including the
sequence from E. longa. The assembled dataset contained available RBCL sequences from
euglenophytes and a selection of sequences from plants and algae possessing the cyanobacte-
ria-derived form of RuBisCO. It excluded distantly related RBCL sequences from rhodophytes
and algae with rhodophyte-derived secondary plastids comprising a proteobacteria-derived
RuBisCO form [38]. The phylogenetic analysis confirmed that euglenophyte RBCL sequences
are monophyletic and constitute a sister lineage to sequences from Pyramimonas spp. (Fig 1).
Although the Euglenophyceae-Pyramimonas clade has low statistical support, it is consistent
with current views on the origin of the euglenophyte plastid. The E. longa RBCL is nested
among euglenophyte homologs in the tree. Remarkably, its branch is extremely long, reflecting
a high number of substitutions in the sequence compared to other euglenophytes analyzed, all
of which were photosynthetic. All amino acid involved in the protein assembly or responsible
for its carboxylation/oxygenation catalytic function—T65, S112, N123, K128, K177, L290,
R295, G322, H327, V331, K334, L335, A378, S379, G381, and G404 [2,39]—were conserved in
E. longa.

RBCS in E. longa is encoded as a precursor polyprotein including eight
RBCS repeats, one of which is highly divergent
Given the extreme divergence of the RBCL sequence in E. longa, we searched our deeply
sequenced transcriptome of this species for the presence and possible unusual features of

Fig 1. Phylogenetic tree of RBCL protein sequences. The maximum-likelihood tree was inferred with RAxML using the LG+Γ
substitution model. The bootstrap support values and posterior probabilities (from PhyloBayes) are indicated at branches when higher
than 50% and 0.95, respectively. Highlighted in white boxes are non-photosynthetic species. E. longa is in bold.

doi:10.1371/journal.pone.0158790.g001
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homologs of selected interacting partners of RBCL. The first obvious candidate was RBCS, and
we indeed found three contigs corresponding to the RbcS gene. The first contig included a pre-
dicted N-terminal plastid-targeting sequence and a single domain corresponding to the mature
RBCS, highly similar to the RBCS sequence of E. gracilis. The second contig contained the N-
terminally truncated (without the plastid-targeting sequence) RBCS-like region followed by a
linker decapeptide highly similar to that separating RBCS repeats in the precursor polyprotein
in E. gracilis. The third, short contig translated into a truncated protein that included the C-ter-
minal half of the decapeptide linker and a region resembling the N-terminal part of the RBCS
monomer.

We reasoned that similarly to E. gracilis [19], E. longamay also encode a precursor RBCS
polyprotein with repeated RBCS units separated by linker decapeptides, but that the actual
cDNA sequence was not properly assembled from the NGS data due to its repeated nature. In
addition, the presence of two apparently truncated contigs suggested that the polyprotein may
include two types of RBCS-like sequences: one highly similar to RBCS of E. gracilis and one
rather different from it. To test this, we prepared cDNA from E. longa and performed PCR
with a forward primer matching the 5’-end of the presumed complete coding sequence of the
RbcSmRNA (i.e. the region coding for the first several amino acids of the signal peptide) and a
reverse primer matching the presumed 3’-UTR of the RbcSmRNA (RbcS_F1 and RbcS_R,
respectively, S1 Table and boxed in black in S1A Fig). The reaction yielded eight products of
different length, with the longest one over 4 kb and the shortest around 800 bp. Importantly,
the seven shorter products differed in length by about 420 bp (a size of a single repeat of the
RBCS monomer plus a decapeptide linker). We interpret this result as evidence for the exis-
tence of a long repeated RbcSmRNAmolecule (S1B Fig) similar in size to that of E. gracilis
[19]. Furthermore, we assume that the mRNA includes eight RBCS repeats and the shorter
PCR products originated from illegitimate pairing of incompletely amplified DNA strands
with the repeated sequence.

We sequenced the ends of the most abundant PCR product with the primers used for PCR.
Sequencing using the RbcS_F1 primer yielded the complete N-terminal plastid-targeting
sequence connected with the first RbcS unit. The reverse primer (RbcS_R) returned a partial
sequence of the last unit adjacent to the 3'-UTR. Using an internal primer matching the mRNA
sequence just upstream of the first presumed RBCS repeat (RbcS_F2, S1 Table and boxed in
dark blue in S1A Fig) produced a sequence comprising two complete and one 3'-truncated
RBCS repeats separated by two linker regions.

The third incomplete repeat contained three synonymous substitutions as compared to the
first two repeats, indicating some degree of variation in the repeat sequences (S1A Fig). The
predicted linker decapeptide (NMAAMTGEKD) differed from the E. gracilis linker sequence
in only one amino acid (Asn instead of Gly at the first position). These results indicated that
the contig in the transcriptome assembly with an ORF encoding the plastid-targeting sequence
followed by only one RBCS region is an assembly artifact. In fact, E. longa shares a similar
repeated structure of the RBCS precursor polyprotein with E. gracilis.

