QUASI-LIE BIALGEBRA STRUCTURES OF sl₂, WITT AND VIRASORO ALGEBRAS

by A.S. DZHUMADIL'DAEV

Institute of Mathematics, Academy of Sciences of Kazakhstan, Pushkin str. 125, Alma-Ata, 480021, Kazakhstan

Abstract. The cohomology group $H^1(L, L \wedge L)$ is calculated for the cases when L is an sl(2), Witt or Virasoro Lie algebra (both modular and non-modular). This allows to classify quasi-Lie bialgebra structures on these algebras.

1. Introduction

The question of calculating quasi-Lie bialgebra structures on a given Lie algebra L can be divided into two parts:

- (i) first calculate the cohomology group $H^1(L, L \wedge L)$; then
- (ii) for a given cocycle $\psi \in Z^1(L, L \wedge L)$, check whether the cohomology class of the cocycle

$$\mathrm{Alt}(1\otimes\psi)\otimes\psi\in Z^1(L,L\wedge L\wedge L)$$

is trivial.

If the answer to the last question is "yes", i.e.

$$\mathrm{Alt}(1\otimes\psi)\otimes\psi=d\omega,$$

for some $\omega \in C^0(L, L \wedge L \wedge L) = L \wedge L \wedge L$, then the triple (L, ψ, ω) is called a quasi-Lie bialgebra of L [1].

If $\omega = 0$, then the quasi-Lie bialgebra is called a <u>Lie bialgebra</u> on L. A quasi-Lie bialgebra (L, ψ, ω) has coboundary type if $\psi = dr$ is a coboundary for some $r \in L \wedge L$.

According to quantum deformation ideology [2], the question of deformation of a Lie bialgebra is more correct than the question of deformation of a Lie algebra. In the first approach, a quantum deformation of L is just the same as a Lie bialgebra on L.

¹⁹⁹¹ Mathematics Subject Classification. 17B37, 17B50, 17B56, 17B68. Key words and phrases. Cohomology of Lie algebra, quasi-Lie bialgebra.

To a quasi-Lie bialgebra (L, ψ, ω) , one can a associate a Lie algebra D(L) = L + L' (the double of L), where L' is the coadjoint L-module endowed by multiplication induced by ψ and the multiplication between L and L' is defined by ψ and ω .

In our paper we study nontrivial quasi-Lie bialgebra structures on the simple three-dimensional Lie algebra, the Witt algebra and its central extensions. The characteristic p of the ground field P may be zero or positive. In [3], [4] coboundary type bialgebra structures on the Virasoro algebra are studied. We supplement this result proving that any quasi-Lie bialgebra structure on such an algebra will have coboundary type, except the following three cases:

$$p = 2, L = sl_2, p = 5, 7, L = W_1.$$

In the latter cases, the doubles of Witt algebras give us examples of simple Lie algebras having extremely short filtration for p=5,7. Recall that according to A.I. Kostrikin's and A.A. Premet's results any simple Lie algebra of characteristic p>7 has long or short filtration. Examples of simple Lie algebras with extremely short filtrations in characteristic 2 or 3 were known earlier.

2. The main result

Let P be the ground field and p, the characteristic of P. For the set \mathcal{X} , by $\langle \mathcal{X} \rangle$ we will denote its linear span over P. Let L be one of the following Lie algebras

$$sl_2 = \langle e_-, e_0, e_+ | [e_-, e_+] = e_0, \ [e_0, e_{\pm}] = \pm e_{\pm} \rangle, \quad p \ge 0$$

(this algebra is simple for any p; if $p \neq 2$ this is really the traceless 2×2 matrix algebra);

$$W_1^+ = \langle e_i | [e_i, e_j] = (j - i)e_{i+j}, -1 \le i, j, i, j \in \mathbb{Z} \rangle, p = 0$$

(one-sided Witt algebra isomorphic to a Lie algebra of formal vector fields on the line);

$$W_1 = \langle e_i | [e_i, e_j] = (j-i)e_{i+j}, \ i, j \in \mathbb{Z} \rangle, \ p = 0$$

