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ON EXCEPTIONAL NIL OF INDEX 3
JORDAN ALGEBRAS

I. Henrzel, 1. Jacobs, S. Sverchkov

Abstract. The cxceptional nil of index 3 Jordan algebras are constructed in this paper.

1. Introduction. All algebras are considered over a field F of characteristic ), so defining
identities are linearized. Jordan multiplication will be denoted by point. We shall use right-
handed bracketing in nonassociative words. We shall call a variety as a special if all its
algebras have an associative envelope. Standard definitions and notations can be found in [1].
Let SpecN, N, SN are class of all special nil of index 3 Jordan algebras, vanety of nil index 3
of Jordan algebras and variety generated by all special algebras from N, respectively.

The problem of existing of exceptional ml of index 3 Jordan Algebras is well-known. Prof.
Shestakov discussed the problem of speciality or nonspeciality of N with one of the authors of
this paper as far back as 1977.

Variety N is a commutative analogy of Lie variety, i.c. it is determined by the commutative
identity and the Jacobi identity.

J(x,y,2)=x.y-z+y-2-x+z:x-4=0. (n
Indeed, in a view of (1)

(x*-y)-x=-x-y-x"-(y-x)=—2x"(y- %) =24 -X -x-Xx=-x"-§ %,

and
(x* g) x=-x"y . x =0

Thus, any commutative algebra with Jacobi identity belongs to N. The reverse is obvious.
Well-known | 2] that Lie variety is a special one.

Notc that if J & N and Ann (J) = 0 then J is a special algebra [1]. In particular, examples
given by Zhelvakov and Shestakov are special algebras.

These facts were the initial point for a hypothesis about speciality of N. Numerous attempts to
prove this hypothesis have been failure. Using an interactive software package "ALBERT" [3]
for a studying of identities in nonassociative algebra, authors managed to construct example of
exceptional algebra from N,

In thiy paper we shall prove that
SpecN cSN cN



We shall use the computer-derived basis and multiplication table of exceptional algebra from N.
But all proofs in the current paper, in particularly, that A € N and A ¢ SN are complete and

"hand-made" (i.c., without computer assistance).

2. Example. Let us consider the sct of nonassociative words E = [e,, ..., €44] with independent
generators a, b, ¢. Let us truck down all elements of E denoting a length d(w) of a word w. Lei
us denote the types of word w as (w) = (i, j, k), where i, j, k arc a degree of word w by a. b, ¢

correspondingly:
length 1:

ey =a, (1,0, 0);
length 2:

ey =2, (0,0, 2);
e;=ca, (1,0, 1)
length 3:
e = bee, (0, 1, 2);
ey =ach, (1, 1, 1);
e =a%, (2,0, 1);

length 4:
eg = blec, (0, 2, 2);
ex = abeb, (1, 2, 1);
ey = a’ch, (2, 1, 1);
length 5:
€y = ﬂbeC. (l. 2. 2):
ey = a%che, (2, 1, 2);
ey3 = atbbe, (2,2, 1):
length 6:
e45 = abbcbhe, (1, 3, 2);
esq = a’bbeh, (2, 3, 1)
length 7:
e4 = atbbebe, (2, 3, 2);

length 8:
€44 = a%bcabbce, (3, 3, 2).

es=b, (0, 1, 0);

es=be, (0, 1, 1);
eqg = ba, (1, 1, 0

1= blC, 0,2, 1);
ers = abe, (1, 1, 1);
e =a*h, (2, 1, 0)

e = ache, (1, 1, 2);
g = abbe, (1, 2, 1)
exs = atbe, (2, 1, 1)

€z = abbee, (1, 2, 2);
ey = atbee, (2, 1, 2);
@34 = @*bea, (3, 1, 1);

e3q = athche, (2, 2, 2);
ey = abeac, (3, 1, 2);

ey = asz'abC, 3, 2, 2);

ey =1c.(0,0,1);

g = bz, (0, 2, 0};
e = a2, (2,0, 0);

€1, = acc, (1, 0, 2);
EIS == abb. (l, 0. 2);

e, = abce, (1, 1, 2);
ey = aee, (2,0, 2);
e = a%bb, (2, 2, 0);

ez = abbeb, (1, 3, 1);
€37 = azbl',‘b. (2. 2. ]);

€37 = @bbec, (2,2, 2);
esn = azbeab, (3, 2, 1);

€43 = a*beabb, (3, 3, 1);

We convert the free F-modulc A over E into algebra by defining commutative
multiplication on the basis E according to the following rules:

€1€] = €g,
€165 = €y,
€1y = ¢y,
e1eq = — 2ey,

1
€€ = "2 €25
1
€1ey = - 3 €
e = l [£T3
1€15 5 f26r

ererg = 2exy + ez,

2

1
€y = ™ €36
1
€19 = 3 €3g:
€163 = — €39,
€1€33 = = €4,

€185 = — €13 — €14

€18 = —2€5,

1
€167 = Y €16

1
eeg = —5 €17,

€1€10 = €o.

e = 2ey,

1
€1€12.= =7 €23s
! 2
€€y = €q
€63 = €5,
ey =~ 2eq,

1
€rfg = —— @
2€5 5 G
€87 = €13,
€2€g = €15,
€ty = €7,

1
€210 = — < €
’ 2
€81y = — €19 — €30,
€3€13 = — €9y — €39,
€383 = €4,
€385 = €1,
€365 = €13
€387 = €7,
€1€g = €14,
€31€9 = €45,
€3€11 = €1g.
€3¢y = €q.
€465 = — 2@]3.

e485 = — 2eng,
4€% %

€sts = g,
€585 = €ap,
€5€g = — €11 ~ €27,
€569 = — €94 — €95,
€s€13 = €7,
€5€14 = €23,

€1€19 = T €30

1 1

€180 = — €39+ —€3q,

1520 2 30 2 31
€1831 = — €334

! 2

1 o 1
€185y = — ==
12 = 5 @ F 54
E1€yq = — €34,
€1€35 = €14,
1

“1em = =5 €n
€9€14 = €91,

€816 = €.

€2€17 = €5

€r1g = €ag,
€€ap = — €37 — €y,
€931 = — €9,

€2Ca = €2,
€363 = — €309 — €3],
By = — B33 — €33,
€285 = €32
€3814 = €90

£3€15 = €79,
€381 = €23,
€3€17 = €5,
€3€9) = €27,

€387 = €gp,
€3€94 = €3,
€3€r5 = €3y,

€489 = — 2623.
a5 = — 2eogg,
€5€15 = — €39,

€581 = €31,
€5€17 = — €33 — €33,
C5€3) = €35,
5894 = €35,

€595 = €57y

€1€3s = - €41y
o

€163 = — €42,
€1€97 = €42,

€1€3g = €43,

R
€€y = — €35,
€839 = €37,

€x€3) = — €35 — €37,
€263y = — €33,

€3€33 = €3,

€2€34 = €40,

€s€37 = — €47s
€r€yy = €42,

2840 = €43,
1

e = —— €44,
2€42 o fu
€365 = €33,
€3€29 = €35,
€3837 = €34,
€3€33 = €37,
€a€q4 = €79,
€338 = E4).
€384 = €42,
€384 = €44,
€4817 = — ey,
€455 = — 2egy,
€586 = © 3y,
€5€32 = €41

€584 = — 2?-4:!.
1

eségp = — Cay



ey = 284, + 205,

Egly = — 282_(..
es€1n = — 257,
25e1a = 2e50,

exis = 2e39 + 2oy,

€767 = €33,
1
eq€g = ; (624 + 6’25),
eqeqy = — 2egg,
1
ereyy = - (e3p + e3),
L €
€3€14 = — 1 €31»
2
€€y = €6,
€3€10 = €27,
egeyy = — 2eo,
€g€19 = — - €30,
8€12 5 €30
1
teps = et o),
1
€364 = —— €33,
8€14 2 33
€geig = €34,
€9€1 = €30,
egeyy == e,
£g€13 = €34,
€9€ia = = €34,
£10€15 = €35
€113 = — 2eas,
ety = — 2eqq,
1
eae15 = o (€36 + €37),