We then designed a primer matching a region close to the 5'-end of the coding sequence of
the highly divergent RBCS-like unit (RbcS-X_F in S1 Table and boxed in dark blue in S1A Fig).
The resulting sequence confirmed the existence of a single continuous sequence encoding a
highly divergent variant of the RBCS unit. It is characterized by multiple amino acid changes
and three in-frame deletions (one of one amino acid, and two of five amino acids). This diver-
gent RBCS sequence is followed by a linker decapeptide (a variant with the first Asn residue
substituted by Ser) and a full canonical RBCS repeat (S1A and S1C Fig).

A phylogenetic analysis of RBCS sequences (including the canonical but not the divergent
RBCS from E. longa) demonstrated monophyly of Euglenophyceae sequences (S2 Fig). The
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euglenophyte RBCS clade expectedly formed a lineage within a group of sequences from the
Chloroplastida, but its precise position could not be determined, perhaps because of the very
short length of the RBCS sequences. In contrast to RBCL, the (canonical) E. longa RBCS
sequence does not seem to be divergent compared to sequences from other euglenophytes, so
no apparent change in the functional mode of this protein is evident from this analysis.

Expression of RuBisCO small and large subunits is severely repressed
in E. longa
To further explore differences between the RuBisCO enzyme in the photosynthetic E. gracilis
and the non-photosynthetic E. longa, we analyzed RBCS and RBCL protein levels in both spe-
cies. As documented before [19,40], we observed three bands with different molecular weight
using an anti-RBCS antibody in photosynthetically grown E. gracilis (EG-) (Fig 2, anti-RBCS
panel). The band with a molecular weight of ~130 kDa (marked �1 in Fig 2) corresponds to the
polyprotein synthesized in the cytosol. The smallest band (~15 kDa; marked �3 in Fig 2) corre-
sponds to the processed monomers after cleavage of the signal sequence and excision of deca-
peptides. The labeled peptides with a molecular weight of ~22 kDa (marked �2 in Fig 2)

Fig 2. Abundance of the RBCS and RBCL proteins in Euglena gracilis and Euglena longa. Protein
immunodetection was performed using anti-RBCS, anti-RBCL, and anti-Tubulin antibodies. Three bands with
different molecular weights were observed in anti-RBCS immunoblotting. The ~130 kDa band (marked *1)
corresponds to polyprotein synthesized in the nucleus. The ~15 kDa band (marked *3) corresponds to the
processed monomer after cleavage of the signal sequence and excision of decapeptides. The ~22 kDa band
(marked *2) possibly corresponds to a monomer still attached to the transit peptide. The identity of the RBCL
protein (arrowhead in the anti-RBCL panel) was confirmed bymass-spectrometry. Tubulin served as a loading
control. Molecular weights in kDa are indicated on the left. EG-, E. gracilis cultivated photosynthetically (without
ethanol); EG+, E. gracilis cultivated mixotrophically (with ethanol); EL, E. longa.

doi:10.1371/journal.pone.0158790.g002
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presumably corresponds to monomers still attached to the transit peptide [40]. All these pep-
tides were also observed in mixotrophically grown E. gracilis (EG+), but RbcS expression has
significantly decreased. This difference may correlate with a change from the autotrophic
(EG-) to the mixotrophic (EG+) conditions. It is expected that the presence of another carbon
source (ethanol) results in the reduced expression of the photosynthesis-related genes.

In E. longa (EL) extracts, only the polyprotein of ~130 kDa was detected in a substantially
lower amount compared to both EG+ and EG- samples. In this case, no monomers were
observed in immunoblotting experiments. Absence of small molecular weight RBCS proteins
(i.e. ~15 and ~22 kDa) was also confirmed by mass-spectrometry. These results suggest that
RBCS polyprotein is not properly processed and/or transported in E. longa cells.

A similar pattern was observed for the RBCL protein (Fig 2, anti-RBCL panel), i.e. the
RBCL protein was most abundant in EG-, its abundance decreased in EG+ and it was barely
detectable in EL. The anti-RBCL antibody also recognized a non-specific band (74 kDa) appar-
ent especially in the EL extract. The identity of the less intense band as RBCL in EL (marked by
arrowhead in Fig 2, anti-RBCL panel) was confirmed by mass spectrometry.

