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Abstract: Monoxenous (insect-restricted) trypanosomatids are highly diverse and abundant in nature.
While many papers focus on the taxonomy and distribution of these parasites, studies on their biology
are still scarce. In particular, this concerns trypanosomatids inhabiting the ubiquitous mosquitoes. To
shed light on the circulation of monoxenous trypanosomatids with the participation of mosquitoes, we
performed a multifaceted study combining the examination of naturally- and experimentally-infected
insects using light and electron microscopy and molecular identification of parasites. Our examination
of overwintering mosquitoes (genera Culex and Culiseta) revealed that their guts contained living
trypanosomatids, which can be spread during the next season. Experimental infections with Crithidia
spp. demonstrated that imagines represent permissive hosts, while larvae are resistant to these
parasites. We argue that for the parasites with wide specificity, mosquitoes act as facultative hosts.
Other trypanosomatids may have specific adaptations for vertical transmission in these insects at the
expense of their potential to infect a wider range of hosts and, consequently, abundance in nature.

Keywords: Trypanosomatidae; prevalence; specificity; transmission; Paratrypanosoma; Crithidia;
overwintering mosquitoes; experimental infection; facultative host

1. Introduction

Trypanosomatids belong to one of the most intensively studied groups of parasitic
protists, which is justified by the presence among them of dangerous human pathogens
causing vector-borne diseases such as sleeping sickness, Chagas disease, and various leish-
maniases [1]. This also determines the scientific interest in monoxenous (parasitizing-only
insects) members of the family Trypanosomatidae, which demonstrate large abundance
and diversity in nature [2]. While there are many articles focusing on the taxonomy and
distribution of these parasites, studies on their biology are still scarce [3]. In particular,
trypanosomatid parasites of the ubiquitous mosquitoes have not received much attention
thus far.

As potential vectors of malaria and trypanosomes, mosquitoes were among the first
insects massively examined for the presence of parasites. Thus, the first species of monoxe-
nous trypanosomatids were characterized in them in as early as the first decade of the
20th century [4–6]. Despite numerous records from a wide range of mosquito taxa, during
the pre-molecular epoch, only nine nominal species of these flagellates were described,
of which two were recognized as synonyms of Crithidia fasciculata [7]. The priority of
morphology in the systematics of trypanosomatids at that time determined an excessive
taxonomic parsimony so that similar-looking flagellates from different hosts were lumped
together even if they showed differences in metabolism [8]. As a result, C. fasciculata and
Blastocrithidia culicis were the only repeatedly recorded species [7]. Owing to the availability
of laboratory cultures, these two species (especially the first one) became model objects in
the studies of trypanosomatid biology [9].
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The question of whether mosquitoes can share their flagellates with other insects has
been difficult to answer using traditional approaches. However, there have been attempts
to assess this using experimental infection. For example, the bedbugs Cimex lectularius were
shown to be infected when feeding on a culture of Herpetomonas culicidarum (synonym
of C. fasciculata) and produced feces with viable parasites [10]. The same effect with a
significant longevity of the infection was observed upon an intrarectal injection of this
flagellate to large milkweed bugs Oncopeltus fasciatus [11]. The main impact of such findings
consisted in doubts about the correctness of classifying trypanosomatids according to their
hosts [12,13].

The advent of molecular phylogenetic methods brought significant changes to the
knowledge of trypanosomatids in general and to those of mosquitoes in particular. Thus,
Blastocrithidia culicis was transferred to the genus Strigomonas. Although morphologically
dissimilar to other members of this taxon, this flagellate proved to share some ultrastruc-
tural features with them and bear bacterial endosymbionts of the same origin [14]. Another
important advancement was the description of Paratrypanosoma confusum, a monoxenous
flagellate representing the earliest diverging lineage among trypanosomatids [15]. Impor-
tantly, the morphology of this organism as observed with a light microscope does not allow
for its discrimination from members of some other monoxenous genera. Therefore, at least
some of the old records might include this parasite or related ones identified as Crithidia,
Leptomonas, or Herpetomonas sp. [7].