€519 = 2635,
esean = — 2eas,
€3 = — 2816,

EEas = e,
€alsn = 2eqy,

1

€7€y5 = 7 €32,
€7€17 = — €y,
1
e7eg = - (€36 + €37)
1
Gr€m = —, i
€7€74 = €3q,

egeg = 2045,

1
eseiy = (e34 + €37),
1
egla0 = — €37
1
€322 =~ €

€ge23 = — Cqq,

€p€ag = — €4

1

€g€ay = ‘E €41,

egeip = 2 (35 + e37),
€90 = E39,
€9€ry = Eyp,
€9€r7 = €12,

€10€17 = €365

117 = - 2egg,
- ey,

]

€116

£17€17 = €39,

esey = - 2ey4,
€ers = — 24,
€6€19 = €4ay
€7€36 = €4,
€789 = = €41,
€9€37 = €4,

1
€7€38 = — €ass

€gaz = €41

€geqn = — Cap,

€3€3) = €42,
ey = €43,
€gy5 = — ;,’ €44
g€y = — €4,
€glrg = — €43,

€gf3q = E €h4.

€€ = €41,

€11634 = €aq,

€106 =~ €40,

€13€13 = €15, €138 = — €39, €135 = — €42,
£13€12 = — (€35 + €37). e14e2) = — El & €13€26 = ~ €43,

1 1 1
€385 = — E‘ €38, €13€pn = o €41+ €13€33 = 5 €y,
€14€14 = 9137- €14€17 = Eaps €14€94 = €47,

1
C14€)5 = 5 €3 €14¢21 = 3 €41 €14¢37 = — 3 €44,
€156 = — €49 €15€23 = €49, __ 1!
d AT £15630 = =  fass

1 r—
€530 = — 3 e 15624 = €43,
€16€21 = ~ €qo : 1

- ’ £15€29 = 2 €44,
271 = 2ey, €17€a) = — €47, =
: 4 : €17€27 = 5 Casy
€17€19 = €4, €721 = — €43,
1 1 1
€19€26 = 2 €14, €21€25 = 7 €44, €22604 = 7 €

All the rest products of basis clements are equal to zero.

Let us point out simple conclusions of above multiplication table:
— algcbra A is gencrated by clements a, b, ¢ and nilpotent-of-index 9.
—if ee;# 0 than

diee;) = dle;) + dley),

d_r(e;fj) =d,(¢;) + dx(fj),

where d, is degree inx and x € {a, b, c}.
Hence, we have a correct definitions of the length, homogeneity, and degree of the homogenous
clement in generator for algebra A.
Let us consider 2 mapping ¢ (a) = b, @ (b) =4, ¢ (¢) = ¢ and extend it to cndomorphism F —
module A, determined on the basis words ¢; by changing places a and b and being ¢ on the
same place.

For instance:
1
@ (e3s) =@ (abbcbe) =baacac=ceye e,e3e e3= 5 €30

-

From the multiplication tablc we can find action of @ on the basis:



length 1. ¢ (e;) = ey, ¢ (ey) = e, 0 (e3) = es.
length 2. ¢ () = ey, © (e5) = e, ¢ (eg) = ey, 0 (e7) = e,
0 (eg) = ey, 0 (29) = €4
length 3. 9 (e19) = e @ (ey) = €eq ¢ (e12) = eyp, @ (er3) =
=—€13~ €4,
Oley) =€, |0 (t’-ni)-'—‘ © (e46) = €43, ¢ (ey7)=
= ——¢ == 2€]5.
2( 17+
length 4. @ (e = en, ? i":’) =_ . ¢ (e0) = €20, |9 (ep_i)=
=T eg € =t
L (e;»,],a)——- P (e23) = €43, (eng) = —2e31, | @ (€25) = —2e9,,
= ——¢. ,
2625
) (ezﬁ) = €26
length 5. ¢ (ex7)= 0 (e)= P (e39)= @ (eg9) = —2ep9,
1, _ 1, 1,
=740 R 5
¢ (e31) = —2e. | ¢ (e30) = @ (e33) = e34, @ (es)=
= €y — e, = - 2e5.
length 6. ¢ (eg?)= @ (e35) = ¢ (e37) = €3y, P (e38) = — eap,
= oa = €35 €37,
2 €39,
L] (939) = _zejjn o (840) = £3g-
length 7. Q(eq) =g, [ @ leqn) = ey, | P (eg3) =~ egn,
length 8. © (egq) = ~ €44

We denote by A; — F submodules of A which arc generated by the homogencous elements of the

length i, i = 1,..., 8.

Lemma 1. ¢ is automorphism of F-module of 4 : A, i=1,.8.
Proof. Prove at first that ¢ is automorphism F-module A.

44
Let x= Y o, o cF. Then according 1o the definition @ we obtain

i=1

44
Q@)= Zu.‘ €,
=1

6

where

Lal =a, o) =0, of=a;
oy =ay, 05=07, O =09, o) =05, af =g, 0§ =g
—_ £ —
3.ajp = @pp, Oy = Oyss Qi T Gyg, O3 = O3, Oy = 043+,

v _ 2 r — ’ _l
Q5 = —4047, O4g = Ay, Q7 = S Ys.

2
4oy =0y, Qg = Gy, Uhy = —Og + 0y, Oy = —20y, (2)
1 1
sy = —2055, Oh3 = Ojg, Ooy = _Eazl' Ohs = —Ect_u, hg = Olag.
1
5.0y = ~20ag, Oog = 205, Oy = —205, Ay = ~5 %
1 1
ay = —5‘123, Qi = —Ol3p, O3 = —Oigp + 03, Oy = - ‘2'0‘29-

6.0ths = 2039, Qg = —Ol3g, Oy = —Olgg + 037, Oig = —0ly,
o3 — *%"-35- gy = CUag.
Tl = 0y, Ohy = Oy, Giz = —Oy3.
8oy = oy
From (2) we obtain
xcKergog = ;=0 for all indices i.

Consequently, Ker @ = 0, ie. ¢ is automorphism. Note that ¢ preserves the length and,
hence, ¢ is automorphism for A; also. This proves the lemma.

Let

44 A 44
=Y e y=YBe, xv=Y b,
=1 i=1 i=1

where o, By, 8; € F. Let us find &; from the multiplication table for algebra A. Let us introduce
the following symbol:

r . .
fif :1“f31+°‘fﬁf"*f'

aiBf' i=.

Note that (i, 1=10j, i forall 4



We obtain:

8, =8,=8;=0,

84 = [3, 31,85 = [2. 3],85 = [2, 2].8; = [1. 31.85 = [1. 2].80 = [1, 1],
d10=— 212,41 +1[3, 51.8y, = ——i— [2,5]1+03,60.8,=—2[1,4]+[3,7],
O3 =—[1, 51+ [2, 7},8;4 = — [1, 5] + I3, 8].8,5=-2[1, 6] +[2, 8],

1 i 1
B16= =5 [L71+13. 918, = - [1. 81 +(2, 91,

85 = -é 12, 10] + [3, 11] - 2 [4, 6] + [5, 5]

89 =11, 10) = [2, 12] + [3. 13], (3)
Oyp=—[2, 12] + [3, 14] ~ 2 [4, B] + [5. 7].

Sy =—21[1 1] -[2,13]1+[2, 14] - [5, 81 + 2 [6, 71,

Sy =—12, 131 +[3,15] - [5, 8] + 2 16. 7).

S = —% [1. 12] + [3, 16] = 2 [4. 9] + (7. 7.

