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Introduction

It has been known since early 70’s that there is more than one super exten-
sion of the Virasoro algebra. The simplest are the Neveu-Schwarz and Ra-
mond superalgebras, alternatively known as N = 1 superconformal algebras
(14], [15]. It was realized in the mid seventies that these Lie superalgebras
are the first members of an infinite series, the SOy-superconformal alge-
bras (1,2]. Furthermore, it was shown that the SO,-superconformal algebra
contains yet another example the SUs-superconformal algebra. At around
the same time four series of simple infinite-dimensional Lie superalgebras
W(M,N),S(M,N),H(2M,N),K(2M — 1, N), were constructed by one of
the authors of the present paper [6]. For N = 0, these become the classi-
cal Lie-Cartan series of simple Lie algebras of vector fields on the complex
torus, the simplest example being Vir = W (1,0), the Lie algebra of regular
vector fields on C*, called the centerless Virasoro algebra. The elements
Ly = —t*% for k € Z (¢ is the complex coordinate) form a basis of Vir,
which obeys the familiar commutation relations:

[Lm,Ln) = (m ~ n)Lonin.

It was pointed out in [11] and (5] that K (1, N) is nothing else but the SO -
superconformal algebra, and that W(1,1) ~ K(1,2). However, as far as
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we know, it has not been noticed that S(1,2) is nothing else but the SU,-
superconformal algebra.

These observations make it plausible that the series W(1,N),S(1,N)
and K(1,N) and their ”variations” (described below) actually exhaust the
list of all superconformal algebras. (This conjecture is stated in §4.)

The precise definition is as follows. A Lie superalgebra g is called a
superconformal algebra if

SC1 g is simple;
SC2 g contains Vir as a subalgebra;
SC3 g has growth 1.

The last condition means this. Given a finite set of elements z;, z, ..., of g,
let V;(z1,z3,...) denote the linear span of commutators in the z; of length
< j. We require that dimV; < Cj, where C is a constant independent of 5
(but depends, of course, of z;,z3,...).

The most interesting superconformal algebras are the Z-graded ones.
These are the ones for which adLg is diagonalizable with finite-dimensional
eigenspaces:

g= ?gj, where g; = {z € g | [Lo, z] = jz}.

Then the condition SC3 simply means that dim g; < Cj, where C is a con-
stant independent of j.

In the present paper we give an explicit description of the series W, S
and K (in the spirit of [6]) and classify their central extensions. It turns
out that central extensions exists only for small N, hence only few of our
superconformal algebras have non-trivial unitary positive energy represen-
tations (since the only such representations of Vir are trivial). However, the
question, which of these algebras have non-trivial modular invariant repre-
sentations (in the sense of [12]) remains an open problem.

We would like to thank A. Raina for making some of the calculations of
§5 in the case N = 1.

1 Definition of the series W, S and K

Consider the algebra A:(N) := C[t,t™!] ® A(N), where A(N) is the Grass-
mann algebra in N variables 6,,...,0x. This algebra becomes Z;-graded if
we set degt =0, degf; = 1,i =1,..., N. We define [6]



(1.1) W(N) =W (1,N) = derA¢(N),

the superalgebra of all derivations of A¢(N). Every element D € W(N) can
be expressed as a linear differential operator

d & _d
(1.2) D_POZ+§BE, P; € A«(N).

The divergence of D is defined by

4P,

. _ dpo N degP;
(1.3) divD = —= + §(~1) 7,

It is straightforward to show that
(1.4) div[D1, D2} = Dy1(divD3) — (=1)%% Dy(div D, ), where deg D; = d;;
(1.5) divfD = Df + fdivD,where f is an even function.
Using this we get for an even f:
(1.6) divf[Dy, Ds] = [D1, Do) f + fdiv[D1, Ds)
= (D1, Dg]f + f D1(divDg) — (—=1)%% f Dy (divDy)
= [D1, Da}f + D1(fdivD;) — (=1)%92 Dy(fdivD,)
~ D1 (f)divD; + (—1)%192 Dy(f)divD,
= Dy(divfDy) — (=1)%% Dy(divf D;) — Dy(f)divDs + (—1)%1% D,(f)divD,
= Dy(divfDy) — (=1)#% Dy(divf D) — div(f D1)divDa + (—1)93div(f D;)divD;.