The analysis of the 18S rRNA sequence of the laboratory culture of Crithidia luciliae
isolated from the green bottle fly revealed its 100% identity with that of Crithidia fasciculata
suggesting that this is a single species occurring in both mosquitoes and flies [16]. The
use of molecular methods for the analysis of natural infections demonstrated that the
diversity of monoxenous trypanosomatids in mosquitoes has been underestimated. This
started from the discovery of the abovementioned Paratrypanosoma lineage during the
survey of West Nile virus and trypanosomes in Culex spp. from the USA [17]. Recent
studies in Europe directly focused on trypanosomatids in mosquitoes recorded not only
P. confusum and Crithidia fasciculata, but also an undescribed Herpetomonas sp., as well as
C. dedva, C. brevicula, and C. pragensis [18–20]—flagellates previously known from other
insect groups such as true bugs, flies, and/or mecopterans [21–23]. Thus, mosquitoes
apparently share at least some monoxenous trypanosomatids with other hosts. This
poses questions about the role of mosquitoes in the circulation of flagellates, the modes of
transmission, and the overall relationships in these parasitic systems.

Here we performed a multifaceted study aimed at answering these questions. We
analyzed the presence of trypanosomatids in mosquitoes during the summer season and
overwintering, performed experimental infections of imagines and larvae of mosquitoes
with laboratory cultures of different trypanosomatid species, and investigated the parasites’
development using light and electron microscopy.

2. Materials and Methods
2.1. Insects Collection and Dissection

Adult overwintering mosquitoes (females) were manually collected from the walls
of two Sablino caves (Tosnensky District, Leningrad Region, Russia): Zhemchuzhnaya
(59◦40′06′′ N, 30◦48′00′′ E) and Santa-Maria (59◦39′41′′ N, 30◦48′02′′ E) in January, March
and April 2022 (Figure 1, Table S1). Until dissection, the insects were preserved in plastic
bottles (~20 insects per each) with a wet cotton disc in a fridge (4–8 ◦C). The dissection,
analysis of infection, and conservation of infected intestine fragments for subsequent
DNA isolation were performed as described earlier [24]. The material from positive
specimens was also used to establish laboratory cultures, which were cultivated, purified,
and cryopreserved as previously described [25].
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Figure 1. Mosquitoes in the Sablino sandy caves. (A)— main entrance to the Zhemchuzhnaya cave
(in summer); (B)—overwintering mosquitoes on a cave wall; (C)—Culiseta annulata (left) and Culex
sp. (right) sitting on a sandy wall next to each other.

For the analysis of natural trypanosomatid prevalence in larvae, they were collected in
various temporary water bodies in Oksochi village, Novgorod Region (58◦39′ N, 32◦47′ E),
from late April to August 2021. The presence of trypanosomatids was estimated by micro-
scopical examination following dissection or by PCR using the 1127F/1958R primers (see
below) in pools consisting of 3–10 individuals.

Human-attacking female mosquitoes were collected in the late summer and early
autumn of 2021 in Novgorod, Pskov and Leningrad Regions (Table S2). The captured
insects were preserved in individual Eppendorf tubes before dissection for no longer
than 24 h. The presence of infection was assessed microscopically. The identification of
trypanosomatids was performed by sequencing the 18S rRNA gene (see below) from the
infected gut or cultures established from them.

2.2. Identification of Insects

The identification of mosquito imagines (Aedes spp., Culiseta annulata) and differen-
tiation of Culex torrentium/pipiens pipiens from other Culex spp. were performed using a
morphological key [26]. Culex p. pipiens and C. torrentium females were divided based
on the r2/3/r3 index, calculated from the lengths of the corresponding radial veins of the
wings as described earlier [27,28]. The identification of third instar larvae for experimental
infections was performed morphologically using the same manual as for imagines [26].

2.3. DNA Isolation, PCR, and Sequencing

Total genomic DNA was isolated with the GeneJET Genomic DNA Purification Kit
(ThermoFisher Scientific, Waltham, MA, USA) following the manufacturer’s protocol.
Specific amplification of a nearly full-length or ~850 bp-long or nearly full-length try-
panosomatid 18S rRNA gene was performed using the primer pairs 1127F/1958R [29] and
S762/S763 [30], respectively. The PCR fragments were sequenced either using amplification
primers, or, in the case of the full-length 18S rRNA gene, with a set of internal primers as
described before [31]. In addition to the material collected in this study, the same steps
were taken for the analysis of the 18S rRNA gene of the isolate CL6, preserved in the culture
collection of parasitic protists at the Zoological Institute RAS [32]. The obtained sequences
were deposited in GenBank under the accession numbers OP748970-OP748981.