4= —— [1, 14] + [2, 16] =[5, 9) +% {7, 8],

b b= b

o (=2}
- =]
] £
| |

5= -—[L 03] +[3, 17] =[5, 9] + 51 [7, 81,

By = *% [1, 15] + [2, 17] - 2 [6, 9] +{8, 8],

8y7 =21, 18] - [2, 207 + [3, 211 + [S, 13] - 2 |6, 12] + [8. 10],
Sy =21, 18]+ [2, 191 - {2, 20] + (3, 22] — 2 4, 15] +[5, 14]  2[7, 11].
80 = — [2, 21] + [2, 22] - [5. 15] + 2 [6, 14] — 2 [8, 11],

B -;’ [1.19] + % (1, 20] — [2, 23] + [3, 24] + ; [7. 13] - (8, 12] + 19, i0],

8 = % [1,20] — ]2, 23] + [3. 25] - 2 [4. 17] + |5, 16] + % 17,13) % [7. 14],
1 1

8 g = = L 21
32 2 [ 1+ 2
% [8, 13] = 2 [9, 11].

[1,.22] — [2, 24] + [2, 25] - |5, 17] + 2 [6, 16] —% 7. 15] +

+
1

B33 = o 1 22) - [2, 24] + [3. 26] - (5, 17] + 2 6. 16] + ; [8, 13] —: (R, 14],

Bag =~ [1, 241 + [1, 251 - [7, 171 + [B. 16] + [9. 13] - [9, 14].

8

bss = — [2, 28] + [3, 291 + [S, 211 + 2 [6, 19] — 2 [6, 20] + 2 [8, 18] + (10, 15]
-2 11, 13],

&

By = % (1 28] — [2, 31] + [3, 32] + [5, 24] — 2 [6, 23] + % (7. 211 +1 18, 199

+ 209, 18] + (10, 17] +% [12, 15] + [13, 13] - [13, i4],

Oy7 = % (1, 271 + [2, 301 — [2, 311 + [3, 33] — 2 [4, 26] + [5, 25] + % (7, 21]

[7, 221 + % + |8, 19] —% [B, 20] + 2 [9, 18] - 2 [11, 16] + —;— [12, 15] -

1

T

~ [13, 14] + [14, 14],

By i % [1, 29] — [2, 32] + [2, 33] - 5, 26] + 2 [6, 25| —% (8, 221 - 2 11, 7]-
1 1 -

) 113,151+~ (14, 15],

B39 = —[1, 31) + [3, 34] + [7, 24] — [8. 23] + [9. 20] + [12, 17] — [13, 16],

840 =— [1, 331 + [2. 34] + [7, 26] — [8, 25] + [9, 221 + [14, 17] - [15, 16],

8y = % [1, 35] - 2. 37] + [3. 38] + [5, 32] + 2 [6, 3001 — 2 [6. 31] — [7. 29)

1
[8. 271 +E [8, 28] + [ 10. 26] - 2 (11, 24] —% [13, 21] + % [13, 22] +

+

B g |

[14, 21] --;" 15, 201+ 2 [17, 18],

840 = [1, 371 - [1, 36] + (2, 39] + [3, 40] — 2 [5, 34] + [7, 32] - [8, 30] + [8, 31)

+ 9, 27] - [9, 28] — [12, 6] — [13, 25] + 14, 24] + [15, 23] — [16, 21] +
+ 17, 19] - [17, 201,

+

843 = (L, 38] + [2, 40] — 2 [6, 34] + [8, 32] - [9, 29] - [13, 26] + [15, 24] - [17, 21],

1 1 1 1 1
84 = —5 [L 411 - 12,420 + 13, 43] — [5. 40 + [6. 39] —— [, 38] - [8, 306]
19, 350 + [11, 34] + % [13, 33] i [14, 321 --,’7 (15, 30] +% (16, 29]

= FA

+

+

1 | -
+

1 1 i 1
+ — [17, 271 + - [19, 26] + — [21, 25] —— [22, 24].
B [ 1 5 [ ] = [ | > [ i
Let
44 a4 44
plxy=3die, o= e o= pe,
i=] (=1 =1
where 8], af . B} are calculated from formulae (2).
Let us introduce symbols

e

B, i=f

1 -{“f“'f i



Lemma 2. ¢ is an automorphism of algebra A.
Proof. Having proved lemma 1, it suffices to show that ¢ (x)  (¥) = ¢ (x y).
44

Let ¢ (x) @ (y) = ZA,-e,-, where A; € F. Coefficients A; are calculated according to symbols
i=1

[, /1 through formulae (3). We will prove that A;= 8} for every i :

I: A1=A2=A3=O

2. A4=[3,37=[3 3= 6; As=12,31=[1,3]=8;= 6f s
Ag= 1. 1] = 8 = 85, Ay = [1,3] = [2,3] =85 = &,
Ag=[1\2]=11,2] = 8g = 8.8 = [1', '] = [2, 2] = B4 = &,.

3 Ayg=— 2 [2,4]+[3.57= 2[1.4] +[3. 7] = 85 = by,
Ay=—— [2' s1+13 ¢l= —-l— [1. 7]+ [3,9] = 8,6 = &;,,
Au=—2[l.4'f+[3‘-7']— 202,414 13,51 = 0= Bz
Ap=—[1"51+[2, 7)== [2, 7] + [1, 5] = - §;3 = B,
Ay=—11,51+13,81=- (2,71 + 3, 8] = &4 — &3 =84,
Ais=-201,6T+[2,8]=-2[2,9+[L, 8] =-28;;=35,,

A= -;— [1, 71+ [3,9] = 4% [2. 51 H3, 6] =8, = 5"6,

| . 1 I .
Ajr=- , [ 81 +12,9] = =5 (2, 8} + [1, 6] = P 85 =95

From here and below we shall change for compact view symbols [, /] on [i f] according
formulac (2). In domg 50 we shall use the following relations:
if o =0+ a, (!. = o, for distinguishing k e, m, then

[, 7] = (oy + @) By + By + B.) @ = lkm] + [e,m],
[, 71 = (o + ) (By + B,) = [kK] + [e.e] + [kel;

if o = o+ a0 = «; for distinguishing i, j, then
07T = (o + o) B+ (B +B) o= j1+20 1
4 A= % [1, 121+ [3, 16] — 2[4, 9] + [7, 7] = 833 = 8y,
A = f2:l2] —[1,10] = |3, 13] = = 8,5 = &),
Azg=~11,101 ~ [3,13] = |3, 14] — 2[4, 8] + [5, 7] = 89 — ;9 = 5y,
Ay = 202,161+ [L 13] - [1. 131 + 11, 14] = [7, 8] + 2 [9, 5] = - 28, = &),
Ay =[1, 131 = 213, 17] — [7. 8] + 2 [9, 5] = — 26,5 = &3,
Aﬂ—-— [2, 10] + [3, 111 - 2[4, 6] + [5, 5] = 8,5 = 5.

10

>

A24=—;- 12, 13] ~21 (2, 14] + [1, 11] - [6. 7] + % (5. 8] = 7_2[ By = 8340

1 1 1 1 !
Az:, = ; [2. 13] *’_?— [3, 15] = [7. 6] + j) [S, 8] = ";' 8:2 = 625,

Ag =2, 17] —% [L, 15] — 2 [6, 9] + [8, 8] = 854 = 8.

