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Abstract

Here we described a new trypanosomatid species, Phytomonas lipae, parasitizing the dock

bug Coreus marginatus based on axenic culture and in vivo material. Using light and elec-

tron microscopy we characterized the development of this flagellate in the intestine, hemo-

lymph and salivary glands of its insect host. The intestinal promastigotes of Phytomonas

lipae do not divide and occur only in the anterior part of the midgut. From there they pass

into hemolymph, increasing in size, and then to salivary glands, where they actively prolifer-

ate without attachment to the host’s epithelium and form infective endomastigotes. We con-

ducted molecular phylogenetic analyses based on 18s rRNA, gGAPDH and HSP83 gene

sequences, of which the third marker performed the best in terms of resolving phylogenetic

relationships within the genus Phytomonas. Our inference demonstrated rather early origin

of the lineage comprising the new species, right after that of P. oxycareni, which represents

the earliest known branch within the Phytomonas clade. This allowed us to compare the

development of P. lipae and three other Phytomonas spp. in their insect hosts and recon-

struct the vectorial part of the life cycle of their common ancestor.

Introduction

The family Trypanosomatidae is a group of obligate parasitic flagellates, whose evolution was

mainly shaped by the exploration of various animals [1]. Monoxenous (with one host in the

life cycle) representatives are known as worldwide dispersed parasites of insects [2,3]. The

majority of dixenous (with two hosts in their life cycle) trypanosomatids live in vertebrates

and use insects and, less frequently, leeches as vectors [4]. This concerns genera Trypanosoma
and Leishmania, among which there are agents of numerous important diseases of human

PLOS ONE | https://doi.org/10.1371/journal.pone.0214484 April 3, 2019 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Frolov AO, Malysheva MN, Ganyukova AI,

Spodareva VV, Yurchenko V, Kostygov AY (2019)

Development of Phytomonas lipae sp. n.

(Kinetoplastea: Trypanosomatidae) in the true bug

Coreus marginatus (Heteroptera: Coreidae) and

insights into the evolution of life cycles in the

genus Phytomonas. PLoS ONE 14(4): e0214484.

https://doi.org/10.1371/journal.pone.0214484

Editor: Yara M. Traub-Csekö, Instituto Oswaldo
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(e.g. sleeping sickness, Chagas diseases, kala-azar, espundia, oriental sore, etc.), as well as wild

and domestic animals (e.g. nagana, surra, or dourine) [5–7].

The members of Phytomonas, another dixenous genus, represent a notable exception in the

evolutionary trend of trypanosomatids. These peculiar flagellates adapted to parasitism in vari-

ous plants, thereby significantly expanding the host range of the family [8,9]. The first species

of this genus was described as Leptomonas davidimore than a century ago from the latex of

the spurge Euphorbia hirta in Mauritius by Alexandre Lafont [10]. Later in the same year,

Charles Donovan found this species in the same plant in Madras and established the new

genus Phytomonas for it [11]. Soon after, Lafont demonstrated that parasite is transmitted by

the phytophagous heteropteran Nysius euphorbiae (Lygaeidae) [12]. Phytomonas spp. were

later discovered in the phloem, fruits, and flowers of members of more than 20 different fami-

lies of the vascular plants, as well as in phytophagous true bugs of 3 families (Coreidae, Penta-

tomidae, and Lygaeidae) [8,9,13–16].

The vast majority of the members of this genus are represented by over 200 isolates, for

which the available information is mostly restricted to either plant or insect species they were

isolated from, and, occasionally, GenBank sequences [15]. While about 15 nominal species of

this genus were described in the pre-molecular era [3,8], only 6 of those (Phytomonas serpens,
P. françai, P.mcghee, P. nordicus, P. oxycareni, and P. dolleti) have been assessed using molecu-

lar phylogenetic methods [17–21]. Whole genomes of P. françai, P. serpens and two unde-

scribed Phytomonas sp. isolates (EM1 and HART1) have been recently published [22–24].