(two-sided Witt algebra isomorphic to a Lie algebra of vector fields on the circle);

$$W_1 = \langle e_{\alpha} | [e_{\alpha}, e_{\beta}] = (\beta - \alpha) e_{\alpha + \beta}, \ \alpha, \beta \in \mathbb{Z}/p\mathbb{Z} \rangle, \ p > 2$$

(modular Witt algebra of dimension p);

$$V_1 = \langle e_i, z \mid [e_i, e_j] = (j - i)e_{i+j} + \delta_{i+j,o}(i^3 - i)z, [e_i, z] = 0, \ i, j \in \mathbb{Z} \rangle, \ p = 0$$

(Virasoro algebra isomorphic to a nontrivial central extension of the two-sided Witt algebra);

$$V_1 = \langle e_{\alpha}, z \mid [e_{\alpha}, e_{\beta}] = (\beta - \alpha)e_{\alpha + \beta} + \delta_{\alpha + \beta, o}(\alpha^3 - \alpha)z, \ [e_{\alpha}, z] = 0, \ \alpha, \beta \in \mathbb{Z}/p\mathbb{Z} \rangle, \ p = 2$$

(modular Virasoro algebra isomorphic to a nontrivial central extension of the modular Witt algebra);

$$W_1^+ \oplus Z$$
, $W_1 \oplus Z$, $p \ge 0$

(trivial central extensions of Witt algebras).

Let

$$f_i = e_i/(i+1)!, -1 \le i,$$

then

$$[f_i, f_j] = \left(\binom{i+j+1}{j} - \binom{i+j+1}{i}\right) f_{i+j}, -1 \le i, j$$

Since the structure constants are integers, we can consider their reductions modulo p, getting in this way the modular infinite-dimensional Lie algebra $W_1^+ \pmod{p}$. It is easy to see that setting

$$f_i = \sum_{\alpha \in \mathbb{Z}/p\mathbb{Z}} \alpha^{-1-i} e_{\alpha} \le i \le p-2,$$

we can get an imbedding

$$W_1 = \langle f_i | -1 \le i \le p-2 \rangle \subset W_1^+ \pmod{p}.$$

In this basis the multiplication in the modular Virasoro algebra is given as

$$[f_i, f_j] = \left(\binom{i+j+1}{j} - \binom{i+j+1}{i}\right) f_{i+j} + \delta_{i+j,p}(-1)^i z.$$

We endow the infinite-dimensional Lie algebras

$$W_1, W_1^+, V_1$$

with the filtration topology taking as a base of the neighborhoods of the zero subspaces

$$\mathcal{L}_1 = \langle e_j | j \geq i \rangle, \ i \in \mathbb{Z}.$$

For

$$(L \wedge L)_a = \langle e_j \wedge e_{a-j} | j \in \mathbb{Z}, j < \frac{a}{2}, -1 \le j \text{ (if } L = W_1^+) \rangle, \ a \in \mathbb{Z}$$

in the case $L=W_1$, we allow infinite sums of type $\sum_{i<\frac{a}{n}}\lambda_i e_i \wedge e_{a-i}$.

THEOREM. Let L be one of the following Lie algebras: sl_2 $(p \ge 0)$, W_1^+ (p = 0), W_1 $(p \ne 2)$, V_1 $(p \ne 2)$, $W_1^+ \oplus Z$, $W_1 \oplus Z$ $(p \ge 0)$.

(i) Then $H^1(L, L \wedge L) = 0$, except for the following cases:

$$p = 2, L = sl_2,$$

 $H^1(L, L \wedge L)$ is two-dimensional and the basic cocycles ψ_-, ψ_+ can be given by the formulas

$$\psi_{-}(e_{-}) = e_{0} \wedge e_{+}, \ \psi_{-}(e_{0}) = 0, \ \psi_{-}(e_{+}) = 0,$$

 $\psi_{+}(e_{-}) = 0, \ \psi_{+}(e_{0}) = 0, \ \psi_{+}(e_{+}) = e_{-} \wedge e_{0};$
 $for \quad p = 5, 7, \quad L = W_{1}.$