2.4. Phylogenetic Analysis

The nucleotide sequences obtained in this work, along with the related ones retrieved
from GenBank, were aligned by MAFFT v. 7.490 [33] using the E-INS-I algorithm. The
alignment was trimmed using trimAl v. 1.2 [34] with the 50% gap threshold, giving the
resulting matrix of 73 taxa with 2140 nucleotide positions. A maximum likelihood tree was
inferred in IQ-TREE v. 2.2.0 [35] under the TIM3e + I + G4 substitution model automatically
selected by the ModelFinder module [36]. Edge support was estimated using the standard
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bootstrap method with 1000 replicates. The phylogenetic reconstruction was also performed
using MrBayes v. 3.2.7 [37] run under the GTR + I + G model for 4,000,000 generations with
every 100th of them sampled. Other parameters were set by default.

2.5. Experimental Infections

A series of experiments with the infection of mosquito larvae and imagines was
performed using laboratory cultures of the following trypanosomatids: Crithidia fasciculata
isolate Cf-C1 [38], C. brevicula Nbr [39], as well as C. dobrovolskii M1173 and C. brevicula
M1183 isolated in this work.

2.5.1. Larvae

Fallen leaves were collected from under the snow at the edge of a pond, where large
quantities of Aedes cantans larvae were spotted in the last year. These leaves, containing
mosquito eggs, were placed in a bucket with cold (+4 ◦C) tap water filtered with a household
filter. After 2 days of incubation (the temperature gradually increased to +18◦C), the water
with the hatched larvae was transferred to a new bucket, while the leaves were removed.
Microorganisms developing in this water served as food for the growing larvae.

In other cases (Aedes riparius, A. communis, A. punctor, and Culex torrentium), the larvae
were taken directly from four natural temporary water bodies in the village of Oksochi
in the Novgorod Region from late April to July. For the confirmation of their uninfected
status, 50% of the randomly selected individuals were dissected before the experiments.

Experimental infections were performed using third instar larvae by placing them
in filtered water containing a trypanosomatid culture with the final concentration of
1 × 104 cells/mL. After one hour, the larvae were washed in three changes of filtered
water (with 5 min incubation in each) and finally transferred to the water, where they had
been grown before. Dissections were performed only for the larvae that remained alive.

2.5.2. Imagines

Mosquito larvae and/or pupae collected in nature were bred in water infused with dry
leaves/grass water infusion until metamorphosis. The emerging imagines were maintained
in transparent plastic bottles with pieces of cotton soaked in water and/or sugar syrup
as described previously [40]. For infection, these liquids were replaced for 10–12 h with
a 4-day-old trypanosomatid culture. The infected insects were dissected after defined
time intervals (1, 2 and 4 days). The absence of prior infection was assessed by dissecting
eighteen control individuals.

3. Results
3.1. Natural Trypanosomatid Infections in Overwintering Mosquitoes

In one of the two sampled caves, Santa-Maria, trypanosomatids were not detected in
any of the 74 examined mosquitoes (Table 1). In the Zhemchuzhnaya cave, trypanosomatids
were revealed both in January and in April, with the overall prevalence lower at the
later time point due to the remarkably lower proportion of infected Culex p. pipiens.
However, these differences were not statistically significant according to the “N-1” Chi-
square test (p = 0.2968 for the overall prevalence and p = 0.1916 for that in Cx. p. pipiens) [41].
Trypanosomatids were found in all three species collected: Cx. p. pipiens, Cx. torrentium
and Culiseta annulata.

The analysis of the 18S rRNA gene sequences from the positive specimens demon-
strated that the parasites belonged to five trypanosomatid species. Of these, two, namely
Crithidia dobrovolskii and C. brevicula, were detected four (in all three host species) and two
times (on both Culex spp.), respectively. The remaining three specimens (all from Cx. p.
pipiens) contained unique species of flagellates: M2005 was ~99.8% identical to Strigomonas
oncopelti, M2031 was ~99.8% identical to Paratrypanosoma confusum, and M2030 proved
to be a representative of a new trypanosomatid lineage not recorded before (Table S1,
Figure 2). None of these three species could be revealed in the cultures established from the
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corresponding specimens. Crithidia dobrovolskii and C. brevicula were detected there instead
(Table S1), suggesting mixed infections, in which they represented minor components, a
situation quite common in insects [42–47].

Table 1. Prevalence of trypanosomatid infections in overwintering mosquitoes.