The monophyly of the genus Phytomonas has been confirmed in several molecular phyloge-

netic and phylogenomic studies [4,19,21,23,25]. However, in many respects, this group of fla-

gellates is quite heterogeneous. The intrageneric clades, revealed using various molecular

markers, usually do not correlate with either host tropism, ecology or biogeography

[17,20,26,27]. This phenomenon has not been explained so far, but an unbiased analysis is not

possible because of uneven exploration of phytomonads from different host groups and geo-

graphic regions [15]. Only about one quarter of all described isolates came from Europe, Asia,

Africa, or Australia/Oceania, while the majority has American origin [15]. Because of the eco-

nomic importance, the research has always been biased towards parasites infecting agricultural

plants (coconut and oil palms, edible fruits, coffee and cacao trees, cassava, etc.). At the same

time, the knowledge of Phytomonas spp. real diversity and biogeography remained frag-

mented. One of such uncharted territories is northern Eurasia. The only species described

north of the 50˚ N is secondarily monoxenous P. nordicus from the predatory true bug Troilus
luridus. Its life cycle is aberrant and does not involve plant host [19,28].

In 1966, Jerzy Lipa described Blastocrithidia raabei from the dock bug Coreus marginatus
(Heteroptera: Coreidae) in Białowieża National Park, Poland. He reported presence of long

(up to 41 μm) leptomonads (= promastigotes) in the anterior part of the intestine and, less fre-

quently, in the hemolymph of the bugs infected by this trypanosomatid. Lipa considered these

cells as developmental stages of B. raabei [29]. However, the promastigote stage is not intrinsic

to Blastocrithidia spp. and their life cycles are not known to include development in hemo-

lymph [30–32]. Thus, the most likely explanation is that Lipa observed mixed infection of B.

raabei with a trypanosomatid of another genus.

Here, using light and electron microscopy, we described a new trypanosomatid inhabiting

intestine, hemolymph and salivary glands of the dock bugs from European and Asian localities

in Russia. Similarly to the unidentified flagellate from Lipa’s description, the main develop-

mental stage of this species is a promastigote. Our molecular phylogenetic analyses proved that

the new species belongs to the genus Phytomonas and we named it after Jerzy Lipa–Phytomo-
nas lipae. To date, this is the fourth member of this genus with characterized development in

the insect vector.
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Material and methods

Hosts

The dock bugs Coreus marginatus were collected in 2016–2018 from vegetative and generative

parts of the Russian dock Rumex confertus, the bitter dock R. obtusifolius, and the false rhubarb

Rheum rhaponticum (the two latter plant species were not present in the Asian location, see

below). The bugs originated from the North-West of the European part of Russia (Pskov

Oblast, village Lyady, 58˚35’ N, 28˚55’ E; and Novgorod Oblast, village Oksochi, 58˚39’ N, 32˚

47’ E) and one Asian population in the south of Western Siberia (Kurgan Oblast, village Zao-

zerny, 55˚28’ N, 65˚16’ E). The bugs were studied from May to September: 78 imagines and 36

nymphs in total from the first and second localities and 26 imagines from the third one.

The bugs were dissected in normal saline solution (Fig 1) under LOMO MBS-2 stereomi-

croscope (Micromed, Russia) as described previously [33]. Hemolymph and salivary gland

samples were prepared and processed as in [19].

The adult lime seed bugs Oxycarenus lavaterae, hosts of P. oxycareni, were collected in

October 2018 when they formed large aggregates on the linden tree trunks in the Komenského

Sady park (49˚51’ N, 18˚17’ E) in Ostrava, Czech Republic. They were not dissected, but

pooled, smashed with pipette tips and used directly for DNA isolation.

No specific permissions were required for the insects’ sampling, since the localities, where

they were collected, are of public access and neither Coreus marginatus nor Oxycarenus lava-
terae are endangered or protected species.