Ay =202, 231 4 (1, 19] - [1, 20] - 2 [3, 24] - [7. 13] — 2 [9, 10] + |8, i2]

=283 = 8y,
Apg = 212, 23] — [, 191 + [1, 19] - [L. 20] - 2 [3, 25] + 4 (4, 17] - [7, 13]
+ 17, 14] -2 [5, 16] = — 283, = 5.,
Ay =211, 24] - 201, 251 + 27, 17) - 2 [9, 13] + 2 [9, 14] — 2 [8. 16] = — 25y,
= By,
Asg = % [2. 19] -% (2, 191 + % [2. 20 - (1. 18] —% (3. 21) —% (5. 131
—é [8, 10] + [6, 12) = f% By7 = By,
Ay = —l 2, 191 + l (2. 20] - {1, 18] f% [3, 221 + [4, 15] + [7, 11] “j;' [5, 13]
%[5 13]——[5 14] = ufszg_s,o
= (2, 241 - (2, _5]+—11 21] ——[1 22]+;[7 15] + 2 [9. 11] + [5, 17

% [8 13] -2 IG, 16] = - 632 = 532,

Ay = - [2, 25] + _', [1. 21] + [3, 26] + ;' [7. 151 + 2 [9, 11] f% (8, 13
+%[8. 13]- rs 14] = 833 — 85, = 8),,
Ay = % 2. 21] =5 (2, 221 + % 13. 15] + [8, §1] — [6, 13] + [6, 13] - [6, 14]

- Ays=201,31] -203,34] -21[7.24] -2[9,19] + 2 [9, 19] - 2 [9, 20] + 2 [R, 23]

=2 [12, 17] 42 [16, 13] = = 2859 = 835,
Ass = [2, 31] + qi [1, 28] - [3. 321 % [7. 21] — 2 [9, 181 — [5. 24] -% (8, 19]

+2[6, 23] ——é [12, 151 = (10, 17} + (13, 13] - 2 [13, 13] + [13, 14] = — 5 = s,

Ayy = (2, 30]7% [ 1, 271 + % (1, 28] — [3. 32] + [3, 33] - 2 |4, 26] —% [7, 22
- [5.24] + [5. 25] —’1; [8. 19] +% {8, 19] ; [8, 20] + 2 [6, 23] - 2 [11, 16]

= (10, 171 = 2 [13. 13]+ |13, 14] + [14, 14] + [13, 13] - [13, 1] = - 835 + 837 = 855,
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As = — (2, 34] + (1, 32] — [1, 321 + [1, 39] — 7, 26] — [9, 22] + [8, 25] + [16, 15] —
= [13, 17] + (13, 17] = [14, 17] = = 849 = &4,
A = : [2, 28] —% 3. 291 —% [5. 211 - [8, 18] — [6, 19] + {6, 20] —% (10, 15] +

+[13,11] = —% 835 = 830,

Ay = 12, 32] - [2, 33] f% [1, 291 + [5, 26] + é (8. 22] — 2 [6, 25] + % [13, 15]-

—% [14, 15] + 2 [17, 11] = - 833 = &y,

7oAy = ~ [2, 391 + [1, 36] — [L, 37] — (3, 40| — (7, 32] - 19, 27] + [9, 28]
+ 2[5, 341 + [8, 301 — [8, 31] + [12, 26] + [16, 21]  [13, 24] + [13, 25] + [13, 24]
- [14,2 4] ~ [17, 194+ [17, 20] - [15, 23] = - &4, = &,,,
Ap = - [2, 36] + [2. 371 + [2, 36) —% L1, 35] — (3, 38] + [7, 291 - [5, 32] +

+

! 1
+ 18, 27] 3 18, 28] — 2 [6, 30] + 2 [6, 31] - [10, 26] —% [13, 22] + % [13, 21] -

1
7;[14, 21)- 2 17, 18] + 2 [11, 24] + % [15, 19] —% (15, 19] + — [13, 20] =
== 8y = 8y,
Agz = — [2, 40] = [1, 38] + (9. 29] — [8, 32] + 2 [0, 34] + [13, 26] + [17, 21] -

15, 241 = ~ §45 = 8.

1 1 !
8. Ay = = [2, 42] +i[1, 411 - [3, 43] + ; [7. 38] 7'1; [9. 351 + % {5. 40]

+

- 4

1 1 1 1 1
= = e ol e == =y

+ 5 [8.36] — (6, 39] —— [16, 291 + — [13, 32 — (13, 33] — (13, 32]
l 1

+ [14,32] —% [17. 271 {11, 34] + — [15, 30] %[19. 26]+%[24, 2]~

e

—% [25, 21) = = 8y = B,y

4

This proves the lemma.

The purpose of this section of the article is to prove that A € N. If we will choose the direct
way of proof (i.c.. prove J (e, e, ¢) = 0 for all i j k ), it would requirc about
Tar=L o = 15180 of elementary calculations. The following lemma shows that automorphism
¢ reduces a number of calculations.
Denote:

ki (x) = a;, - i's coefficient for decomposition of x by basis,

Ann J (A) = {xecA, Jx A A)=0).

12
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Lemma 3. Let B bea F -module is generated by E\{e, ¢;}, for some different i, j and

‘P(el-)=cwi, ¢(ef)=agf’
®lote) =8 <1, ote)) - pe,

where o, B,y €« F and «, B are not zero.

Then

LYuvwvw kJwvwh=0 = kJuvw)=0
2. € € Arn J(A) —  e¢; € Ann J (A).

Proof. 1.a). We shall assume the contrary: there exists  wug, vg, wp € A, that
J (ug vo wg) = 8¢; +b. where be B and 8 #0.
Then

0 (J(up vo. wg)) = J (0 (up), @ (vp), @ (Wp)) = 8 @ (e) + ¢ (h) =8 Pe; + Sye;+ 0 (b).

n view of assumptions of the lemma we have =0 and &=0 or B=0.
Contradiction has been obtained.

2/(a). Given (¢, A, A) =0 then (9 (e, @ (A), 9 (A)) =0, but

¢ (e) =Pe; + +ve, and @ (A) = A. Hence, B (e, A, A) + ¥ (e, A, A) =0
and (e, A, A) = 0.

Case (b) is considered analogously. This proves the lemma.

Corollary.
l.Let x y z arc general clements from A and J =J (x, 3 2), then

J=0 < k(D=0,
for e My={10, 11, 14. 15, 18, 20, 21, 22, 26, 27, 28, 29, 33, 35, 36, 38, 41,43,44}.

2.1t e;cAnn (), for ie My=(27, 28,29, 32, 35, 36, 38}, then ¢; € Ann J(A),

for any i = 27.

The proof is a consequence of the lemma, definition of @, and the fact that A is nilpotent-of-
index 9.

Lemma 4. ¢; = Ann J (A), foralliz27.

Proof. Inview of corollary of lemma 3 it suffices to prove lemma for i € M,

Let us to enumerate all types of nonzero homogeneous clements of length 7 and 8 from A:
length 8. type: (3,3, 2):

length 7, wypes: (2,3,2).(3.2,2),(3,2. 1)

Let w,veE and J=J (e, u v). | e M, Comparingtypes f(e;) and «J) we will
write down all pairs («, v); when a proof that J =0  is non-trivial :

L. ey type (1, 2,2% (aa). (a b), (a, ab), (b, a®).
2. e, type (1,2, 2): the same as in casc L
3. eq type (1,3, 1) (a a) (a c) (@ ac)



4. e3p type (2,2, 1) (a, b), (a, ) (b ), (a b ) (b ac) (¢ ab)

5. e55 type (2,2,2): (a b)
6. e33 type (2,3, 1) (a o)

Let us prove all these cases:

2
Loeyre e +epe=—ep+ep=0,

1 1

ey7 €1 €y + €37 €3 €) + €37 (€) e3) = 5t - e = 0,
1 1

€17 €2 €g + €37 €9 €3 + 37 (e €g) = 7 T = 0.