 $H^1(L, L \wedge L)$ is one-dimensional and nonzero values of the basic cocycle ψ_p on f_i , $-1 \leq i \leq p-2$, can be obtained from the following cochain $\psi \in C^1(W_1^+, W_1^+ \wedge W_1^+)$ reducing modulo p (in the case p=5 the last two lines should be omitted):

$$\psi(f_{-1}) = 0,$$

$$\psi(f_0) = 0,$$

$$\psi(f_1) = f_{-1} \wedge f_2 - f_0 \wedge f_1,$$

$$\psi(f_2) = 2f_{-1} \wedge f_3 - f_0 \wedge f_2,$$

$$\psi(f_3) = 5f_{-1} \wedge f_4 - 3f_0 \wedge f_3 + 2f_1 \wedge f_2,$$

$$\psi(f_4) = 10f_{-1} \wedge f_5 - 5f_0 \wedge f_4 + 2f_1 \wedge f_3,$$

$$\psi(f_5) = -4f_0 \wedge f_5 - f_1 \wedge f_4 + 3f_2 \wedge f_3,$$

(ii) $(sl_2, \psi_-, 0)$ and $(sl_2, \psi_+, 0)$ are Lie bialgebras.

For $\omega = 2f_{-1} \wedge f_0 \wedge f_1$, p = 5, 7, the triple (W_1, ψ_p, ω) forms a quasi-Lie bialgebra. In the case p = 5 the double $D(W_1)$ is isomorphic to the 10-dimensional classical simple Lie algebra B_2 , and in the case p = 7, the double $D(W_1)$ is isomorphic to 14-dimensional exceptional simple Lie algebra of type G_2 .

REMARK 1. Note that the 7-dimensional Witt algebra

$$W_1 = \langle f_i | -1 \le i \le 5 \rangle$$

with nonzero terms in the multiplication table given as follows

is a Lie algebra not only over the field of characteristic 7, but also over the ring $\mathbb{Z}/14\mathbb{Z}$. The cochain ψ_{14} obtained from ψ modulo 14 will be also a cocycle over the ring $\mathbb{Z}/14\mathbb{Z}$. So, we obtain G_2 as a double of 7-dimensional Witt algebra over $\mathbb{Z}/14\mathbb{Z}$.

Remark 2. Let Q be a Lie algebra and Q_0 , a subalgebra of Q. Construct a Weisfeiler filtration

$$Q = Q_{-q} \supset \cdots \supset Q_{-1} \supset Q_0 \supset Q_1 \supset \cdots \supset Q_r \supset 0$$

where

$$\begin{aligned} Q_{i+1} &= \langle x \in Q_i | [Q,x] \subseteq Q_i \rangle, \ i \geq 0 \\ Q_{-1}/Q_0 \text{ is an irreducible } Q_0\text{-module,} \\ Q_{-i-1} &= [Q_{-1},Q_{-i}], \ i \geq 1. \end{aligned}$$

The filtration is long if $r \ge 2$, short if r = 1, and extremely short if r = 0. For classical simple Lie algebras (p = 0 or p > 7), any filtration will be short. For simple Lie algebras of Cartan type (p > 7) the filtration will be long.

Let us prove that imbeddings

$$W_1 \subset D(W_1), p = 5 \text{ or } 7$$

give us an example of extremely short filtrations. Quotient-modules $D(W_1)/W_1$ as W_1 -modules are coadjoint modules; in particular, they are irreducible. Since W_1 is a simple Lie algebra and a first prolongation $(D(W_1))_1$ will be an ideal in the zero component $(D(W_1))_0$, we get a two-term filtration

$$D(W_1) = (D(W_1))_{-1} \supset (D(W_1))_0 = W_1 \supset 0.$$

Since, according to the theorem, $D(W_1)$ will be a simple Lie algebra, we obtain an example of simple Lie algebras in characteristic p = 5,7 with extremely short filtrations.