Fig 1. Isolated salivary gland of Coreus marginatus (ex vivo, reflected light). ag–accessory Salivary gland; al–

anterior lobe of the principal Salivary gland; ll–lateral lobe of the principal Salivary gland; ml–median lobe of the

principal Salivary gland; pl–posterior lobe of the principal Salivary gland; sd–principal duct of the Salivary gland. Scale

bar 3 mm.

https://doi.org/10.1371/journal.pone.0214484.g001

Life cycle of Phytomonas lipae

PLOS ONE | https://doi.org/10.1371/journal.pone.0214484 April 3, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0214484.g001
https://doi.org/10.1371/journal.pone.0214484


Cultivation and cryopreservation of trypanosomatids

Sixteen primary (xenic) cultures from the gut and salivary glands of the infected C.marginatus
individuals were established in several media: Brain Heart Infusion, Schneider’s Drosophila
Medium, TC-100 Insect Medium, RPMI 1640, and M199 (all from Sigma-Aldrich, St. Louis,

MO, USA) as well as overlaid blood agar all supplemented with 10% of the fetal bovine serum

(FBS) (BioloT, St. Petersburg, Russia), 500 μg/ml of streptomycin and 500 Units/ml of penicil-

lin (Sigma-Aldrich). Purification of the cultures from fungal contaminants was conducted

using a device described before [34]. Axenic cultures were kept at 20º C and passaged monthly.

Their cells were cryopreserved in the growth media supplemented with 10% DMSO (Sigma-

Aldrich) and stored at -86º C.

Microscopy

The smears from infected intestine and salivary glands were fixed for 30 min with ethanol and

stained with either Giemsa or 4’,6-diamidino-2-phenylindole (DAPI) as described before

[35,36]. Digital images were acquired in DM 2500 microscope (Leica Microsystems GmbH,

Wetzlar, Germany) equipped with UCMOS14000KPA 14-Mpx camera (Toup Tek, Hangzhou,

China) at ×1,000 magnification. All measurements of cells (n = 25) and statistical analysis were

performed in UTHSCSA Image Tool for Windows v. 3.0. For transmission and scanning elec-

tron microscopy the samples were fixed and processed as described previously [37].

DNA isolation, amplification, cloning, and sequencing

Whole bodies of thirty lime seed bugs (sample Ox1), infected salivary glands (samples Cor8sg,

Cor 40sg, Cor203sg) and intestine (sample Cor8i) of dock bugs, as well as cultured cells (sam-

ples Cor 4, Cor 49, Cor203) were used for total genomic DNA isolation with the DNeasy

Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

In addition to these, the laboratory cell cultures of Lafontella sp. GMO-01 [38], Herpetomonas
samuelpessoai ATCC 30252, andH.muscarum ATCC 30260 were used for DNA isolation and

amplification of particular molecular markers.

The ITS1-5.8S-ITS2 region and nearly full-length small SSU rRNA, gGAPDH, and HSP83

genes were amplified using the respective primer pairs: IAMWE and IRBAB [27], S762 and

S763 [39], M200 and M201 [40], as well as 100XF and 970XR [41]. With the exception of the

ITS1-5.8S-ITS2 fragment, which was first cloned using the InsTA PCR Cloning Kit (Thermo-

fisher Scientific, Waltham, USA), all other amplicons were sequenced directly with the amplifi-

cation primers. In addition, the internally annealing oligonucleotides 883F, 907R S757, and

A757 [42], as well as XF2 and XR2 [43] were used for the sequencing of SSU rRNA and HSP83

genes respectively. The GenBank accession numbers for the new sequences determined in this

work are: MK036047 –MK036051, MK249803 (SSU rRNA gene of P. lipae isolates Cor4,

Cor8sg, Cor8i, Cor40sg, Cor49, and P. oxycareni, respectively); MK050458 –MK050461,

MK258194, MK258195 (gGAPDH gene of P. lipae isolates Cor4, Cor8sg, Cor40sg, and Cor49,

P. oxycareni, and Lafontella sp. GMO-01, respectively); MK053634 (ITS1-5.8S-ITS2 fragment

of Cor8sg); and MK258188 –MK258193 (HSP83 gene ofHerpetomonas nabiculae,H.mus-
carum,H. samuelpessoai, P. lipae isolate 49Cor, Lafontella sp. GMO-01, and P. oxycareni,
respectively).