From now on let f be invertible, even and such that f‘lg, f ’lg‘f €
A¢(N) (but f may not be an element of A;(N)). We call such f admissible.
Then from (1.6) we conclude that

(1.7) S(N;f) :={D e W(N) | divfD = 0}

is a subalgebra of W(N). For f = 1 we have the superalgebra S(N;1) =
S(1,N) of [6].
The following elements span S(N; f):



_ (4P 4 L duP) 2,
09 Dy(r) = 1 (402 AP )

(19) Di(p) = st (MELL _ (yyuer dUP) d‘;)f%o,PeAt(N),

except for the case f~! € A¢{(N), when we have one more element
d
. ~1916;..08 —.
(1.10) f7 6162..6n 7
In the rest of this paper we restrict to the case that f = t* with a € C.
The reason for this is that though the superalgebra S(N; f) is a supercon-
formal algebra for any admissible f, it is Z-graded only for f = t*. We shall
use the notation S(N;a) for S(N;t*).
Given € = (€1, €3,...,eN) € Z¥, consider the following differential form:

N
we = dt — Y t90;df;.

i=1
We define
(1.11) K(N;¢) = {D € W(n) | Dwe = Pw, for some P € A¢{(N)}.

By making a change of variables §; — t*i6;, we can reduce to the cases ¢; = 0
or 1. We assume from now on that

N
(1.12) we=dt — ) t8;df;, & =0orl.

=1
If ¢ = 0, then K(N;0) = K(1,N) of [6]. For N = 1 we obtain the Neveu-
Schwarz algebra if ¢; = 0, and the Ramond algebra if ¢; = 1.

Every differential operator D € K(N;¢) can be represented by a single
function f € A¢(N) as follows. Let

N
(1.13) Af=2f - Za,.gg-
=1

The elements of the form

(1.14) D;—(Af)D‘+ZD‘(f)0, - 1)d°ff2 e



where

d 1, & 4
(1.15) D= — -t ,-zz;e'a'd"i’

span K(N;e¢). One easily checks the following relations
(1.16) Djwe = 2D°(f)we,
(1.17) Dyyq = Dy + Dy,

(1.18) [Dy, Dy| = Dy 3, Where

N
{£,0} = (AN)D*(a) - D(£)(g) + (-1 3 T 20
=1 Hiaa

The superalgebras of type K(N;e¢) are known in the physics literature
under the name SO y-superconformal algebras (cf. [1,16]). :

It turns out that for N > 1 there are only two different K (N;e¢) super-
algebras. Every time when two ¢;’s are 1 it is possible to remove them by
making a change of basis. In other words the two non-isomorphic superal-
gebras K(N,¢) correspond to ¢ = (0, ...,0) and ¢ = (1,0,...,0). In order to
show this, we shall give an explicit isomorphism between the superalgebras
K(N, (O: 0, €3, ...,C'N)) and K(N, (1) 1,es,... GN)):

o(K(N;(0,0,€s,...en))) = K(N;(1,1,€3,....ex)), o(Ds) = Dy,,

where

(119) (205, 03)0 = 05,03, (1 + 5(2~ 8)i0af),
(t"8;,,...,05,0102)0 = t"*14;,,...,0;,0,02,
t"0;,,...,05,(01 +103))s = t"0;,,...,0;, (01 + i03),
(t"0jy, -, 05, (01 = i02))0 = t"24;,, ..., 0;, (81 — 162),

forneZand 1,2 ¢ {5,...,Js}-
Suppose € = €; = €2; then we have the isomorphism

p: K(2;(e,€)) W(1), given by



d d
(1.20) p(Dg=) = zt“i +(n= " Orgy- + b2 ),
2

d d
—4n—1lpg = . n—e
p(Dt"ﬂl) =t 01 dt t d01’

n1s d . d
(Dtnoz) e Z(t legd +tn eﬁ
d

doy

The superalgebra S(2;—1) is nothing else but the SUs;-superconformal
algebra [1,2]. It was already noticed by A. Swimmer and N. Seiberg [18],
that S(2;—1) is a member if a one-parameter family of SU;-superconformal
algebras. This family corresponds exactly to our family of S(2;a)- superal-
gebras. We shall describe below a central extension of our S(2;a)-algebras
in terms of the SU;-superconformal algebras of [18]. A complete classifi-
cation of central extensions of all superconformal algebras will be given in
Sections 2-4. Put p = 1(a+ 1), and define

P(Dingyo,) = it" 0 —

n+1d n d pz
(1 21) Ln=—t dt - "(n+2p)t (01_+02—)+5on( - —é—)c,

d d

= Zt"(8; — + Gy —

T t ( 1 2 + 2d01)>
d d

— n —

T = t (92 gldg ),

d d

= -tn —
T3 (91 07’d0 ),

d d
1 tn+1 n _
Gn+p \/2_(—- 8, —dt - (n -+ 2p)t 0,04 dgz)’

Ghrp = VA0 — (n+ 20)t7020, d‘;
1» tn
G" =V2 do,’

Gzﬁ tn
" =V2 do,’



Let oJab, j = 1,2,3 and a,b = 1,2, be the structure consta.nts of the slo-
representation of the Lie algebra slz(C), i.e. ,0l, =03, =1,0}, = -0k, =
i,03; = —03, = 1 and the other o o = 0. Then we have the following
commutation relations between the above elements.