3. Preliminary facts

Let Q be a Lie algebra and M is a Q-module. Suppose that H is a Cartan subalgebra and Q and M are semisimple H-modules. Let $C^*(Q,M) = \bigoplus_k C^k(Q,M)$ be the standard cochain complex. Recall that

$$\begin{split} &C^0(Q,M)=M,\\ &C^1(Q,M)=\langle \text{linear maps }\alpha:Q\to M\rangle\\ &C^2(Q,M)=\langle \text{skew-symmetric bilinear maps }\beta:Q\times Q\to M\rangle \end{split}$$

The coboundary operator

$$d: C^k(Q, M) \rightarrow C^{k+1}(Q, M)$$

for small k is defined by the formulas

$$dm(x) = x(m),$$
 $k = 0,$
 $d\alpha = -\alpha[x, y] + x\alpha(y) - y\alpha(x),$ $k = 1.$

Let

$$Z^k(Q, M) = \langle \varphi \in C^k(Q, M) | d\varphi = 0 \rangle$$
 (subspace of cocycles),
 $B^k(Q, M) = \langle d\varphi | \varphi \in C^{k-1}(Q, M) \rangle$ (subspace of coboundaries),

and

$$H^k(Q,M) = Z^k(Q,M)/B^k(Q,M)$$

be the k-cohomology of a Lie algebra Q with coefficients M.

The first cohomology space $H^1(Q, M)$ has many interpretations. For example, $H^1(Q, Q)$ is isomorphic to the space of outer derivations of Q and $H^1(Q, Q \wedge Q)$ is responsible for the quasi-Lie bialgebra structures on Q. Recall that

$$H_1(Q,P) \simeq Q/[Q,Q].$$

LEMMA 1. Let

$$C_0^*(Q, M) = \langle \varphi \in C^*(Q, M) | h\varphi = 0, \ \forall h \in H \rangle$$

be the subcomplex of invariants under the action of H. Then the cohomology of $C_0^*(Q,M)$, denoted by $H_0^*(Q,M)$, is isomorphic to $H^*(Q,M)$.

In the sequel, L denotes one of the Lie algebras described in Section 2.

In our cases H is equal either to $\langle e_0 \rangle$ or $\langle f_0 \rangle$ and thus one-dimensional or equal to $\langle e_0, z \rangle$ ($\langle f_0, z \rangle$) and thus two-dimensional (in the central extension case). The Cartan decompositions are

$$L = \bigoplus_{i} L_{i}, \qquad L_{i} = \langle e_{i} \rangle \text{ or } \langle f_{i} \rangle, \ (i \geq -1)$$

$$L \wedge L = \bigoplus_{a} (L \wedge L)_{a}, \qquad (L \wedge L)_{a} = \langle e_{i} \wedge e_{a-i} \rangle, \ (i < \frac{a}{2})$$

All of our cochains will satisfy conditions

(1)
$$\alpha(e_a) \in (L \wedge L)_a, \quad a \in C^1(L, L \wedge L)$$

 $r \in (L \wedge L)_0.$

Let

$$\mathcal{L}_{1}^{+} = \langle e_{i} \mid i \geq 1 \rangle = \langle f_{i} \mid i \geq 1 \rangle \quad (i \leq p - 2, \text{ if } p \neq 0)$$

$$\mathcal{L}_{1}^{-} = \langle e_{i} \mid i \leq -1 \rangle \quad (i \leq p - 2, \text{ if } p \neq 0).$$

LEMMA 2. $H_1(\mathcal{L}_1^+, P)$ is 2-dimensional and the classes of the elements f_1, f_2 form a basis. $H_1(\mathcal{L}_1^-, P)$ is 2-dimensional and a basis of cohomology classes is provided by the elements e_{-1}, e_{-2} .

PROOF. If i > 2, then

$$e_{i} = \frac{1}{(i-2)}[e_{1}, e_{i-1}] \in [\mathcal{L}_{1}^{+}, \mathcal{L}_{1}^{+}],$$

$$e_{-i} = \frac{1}{(2-i)}[e_{-1}, e_{-i+1}] \in [\mathcal{L}_{1}^{-}, \mathcal{L}_{1}^{-}].$$

It is obvious that

$$e_1, e_2 \notin \langle [e_i, e_j] \mid i+j=1, 2 \quad 0 < i, j \rangle,$$

 $e_{-1}, e_{-2} \notin \langle [e_{-i}, e_{-j}] \mid i+j=1, 2, \quad 0 < i, j \rangle.$