Collection Date Cave Culex p. pipiens Culex torrentium Culiseta annulata Overall

26.01.22 Zhemchuzhnaya 3/55 (5.5%) 1/22 (4.5%) 1/18 (5.6%) 5/95 (5.3%)
11.03.22 Santa-Maria 0/32 (0%) 0/40 (0%) 0/2 (0%) 0/74 (0%)
13.04.22 Zhemchuzhnaya 2/111 (1.8%) 2/37 (5.4%) 0/0 4/148 (2.7%)

Given that C. dobrovolskii is very closely related to C. fasciculata and information on
its distribution is rather scarce, because this species was described quite recently [48], we
decided to check the phylogenetic position of one culture, CL6, preserved in the culture
collection of parasitic protists at the Zoological Institute RAS [32]. This culture was isolated
in the same geographic region as C. dobrovolskii (i.e., the Northwestern Federal District)
and, likewise, was very close to C. fasciculata, but by isoenzyme profile [49]. The 18S rRNA
gene sequence obtained from the culture CL6 was 100% identical to that of C. dobrovolskii.
Thus, the damsel bug Nabis limbatus, from which it has been isolated, can be added to the
list of recorded hosts.

3.2. Natural Trypanosomatid Prevalence in Adult Mosquitoes at the End of the Warm Season

To understand the situation with trypanosomatid infections at the end of the warm
season, mosquitoes (all proven to be representatives of the genus Aedes) were analyzed
in three regions of the Northwestern Federal District (Table S2). The prevalence of all
trypanosomatids was quite high, ranging from 64 to 94%, and the overwhelming majority
of these infections were due to monoxenous species (Tables 2 and S2). Although we could
detect only a single dixenous parasite species, a member of the TthII clade of Trypanosoma
theileri complex [24], the monoxenous ones were predominantly represented by C. brevicula
and C. dobrovolskii along with less frequent Crithidia sp. Cfm9 (closely related to C. pragensis)
and Wallacemonas sp. (Table S2, Figure 2).

Table 2. Trypanosomatid prevalence in Aedes spp. captured in late summer–early autumn.

Location
Prevalence

Total Monoxenous 1

Novgorod Region 14/19 (74%) 13/19 (68%) or 10/19 (53%) 2

Pskov Region 7/11 (64%) 6/11 (55%)
Leningrad Region 16/17 (94%) 15/17 (88%)

1 Minimal value deduced from all available data. 2 Values estimated from both sequence and morphology data, or
only from sequence data, respectively.

3.3. Natural Trypanosomatid Prevalence in Mosquitoe Larvae

Considering the high prevalence of trypanosomatids in adult mosquitoes, it was
decided to assess whether the infections are present in larvae. In total, 371 larvae belonging
to different species of the genera Aedes and Culex sampled from late spring to late summer
were examined, but trypanosomatids could not be detected in any of them (Table 3).
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Figure 2. Maximum likelihood phylogenetic tree based on 18S rRNA gene sequences. Isolates from
overwintering mosquitoes are in blue, those from the end of the warm season are in orange (only
the total number is shown if it exceeds four). The clades of genera not containing such isolates are
collapsed. Posterior probabilities and bootstrap values from maximum likelihood analysis are shown
at the nodes (values below 0.5 or 50% are replaced with dashes or omitted). Dots mark branches
with maximal support by both methods. The tree was rooted with the sequence of Bodo saltans
(Eubodonida) as an outgroup (shown in grey). Double-crossed branches are shortened by 50 %. The
scale bar denotes the number of substitutions per site.
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Table 3. Analysis of natural trypanosomatid prevalence in mosquito larvae.

Species Month Assessment Prevalence

Aedes riparius Late April Microscopy or PCR 0/41
A. punctor May Microscopy or PCR 0/54

A. communis May Microscopy or PCR 0/53
Culex p. pipiens August Microscopy 0/13
Cx. torrentium July–August Microscopy or PCR 0/210

3.4. Experimental Infections

In addition to the assessment of the natural trypanosomatid prevalence in larvae, a
series of experiments on their infection was performed using laboratory cultures of three
trypanosomatids: Crithidia fasciculata, the canonical parasite of mosquitoes, as well as the
two most common species according to our findings—C. brevicula and C. dobrovolskii. In all
our experiments, trypanosomatids could be observed in the intestine of all or the majority
of larvae 2 h after exposure to cultures. However, the parasites were unable to establish a
solid infection, and, after 24 h, purging was evident in all cases except for C. brevicula in
Aedes cantans (Table 4). Even in that experiment, the parasites could not be detected after
four days.

Table 4. Prevalence of trypanosomatids in experimental infections of larvae.