(1.22)[Lm, L) = (M — 1) Lynyn + 12m(m - 1)6m,—n,

3 T

. L [ e
(T3, T4 = > ie™Tt, . + K om-nbi A
=1 \‘\‘ //

[Lﬂh Tr’z] = "nTrJr.z+m

. 1<
[Tfij:ﬁp] = 2 Z"J an+n+0’
b=1
[TvszM == Z a%aGm+n—p’

a 1 a
[Lman+p] = (Em - (n + p))Gm-l—.n+p’

. 1
[Lm’G?‘—P] = (Em (n - ﬂ)) m+n—p)

[Gm+p’G?t+p] = [G::—me:—p] =0,

3

[ m+paGb‘ p] "Z‘SabLm+ﬂ+ZZaJab((m+p) (n—-p)) m+n
=1 ’

+32 ((m+p)2 - —)5m, ap-

We conclude this section with the calculation of the centralizer of Lg
in the superconformal algebra g; we denote this centralizer by Cg(Lo). We
restrict our calculations to those superconformal algebras which allow non-
trivial central extensions. In the sections 2, 3 and 4 we show that this is
only the case for W(N) with N < 2, S(2;«) and K(N;e) with N < 4. Since
W (1) ~ K(N;(0,0)) ~ K(N;(1,1)) we shall not consider W (1).

The superalgebras K (4; (€1, €2, €3,¢4)) and S(2; a) are not always simple,
this happens when ¢; + €2 + €3 + €4 € 2Z and « € Z, respectively. In order



to get a simple superalgebra we must consider the derived superalgebra
g = [g, g] instead.
We start with the superconformal algebra W (2). Since it is not clear to
us what the best choice is for Lg, we choose it to be arbitrary:
d d
Lo = ( +/9191 +ﬁ292 2)/91,/326(3'

We distingmsh 3 cases. Flrst assume that 81, 2 € Z. Then Cw(2)(Lo) has
the following elements for a basis

d d d
{ Bi 2 4B 1Bi ﬁug — =
{Lo,G", Hgdﬁ ¢ dﬁ. “’de i } 1,7 =1,2, where
8 d d

G =t i9; (t +ﬂ191— +ﬁ202 ) and

d

— 341-B1-F2

H=t 9192dt

One easily verifies that in this case
Cw(g)(Lo) o derA(2) X A(2).

Next assume that §; € Z and 82 ¢ Z. Now Ciy(3)(Lo) has the following
elements for a basis:

{Lo,G*,6; d o d it f’lalo,—} i=1,2.

dg,’” dey’
In this case is
CW(g)(Lo) ~ glm(C) X A(l), where

d d d .
d0 a0, —,010—; 1=1,2>.

Finally, let 81,82 ¢ Z, then

Cw(z)(Lo) =< Lo’gld: %02 >
This is a 3-dimensional a.behan Lie algebra.

For the superalgebra S'(2;a), we shall use the notations of the elements
of the SUz-superconformal algebra (see (1.21)), where p = %(a + 1). Since
it is not difficult to show, using the change of variables t — t,8; — 6,
and 8z — 62, that S(2;a) ~ S(2;« + 1), we moreover assume that p € Z
whenever @ € Z. We now distinguish two cases, vizp € Zand p ¢ Z. If
p €7, then

,02



Csi(2;a)(Lo) =< Lo, G5, G¥, Tf; i=1,2 and j=1,2,3>.
In this case
Cs(2;:a)(Lo) = S(2)x < 1,81,82 >, where

S(2) is the subalgebra of derA(2), consisting of the divergent-free derivations
(see [6]). If p ¢ Z, then

Cs(2;a)(Lo) =< Ts; § =1,2,3 >= sl3(C).

The superalgebra K'(N;¢) contains the following ”natural” subalgebra
isomorphic to Vir: < L, = —-%Dtnu; n € Z > . For the calculations of
the centralizer of Lo in K'(N;¢) we again consider the general case, i.e.,
€ = (€1,..-,€N), where ¢ arbitrary O or 1. Without loss of generality we
may assume that ¢ < €41. One easily obtains that Cki(n;)(Lo) has the

following elements as a basis: (N < 4)
Dy, Dy, for €; = l,Dge‘.oJ. forg =¢; =1, De'.gl. for ¢, = ¢; =0,
Du;9,6, for €, = €5 = ¢4 =1 and Dy4.4, fore; = ¢; = 0,¢x = 1.