Let

$$C(L) = \langle x \in L \wedge L \mid [f_{-1}, X] = 0 \rangle.$$

LEMMA 3. For $L = W_1^+$ (p = 0), W_1 , or V_1 $(p \neq 0)$, the following is true:

$$C(L) \subseteq \bigoplus_{k \ge 0} (L \wedge L)_{2k-1},$$

namely, C(L) is generated by elements of type

$$\sum_{i=-1}^{k-1} (-1)^i f_i \wedge f_{2k-1-i}.$$

For $L = W_1$ or V_1 (p = 0), the following is true:

$$C(L) \subseteq \bigoplus_{a \le -3} (L \wedge L)_a \oplus \bigoplus_{k \ge 0} (L \wedge L)_{2k-1}$$

PROOF. Let

$$X = \sum_{i < \frac{a}{2}} \lambda_i e_i \wedge e_{a-i} \in C(L) \cap (L \wedge L)_a.$$

Represent X as a sum of X' and X'', where

$$X' = \sum_{-1 \le i < \frac{a}{2}} \mu_i f_i \wedge f_{a-i}, \quad \mu_i = \lambda_i (i+1)! (a-i+1)!,$$

$$X'' = \sum_{i < -1, i < \frac{a}{2}} \lambda_i e_i \wedge e_{a-i} \quad (if \quad L = W_1 \text{ or } V_1 \ (p=0)).$$

Then

$$X, X'' \in C(L)$$
.

If $a=2k, k \geq 0$, then

 $[f_{-1}, X'] = (\mu_{-1} + \mu_0)f_{-1} \wedge f_{2k} + \dots + (\mu_{k-2} + \mu_{k-1})f_{k-2} \wedge f_{k+1} + \mu_{k-1}f_{k-1} \wedge f_k,$ therefore,

$$X' \in C(L) \Rightarrow \mu_{k-1} = 0, \quad \mu_{k-2} = 0, \dots, \mu_{-1} = 0 \Rightarrow X' = 0.$$

If a = 2k - 1, $k \ge 0$, then

$$[f_{-1}, X'] = \sum_{i=-1}^{k-2} (\mu_i + \mu_{i+1}) f_i \wedge f_{2k-2-i},$$

that is why,

$$X' \in C(L) \Rightarrow X' = \sum_{i=-1}^{k-1} (-1)^i \mu_0 f_i \wedge f_{2k-1-i}.$$

So, for $L = W_1^+$ (p = 0), W_1 or V_1 (p > 0) the lemma is proved. Let us consider the condition

$$[f_{-1}, X''] = 0.$$

Take the maximal $j \leq -2$ such that $\lambda_j \neq 0$. Since

$$[f_{-1},X^{\prime\prime}]-\lambda_{j}e_{j}\wedge[f_{-1},e_{a-j}]\in\langle e_{s}\wedge e_{a-s}\mid s<\frac{a}{2},\ s$$

we have

$$[f_{-1}, e_{a-j}] = 0,$$

from what follows, $a = j - 1 \le -3$. \square

For the Lie algebra Q, the subalgebra N and the Q-module M, let

$$C^{1}(Q, N, M) = \langle \alpha : Q \to M \mid \alpha(x) = 0, \ \forall x \in N \rangle,$$

$$Z^{1}(Q, N, M) = C^{1}(Q, N, M) \cap Z^{1}(Q, M).$$

LEMMA 4. For $L \supseteq W_1^+$, we have $Z^1(L, W_1^+, L \wedge L) = 0$.

PROOF. Let $\alpha \in Z^1(L, W_1^+, L \wedge L)$ and i be the maximal integer such that $\alpha(e_i) \neq 0$. Then $i \geq -2$. Moreover,

$$e_i \notin \langle [e_j, e_s] \mid j + s = i, j > i, \quad s > i \rangle,$$

because

$$d\alpha(e_j, e_s) = 0$$
, $j + s = i$, $j > i$, $s > i \Rightarrow \alpha([e_j, e_s]) = 0$.

So, by lemma 2, i = -2. On the other hand,

$$d\alpha(e_{-1},e_i)=0 \Rightarrow [e_{-1},\alpha(e_i)]=0,$$

and by Lemma 3 and according to (1), $i \leq -3$, contradiction. \square

LEMMA 5. $(L \neq sl_2)$. Any cocycle $\alpha \in Z^1(L, L \wedge L)$ is cohomologous to some cocycle ψ such that $\psi(e_{-1}) = 0$.