Phylogenetic analyses

The sequences of SSU rRNA, gGAPDH and HSP83 genes obtained in this study were com-

bined with those available in the GenBank (nr and wgs databases [44]). The alignment of SSU
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rRNA gene sequences was performed in MAFFT 7.4 with the E-INS-i algorithm [45]. The

datasets for gGAPDH and HSP83 genes were processed in MEGA7 [46] as follows: translated

into amino acids, aligned with the built-in Muscle module [47] and then reverse translated to

nucleotides. Taking into account that the SSU rRNA and HSP83 alignments contained ambig-

uously aligned positions, they were trimmed using Gblocks v. 0.91 [48], as previously

described [49]. However, the presence of many short sequences in the SSU rRNA dataset

resulted in an excessive end trimming and, consequently, removal of significant amount of

phylogenetic information. In order to avoid this, the trimming mask was obtained on the sub-

set of sequences longer than 1,800 bp and then applied to the whole dataset. The final lengths

of the three resulting alignments were 2,106; 1,089; and 1,909 bp for SSU rRNA, gGAPDH,

and HSP83 genes, respectively. The ITS1-5.8S-ITS2 fragment was not used for the phyloge-

netic analyses, since this marker provides resolution only in terminal branches, whereas deter-

mining the phylogenetic position of P. lipae required deep-level resolution (see Results).

The maximum likelihood and Bayesian tree reconstructions were performed in IQ-TREE

v.1.68 [50] and MrBayes v.3.2.6 [51], respectively, with partitioning of protein-coding genes by

codon position as described before [52]. The GenBank accession numbers of the sequences

used in all analyses are listed in S1 Table.

Results

Prevalence of trypanosomatids’ infection in Coreus marginatus
Of 78 imagines and 36 nymphs of the dock bug C.marginatus, collected in the Northwest Rus-

sia, 7 (~ 9%) and 2 (~ 6%) specimens contained promastigotes in their salivary glands. Of 11

imagines from Novgorod Oblast, that were dissected within the first week after appearance on

the plants, 2 bugs (~ 18%) had trypanosomatid infection in salivary glands. A significant pro-

portion of the analyzed C.marginatus imagines (~ 40%, 31 out of 78) were infected with Blas-
tocrithidia raabei (identified by characteristic features and morphometry of its epimastigotes

[29]). Of these, mixed infections by B. raabei and the species under study were documented in

four cases (~ 13%). The analysis of the Asian population (Kurgan Oblast) revealed promasti-

gotes in salivary glands of a single imago out of 26 dissected (~ 4%).

Cultivation of trypanosomatids

The flagellates from the gut and salivary glands of the infected C.marginatus were cultivated in

several different media. In all cases, the promastigotes could be maintained in xenic (fungi-

contaminated) cultures. The cells were also viable in purified axenic cultures, but usually they

did not divide. Out of sixteen original cultures, only three (all from salivary glands) were suc-

cessfully established in axenic conditions. In two of these (Cor4 and Cor49, from Novgorod

Oblast), the promastigotes started division in the FBS-supplemented TC-100 Insect Medium

almost 1 year after purification. The culture Cor203 (from Kurgan Oblast) was obtained in the

same way, but the cells started division after the second passage.

Phylogenetic analyses

The phylogenetic inferences based on SSU rRNA and gGAPDH genes, the two molecular

markers traditionally used for trypanosomatids [53], demonstrated low resolution in the basal

part of the Phytomonas clade (Fig 2). Thus, it was not possible to reliably determine the phylo-

genetic position of P. lipae. On both maximum likelihood and Bayesian trees of the SSU rRNA

gene, the new species appeared as the earliest branch within the genus (Fig 2A). However, this

topology was poorly supported. Moreover, P. oxycareni, which has been previously shown to
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occupy this position [21], was placed elsewhere (also with low statistical support). Removal of

various taxa from the dataset demonstrated that the position of both species on the tree was

unstable. A similar situation was observed for the gGAPDH gene (Fig 2B), but in this case,

there was a discrepancy between maximum likelihood and Bayesian trees, which placed (with

low statistical support) as the earliest branch either P. oxycarenus or P. lipae, respectively.

Taking into account these difficulties, we switched to HSP83 gene, which has recently

proved to be efficient in resolving phylogenetic relationships in a different trypanosomatid

group [43]. We created a dataset containing the representatives of all key lineages of Phytomo-
nas spp. and inferred a phylogenetic tree with substantially better supports. Both maximum
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https://doi.org/10.1371/journal.pone.0214484.g002
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likelihood and Bayesian analyses based on this gene demonstrated well-supported positions of

P. oxycarenus and P. lipae as the first and the second early branches within the clade of Phyto-
monas. Importantly, in relation to the former species, this agrees with the earlier SSU rRNA

gene-based inferences [21].