It will be more convenient to describe Cx(n;)(Lo)/ Lo rather than Cx(n;)(Lo).
We use the notation

C(N;e1,...,eN) = Crr(Ny(ey,...en)) (L0)/ Lo
Let w be the Hamiltonian form (see [6])
N

w= (db)?,

=1

and define
H(n) = {D € derA(n) | Dw = 0} andH (n) = [H(n), H(n)).
Then C(N;1,..,1) ~C(N +1;1,..,1,0) = H(N) for N < 3,

C(4;1,1,1,1) ~ H(4),
C(4;1,1,0,0) ~ H(2)x < 1,681,082 >,

C(4;0,0,0,0) ~ sl3(C) & sl2(C),



C(3;1,0,0) =~ sl11(C),
C(3;0,0,0) ~ sl3(C) and

C(2;0,0) is a 1-dimensional Lie algebra.

2 Central extensions of W(N)

We start this section by giving some general information about central ex-
tensions of Lie superalgebras.

Let g = g5 @ g1 be a Lie superalgebra. We extend g by a 1-dimensional
center by introducing a new bracket [-,-]. on the vector space g = §& Cc as
follows

(2.1) [¢,z]c =0,

(2.2) [=,9e = [z, 9] + ¥(z, y)e,

where z,y € g and ¢(z,y) € C. Since § is supposed to be a Lie superalgebra,
the new bracket must satisfy the (super) anticommutativity and the (super)
Jacobi identity, which imposes the following conditions on 1 :

(2-3) t,b(y,a:) = _(_l)deg = deg v'vb(z: y)
(2:4) (2, [y, 2]) = ¥([z, y], 2) + (=1)%F = 98 Vy(y, [z, 2]).

The C-valued bilinear function 9 = ¢(-,) is called a 2-cocycle.
In the rest of this paper we shall drop the subscript ¢ in the bracket.
Let {z;}ierUc be a basis of j, with the following commutation relations:

[zi,25] = X fijrm + $(zi, 75)c,
kel

where the f;;;, are the structure constants of g. Suppose ¥(z;, z;) = Yies fijie f(zk)
for all ¢,7 € I and some linear function f € g*. Then by choosing a new
basis {z]}ier U c where z! = z; + f(z;)c we can remove . Such a cocycle is
called trivial. Two cocycles ¢ and ¢/ are called equivalent if their exists a
A € C* such that ¢ + Ay is a trivial cocycle.

In this paper we shall classify up to equivalence all non-trivial 2-cocycles
of W(N), S(N;a) and K(N;¢). It will be convenient to use the following
lemma.

10



LEI\/IN[A 2.1

Let g° C g be a reductive finite-dimensional subalgebra of g, so that we have
g = Dier g(,), a decomposition of g into a direct sum of finite-dimensional
irreducible g°-modules. Then every C-valued 2- cocycle 4 on g is equivalent
to a cocycle 3 such that

(i) gbo(g(,-), g(j)) = 01if g(;) and g(; are not contragredient g%-modules,

(i1) vo(z,y) = ¢j < z,y > for all z € g(,),y € 8(;), and some ¢;; € C if
8(3) and 8(j), are contragredient g°-modules, where <,> denotes the
pairing between them.

Proof.

Denote by C?(g) the space of 2- cocycles and by B?(g) the subspace of
trivial cocycles, and let Hz(g) C*(g)/B*(g). Now C?(g) is a g-invariant
subspace of g* x g*, B%(g) is an invariant subspace and the action of g on
H?(g) is trivial (see e.g. [4]). Since g° is reductive, we have a g°- invariant
complementary subspace S to B?(g) in C*(g). Any cocycle g from S is
killed by g°, which means that 1o has the property described in the state-
ment of the lemma. |

COROLLARY 2.1

If ¢° is an ad-diagonalizable subalgebra of g with the weight space decom-
position g = @ g(x), then any 2-cocycle ¢ on g is equivalent to a cocycle o
such that

(2.5) Yol(9(r),9(u)) =0if A+p #0. O

A cocycle g satisfying the property (2.5) is called symmetric.
Now we are in a position to classify the central extensions of W (N). It
is easy to show that W (XN) is simple for a.ll N >0.
The elements t* 0;,...9; d‘; tk+10 0,, withkeZand 1 <1 <12 <
L < 1, 3 N forma basxs of W(N ). Clearly W(N ) is simple. Using Corollary

2 1 for g% =< t;,ﬁ,d‘; ;1 <1+ < N >, we may assume that a cocycle ¢ is
non- zero only between the following spaces < t"“"1 d tkg, d‘; i1<i< N>
and < t7F7IEL 7RG, 001 < S N >i< g > and < t7%0; & > for
1< .,J < N and i # j; < t"+10,3,t"9.0,d0j,1 < j<N,ji#j>and
<tk d >for1<i<N.