PROOF. According to (1), for some $\lambda_i \in P$, $i \geq 1$,

$$\alpha(e_{-1}) = \sum_{i \geq 1} e_{-1} \wedge e_{i-1}.$$

Let

$$r = \sum_{i>1} \mu_i e_{-i} \wedge e_i \in (L \wedge L)_0,$$

where

$$\mu_1 = \frac{\lambda_1}{2}, \quad \mu_i = \sum_{j=2}^i \frac{\lambda_j}{(i+1)i\dots(j+1)}, \quad i \ge 2.$$

Then

$$[e_{-1}, r] = \alpha(e_{-1}).$$

So, the cocycle $\psi = \alpha - dr$ satisfies the condition $\psi(e_{-1}) = 0$. \square

4. Proof of the theorem in case $L = sl_2$.

The exterior power $L \wedge L$ as an L-module is isomorphic to the adjoint L-module:

$$e_- \mapsto e_- \wedge e_0$$
, $e_0 \mapsto e_- \wedge e_+$, $e_+ \mapsto e_0 \wedge e_+$.

So, $H^1(L, L \wedge L)$ is isomorphic to the space of outer derivations Out $L = H^1(L, L)$. If $p \neq 2$, the Lie algebra sl_2 has a nondegenerate Killing form, and standard reasonings using the Casimir element show that

$$H^1(L,L) = 0, \quad p \neq 2.$$

Let p=2. For any prime p and $x \in L$, the endomorphism $(\operatorname{ad} x)^p$ is a derivation. If for some $\lambda_-, \lambda_+ \in P$, the derivation $D = \lambda_-(\operatorname{ad} e_-)^2 + \lambda_+(\operatorname{ad} e_+)^2$ is interior, i.e. $D = \operatorname{ad} X$, $X \in L$, then

$$D(e_{-}) = \lambda_{+}e_{+} = [X, e_{-}] \Rightarrow \lambda_{+} = 0,$$

 $D(e_{+}) = \lambda_{-}e_{-} = [X, e_{+}] \Rightarrow \lambda_{-} = 0.$

This means that $(ad e_{-})^2$ and $(ad e_{+})^2$ are linearly independent outer derivations. For any $F \in \mathbb{Z}_0^1(L, L)$, we have

$$dF(e_0, e_{\pm}) = 0 \Rightarrow [e_{\pm}, F(e_0)] = 0 \Rightarrow F(e_0) = 0.$$

 $dF(e_-, e_+) = 0 \Rightarrow [e_-, F(e_+)] = [e_+, F(e_-)].$

Therefore, for some $a, b, c \in P$,

$$F(e_{+}) = ae_{-} + be_{+}, \quad F(e_{-}) = -be_{-} + ce_{+}.$$

In other words,

$$F = a(\text{ad } e_{-})^{2} + c(\text{ad } e_{+})^{2} + b \text{ ad } e_{0}.$$

So, Out L is two-dimensional and the classes of the derivations (ad e_{-})², (ad e_{+})² form a basis.

To conclude the proof, it is enough to notice that these derivations correspond to cocycles ψ_-, ψ_+ for $H^1(L, L \wedge L)$.

5. Proof of the theorem in the case $L \neq sl_2$

Recall that for $-1 \le i$ (in the p > 2 case, $i \le p - 2$) instead of e_i we take f_i and the multiplication between f_i , f_j is defined by binomial coefficients.

Let $0 \neq \alpha \in \mathbb{Z}_0^1(L, L \wedge L)$. By Lemma 5 there exists a cocycle β cohomologous to α such that

$$\beta(f_{-1}) = 0.$$

If $\beta(f_i) = 0$, for all $i \geq -1$, then by Lemma 4, $\beta = 0$.