Host Parasite Control 2 h 24 h 4 d Pupae Imagines Died 3

Aedes cantans 1 Crithidia brevicula M1183 0/3 8/11 4/7 0/9 - - 0
Aedes punctor 2 Crithidia fasciculata 0/58 10/10 0/15 - 0/17 0/9 7

Aedes communis 2 Crithidia fasciculata 0/30 7/7 0/7 - 0/10 0/6 0
Culex torrentium 2 Crithidia fasciculata 0/70 10/10 0/30 - 0/20 0/8 2
Culex torrentium 2 Crithidia dobrovolskii 0/60 10/10 0/30 - 0/14 0/5 1

1 Bred in the lab, therefore the number of control specimens is limited. 2 Collected in nature, the control specimens
for these experiments are also included in the statistics of the Table 1. 3 Insects that were found dead at any stage
of the experiment were excluded from the analysis. Dashes mean “not assessed”.

The results were quite different for the imagines, the infection of which was attempted
using the cultures of C. brevicula and C. dobrovolskii isolated in this study (M1183 and M1173,
respectively). A high proportion of insects were infected even after four days with no signs
of decline in prevalence (Table 5), while the intensity of the infections increased (see below).
Given that C. brevicula is a species previously documented in a wide range of hosts [19,21,50],
we tested whether a culture from a phylogenetically distant and physiologically distinct
insect, the predatory damsel bug Nabis brevis, can be infective for mosquitoes. Despite over
30 years of continuous cultivation, the culture Nbr demonstrated the ability for a stable
infection in Aedes communis (Table 5).

Table 5. Trypanosomatid prevalence in experimental infections of Aedes communis imagines.

Parasite 1 d 2 d 4 d Control

Crithidia dobrovolskii 4/9 (44%) 3/4 (75%) 5/5 (100%)
0/18 (0%)Crithidia brevicula M1183 2/3 (67%) 18/38 (47%) 16/29 (55%)

Crithidia brevicula Nbr - - 2/2 (100%)
Dashes mean “not assessed”.

3.5. Trypanosomatid Development in the Gut

The success with the experimental infection of imagines suggested a more detailed
investigation of parasites’ development in the gut to make further conclusions on the
competence of mosquitoes as hosts of trypanosomatids.

Both C. brevicula and C. dobrovolskii developed similarly from the beginning of the
infection. After 24 h, most flagellates were revealed in the pylorus and ileum, where few-
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celled rosettes started to appear. Two days post infection, the rosettes were observed along
the entire length of the hindgut, i.e., from the pylorus to the rectum (Figure 3). Development
was not synchronous in different host individuals. While in some of them the parasites
covered the hindgut cuticle with a carpet of attached cells 2–4 days post infection, in others
only rare rosettes and/or a few swimming flagellates were observed at that time.
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Figure 3. Experimental infections of mosquitoes with two trypanosomatid species (DIC). (A–C)—Crithidia
brevicula; (D–F)—Crithidia dobrovolskii. (A,D)—pylorus; (B–E)–ileum; (C–F)—rectal ampulla. ep—gut
epithelium; lu—gut lumen; mt—Malpighian tubules; rg—rectal glands. Arrows point to trypanoso-
matid aggregates (rosettes). Scale bars—60 µm.

The development in the pylorus and ileum was similar in both species: the prolifer-
ation of cells within a rosette led to its expansion as a monolayer carpet enclosed into a
unite matrix (Figure 4A,D). In the mosquito rectum, the cells of both Crithidia spp. also
attached to the cuticular lining in large numbers. They settled not only on the wall of the
rectal ampulla, but also on the surface of the rectal glands (Figure 4B,E).
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Figure 4. Trypanosomatids in the hindgut of experimentally infected mosquitoes (96 h). (A,B,D,E)—
semithin sections stained with methylene blue-azure stain (light microscopy); (C–F)—TEM. (A–C)—
C. brevicula; (D–F)—C. dobrovolskii; (A,C,D,F)—ileum, (B–E)—rectum. Ac—acidocalcisome; cu—
cuticle; ep—epithelium fl—flagellum; fp—flagellar pocket; gc—glycocalyx; hd—hemidesmosome;
he—hemocoel; kp—kinetoplast; li—lipid droplets; lu—intestinal lumen; mi—mitochondrion; n—
nucleus; rg—rectal gland; tr—trachea; arrowheads—attached parasites. Scale bars: (A,B,D,E)—20 µm;
(C–F)—2 µm.