We shall first calculate the cocycles on W(1). Denote

11



1 d ; d
dj=t]+1— , €j=t]+1915,

7

4. . d
= 10, — .:t’—-——.
4 ¥o12e 0 =V g,

The symmetry property of y gives us that ¢(d;, d;), ¥(d;, d;), ¥(d;, 5), etc.
are all zero unless ¢ + j = 0. Letting ¢; = ¢(d;,d—;), we obtain from the
Jacobi identity for dy,d; and d_j_;:

(1= 7)ej1 = (279 + Ve — jej.

Since ¢; = —c_j, this recurrent formula determines ¢ if we know ¢; and c;.
Thus, the space of symmetric 2- cocycles on the centerles Virasoro algebra
Vir is at most 2-dimensional. One checks directly that c; = k3 and = k are
cocycles. Thus, the general formula for a symmetric cocycle on Vir is given
by

(2.6) (di,ds) = (ak® + 28k)6,—¢-
Similarly we get (cf. [3]):
(2.7) $(dy, dp) = vkSi,—e,

(2.8) ¥(dy,de) = (6K + €k)b _s.

Next we write down the Jacobi identity for the elements ej,e; and d,, ob-
taining

ko (d; ks de) + $(djrk, de) + kb (epre €5) + (7 — O)(ex, eers) = O.
Let k = 0,£ = —7 and substitute (2.6, 8). This gives
~254(eg, e0) = a7® + 285,

from which we deduce that o = 0 and (eg,e0) = —F. On the other hand
setting 7 =0 and £ = —k gives

SK® + €k? + Bk = —kep(ey, e—).
Hence

(2.9) ¥(ey,e0) = —(6k* + ek + B8) 8k _e.

12



The Jacobi identity for the cocycle ¢ for the elements e,-,e; and d’_j_ k
gives 2(k? + k)6 = (kK* +jk)v, so v = 26. Thus we obtain that all symmetric
2-cocycles on W (1) are the form (2.6-9) with @ = 0 and v = 2. Since 8
and e give trivial cocycles (corresponding to linear functions dg and dg), we
conclude from (2.6-9) that up to equivalence there exists only one non-trivial
cocycle for W (1), and it is of the form

W(dy, dy) = 2kSi,—2,
(2.10) ¥(dy, de) = K28 ¢,

?
ek, ee) = —k28k ¢,
zero in all other cases.

Now let N > 1. For every i the elements t**1£ d , tht1g 4 4 tkﬂ,-d% and

k4 75;(k € Z) form a W (1) subalgebra. We may assume that on every such
component the cocycle is like the one described in (2.6-9), but with different
coefficients §;, ; and §; for different 1, i.e., Y(t¥+16; 5 4 pt+1g . d 3 2) = 25;kby,—¢-

But now the Jacobi identity of the elements t™ - d t"ﬂ i0; d‘;'_ and t~™ " "0; d‘z
is ¢(t"‘+"0,d ,ETTTY,; i) =0, hence all §; = 0

Next restrict to the sZN(C[t t~1]) subalgebra of W(N). This is the
algebra which has as basis the following elements: t*o; d - 1< 4,7 <N and

t"(B,W - 0.+1da ) 1<t < N and k € Z in both cases. Agam there exists
only one non-trivial cocycle (up to equivalence) on this subalgebra (this can
be easily shown using Lemma 2.1. cf. [8]), and we may assume that it is
given by

(ko d‘; ,t‘am—)_aka,ns,, 8k,—¢, and
d
¢(tk(9e @ M da )tl(az s, 9j+1E))=aij5k,—z,

with a;; =2, —1,0 for |§ — j| = 0,= 1,> 2, respectively. Using the fact that
all & = 0 we get
d

d 4, d
8; Jdg)

d
‘da’ ’do ) + (™ ’°9— tkg

(2.11) —(t*8;—

13



d

d d
k.0 _ 9. 8 kg S 5 d ok
G(UF e,daj),t G gfde,-)) 2ak
We obtain
(2.12) (02, t740,-%) = kyp(e0, 2 1710,
W TAMERLPT) d0’ 7'48;

if we write down the Jacobi-rule of the elements t2—* d ,tk9;-4- d‘; 2710, dgj'
Combining (2.11) and (2.12) gives us