If L has a central element z, then

$$d\beta(z, X) = 0, \ \forall X \in L \Rightarrow [X, \beta(z)] = 0 \Rightarrow \beta(z) = 0.$$

So, one can find a minimal i such that $\beta(f_i) \neq 0$. By Lemma 3, i is an odd number. By Lemma 2, this is possible only if i = 1. Furthermore,

$$d\beta(f_{-1}, f_j) = 0 \Rightarrow [f_{-1}, \beta(f_j)] = \beta(f_{j-1}).$$

The last conditions for j = 1, 2, 3, 4, 5 give us

$$\beta(f_{-1}) = 0$$

$$\beta(f_0) = 0$$

$$\beta(f_1) = tf_{-1} \wedge f_2 - tf_0 \wedge f_1$$

$$\beta(f_2) = 2tf_{-1} \wedge f_3 - tf_0 \wedge f_2$$

$$\beta(f_3) = af_{-1} \wedge f_4 + (2t - a)f_0 \wedge f_3 + (-3t + a)f_1 \wedge f_2$$

$$\beta(f_4) = (-5t + 3a)f_{-1} \wedge f_5 + (5t - 2a)f_0 \wedge f_4 + (-3t + a)f_1 \wedge f_3$$

$$\beta(f_5) = bf_{-1} \wedge f_6 + (-5t + 3a - b)f_0 \wedge f_5 + (10t - 5a + b)f_1 \wedge f_4 + (-13t + 6a - b)f_2$$

for certain $t, a, b \in P$.

Now the conditions $d\beta(f_1, f_2) = 0$, $d\beta(f_1, f_4) = 0$ and $d\beta(f_2, f_3) = 0$ give us respectively:

$$a = 5t$$
, $b = 154t$, $5b = 70t$.

If $p \neq 3, 5, 7$, these equalities imply that $\beta(f_j)$ vanishes for the small values of j and, hence, for all j.

In the case p = 3, $W_1 \simeq sl(2)$, and this case was already considered.

In the cases p = 5,7, we get b = 0 and the cocycle values as indicated in the statement of the theorem (the fact that this is really a cocycle is verified by a direct check).

For
$$r \in (L \wedge L)_0 = \langle f_{-1} \wedge f_1 \rangle$$
, $L = W_1$, $p = 5, 7$, we have

$$dr(f_1) \in \langle [f_1, f_{-1} \wedge f_1] \rangle = \langle f_0 \wedge f_1 \rangle.$$

This means that $\psi(f_1) \neq dr(f_1)$. In other words, ψ is not a coboundary. So,

$$\dim H^1(L, L \wedge L) = \begin{cases} 1, & \text{if } p = 5, 7, \ L = W_1, \\ 0, & \text{otherwise} \end{cases}$$

Now we would like to prove the isomorphism

$$D(W_1) \cong B_2, \quad p = 5.$$

Let $\{f_i' \mid (f_i', f_j) = \delta_{i,j}, -1 \leq i, j \leq p-2\}$ is the dual basis in the coadjoint W_1 -module W_1' . The multiplication in $W_1 + W_1'$, corresponding to $\varepsilon \psi$, $2\varepsilon^2 f_{-1} \wedge f_0 \wedge f_1$, where ε is infinitely small, is defined by the tables

The required isomorphism can be given in the following way:

$$\begin{split} e_{-2\alpha-\beta} &= -f_3, \quad e_{-\alpha-\beta} = \varepsilon^{-1} f'_{-1} - 2f_1, \quad e_{-\beta} = \varepsilon^{-1} f'_1 + 2f_{-1}, \\ e_{-\alpha} &= f_2, \quad h_{\alpha} = 2\varepsilon^{-1} f'_0 + f_0, \quad h_{\beta} = -3\varepsilon^{-1} f'_0 + 3f_0, \quad e_{\alpha} = \varepsilon^{-1} f'_2, \\ e_{\beta} &= \varepsilon^{-1} f'_{-1} + f_1, \quad e_{\alpha+\beta} = \varepsilon^{-1} f'_1 - f_{-1}, \quad e_{2\alpha+\beta} = 2\varepsilon^{-1} f'_3. \end{split}$$

The case

$$D(W_1) \cong G_2, \quad p = 7$$

is considered analogously.