Abundance of the RBCL protein correlates with the mRNA level in both
Euglena species, but abundance of the RBCS protein in E. longa is
determined primarily by its rapid turnover
In order to investigate the molecular mechanism behind the different RuBisCO subunit abun-
dances in different Euglena species or cultivation conditions, we determined RbcS and rbcL
mRNA levels of RuBisCO subunits using quantitative RT-PCR. The rbcL transcript level was
highest in EG-, substantially lower in EG+, and very low in EL (Fig 3). The level of rbcLmRNA
correlated well with the protein abundance (compare Fig 2 and Fig 3). This is not the case for
the RbcSmRNA and RBCS protein. Even though the RbcS transcript level was slightly
decreased in EG+ and EL compared to EG- (Fig 3), the magnitude of the difference does not
correspond to the dramatic difference in the RBCS protein abundance in these species (Fig 2).
These results indicate that post-transcriptional regulation is chiefly responsible for the differ-
ences in the RBCS abundance in the different conditions/species.

One possibility is that the synthesis of the RBCS protein is proportional to the mRNA level,
but the protein is less stable in EG+ and EL than in EG-. To test this, Euglena cells grown for 10
days were treated with cycloheximide that blocks cytoplasmic translation, and proteins from
these cultures were isolated. In EG-, the RBCS precursor polyprotein was stable for at least 24
hours (Fig 4A, anti-RBCS panel). However, it was not as stable in EG+ and was very unstable
in EL (Fig 4B and 4C, anti-RBCS panel). The half-life of the polyprotein in E. longa was esti-
mated to be about 10 minutes.

As expected, the RBCL abundance was not influenced by the cycloheximide treatment
(Fig 4, anti-RBCL panel), given that this subunit is encoded by the plastid genome and its syn-
thesis on plastid ribosomes is cycloheximide-insensitive. Tubulin served as a loading control
(Fig 4, anti-Tubulin panel) [41].

Discussion
Euglena longa is the closest relative of the photosynthetic euglenophyte alga Euglena gracilis. In
contrast to its kin, it harbors an enigmatic non-photosynthetic plastid. The only gene for pho-
tosynthesis-related protein retained in the E. longa plastid genome is that encoding the large
subunit of the enzyme RuBisCO. It is the first enzyme of the Calvin-Benson cycle and one of
the most abundant proteins on Earth.

RuBisCO in Euglena longa

PLOSONE | DOI:10.1371/journal.pone.0158790 July 8, 2016 8 / 15



We showed that the RBCL protein sequence in E. longa is extremely divergent compared to
its homologs from the photosynthetic relatives (Fig 1). This implies a possible functional shift
upon the loss of photosynthesis. However, the loss of photosynthesis per se does not necessarily
cause high divergence observed for the E. longa sequence. Branches of RBCL sequences coming
from Orobanche and Harveya species, non-photosynthetic angiosperms that have also retained

Fig 3. Expression of the RbcS and rbcL genes in Euglena gracilis and Euglena longa. Expression levels
of RbcS and rbcLmRNAs were analyzed by quantitative RT-PCR and normalized over the 18S ribosomal
RNA. Cultivation conditions and species are denoted as in Fig 2.

doi:10.1371/journal.pone.0158790.g003

RuBisCO in Euglena longa

PLOSONE | DOI:10.1371/journal.pone.0158790 July 8, 2016 9 / 15



rbcL genes in their plastid genomes [25,26], are not extended beyond those coming from their
photosynthetic relatives (Fig 1).

E. longa possesses a nuclear gene encoding the small subunit of RuBisCO. As in its photo-
synthetic relative E. gracilis, RBCS is expressed as a precursor polyprotein composed of several
repeats. Interestingly, one of those repeats is highly divergent. Our experimental approach
could not provide a completely reconstructed sequence of the actual RbcSmRNA in E. longa
because of its repeated nature. We could not confirm the actual number of the repeats (both
the canonical and the divergent), even though we expect it to be similar to E. gracilis based on
the similarities of their transcripts. We also could not determine the relative position of the
divergent and the canonical repeats. At least first three and last two repeats are of the canonical
form (S1 Fig).

Both RBCL and the RBCS proteins are expressed in E. longa, but their abundances are very
low compared to E. gracilis. There are several possible explanations for this observation. 1)
Expression of both RbcS and rbcL genes might be repressed in mixotrophically cultivated E.
gracilis and in E. longa. 2) Transcription of either RbcS or rbcLmay be inhibited. As demon-
strated for other protein complexes [30,42], the RuBisCO complex expression may depend on
abundance of its individual subunits. 3) The levels of individual proteins may be regulated
post-transcriptionally or post-translationally. In E. gracilis, post-transcriptional regulation pre-
vails in controlling protein abundance [43].