1 1
ey7€) €9 + €37 €9 €) + €17 (Eo-_; eg) = ;644 + 5 €q4 = 0,

2
2. Zeggey ey + €998, = €4y — €4y =0,

1 1
€35 €] €x F €ag €9 €1 + €35 (€4 €5) = — EE'“ + 5 €4 =0,
1 1
€3 €) €5 + €ag Cg € + € (€] eg) = PR =0,

1 1
€a3g €3 €y 4 €ag €g € + ezg (82 E’q) = = 58444— ; Ca4 = 0,
2z
2eyg ey ep + €398, = €43~ 43 =0,

I 1
o€ €3t e ey €r g (€ 65) =2 eq 4o ey - ey =0,
2

1 1 1
€9 €1 €7 + €x0 €7 &+ €x9 (€g €7) = — 7 egqt o e4y— 4 cu=0
€€ eyt exp ey ey texp (e en)=—ep+e=0,

€3¢y €3+ €363 €1+ e (8) €3) = - egn + ey =0,

€303 €3+ e3n €3 €y + €3y (€1 €3) = — gy + ey = 0,
€y €] €5+ €35 €5 €) + €3 (€] €5) = — = 344+Ee44=(1,
1 1
€32€5 €7 + €33 €7 €3 + €39 (82 f-,-) =; €44 — ;644=0'
. 1 1
€42 €3 Cg + €35 €y €3 + €39 (B}PH)Z— 5 €4q + B4y — ; 644=0,
1 1
€36¢1 €2 + €35 €5 €1 + €35 (&) e2)=§ elM*Ee“= A

1 1
€35€) €3 + €3g €3 €] + €33 (€] e3) = ey ~ 5T S u= 0,

This proves the lemma.
Let

f
.'Mt

44
¥iéi, X}‘Z:Zdl-ej,
i

where v, d, € F.
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Let ¢ = (@ B y) is a cyclic permutation of symbols «, B, v. Consider
o and § =id + o + ¢, as naturally defined homomorphisms on associative-commutative
algebra from the set of free generators o, By Ye

For instance:
o (ay By yi+ o By v2) =7 0 By + 713 ¢4 Ba,
S (0 By v = o By v + Vi oy Brt By v o
Note that
Soec=8S 0 =8 (4)

Obviously,

# & 5 “

zxy=Yold)e, yix=)oX(d)e and Jixyz)=)Y S(de.
i=1 i-1 i=1

Let us find coefficient d;. For this purpose we will define a symbol

i.i) = {5571 +8yy i#
' 8,74 i=

Obviously that d; identically coincides with 8, , simply replacing brackets | , |
by brackets < . >.
For instance:

dip=-2<2,4>+<3,5>=—2y2 8, + ¥4 8) + (Y3 85+ ¥5 83) == 2[3, 31 1, + [2, 31 v3,
since 8, =0863;=0, §,=[3,3], 8 =1[2,3] from(2).

For compact notaiion equality S (f) = § (g) will be written as:  f= ,g.

Proposition 1. For different |, j, &
[ 71 Ye = slb k) v; = Lk A ¥ 5

y 1=
L=, LY
Proof. Inview of (3) we have
SCE 1 ve) = S (o By v+ 0y B ved = 5 (o By ) + S (o By =
=8 00 (o Bive)+S oo (0B v =5 By 00 +5(y;0;Bp) = S ([ k] i)

S([f,f]yj)=Sl(1iﬂ,-Yj)= (Sco +S°Ol)(ui[3i7j)=zlS('Y,'['-;'Bj+ﬁi75uj)=

| -

1 -
=5 S (L A1 v

This proves the proposition.



Lemma5 A e N

Proof. Itsuffices to prove that S (d) =0 forall i. By reason of corollary of
Lemma 3 it suffices to check it only for { € My. In view of Lemma 4 we can assumec
that

a=0;=v,=0 for {227

¥

From formulac (3) and (5) we obtain:
1
dig=¢ 2[3. 317 +12, 33 =0dy; = = 12, 3] ¥a + [2. 2] y3 =0,

dia=5 [2,31y; + (L. 31y, =0dy5 =~ 2[2. 2] v, + [L. 2] y, =0,

| :
dig = ¢ 5(* 202,41+ (3, 5) 7 + (- %[2. S1+103.6D ys — 203,31 v6 — 212, 2] y4 +

+[2, 3] 1s= 0.

dp=¢ ( 2[L,4+[3 7T v2+ LS +(38 7120331y -2I([L 2]

+12,3]1 v, +[1.3]¥5=0,

dy = 2 (- % 251 +B. 6Dy - CILSI+27Dy+I1LS5I+3 8Dy

(2,3 vg - [ 2] vy — (L, 2l vs +2[2. 2l 17 + 2 (1, 3] y5 = O,
dyp
+2(1L 3]y =0,

1 1
ds =5 SC20L61+ (2, 8]y + (- S IL8I+[291n 2122y -2I[L 1]y

+[1. 21y =0,

dyg =, 2 (- % [2, 10] + [3, 11] — 2 [4, 6] + [5. 5D vy — (— [2, 12] + [3, 14] - 2 |4. 8]

+ 05, T+ (=2 (01 110 = [2, 13] + (2, 14] - [5. 81 + 26, T v3 + [2. 3] v
H ML SE+ 127D s = 2 (2, 2 2 - 2 -2 0L 41+ 03, 7D v + [0, 2] 1o

H=212,4] +13.5]) 13 = 0.

dyg = 4 2 (- -;— 12, 10] + [3, 11] — 2[4, 6] + 15, 5] vy — (= [2, 12] + [3. 14] — 2 [4, 8]

+ 15, 7y + (1L 10) —[2, 12] + [3, 131 a4+ (-~ [2, 130 +[3, 15] - [5. 8] + 2 [6. 7)) v5

=, (LS - [2 7y +C 2[L61+(2.8) v — 12 3]y — 1L 21ys +21[2 21

+

=233l 75— 2C2[L 61+ 2. 8D y4 + (23] yiq + (= [1, S+ (38D vs — 2 [1, 31 vy — 2 C

1
S [2.5) 43, 6D v=0,

dyg = (2 [1, 1] + (2, 13] — [2, 14] + [5, 8] — 26, 7] = [2, 13] + [3, 15] =[5, &] +
+206, 7D 12- 12, 3] Yas = (- 211, 61+ [2, 8D 75 + 2 (2. 21 1yq + 2 (- [1, 5] + [3, 8) 7~ 2
(L2072 125143, 6) % =0,

dys =, %(f 12, 13] + [3, 15] = [5, 8] + 2 6, 7]) 7, + (% (1. 14] - [2, 16] + [5, 9] —

i 1
] % (7, 8]) v» + (- ;[1. IS+ 02,171 206,91+ [8. 8D vs 12,31y — (- %[_l. 8] +

1
0290 %5 + 212 2 pig + 2 (UL T]+ 13090 Yo+ STL 2 g + 26 1L 5] +

1 1
2. vg o 1L 2 v~ C L5 +[3.8D ¥ =0,

dys =, (— 2 [1, 18] = [2, 19] + [2, 20]

3,291 + 2 (4, 15] - [5, 14] + 2 [7. 11]) 7 + (

12,2114 12, 221 - [5. 15] + 2[6, 14] - 2 [8, 111 y3 + (= 2 [L, 11] - (2, 13] + [2, 14] -
~ 05,81 + 206, 7] s + (2, 3] yay + 2 ([1, 10] — [2, 12] + [3, 13]) %6 + 2 [2. 2] 759 —
+2 1220 ¥20 -2 (- [2, 121 + [3, 14] — 2[4, 8] + [5, T v6 + 2 [1, 2) y;g + 2 (- % (2.10]

+ (3, 11]

204,61 + 1[5 5D g + (=212, 4] + [3. 5]) y35 + (= 2 [1, 6] + (2, 8]) vpp

= = —i (2,51 +(363]v;3-2(=[1, 51 +(2, 7)) y;;= 0.

dy = o (- [1, 18] - % 12. 191 + % 2, 20] - % 3, 22] + [4, 15] - ;l [5. 14]

1

-7 UD vy + (- ; [1, 201 + {2, 23] - [3, 25] + 2 [4, 171 - [5, 16] - -y [7, 13]

+

+

+

|q\,—-‘__‘|__ui._.l\.)[—4|\_)[n—

,_
w

[

[7,14]) va + (— % L, 21] + % 1, 221 — 12, 24] + [2, 25] - [S5, 17] + 2 [6, 16]

17, 15] ++ 2 (8 131 - 209, 11D v3 + [2. 3] vpq + (- % L1, 14] + [2, 16] - {5, 9]