= -ke‘i =—ka i#].

k

Combining (2.13) together with the Jacobi-rule of the elements t2—* c—‘ft-, t"z,%,
t-lo.-a,-ﬁ and the one of the elements t"d—';;,e,-e,#,t-ke,-;g; we get

k_ < —Ic
P(t d0 ,t Gﬁ,de ) = ka
Finally suppose N >3, then for 1 # j # k and 1t # k the Jacobi identity for
the elements t™ z2- 39 ,0,0; -3 7, , 0™ d‘; give

d d
m —m
(t 0 d0 ) 01 de )
Hence from (2.13) we deduce that & = 0. We conclude that W (N) has no
non-trivial cocycle if N > 3. Up to equivalence the non-trivial cocycle for
W (1) is given by (2.10), and the one for W (2) is as follows:
d

itb’zﬁ = —kbg,_¢,

0.

(2149) (i

d
(tkglde ,ttﬂz )— kbg,_¢,
d ,d
k
P(t 9102d0 37 —) = kbi,—¢,
d ,d
k = ¢t =

zero in all other cases.

14



3 Central extensions of S(N; )

In the classification of central extensions of S(N;«) we shall assume that
N > 1 (if N =1, its odd part is an ideal). By making a change of variables
one easily verifies that

S(N;a)~S(N;a+m)formel.

If moreover & € Z, the algebra is not simple. However, the derived superal-
gebra S'(N;a) .= [S(N;a),S(N;a)] is simple. We havefora € Z:

d
S(N;a)=S'(N;a) + Ct_“al...HNEt-.

We shall classify the central extensions of S'(N;a).

Let g° € S'(N;a) be the superalgebra spanned by the elements 0--1-( | #
1), 0.-2%: 0’+1d0+ and Ly = —t —'*—(91— +...+ HN ) Note that
g° ~ gln(C) = CLo & sin(C). Wlth respect to the adjoint representa.txon,
S'(N; a) splits into the direct sum of irreducible g%-modules:

N-1 [
(31) S’(N, a) = m.%z So (Sm,k—l @ Sm,k))

where Sp k-1 (resp. S:n’k) is spanned by tmﬁil...ﬁikﬁi # 11,...,4; and
t"‘o,-l...a.-,,_l(a,-d%'_ - aj%) (resp. ~t"‘0,~l...0;k(t% + "—"Hl(gld—g; + ...+
HNFfi;))). Now Sp k-1 (resp. S,'n'k) is as g%-module isomorphic to the high-
est component of C @ (sly ® AN~*sly) (resp. to C® AN *sly) (see [6]).
Here Lg acts on Sp, ; and S:n,k as multiplication by —(m + °‘—'1$-1-k) Thus all
contragredient pairs of g°-modules on S(N;a) are these:

(Sm,Oa S—m.O)a (Sy’n,07 S'—m,O)a (Sm,—l’ S'—m,l)’

!

and if @ € Z we also have (S:n'k,S_m__a_l’N_k).

By Lemma 2.1 it suffices to consider a cocycle 1o which is 0 on all pairs of
submodules in (3.1) except for those listed above. First, we show that
t{)g(Smk,S'_m_a_lN ¢) = 0. We may assume that a = —1. By Corollary
2.1, we only have to consider opposite welght vectors, hence we calculate
¢0(am,b_m) where a,, = —t™0;.. Gk(t + N_,‘(Hldl,1 + ..+ 0Nd9 ) and
by = ~t"0pi1.ON(t 5 "(Bldzl + ...+ HNd;i ). Now the Jacobi identity

between the elements —t“"l:t - "(alda + ..+ 9ng ), @m and b_m—y is
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(32) (X2 — m)o(amstsboms) = ~(E7o + m)o(am,b_m).

If we put £ = N and m = N — k, we obtain that y¥o(an—k,bk-n) = O.
On the other hand if we substitute £ = 1 in (3.2) we obtain a recurrent
formula, from which we deduce that $o(am,b—m) = O for all m € Z. Hence,
by Lemma 2.1(ii) we obtain that ¢0(5:n,k,5—m—a—1,N-k) = 0 for arbitrary
a.

Now consider the subalgebra S := ®mez Sm,o =~ sin(C[t,t71]). Since
satisfies Lemma 2.1(ii), we conclude that the restriction of g to sin (C[t,t71])
is given by

(3.3) ¥o(t"g,t™h) = ynébp—m < g,k >,

where v € C;g,h € sly and <,> is the trace form on sly. Moreover,
if N > 3, one easily verifies from the Jacobi ldentlty for the elements
t™ 2, t™ 01 (0255 — 0ag5;) and 7™ (8253 — 8353-) that v = 0.