The analysis of the ultrastructure showed that both species of parasites harbored a thick
(~0.5–0.7 µm) layer of fibrillar glycocalyx (Figure 4C,F). The glycocalyces of neighboring
cells fused together, forming a unite matrix that enveloped the whole rosette/cluster. The
fixation of cells to the hindgut cuticle was achieved using a widened tip of a shortened
flagellum, which formed a zonal hemidesmosome at the inner surface of its membrane
(Figure 4C,F). The intraflagellar matrix in the tip was filled with bundles of filaments.
The nucleus, kinetoplast, mitochondrial branches, and lipid droplets were observed in
the cytoplasm of the attached flagellates of both species. However, acidocalcisomes were
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present only in C. brevicula, but not in C. dobrovolskii, which instead demonstrated a more
developed contractile vacuole complex (Figure 4C,F).

4. Discussion

Monoxenous trypanosomatid infections in mosquitoes deserve attention for several
reasons. Firstly, there is a growing evidence that these flagellates under certain conditions
can cause infections in humans, dogs, and other vertebrates [2]. Mosquitoes and other
bloodsucking insects, as compared to their kin with other feeding habits, should have
higher chances to deliver their parasites to a vertebrate body. Secondly, the occasional
infections of vertebrates at a long evolutionary distance apparently led to the origin of
dixenous parasite lineages [51] and mosquitoes might be a group that facilitated the
exploration of vertebrate hosts. Thirdly, the most divergent trypanosomatid known to date,
Paratrypanosoma confusum, inhabits mosquitoes [15]. Thus, these insects might be among
the earliest hosts of Trypanosomatidae. Finally, the abundance of mosquitoes suggests that
they may also play an important role in the circulation of monoxenous trypanosomatids in
ecosystems.

Previous studies have already shown that mosquitoes can be naturally infected not
only by trypanosomes, but also by various monoxenous trypanosomatid species [18–20].
The most important in this respect is the large-scale screening in Austria, which docu-
mented the presence of monoxenous trypanosomatids in various genera and species of
mosquitoes [19]. Interestingly, our analysis of infections at the end of the warm season
showed a very similar composition of parasite species. Although formally only a single
species, namely Crithidia brevicula, is shared between the two studies, the 18S rRNA gene
fragment sequenced by Austrian researchers does not allow discrimination of C. fasciculata
and C. dobrovolskii, as well as C. pragensis and Crithidia sp. Cfm9. Therefore, it is very
likely that all Crithidia spp. in both cases are the same. Then, the main differences consist
in the unique infections by Wallacemonas sp. in our dataset and Herpetomonas sp. (from
the mosquito species Coquillettidia richardii, which we did not examine) in the Austrian
dataset [19].

The uninfected status of larvae from natural habitats, where they theoretically could
massively acquire trypanosomatids given their filtration feeding habit [52] and the failure
to establish such an infection in experimental conditions suggest that this developmental
stage is resistant to the parasites investigated here. This agrees with the observation that
trypanosomatid infections in insect larvae are an exception rather than a rule [3]. However,
this contrasts with previously published successful results of the transmission of Crithidia
fasciculata (one of the species that we used in our experiments) from imagines to larvae,
which then preserved the parasites even after metamorphosis [53]. This contradiction is
not surprising given that the actual identity of the flagellate used in that work is obscure:
the authors have neither isolated a culture nor presented an image of the studied parasite.
At that time, all trypanosomatids without an undulating membrane found in mosquitoes
were assigned to C. fasciculata [8], but nowadays it is clear that this could easily be a
member of a different genus. Of note, experiments performed by Franklin G. Wallace
with a culture of Crithidia fasciculata have shown results in line with ours [54]. In any
case, as judged by some publications that are over a century old, it appears that certain
monoxenous trypanosomatids can infect mosquitoes at the larval stage and undergo
transphasic transmission to imagines [4,55,56]. The available images allow it to be stated
that these parasites are morphologically distinct from C. fasciculata, so their phylogenetic
position is to be determined.

Although trypanosomatids infecting mosquitoes at the larval stage apparently exist,
they seem to be rare. Thus, the high (up to 88%) prevalence of monoxenous trypanoso-
matids that we revealed in Aedes spp. can be explained by the gradual accumulation of
parasites in mosquito populations during the warm season, at the end of which we analyzed
them. To fulfil the energy needs, both male and female mosquito imagines feed on sugar-
containing liquids, such as honeydew, nectar, fruit exudates, or sap [17,52]. Contamination
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of these liquids (or water, which they also drink) with feces of trypanosomatid-infected
insects can serve as a source of infection. It is then understandable why these mosquitoes
contained parasites with a wide host range. Crithidia brevicula has been considered a spe-
cific parasite of Nabis brevis, a predatory damsel bug, after which it received its name. The
specificity of the relationships was justified by the presence of the parasite in overwintering
bugs [39]. Later, the same trypanosomatid species was detected in other true bugs (preda-
tory Gerridae (water striders) and phytophagous Miridae (meadow bugs)), mosquitoes, as
well as flies of five different families (Calliphoridae, Muscidae, Heleomyzidae, Sepsidae,
and Antomyidae) [19,21,50]. Our experimental infections demonstrated that this species
progressively develops in Aedes ensuring stable infection, which can also be considered
specific. Moreover, we revealed that the type culture of C. brevicula (Nbr), which has been
isolated from Nabis brevis, also effectively infects these mosquitoes. Finally, this trypanoso-
matid was also detected in overwintering Culex spp. All these facts confirm that Crithidia
brevicula is a generalist species.