Morphology of flagellates

Promastigotes of P. lipae were found mainly within the principal salivary glands of C.margina-
tus (Fig 1), where they infected all four lobes. No parasites were detected in accessory salivary

glands or principal duct of the Salivary gland. In three infected bugs, phytomonad cells were

also found in M1 and M2 segments of the intestine, and in one specimen, a few cells were

observed in hemolymph.

The parasites in the salivary glands of the bugs from European and Asiatic populations

were similar (Table 1, S2 Table). There were two main morphotypes (Fig 3A–3C): i) large (up

to 70 μm, but mainly 30–40 μm long) slim promastigotes with short flagellum and elongated

whip-like posterior end (Table 1, S2 Table); ii) small (~ 8 μm long) endomastigotes (Fig 3A–

3C, Table 1, S2 Table). In addition to these two morphotypes, there was a continuum of inter-

mediate cells in the micropopulations of parasites infecting salivary glands. The large promas-

tigotes were usually twisted with one or several turns. Both nucleus and kinetoplast were

localized to the anterior third of the cell at distance comparable to the nucleus length (Fig 3B

and 3C). The flagellum was short, about 1/3–1/4 of the cell body (Table 1, S2 Table).

Promastigotes found in the midgut were smaller, usually under 30 μm long and had not

whip-like posterior ends (Fig 3D, Table 1, S2 Table). The localization of nucleus and kineto-

plast was similar to that of the salivary gland forms. Midgut promastigotes had longer flagella,

comparable to the cell body in length. (Table 1).

In all three cultures isolated from bugs’ salivary glands (Cor4, Cor49, Cor203), flagellates

were morphologically similar and included promastigotes and small aflagellated cells (Fig

3E3–3G). Promastigotes in the cultures resembled those from the midgut, but were slightly

shorter and their flagella length was roughly ½ of that of the cell body (Table 1, S2 Table).

Large promastigotes, similar to those from the salivary glands, were rare (~0.01%) and

appeared only after a prolonged cultivation.

Ultrastructural organization of all studied promastigote types was similar both in salivary

glands and in cultures. Kinetoplast was compact (diameter 0.67 ± 0.13 μm, thickness

0.18 ± 0.06 μm). As in many other trypanosomatids, the Golgi apparatus was located between

kinetoplast and nucleus. The cytoplasm displayed multiple glycosomes profiles. The flagellar

pocket was short and opened terminally (Fig 3H).

Ultrastructure of host-parasite relationships in the salivary glands

The parasites were detected in the squamous coelomic epithelium, separating the salivary

glands from the hemocoel, as well as in the cuboidal epithelium and lumen. In the coelomic

epithelium, promastigotes were situated in lacunae between epitheliocytes, tracheae and myo-

cytes (Fig 4A). Transient stages could be observed in the cytoplasm of the cuboidal epithelial

cells (Fig 4B) as single promastigotes enclosed in parasitophorous vacuoles. The vast majority

of promastigotes localized to the gland lumen in the space between secretory granules. There

they actively divided, forming aggregates on the gland surface, but not attaching to the micro-

villi of the host cell by their flagella (Fig 4C).

Taxonomic summary

Class: Kinetoplastea (Honigberg, 1963) Vickerman, 1976
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Subclass: Metakinetoplastina Vickerman, 2004

Order: Trypanosomatida (Kent, 1880) Hollande, 1952

Family: Trypanosomatidae (Doflein, 1901) Grobben, 1905

Subfamily: Phytomonadinae Yurchenko, Kostygov, Votýpka et Lukeš, 2015

Genus: PhytomonasDonovan, 1909

Phytomonas lipae Frolov et Kostygov sp. n.

Species diagnosis: two morphotypes are present in host’s salivary glands: 1) elongated pro-

mastigotes varying in size from 12 to 70 μm, and 2) small cells (6–11 μm) with no free flagella

(endomastigotes). The anterior third of the body is widened, the posterior one is narrow and

elongated; flagellum length is not greater than 1/3 of the promastigote’s cell body; both nucleus

and kinetoplast are located in the anterior part of the cell. The nucleus (2.5 μm ± 0.5 μm) is

located in 2.9 μm ± 1.1 μm from the kinetoplast and 6.6 μm ± 1.6 μm from the anterior end.