In order to calculate ¥o(Sm,—1,S5-m,1), we consider the Jacobi identity

(3-4) —to([am,b-m],co) + Yo([b-m, ca], am) + Yo([co, @m], b-m) =0,

where

m d —_ —m d d
d 4 & +k + 1 d
— 4k —_— - _

Then using (3.3) and the fact that ¢o(S_m,1, Sm,-1) = gbo(S,'n,o,S'_m,o) =0
we reformulate (3.4):

+1

(3.6) Yo(am,c—m) = to(ao,co) +v(m - ;___1)"‘

Since g satisfies Lemma 2.1(ii) we obtain that

a+n+1

m ng. (22 1 4 W=
(3.7) olt de’ —t";(t + —— (a1 ot Ov ) =

(B +(m - N—)m) dm,—n,
where 8 = o(ao, ca).

Similar considerations as in the previous paragraph, but now for the
Jacobi identity for the elements ag,c_m of (3.5) and
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L = ~t"‘(t% + -‘1‘—“”1\',‘—“(01—-— - ””d: ),
lead to
bo(Lm, Lom) = (2m — 252 )g0(a0,c0) + 2T E 2 go(am, o).
Now substituting (3.6) we obtain that
a+m+1 a+1

(3-8) Yo(Lm,L-m)=2mp + N (m - T 1)mfy.

Since vy = 0 if N > 3, we conclude from (3.3), (3.7) and (3.8), that t is
a trivial cocycle for N > 3. For N = 2, we conclude that there exists, up to
equivalence, only one non-trivial cocycle, viz, the following one

(3.9) $(Lm, Ln) = %m(mz — (a4 1))bmns

t,b(t’"' ~t™(9; (t + (a+n+ 1)(01—5— + 02——-))) =

dé;’

m(m - (a + 1))6mv—n '.»j’

men d d\ ni d d.
" (01 g, — g, )0 (eldal = 0225, )) = mém—n,
d d
m — g
¢(t gl de )t 32 dal) mam,—-rn

and zero in all other cases.

This cocycle gives the central extension described by (1.22). (The minor
discrepancy occurs since the Lg’s differ by a multiple of c).

4 Central extensions of K(N;e)

The Lie superalgebra K(N;¢) is simple, except when N = 4 and s :=
J(e1+es+es+e) € Z. In the latter case, K'(N;¢) = [K(Nje), K(N;¢)] isan
ideal of codimension 1; this ideal does not contain the element D;-.-14,4,4,9, -
We shall classify the 2-cocycles for K'(N;e).

For convenience we introduce some notations: we write ¥(f, g) instead
of %(Dy, D,) and we denote k; = 3(1 — &).
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We start with the case N = 1. Both K(1;¢) superalgebras have only
one non-trivial central extension. This can be easily verified using lemma
2.1 with g° = CDy, (2.6) and two Jacobi identities, viz., for the elements
Dim+1g,, Din+1, Dyr-m-n-2219, and for Dim+1g,, Din+1g,, Dy1-m—ng, (this last
one has to be considered only when €; = 1). The resulting 2-cocycle for
K (1;¢) is this:

(4.1) Yo(t™*1, 1) = §(cm3 + bm)6mino,

1 b
(4.2) Yo(t™+10y,t718,) = g(c(m + ki) + Z)5m+n+2k1,0:

(43) ¢o(tm+1, tn+191) = aelm5m+,,'o.

Adding a trivial cocycle we can make @ = 0 and b = —¢, obtaining the
Neveu-Schwarz algebra [14] for ¢; = 0 and the Ramond algebra [15] for
€1 =1 (see also [11]).

If N = 2, we only have to calculate the cocycle for € = (1,0). In the other
case, K(2;(0,0)) ~ K(2;(1,1)) ~ W(1), we already know the cocycle on
W (1). Now assume ¢; = 1 and e2 = 0. Using Corollary 2.1 (for g° = CDy),
we immediately obtain that ¢o(t™0;,t"0;) = o(t™6,,t"010;) = 0. Clearly
(4.1-3) also holds (and a similar relation when we replace 8; by 82). The
Jacobi identity of the elements D¢mg,, D¢, 9, and D;-m-2 implies that

a
(4'4) ¢0(tm02’t"0102) = -E m+n+1,0-

Finally using the Jacobi identity of the elements Dimg,, Ding, and Dirg, s,
we can express o(t™810z,t"0,0,) in terms of yo(t*8;,t%4;). We then obtain

c 1
(4.5) o(t™+10,02,t716,0,) = g(m + '2')5m+n+1,0-

Hence for N = 2 there is only one, up to equivalence, non-trivial 2-cocycle
(we can remove § using D}, ).