Crithidia dobrovolskii has been described recently and data on its distribution over
host taxa are still scarce. Beyond mosquitoes, it has been previously recorded from
only two fly species: parasitoid Lypha dubia (Tachinidae) and the tsetse Glossina fuscipes
(Glossinidae) [48,57]. Owing to the close relatedness of this species to C. fasciculata, we
extended the list of recorded hosts by adding the damsel bug Nabis limbatus, from which
the culture CL6 (showing the same affinity by isoenzyme profiles) had been isolated almost
40 years ago, but has not yet been analyzed by 18S rRNA gene sequencing [32,49].

The third species of the genus Crithidia that we documented in mosquitoes is an
undescribed one, closely related to C. pragensis. In addition to mosquitoes, it has also been
isolated (as the culture Cfm9) from a damsel bug, namely Nabis flavomarginatus [49]. The
occurrence of this species is relatively low both in our material and (if we assume that this
was the same species, see above) in the Austrian large-scale study [19]. In the absence of
additional data, it is not possible to judge whether this is due to the non-specificity of this
trypanosomatid to mosquitoes or its overall lower abundance in the studied region.

It is notable that all three Crithidia spp. documented in this work have been previously
found in damsel bugs. Crithidia dedva is one more species of that kind, since it has been
originally described from Nabis flavomarginatus [22] and later recorded in Culex sp. [18].
Damsel bugs are known as very abundant predators feeding on a wide range of insects [58],
including mosquitoes [59]. The fact that certain trypanosomatid species with proven or
presumed wide specificity are shared between Nabis spp. and mosquitoes points to these
parasites’ circulation between the two kinds of hosts. Both mosquitoes and damsel bugs,
which also feed on plant juices [58], can be infected via fecal contamination of the substrate,
but the latter also have an opportunity to acquire parasites by predation on the former.
We propose that owing to the high abundance and motility, mosquitoes ensure effective
growth and spreading of trypanosomatid populations during the warm season. Aedes
spp. overwintering at the egg stage are not able to support the continuity of the parasites’
circulation in ecosystems and therefore represent the so-called facultative hosts. Conversely,
their relatives of the genera Culex and Culiseta, which outlive wintertime as imagines,
preserve their parasites to the next year. However, our experiments demonstrated the
inability of Crithidia spp. to infect mosquito larvae, suggesting that these trypanosomatids
cannot be transmitted from overwintered females (they die soon after laying eggs [52]) to
their progeny. The resting stages of Crithidia spp., the endomastigotes, preserve viability for
about 10 days [3], which is not enough for the emergence of new imagines in the spring [52].
Therefore, without participation of other hosts (e.g., damsel bugs), the circulation of such
parasites would be broken.

The nature of the single infection by Wallacemonas sp. detected in A. diantaeus is unclear.
Members of this genus were encountered in various flies and predatory bugs [21,31,60–62].
Recently, W. raviniae, which had been originally described from a flesh fly Ravinia sp. (Sar-
cophagidae), was found to develop in a horsefly in co-infection with a more common
Trypanosoma theileri-like trypanosome [43]. Given the similarity to Crithidia spp. in morphol-
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ogy and localization (in the hindgut), it is tempting to also extrapolate the wide specificity
and overwintering in a suitable host. However, the transient nature of such infections
cannot be excluded.

The situation with other monoxenous trypanosomatids encountered in mosquitoes
appears to be different. The presence of three non-Crithidia species in overwintering fe-
male mosquitoes suggests the specificity of these infections. The observed low prevalence
cannot be considered a counterargument in this respect, since it is explainable from the
point of view of mosquito biology. Mosquitoes that overwinter as imagines emerge from
pupae shortly before going to caves and have a restricted time to feed and acquire para-
sites [52]. Of note, they rarely feed on blood in this period, and, consistently, we detected
no trypanosomes in their intestines.