2

7. 8D vs — 2 (2, 2] Y3 — 2 (- % [1. 12] + [3, 16] — 2 [4, 9] + [7. 7] ¥4

(L, 3] ¥5y + % (- 2 [1, 11] (2, 13] + (2, 14] — (5. 81 + 2 [6, 7] 14

I
[1, 2] vyo + ?I (1, 10] — (2, 12] + [3, 13D yg + 2 [1, 1] yjg — 2 (= % [2, 10]

1
1] -2 [4 6] +5 5D vo + (- 212, 4] +[3, 5] 77 + (- 3 11, 8] + [2. 9D i

C20. 41403 s + 5 2L 6] 4 [2 81 v + ¢ 1151 + 12 7D s

—C LS+ D e — LS +[3, 8Dy D=0,



dg = E1 -2 200 + 12, 220 - [, 15] + 2 6, 14 — 2 (8, 11]) W & (_; [, 21} — dyz = ¢ (-~ [5, 26] + 2 [6, 25] — % I8, 22] - 2 [11, 17] —% [13. 15]) +% [14, 15]) v, +
1
B R JAE A + (7. 26) = [8. 251 + 19, 221 + [14, 171 = [IS, 16)) 1> + (- 5 [1 21 + 2 [1, 2] -
> 2 , | I ,
. £, B 6L 02 B e [ 28 [ ] [ 18 & s - 12, 241 4 [2.25) IS, 17) + 206, 16) — — (7. 15) + (8, 131 = 219, 1) % +

e + Q0,241 - 20 25) £ 200171 - 218,161 = 219, 131 + 215 M) o + (2, 211 -
~12,22) 415, 15] - 2 (6. 14] + 2[8. 11D 4o + (1. 5] = [2, 7)) ya6 + (11 151 - [2.17) + +

[L. 151 + [2, 171 - 2 [6, 9] + (8. 8] Ys +

1| -

55

+ 2 (2, 2] ya5 + 2 (— ol {1, 13] + [3, 17] — [5, 9] + [7, 81 vs - % [1, 2] vy —

1
(- 5 [2, 5] + 3, 6lky7 -

+

1
2 [6, 91 — I8, 81) yy3 + (= 2 [1, 6] + [2, 8]) a4 + (~ % (1. 14] + [2. 16] ~ [5, 9]
(=12, 13] + (3, 15] - [5 8] + 2 [6, 7) yg - 2

B | —

$ SO 8) vis o T8 - 29D w4 QL L)+ (2 13 2 14] 4 05, 8

1 | 1 2 2
-2 (= = [1. 81+ [2. 9D vy, - 5 (= I, 51 + [2, TD 145 - 2 (=211, 6] +12. 8]) y15 + =206, 137 =0,

r—

+5 CILSI+ 138D yis+ 5 (211 614+ 2, 8] 154 =0, | i 1 1
5 > 2y =y - (110, 26) -~ 2 [11, 24] = - (13, 22] + 5 [13, 200 + - (14, 211 - 2 (15,20 +

dig = , 1 5. 21] + [6, 19] - [6, 20] + [8, 18] + l (10, 15]  [11, 13)) y, + 2 4. 26] - +2 (17, 18] v, - (- [12, 26] -~ [13, 25] + [14, 24] + 15, 23] — [16, 21] + [17, 19] —
= 117, 201) v, + 2 (- [13, 26] + [15. 24] - [17, 21]) y; — ([7. 26] - [8, 25] + [9, 22] +
—[52051——[721“:[72217—[8 19]+—[820]—2[918]+2[11 16] - ’ 3
2 + [14, 171 - [15, 161) ys + 2([7, 24] — [8, 23] + [9, 200 + [12, 17] = [13, 16]) ¥, —
_ 2_ “2 15]+“3 14}_“4 141) Y”"'(' IS 26]4’2[6 25]* _IB 22] []] I’]l_ (7 [5, 26]+2[6. 25]—%{8, 22]_2[]]. ]Tl*';- [13, lSj+%[14. 15])77_l5. 24]_
1
L sasye ! [14 1D 75+ - 4 (1,211 4 L “ 220 - 12, 241 4 [2, 25) = [5. 17] + - 206, 23] + + % (7, 21] + %[s. 19] + 2 [9. 18] + [10, 17] + % (12, 15] + [13, 13] -
r2io00- L Nl L8131 209, 1 g5 4 - (11914 11, 200 - 2 12, 23+ - (13, 14]) yg + (5. 21) + 2 [6, 19] — 2 [6, 20) + 2 (8, 18] + [10, 15] - 2 [11, 13)) 3 +
+2 (- [L 241 + [1 25 = [7 170 + [8, 16] + [9. 131 — (9, 14]) vy + (> [L, 22] -
203, 24) + (7, 13] ~ (8, 121 + 2 (9, 10] - [1, 20] + 2 [2, 23] — 2 (3, 25] + 4 [4. 17] — | 1 )
“205.160 - 17, 13] + 7. 14D 76 + (12, 210 ~ 12, 22] + (5, 191 - 216,141 + 2 (8, 1) 1, S Tt S
+ (1, 1s]+7[219] |220]+-{322] [4, 151+;[5 14] - [7. 11] - [1, 18] + +% (1, 22] = (2, 24] + [2, 25] — [5,17) + 2 (6, 61—1[7 15]+i[3 13§ -
+_P 20]__{3 2”__r5 i 6, 12]_7“5 R — 5l)m+(-* — 200 1)) m—(— = 0, 191+~{120] - [2. 23] + [3, 24] ++ = [7 13] - - [s 121 +
[ 151 + 2 17) - 2 (6. 9] + 8, 80) o + @251 = 2 13, 6) e + (11, ) - + 19, 10]) y5 + (- [2 2] + [2, 22] [5. 15] + 2 (6, 14] — 2 lB, 1) 76 + (3 [1,18] —

~ 212, 16] + 205 9] - [7. 8]) v, (—l[z H|+f[3 151——1I5 8I+16 1+

+

= (2,200 + [3, 21] + [5, 13] - 2 [6, 12] + [8, 10]) y,7 + (11, 10] — [2, 12] + [3, 13]) 15 +

1 1 1
+ [1, ”|+_ 2. 1';] . [2 14] + 5 [5. 8] - 6, 71 Vi3 + (— 1, ‘i]— - [2, 7)) ¥Ya1 + +(_% [1, 15T+ [2, 171 — 2 6, 9] + [8, 8]) g + (= 2[1, 11] - {2, 131 + [2, 14] — [5, 8] +
l Z
s 3] ¥ 12 T+ 5 (L5]+ |3 8D vy + (- 1, 1) - i, 2. 13] + £ 20,7 135 + - [ 131+ 3, 17145, 90 4 5 17, 8D — - 2130 + (5, 18] -
| 1 1 ) .
+ _:} [2 141 _ ‘i [5 8] i [() 7]) Yig + (l’] 6' i l"’ BJJ Yag + (_ |2 12] 'IT [3. J4J + - [5. 8] +2 r6, 7]) Y24 = ;’ “, 14]+ [2. 16] - [5. 9_[ + % [7» 8]) Yoo = Q.

+ [4, 8] - —|5 D 45 + (= 11, 8] + 2 (2, 91) 75 + (= [2. 10] + 23 11]-41[46] +
+ 2[5 5D m =0,

This proves the lemma.



3. Main results. To prove algebra A is exceptional, it suffices to check that Glennie
s-identity [1]:

Ggny =22 Uy 2 VU, -22U, , 20, Uy + &) U, U, - (x- 1) U, Uz,
is not identity in A. Note that for varicty N we can wrilc:
ul ,=wvw+uwv-uw¥)=-2u (wv).
Hence, in the algebra A:
U U, =4 z-x2 52,
zU =-8z:xy {x-¥z

z-y,‘z-x:-g’
(x-p) DUU, =~ 8 (x y) 2% a2 y%
Consequently,

1 2
—gGs(x, YO=2xy () -229 a2 {x Y-z 4 (x ) 2 pP2a? -
—(x-y) 222 92
Let x=a, y=h z=c, then

i
5 Gy la b, c) = 2e3-eq vg oy 05 — 2e3- €5 €g €5 €3 + €3 €5 €5 € — €3 €4 €y g =

= 2e5 € €y €3— 2e € €g €3 — 2eyy €5 €9 + 2exg g 5 = (de3p + dey3) ey €y +

+ 4@32 eg €3 + 4835‘ €g + 2839fl'§= 8(’.43‘ e+ 2844 + 2844 = 8!?44 + 4844 = ].2844 #0.