For multiplication in W_1 see remark 1. The multiplication between W'_1 and $W_1 + W'_1$ is given by the table

	f_{-1}	fo	f_1'	f_2'	f_3'	f_4'	f_5'
f_{-1}	$-f_0'$	$-f_1'$	- f ₂ '	- f'_3	- f' ₄	- f' ₅	0
f_0	f'_{-1}	0	- f' ₁	$-2f_{2}^{\prime}$	- 3f' ₃	$-4f'_{4}$	- 5f' ₅
f_1	εf_2	$-\varepsilon f_1 + f'_{-1}$	$\varepsilon f_0 + f_0'$	$-\varepsilon f_{-1}$	$-2f_{2}'$	$-5f_{3}'$	+ 5 f'_4
f_2	$2\varepsilon f_3$	$-\varepsilon f_2$	f'_{-1}	$\varepsilon f_0 + 2f_0'$	$-2\varepsilon f_{-1}+2f_1'$		$-5f_{3}'$
f3	$5\varepsilon f_4$	$-3\epsilon f_3$	$2\varepsilon f_2$	$-2\varepsilon f_1+f_{-1}'$	$3ef_0 + 3f'_0$	$-5\varepsilon f_{-1} + 5f_{1}'$	$5f_2'$
f_4	$-4\varepsilon f_5$	$-5\varepsilon f_4$	$2\varepsilon f_3$	0	$-2\varepsilon f_1+f_{-1}'$	$5\varepsilon f_0 + 4f_0'$	$4\varepsilon f_{-1} - 5f_1'$
fs	0	- 4efs	- ef4	$3\epsilon f_3$	$-3\varepsilon f_2$	$+ \varepsilon f_1 + f'_{-1}$	$4\varepsilon f_0 + 5f_0'$
f'_{-1}	0	$2\varepsilon^2 f_1$	$-2\varepsilon^2 f_0$	$\epsilon f_1'$	$2\epsilon f_2'$	$5ef_3'$	- 4ef'
f_0'		0	$2\varepsilon^2 f_{-1} - \varepsilon f_1'$	$-\epsilon f_2'$	$-3\varepsilon f_3'$	$-5\varepsilon f_4'$	$-4\varepsilon f_5'$
f_1'			0	$2\varepsilon f_3'$	2e f'4	$-\epsilon f_5'$	0
f_2'				0	3e f'_5	0	0

For $[f'_i, f'_j]$ we should use the skew-symmetry condition if i > j and set it equal to

zero, if $3 \leq i, j$. The required isomorphism can be given by the rules

$$\begin{split} e_{3\alpha-2\beta} &= 5f_5, \quad e_{-3\alpha-\beta} = -5(\varepsilon^{-1}f'_{-1} + f_1), \quad e_{-2\alpha-\beta} = 5f_2, \\ e_{-\alpha-\beta} &= 3f_3, \quad e_{-\alpha} = -\varepsilon^{-1}f'_1 + f_{-1}, \quad e_{-\beta} = f_4, \\ h_{\alpha} &= \varepsilon^{-1}f'_0 + 2f_0, \quad h_{\beta} = 4\varepsilon^{-1}f'_0 + 5f'_0, \quad e_{\beta} = \varepsilon^{-1}f'_4, \\ e_{\alpha} &= 3\varepsilon^{-1}f'_{-1} + f_1, \quad e_{\alpha+\beta} = -\varepsilon^{-1}f'_3, \quad e_{2\alpha+\beta} = -\varepsilon^{-1}f'_1, \\ e_{3\alpha+\beta} &= -3\varepsilon^{-1}f'_1 + f_{-1}, \quad e_{3\alpha+2\beta} = \varepsilon^{-1}f'_5 \end{split}$$

Acknowledgements

I would like to thank W. Michaelis for bringing to my attention the question of the calculation of $H^1(L, L \wedge L)$ for Witt algebras and its central extensions. I am deeply grateful to S. Shnider for his attention to my work and invitation to the conference.

REMARK. Since submitting this paper, the author has calculated the first cohomology group $H^1(L, L \wedge L)$ for Witt and Hamiltonian algebras of many variables. This group is not trivial in the Hamiltonian case.

References

- 1. Drinfeld V.G., Quasi-Hopf algebras, Leningrad Math. Journal 1 (1990), No.6, 1419-1457.
- Drinfeld V.G., Quantum groups, Proc. Internat. Congress of Mathematicians, (Berkeley, 1986), vol. I, Providence, Amer. Math. Soc., 1987, pp. 798-820.
- 3. E.J. Taft, Witt and Virasoro algebras as Lie bialgebras, Rutgers Univ. Preprint (1991).
- 4. W. Michaelis, Adv. in Math. to appear.