The compact kinetoplast (0.7 μm ± 0.1 μm × 0.2 μm ± 0.1 μm) is positioned in

1.7 μm ± 0.6 μm from the anterior end. The species can be identified by the sequences of 18S

rRNA, gGAPDH, HSP83, and ITS1/ITS2 region (GenBank accession numbers: MK036047 –

MK036051, MK050458 –MK050461, MK258191, and MK053634, respectively).

Type host: Coreus marginatus Linnaeus 1758 (Heteroptera: Coreidae). The xenotype col-

lected on Russian dock Rumex confertus (Polygonaceae) is deposited at the Xenotypes’ Collec-

tion for Parasitic Protists in the Zoological Institute of the Russian Academy of Sciences

(St. Petersburg, Russia).

Location within host: Present in the M1 (partly M2) midgut, hemolymph, and lumina of

salivary glands, as well as within the cells of salivary glands.

Type locality: Novgorod Oblast, village Oksochi, 58˚39’ N, 32˚47’ E

Type material: The name-bearing type, a hapantotype, is a Giemsa-stained slide of the dis-

sected salivary glands (isolate Cor4sg) it was deposited along with the axenic cultures Cor4,

Cor49 and Cor203 in the Research Collection of Parasitic Protists of the Zoological Institute of

the Russian Academy of Sciences (St. Petersburg, Russia).

Table 1. Morphometry of different cell types of P. lipae from culture, different populations and different organs of the hosts (N = 25).

Length Width Flagellum Nucleus N-A K-A N-K

Promastigotes in the salivary glands

Cor4sg (hapantotype), Novgorod

Oblast

36.4 ± 10.5 (13.7–

66.3)

1.9 ± 0.4 (1.4–

3.2)

9.0 ± 1.7 (5.9–

12.0)

2.5 ± 0.5 (1.7–

3.5)

6.6 ± 1.6 (4.3–

9.0)

1.7 ± 0.6 (1.5–

2.7)

2.9 ± 1.1 (0.2–

4.6)

Cor203sg, Kurgan Oblast 34.2 ± 10.2 (12.5–

56.0)

1.6 ± 0.3 (1.1–

2.3)

7.2 ± 2.1 (4.4–

11.7)

1.9 ± 0.3 (1.4–

2.8)

4.2 ± 1.0 (3.0–

6.2)

1.4 ± 0.5 (0.8–

2.3)

1.8 ± 1.1 (0–2.7)

Endomastigotes in the salivary glands

Cor4sg (hapantotype), Novgorod

Oblast

8.2 ± 1.8 (6.8–12.0) 1.5 ± 0.2 (1.1–

1.7)

N/A 1.7 ± 0.2 (1.4–

3.2)

2.9 ± 0.2 (2.4–

4.0)

0.9 ± 0.2 (0.1–

1.3)

0.04 ± 0.11 (0–

0.26)

Cor203sg, Kurgan Oblast 7.7 ± 1.4 (6.4–11.3) 1.4 ± 0.2 (1.1–

1.6)

N/A 1.7 ± 0.3 (1.3–

2.3)

2.7 ± 0.3 (2.2–

3.2)

0.8 ± 0.2 (0.3–

1.2)

0.03 ± 0.06 (0–

0.19)

Promastigotes in the M1 intestinal segment

Cor4_M1, Novgorod Oblast 20.9 ± 4.8 (16.1–

28.3)

1.5 ± 0.2 (1.2–

1.9)

20.3 ± 3.1 (12.7–

23.4)

2.5 ± 0.7 (1.0–

3.2)

6.6 ± 1.9 (4.1–

9.8)

1.8 ± 0.5 (0.8–

2.4)

3.4 ± 1.4 (1.4–

5.5)

Promastigotes in the culture

Cor4, culture 17.0 ± 2.7 (13.9–

21.2)

2.1 ± 0.3 (1.6–

2.6)

8.7 ± 2.6 (3.5–

12.6)

2.1 ± 0.2 (1.6–

2.5)

5.4 ± 0.9 (4.2–

7.8)