The specificity of these three species may be different. All records of Paratrypanosoma
available in the literature are from Culex spp.: the only described species, P. confusum, or
closely related flagellates have been detected in Cx. pipiens, Cx. tarsalis, and Cx. fusco-
cephala [15,17,20,63]. This points to a narrow specificity of paratrypanosomes (at species
or genus level) and suggests that there should be an adaptation ensuring continuous
circulation of these parasites in nature, such as the ability to infect larvae.

To the best of our knowledge, Strigomonas oncopelti has not been documented in any
insects after its original description (under the name Herpetomonas oncopelti using five
isolates from different sources: seed bugs Oncopeltus sp., O. fasciatus, and Lygaeus kalmii (all
Lygaeidae), as well as milkweeds Asclepias syriaca and A. nivea (Apocyanaceae) [64]. That
description was based on mixed material and some cells were later recognized as a different
species described as Leptomonas oncopelti [65]. Although at first these cultures required
different media to be established, later they became indistinguishable by serological and
biochemical criteria [66], suggesting that at least in some of them species replacement
might occur. Only one out of five cultures isolated upon description was widely studied
and deposited into the American Type Culture Collection. However, its actual origin is
now considered to be “unknown”, and justified doubts have been cast on its ability to
inhabit any of the hosts listed in its description [8]. Indeed, there were no more records of
morphologically similar trypanosomatids from any plants [67], nor phylogenetically related
ones in any bugs of the family Lygaeidae sampled throughout the world [42,45,46,60,68–71].
Interestingly, the paper describing Strigomonas oncopelti also contained a description of
Herpetomonas culicidarum based on two cultures isolated from the mosquitoes Culex pipiens
and Anopheles quadrimaculatus [64]. Later it was demonstrated that these two cultures were
distinct: the one from Cx. pipiens did not require hemin for its growth —a feature now
unambiguously indicating the presence of bacterial symbionts, which is characteristic of,
e.g., Strigomonas spp. [1]. However, later both mosquito-derived isolates were included into
Crithidia fasciculata as varieties [8] and became forgotten. The abovementioned information
and the fact that Strigomonas culicis is a parasite of mosquitoes suggest that the same can be
true for S. oncopelti and its close relative detected in our work.

Little can be said about the third non-Crithidia species from overwintering mosquitoes.
It belongs to a mysterious group, which has not been sampled before, at least in modern
time, when molecular methods started to be used. As in the case of S. cf. oncopelti,
this demonstrates how much the trypanosomatids of mosquitoes are still underexplored.
However, for this particular species, in addition to the presence in an overwintering
mosquito and the absence of records from other hosts, there is one more argument for the
specificity of this parasite: it was revealed in Malpighian tubules, which represent a very
peculiar localization, in contrast to the more common midgut and hindgut [3]. Importantly,
in Blastocrithidia papi, this localization is associated with overwintering and is necessary
for the coordination of the host and parasite life cycles so that the massive production of
infective cyst-like amastigotes is timed to oviposition in females [72]. It would be interesting
to investigate whether the same occurs with this obscure mosquito trypanosomatid.
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5. Conclusions

The mosquitoes studied in this work harbored various trypanosomatids showing
different life strategies. Crithidia brevicula, C. dobrovolskii, and, likely, other mosquito-
inhabiting Crithidia spp. represent parasites with a wide host range. They are able to
parasitize not only different kinds of mosquitoes, but also other insects, such as flies and
true bugs. Infecting mosquitoes, which are highly abundant and motile insects, ensures
efficient growth of trypanosomatid populations and dissemination of infective forms in
the ecosystems. However, since these species are unable to infect mosquito larvae, the
continuity of these parasites’ circulation apparently requires involvement of other hosts,
most likely the predatory damsel bugs. Thus, for these species, mosquitoes represent
facultative hosts.

Trypanosomatids such as Paratrypanosoma cf. confusum, Strigomonas cf. oncopelti, and a
representative of a new previously undocumented lineage were found in overwintering
Culex p. pipiens suggesting their narrow specificity and, consequently, obligate status of
the host in such relationships. We propose that in the absence of long-lived resting stages,
which were not observed in any trypanosomatids from mosquitoes, the circulation of such
species requires infection in larvae with subsequent transphasic transmission to imagines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11111326/s1, Table S1: Analysis of trypanosomatid
presence in overwintering mosquitoes; Table S2: Analysis of trypanosomatid presence in mosquitoes
captured in the late summer or early autumn.
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