The processing of the RBCS polyprotein in E. longa seems to be impaired. We failed to
detect monomers of the small subunit even when using more sensitive kit for detection and/or
after prolonged membrane exposure. No such defect was observed in E. gracilis cultivated in
the presence or absence of ethanol. In both cases fully and partially processed monomers were
readily detectable (Fig 2). Several other proteins, such as phosphoglycerate kinase or numerous
subunits of light-harvesting complexes I and II, are translated as polyproteins in E. gracilis [44–
47]. This phenomenon has been scarcely seen in other eukaryote taxa [48]. The polyproteins
are transported into the plastid and mature units are released upon cleavage of the interspers-
ing/delineating linkers, typically decapeptides. The linker is supposedly cleaved off by a thiol
peptidase unrelated to the signal peptidase or thylakoid processing peptidase [49]. The pres-
ence of the linker consensus sequence suggests an involvement of a matrix metallopeptidase-
9-like enzyme (as predicted by the Prosper tool [50]). Because of its broad specificity, we
assume that the linker sequences in RBCS of E. longa are the only sites not masked by second-
ary structures against the proteolytic activity. However, the identity or even the existence of a

Fig 4. Stability of RBCS and RBCL proteins in Euglena gracilis and Euglena longa. Cell cultures were treated with 20 μg/ml of
cycloheximide, aliquots were taken at 0, 1, 4, 8, and 24 h post treatment, and analyzed by western blotting using anti-RBCS, anti-
RBCL and anti-Tubulin antibodies. Molecular weights (in kDa) are indicated on the left of each panel. The identity of the RBCL protein
(arrowhead in the anti-RBCL panel) was confirmed by mass-spectrometry. Tubulin served as a loading control. Cultivation conditions
and species are denoted as in Fig 2.

doi:10.1371/journal.pone.0158790.g004
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putative linker peptidase in E. longa is currently not confirmed. The selective pressure for the
presence of the linker peptidase has mostly disappeared with the loss of other photosynthesis-
related proteins.

The expression of the RuBisCO proteins in Euglena species is regulated post-translationally
at the level of the complex formation. Indeed, blocking the cytoplasmic translation by cyclo-
heximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis,
but in E. longa, the protein is rapidly degraded (Fig 4). Stability of the RuBisCO small subunit
may depend on the presence or the absence of its binding partner, i.e. octamer of the RBCL
protein. Notably, a similar phenomenon has been documented in Nicotiana tabacum, where
the RBCS protein was undetectable in the absence of the compatible large subunit counterpart
[51,52]. The molecular mechanism behind this observation remained unclear. The extremely
high turnover rate of RBCS in E. longamight indicate that its assembly with RBCL is compro-
mised and does not result in the formation of the functional holoenzyme.

RuBisCO subunits interact not only with each other, but also with other protein partners
required for the proper assembly and function of the enzyme. One is RuBisCO activase (RCA),
an ATP-hydrolyzing enzyme facilitating removal of inhibitory sugars from the RuBisCO holo-
enzyme [7]. Indeed, our transcriptomic data revealed the presence of a E. longa RCA homolog
(S4 Table). A phylogenetic analysis of the RCA protein sequences confirmed the monophyly of
those coming from Euglenophyceae and demonstrated their close relationship with sequences
from chlorophytes (S3 Fig). Although the branch of the E. longa RCA sequence is the longest
among euglenophyte sequences analyzed, the difference is by far less dramatic than that exhib-
ited by RBCL sequences (Fig 1). Furthermore, all motifs necessary for proper RCA function
[53] are present in E. longa sequence, suggesting that its actual function may have been retained
in E. longa.

Other interacting partners of RuBisCO are the plastid homologs of GroEL and GroES cha-
peronins, which fold RBCL monomers into an antiparallel dimer. The RBCL dimers are then
assembled into an octamer by the RBCX, bundle sheath defective 2 protein (BSD2), α-carboxy-
some RuBisCO assembly factor (acRAF) or RAF1/RAF2 proteins [7,54–56]. Binding of RBCS
monomers triggers conformational changes of the RBCL octamer and displaces assembly pro-
teins from the complex [7]. The GroEL/GroES homologs possessing predicted plastid-targeting
sequences at their N-termini are present in the E. longa transcriptome (S4 Fig). However, no
RBCX, BSD2 or acRAF homologs could be identified in the transcriptomic data from this spe-
cies. The only protein previously implicated in the RuBisCO assembly identified in the E. longa
transcriptome is RAF. In contrast to higher plants with two homologous RAF1 and RAF2 [55],
we found only one homolog of this protein in E. longa. The biological consequences of this
divergence remain to be investigated.

In addition to playing a critical role in photosynthesis, RuBisCO has been implicated in
other biochemical processes, such as methionine salvage pathway [57], isomerization of
5-methylthio-D-ribulose-1-phosphate [58], phosphoenolpyruvate carboxylation [59] or sulfur
metabolism [60]. It was proposed that in bacteria even the unprocessed RBCS-like polyprotein
might function as a scaffold for higher order molecular complexes assemblies [61]. Further
functional studies are necessary to delineate RuBisCO functions, if any, in E. longa.
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