1.4 ± 0.4 (0.3–

1.8)

2.0 ± 0.9 (0.9–

4.5)

N-A is the distance between the nucleus and the anterior end of the cell. K-A is the distance between the kinetoplast and the anterior end of the cell. N-K is a distance

between the nucleus and the kinetoplast. All the measurements are in μm.

https://doi.org/10.1371/journal.pone.0214484.t001
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Fig 3. Morphology of Phytomonas lipae (light microscopy, SEM and TEM). A—C. Phytomonas lipae in the salivary gland of C.marginatus; D. Promastigote of P.

lipae from the M1 segment of the host’s midgut; E—H. P. lipae in the axenic culture Cor4. A–ex vivo, DIC; B, D, E–Giemsa; C–overlaid DIC and DAPI; F, G–SEM, H–
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Etymology: The specific name, lipae, honors Prof. Jerzy J. Lipa, who probably first observed

promastigotes of this species in the dock bugs Coreus marginatus, but mistakenly identified

them as a developmental stage of another trypanosomatid parasite, Blastocrithidia raabei, co-

infecting the same host species [29].

Discussion

Here we described a new species, Phytomonas lipae. It is apparently widespread in Eurasia: we

documented its presence in two distant (over 2,200 km apart) populations of Coreus margina-
tus in northeastern Europe and southwestern Siberia. The insect host is a univoltine phytopha-

gous bug, populating Eurasia and northern Africa. It may feed on many plants, but is mostly

associated with seeds of docks and sorrels [54]. It is parsimonious to assume that these plants

are hosts of P. lipae. Nevertheless, we could not detect the parasites by light microscopy in the

seeds or sap of Rumex confertus, which were taken directly from nature.

Phylogenetic position of the new species

The phylogenetic analysis implies rather early origin of the Phytomonas lipae lineage, right

after that of P. oxycarenus. This demonstrates how understudied is the diversity of this genus.

The inclusion of the two abovementioned species significantly changed the inferred picture of

Phytomonas evolution. Recently, we brought to notice the paraphyly of phytomonads parasit-

izing latex, suggesting that such lifestyle was ancestral for the group [19]. However, in the light

of the new data this hypothesis seems less plausible, as neither P. lipae nor P. oxycarenus, the

two earliest branching members (Fig 2), live in lactiferous plants. As judged by the vectors’

feeding habits [54], the former species should probably live in dock seeds. The bug host of the

latter one feeds on various plants, but in Czechia (where we collected it), is strictly associated

with lindens, predominantly Tilia cordata, and, apparently, feeds on their seeds and develop-

ing leaves [55,56]. Thus, both early diverging Phytomonas spp. probably live in plant seeds,

suggesting a similar lifestyle for the ancestor of the genus. However, in order to better substan-

tiate this, more data are needed on the life cycle of both species and overall diversity of the

genus.

Development in insects

Besides P. lipae, there are other three Phytomonas spp. with described developmental cycles in

vectors: P. serpens (in Phthia picta, Coreidae), P. nordicus (in Troilus luridus, Pentatomidae),

and P. oxycareni (in Oxycarenus lavaterae, Oxycarenidae) [19,21,28,57,58]. These parasites

belong to different lineages within the genus and, therefore, knowledge of their phylogenetic

relationships allows comparing their life cycles from the evolutionary perspective. All four spe-

cies were documented in the intestine, hemolymph, and salivary glands of the infected insects.

The ability to proliferate in the gut with formation of endomastigotes, which are dispatched

with feces, was documented only for two of them–P. serpens and P. nordicus [28,57,58]. The

intestinal stages of P. oxycareni have not been investigated in detail [21]. Promastigotes of P.

lipae do not divide in the intestine and are restricted to the M1 and M2 segments of the mid-

gut. However, this trait seems to be derived, given its state in P. serpens, P. nordicus, and trypa-

nosomatids from other genera [59].