Conscquently, algebra 4 is exceptional and the following Theorem has been proved.

Theorem 1. Variety N is not special and SN — N.

For the construction of the nonspecial nill of index 3 Jordan algebra, which is a homomorphic
image of the special one, we need to remind some definitions and results from [4].
Let I be an ideal of a special Jordan algebra J  with associative enveloping algebra Ass. We
shall denote by

I=rns
the intersection J and the ideal

I = (" )A.u

of algebra Ass generated by the set 1. We shall call r _the Ass-closure of 1 in J, and say /
is Ass-closed if [ =/ . We note that for all ideals [ < I , so I is closed
if and only if

I cf.

Cohn's criterion [4]. J/ is special <> I is Ass - closed, for Ass the special universal
associative cnveloping algebra Ass .

Let  JIX], SJIX], Ass[X] be trec Jordan, free special Jordan, free associative algebras.
20

A set

S ‘_(f’kl‘lkz""’kn)
of elements of the free special Jordan algebra SJ/X] is called a Cohn collection if f belongs to
the Ass{X]- closure of the idcal K in SJ{X] generaicd by the elements &, k,,... k& bul
does not belongs to X, ie.

I cK but [ ek =(k1:k1’--‘:kn)5.ﬂu’]‘
The Cohn quasi-identity ol § is

ky =0k, =0,k =0= f =0,
a _Cohn identity for S is an identity of the form

F -3 M, (k) =0,

for M,, ., M  mulliplication operalors.

In view of the Theorem 1.1. [4], a special variety of Jordan algebras must have a Cohn identity
for § as onc of its defining identities for cach Cohn collection S.

Now we are going o prove that SN is not a special variety of Jordan algebras.

Let K be the ideal of S/ [X ] which is generated by &%, where £ =[x, x,]. From proof of
the Theorem 2.3. [7] it follows that

f={%xx,1eSI[X] and [ &K.

Hence, ( f,k*) is a Cohn collection . We shall first find the Jordan expression for f
We shall write u=v if w-0veS/[X] and w=,0v if u-vekK.
The following identities are fulfilled in cach associative algebra :

la,6]-c +la,c]-b={a.b-c].
[a-b,c]=[a,b-c]+][b,a c], (6)

4aDb c =[a,[b,c]].
ab=aoh +—l-[a bl
e

Moareover, {x,x,¢ %, } is a skew-symmetric function modulo SJ[X ] : in addition,

) 1 1
%, 00 )= :‘[x:, Xyl [, %] = —;[[x,, Xy ] %5, %, )
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We denote by x = x,, 4 = x,,2 = x,,t = x,. Using these properties and identities
(6), we have

k? =[x [x, 4], 5]~ [[x, 4] y1-x t%[l-r’,y],y]ﬂyl)x, yox=

=2yDx’ y+4yDx,y-x=-2x'-y-y+2x* y +4x-y-y-x— (7
Ayt x-x=, 6xTy y-6y*-x-x= -12x*-y-y.

Then
=i - ;[’kl,zj-[x,t]:—{k,z]-k fx,tl=42Dx,y -k |x,t]=
=4kD(2Dx, y).[x, 1] +4k -[x,t]-2Dx, y.
Now
4kD(zDx, y),[x,t] - [k, [(2Dx, y).[x.t]]l = -162zDx, yDx ,tDx , y,
and by (6)
4k [x,t]=, 24x7 y -t -24x" 1. y.
Finally,

f = —162Dx,yDx (Dx, y-24(x" -y L +x"-t y)-(zDx,y) =
=, —162Dx, yDx ,tDx, y +24¢ -y -x* -(2Dx, y).

Hence, a Cohn identity for ( f,£%) in the variety SN has the form
2zDx, yDx tDx, y—3t - y-x*-(2Dx,y) =, 0, (8)

Let A be an arbitrary algebra and [ is an ideal in A. We shall denote an identity of the
form

for M,,...,M_ multiplication operators and &, €/ by [ =, 0
Lemma 7. If a Cohn identity for ( f.k%) is valid in the varicty SN then
[x.4]2((zDx, y)ox) = 0, )
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is an identity in USJ,[x, y,2]. Where K is the ideal of USJ,[x, y, 2] which is generated
by Rk’ where £ =[x, y].

Proof. By (7) we have in the algebra US/ [x, y, 2]
~2R((2Dx, y)- x)[Rx,Ry] + 2R (2Dx, y)Rx[Rx ,Ry |+ 3RyRx*R(2Dx , y) =: 0.

Weset a=Rx.b=Ry,c =Rz in(8). Then, in view of identity
R(x y)=-2Rx « Ry (10)
in the algebra USJ;[X ], we have Rk’ = -8[a,6] and
2((cDa,b)ea)[a,b]+(cDa,b)aa,b]-3ba’(cDa,b) =, 0,

I is easy (o see, that any Jordan polynomial in U/SJ,[x, y, z] from a,b.c of the type [3,2,1]
belongs to K. By (6) we have:

((cDa.b)ea)[a,b]=, [a.b]c((cDa,b)eca).

(cDa,b)ala,b] = ((cDa,b)oa)[a.b]+—[(cDa,b),a]a,b]=¢

1| -

= [a,b]o{(cDa,b)oﬂ)-t—f;[[(cDa,b),a],[a,b}].

la,6]e((cDa,b)=a) = %[c'[a,b]]na ofa,b] =, i[c,[a,b]]oa ofa, 5]~
7%[5'[‘1»5]]0[&.5]03 =

) 1_16[[6'[“"5]]’[“’[“’5]]] =x %[[[c,[a.b]]»a]:[a,b]] - }[[(CD(: .b).a[a.t]]
Henee,

(cDa ,b)ala.b]=; 2[a,b]e((cDa b)=a).

3

Furthermore

ba*(eDa b) = (b «a*)cDa,b) +%[b,a’]{cDa b)) =4

=5 %[(b oa‘),(cDa,b)]+ ;:[b,al]o(CDa,b)_
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We note that

aDa.b =a’<b acboa :%azob,

cDa bDa b =csacbogeb +coboachoa -

1 1
—¢cogoboboagq—Coboaocach = :)—(;uaz obob r-’;(; oboq oa 570

£l

then,

%[(a”‘ ob),(cDa ,b)] = ; [(aDa,b),(cDa b)]= fé—[a,b]o((cDa Jb)yea),

;[b,az]o(cDa,b): [6.a]a «(cDa,b) = [b,a]e(a =(cDa,b)) +
+aD[b,a].(cDa .b) =, —[a,b]e((cDa,b)<a).

Finally, we obtain
8[a.b]e((cDa,b)ea)=; 0
This proves the lemma.

Let  f(x,g.2)=[x,4]cA+[B.x]+[A, 4] bec a homogencous polynomial of the type
[3.2.1], where  A,B,C <8/ [x,y,2].

Proposition 2. If  f(x,y.z) is an identity in the algchra Ass[x, Y, z], then

Aza[z-:x,{x,y]], B :—a[zoxo[x,y],yl, C :cr[Zoxc{x,y],x],

where a € F .