TEM. en–endomastigote; fl–flagellum; fp–flagellar pocket; gl–glycosomes; kp–kinetoplast; nu–nucleus; pm–promastigote. Scale bars 20 μm (A); 10 μm (B—E); 5 μm

(F); 2 μm (G, H).

https://doi.org/10.1371/journal.pone.0214484.g003

Life cycle of Phytomonas lipae

PLOS ONE | https://doi.org/10.1371/journal.pone.0214484 April 3, 2019 10 / 16

https://doi.org/10.1371/journal.pone.0214484.g003
https://doi.org/10.1371/journal.pone.0214484


Fig 4. Phytomonas lipae in the salivary glands of C. marginatus (TEM). A.–Promastigotes of P. lipae in the coelomic epithelium; B. P. lipae
in the cytoplasm of a salivary gland’s cell; C–Promastigotes in the lumen. bl–basal lamina; ch–host’s salivary gland cell; ep–coelomic

epithelium; he–hemocoel; lu–lumen of the salivary gland; mc–muscle cells; mv–microvilli; tr–trachea. Other abbreviations are as in Fig 3.

Scale bars: 2 μm (A, C); 2.5 μm (B).

https://doi.org/10.1371/journal.pone.0214484.g004
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The mechanism of migration from midgut to hemolymph is unknown in any of Phytomo-
nas spp. investigated thus far, but was scrutinized in Trypanosoma rangeli from Rhodnius pro-
lixus (Reduviidae). This parasite penetrates vector’s enterocytes with formation of

parasitophorous vacuoles, which are then used as vehicles for the migration to the intestinal

basal lamina, and after the disruption of the latter are released to the hemolymph [60]. Tran-

sient stages in hemolymph were described in all four Phytomonas spp. [19,21,28,57,58]. Here

they reach the largest size (over 70 μm), and are characterized by a long flagellum, comparable

in length to their twisted cell body.

The passage through the squamous coelomic epithelium surrounding salivary glands has

not been studied in P. oxycarenus. In the other three species, it follows one of the two scenar-

ios: the promastigotes of P. serpens and P. lipaemigrate through intercellular space of the mes-

entery ([58] and this work), whereas P. nordicus invades cells of all tissues surrounding

salivary glands (epithelial, muscle, and tracheal), and localizes in parasitophorous vacuoles

[19]. The second variant appears derived, but in the absence of data on P. oxycarenus this can-

not be properly justified.

The intracellular stages of the investigated Phytomonas spp. within salivary glands differ in

the proliferative rates. Only singular (occasionally dividing in binary manner) promastigotes

of P. oxycareni and P. lipaemigrate through the cytoplasm in parasitophorous vacuoles ([21]

and this work) and this is apparently the ancestral state. In two other species, P. nordicus and

P. serpens, the migrating cells massively divide within parasitophorous vacuoles, forming pseu-

docysts with up to several dozen parasites [19,58]. In addition to this, the promastigotes of P.

serpens can also migrate to the salivary gland lumen through intracellular space in the cubical

epithelium [58].

In all four investigated species, micropopulations in the salivary gland lumen are morpho-

logically heterogeneous and contain 2 main morphotypes: i) flagellated promastigotes of vari-

ous sizes undergoing binary fission, and ii) small endomastigotes [19,57]. In the case of P.

oxycareni, the second morphotype is not mentioned in the species description, but small

(< 10 μm) aflagellated cells can be seen on SEM illustrations (Fig 3B in [21]). Similar cells in P.

lipae, P. serpens, and P. nordicus have lengths of ~ 8 μm, ~ 6 μm, and ~ 12 μm, respectively

([19,57] and this work). Promastigotes of P. nordicus attach to the microvilli of the salivary

gland epitheliocytes by a mechanism utilized by other trypanosomatids in the insect midgut or

Malpighian tubules [32,37]. This appears to be a species-specific trait of this parasite, since in

the three other investigated Phytomonas spp. these cells lie freely in the lumen ([21,58] and this

work).

Summing it up, the new Phytomonas species, P. lipae is similar to the typical dixenous phy-

tomonad species P. serpens and P. oxycareni in morphological traits and developmental pro-

gram within its insect vector. It differs from the secondarily monoxenous P. nordicus in several

essential respects, such as i) lack of the intestinal developmental stages, ii) careful passage

through the coelomic epithelium, iii) lack of pseudocysts in the salivary gland epitheliocytes,

and iv) inability of promastigotes to attach to microvilli. The three last traits are likely to be

ancestral to all phytomonads.
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