Proof. By the Cohn's Theorem [1] H [x, ¥, z] =8 [x, y, z]. Hence,
A = o, {xyzx} + a, {xzzy} +a, {xgyz} +ag{xaxy) +o; {xyxz) + aq {yx2z}. a; €F,

B = B, {xy*2x} + B, {xuzye} + By {x" 25"} + By x> yzu} + By fruxzy) +
+B {x?,tyz} + By {xzyxy} + By {xyzxy} +Bq {xyzxz} +Bio {x"'yzz} + By {xyxyz}+
+Pia {5’"‘229} + Bw{y-"z-’fy} + ]314{9-‘:292} k 515{92122} + Bne{!’-"yrz}s B, eF
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€=, {x_?yzx} +Y2{xzzyx} +v,{xyxax} +y, {ﬂzxy} +75{x32y} i
+¥6 {xzxzy} R G B 2 B ETIee {yxaz}. v, eF.

Substituting the expression of A,8,C in f(x,4.2)=0 and cquating the coefficients of the
lincarly independent monomials in Ass[x, Y, z], we obtain simple system of equations from
which follow the equalities :

R a, =, =0,

and

A = afxyzx) - afxzry} + afxyxz) - a{yxzz} =
= 2a{xy(z o x)} - 2afyx(z o x)} = 20f[x, 4} x - z}

where o =aq,.
Analogously we obtain the expression for B,C . The proposition is proved.

Let us consider the algebra S/ [x, y,z]. By Theorem 2 [5], it is a special Jordan algebra. By
Cohn's criterion, the universal associative envelope A, = Ass!{x, y,z} is isomorphic to the
quotient algebra Ass[x, 4, 2]/ J, where J is an ideal of Ass[x, y,z] gencrated by the
set I =J(8I]x y.2]).

Lemma 8. The identity (8) is not valid in A,
Proof. . Let [ be the ideal of algebra Ass[x,y,z]| generated by the set  J and
k? =[x,u] = 6x%cy’. We shall assume the contrary :

w =[x, y]((zDx, y) = x) ef.

By the lemma 4 [6],
w=uy +[u, 2]+ [us, y] 4 [, 2]+ g, 2] oy + [us, x]o 2 + Hug, y] e 2 +[[1;, x] 0 4, 2],

where o, €f or w, €K and {=0,1,..,7 In view of the fact that w is a skew-
symmetric clement with respect to the standard involution * of the algebra Ass[X |, we
can assume that u, = u, = 0.

We shall denote by U the F- modulc gencrated by the clements  [u,,x], [u,,x],
[x,p]eu, for uel.

Now we consider [u,.z]. The clement u«, has the type [3.2,0], hence u, €J . But, for any a
from SJ[X]
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a',z|=|a,zea’|+|a’,zca|-|a,zea’|+2[a,zca cal=
| [ ]

(11)

= [a,(?.z c@oa +2 nazj]

Hence, [ul,z]su 0.

Furthermore, by (6), [y, 2] oy = [, oy, x]+[x, y]ouq =y [I,y]ou.‘.

Since the type of the clement #, is [2,1,1] then u, €/ and [u,,x]ey=, 0.
Now in the case [u,,x] oz, we have u, that has type [2,2,0], hence
u,=ex’ oy’ +a,a el ael . By (6).(11) we have

[us,x]o2 =[us, 0 0 2]~ [us,2]ox = ﬂf[-‘:z uyl,xuz]—

7(1[_\:2 ay’,z]ox = Za{x,z oxoyt n_t]—?_a[.r,z oyt o.r]ux -

_?_a[y‘zuxz oy]ox = ?_a[_t,(z oxoyzux—zoyzoxq_r)]_

~2afy,zox" oyox]|+2afy.x]o(zox e y)=,

=, a[x,z oy’ ox‘]—Za[y,z ax’o ynx]—Za{x,y]n(z oxtoy),
Furthermore, the element #, has type [ 3.1,0), hence u, /. And by (6), (11) we have

(45, 9]°2 =[ug. yo2]-[u4,2]o 4 = 0.

Finally, the clement u, has type [2,2,1], hence u, =, fx’oy’sz, where feF ..
Analogously, #; has type [ 3.1,1] and, hence u; €J .

Conscquently, in the algebra Ass[x, g, z], we have an identity

[¥.9]e(zDx, y)ox 2a(zox’oy)+u) + +[{m oylox’—fxloy’ez +U:,_),.'C]+

+[(—2az oxioyox +0y), g] =0
From Proposition 2 we have the identitics in the algebra S/ [x, y,2]:

(2Dx, y)ex =2a(z ox’ o y) =, Yz ox,[x,4]]
a(zoy’ox’)-fx" oy’ eoz)=, —ylzoxo[x, 4] 9]

2a(zex'oyex)s, }f[zo,\: o[.\:,y].x],
where yefF .

By (6). (7) we have :
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[z“x’{x»y]]:“(z"x)ﬂx,y,
[ZuXuil,y],y]:[Zux,y]a[x,y]+[[x‘y],y]o(zox)_E}
= (‘.ﬁ(zﬂxn_\:)oyl_‘Vsyiloxo(‘,’:ﬂx);“I 3X1°yz°z,
z:-xa[x,!i},x]:[zox,x]o[x,y]+[[x,y],x]o(znx)al
=, H(zoxoy)ox’—6x’oye(zox)=, 0.

In view of speciality of the algebra SJ .J[x, y,z] we have the identitics in the algchra
SI,[x,4.2]

(zDx,y)ex —2alzex’ e y)=4p(zox)Dx, y,
a(zeoy'ex’)-fx"eylez)= 3o ylog, (12)
—2a(zox’oyox)=0,

From the table of multiplication of the algebra A, we have Ann(A) = Fe,,.
Let

B = A/ Ann(A),

then the algecbra B has the basis €,e,, ..,e, with the same table of multiplication with
replacing ¢, by 0. Ttis clear that B is a nilpotent of index 8 Jordan algebra hence, by
Glennic Theorem, all s-identity are valid in B. Hence B is a homomorphic

image of SJ,[X ] and (12) are the identitics in B.

Sciting x =e,y=¢,,z=¢e, in (12), we obtain :

ag, -2, e, ¢ = -ae,, =0 and a=0,
1
(eaDelvez)'el = 47(33 'el)Deuez or —",.;eza =8y = 218y, + 21y,
- 1 1 :
From this follows the contradiction :  y = ~3 and y= ik This proves the lemma.

Let us remained that a linear mapping p of J N in an associative algebra A  is called a
multiplication specialisation if and only il

(a-b)Y =-2a"0ob".

Let J be aspecial algebra from N, and (U (J),p). (A(J),o) be the universal
multiplication and associative envelope algebras.
Proposition 3. The algebra  A(J ) is a homomorphic image of U (/).

Proof. Let us prove that 7=- % o is a multiplication specialisation.

We have
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" l a I T a0 I a ] o x x
(a-b) :—E(ﬁ'b) :—‘2‘(‘1 °b%)=-U--a )°(*55 )==—2(a*-b"). Authors' addresses:

The universal property of (U(J),p) implies that we have a homomorphism gv in Roy Hemz;l T § Thidbersiiy: & i ST
@U(J)— A(J). Tnview of fact, that U(J) and A(J) are generated by J° eparsment:of: Matemntios, o Seate, ey Ames; Low p

and J°, @ isan cpimorphism. This proves the lemma. Diavid Pokrase Jacobs

Department of Computer Science, Clemson University,

Theorem 2. The variety SN is not special. Clemson, 8.C. 29634 - 1906, USA,

Proof. If the variety SN is special, then a Cohn identity for ( f,&%) is valid Sergey Robertovich Sverchkov
in SN. By Lemma 7 the identity (9) is valid in the algebra USJ,[x, y.2]. And Department of Mathemarics, Novosibirsk State University,
hence, by  Proposition 3, in the algebra A, which contradicts to the Lemma 8. Novasibirsk 630090, Russia,
This proves the thcorem.
Therefore, we have proved the main result :

SpecN SN N,

where :
(a) the algecbra A eN and A &SN,

(b) the algebra C =S/ [X]/ K €SN and C e SpecN .
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