From now on assume N > 2. Since for every N there are only two non-
isomorphic K'(N;e) superalgebras, we distinguish the following 3 cases.

(4.8) (i) Alle=0(I={1,..,N},e=0,k=1), |
(i) Nodd, alle, =1 (I={1,..,N},e=1,k=0),
(iii) N even ,e; =1, other; =0 (I ={2,..,N},e =0,k = %)
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Again we use Lemma 2.1, where we choose g° =< Dy, Die,9;5 1,5 € I >.
Then g% ~ CD;@®son for the cases (i) and (ii) of (4.6) and g° ~ CD:@son -1
for (4.6) (iii). The K'(N;¢) superalgebra decomposes into the following sum
of g®-modules

K'(N;€) = ®nezer K(n+ kL, ),

where K(n+ k£, £) =< Dtu+19‘.1.._9‘.t;im €I >~ C® Alsoy (resp.
=< Dt“+lo"1"'9"z;im €El>g < Dtn+le‘e.-1...a,-t;"m el>~CQ® AZSON_I (2]
C®Asoy-1) for the cases (i) and (ii) (resp. (iii)) of (4.6). Note that n+ k£
is the eigenvalue corresponding to the element %Dg.

Applying Lemma 2.1, we may assume from now on that ¥(K (m,1), K(n,j)) =
0, except when n+m = 0, and also we may assume that one of the following
conditions is satisfied:

(4.7)i=7y,
(4.8) N even, alle¢,=0ands = N - j,
(4.9) Nodd, alle,=1andi=N — .

First consider ¢(K (m, 1), K(—m, N —{)) where we are in the situation of
(4.8) or (4.9). Except for N = 4 and { = 2, every K(m,1) is an irreducible
g®-module, hence in this case the pairing < K(m,s), K(-m,N — 1) > is
up to a factor unique. So in order to calculate the value of the cocycle on
these two spaces we only have to consider $(t™*1;...0;,t ™"~V +14, ., . 4x).
We can use induction on ¢ starting with ¢+ = 0. The Jacobi identity of the
elements Dym+1, Din+1 and Dy-m-n—tn+14, g, 18

(4.10) —(4n + 2m — Nm)yp(t™+1,¢~m=*N+1g, on)+
(4m + 2n — Nm)p(t™+1, e kN+1g,  oy)+
(2m = 2n)p(t~T™H gmonokNYg,  gn) = 0.

We deduce from the cases n = 1 and n = —1 that every ¢(m) =
Y(tm+1, =™ EN+1g,  0y) can be expressed in terms of /(1) and (0). If
moreover N # 4, then also ¢(0) = 0. Putting d = ¥(1) and e = ¢(0), we
thus obtain that

(4.11) $(t™1,t"10,..0x5) = (dm + €N 4)8mintkN 0-
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Next, use that Jacobi identity for the elements Dtn+lgj2 , D,m+19,.1 8;..0; and

Dt—m—n—(N+2)k+lgj1 Biogr-bin 3 induction step; this gives the following result

d d

. (11 =
o g daﬂ(t 8;...08))

(4.12) $(t™*19;,...0

1
= (d(m + ek) + '2'35N,45l,1)5m+n+Nk,0

Notice that if N = 4, D;—14,4,4,6, € K'(4,(0,0,0,0)), so we have to exclude
n=—2in (4.11).

For N = 4 we still have to consider (t™*16;0,,t"*1,0,) and y(t™+14,0;,t"+16.,8,).
The former one will be treated later on. The latter one is zero. This is ver-
ified by taking the Jacobi identity of the elements Dyn+1g,Dym+14,9,4, and
Dipt14,9;:

(4.13) (t™17120.0,,4P110,0,) = (PT"+29,,t™+10,0,0,).

The right-hand side of (4.13) is zero by the assumption that ¢ satisfies
Lemma 2.1 (ii). ‘

We still may assume that (4.7) is satisfied. Every A%so,, is an irreducible
som-module, except when m = 4 and £ = 2. In the former case the pairing
< A%s0pm, A%s0, > is unique. So in order to determine y(K (n, £), K (—n,£))
we only have to compute

(4.14) (tP+10;1...0;, 19719, ..6;),
(4.15) ¢(tp+192...9¢,t4+192...9¢),
(4.18) (tP+19;...6;,19%19;...6;),

where we assume for (4.15) and (4.16) that ¢; = 1 and all other ¢ = 0.
Clearly, if we change the indices in (4.15), we obtain a case of (4.14), so we
shall not consider the case (4.15).

The sop,-module A*so,, is not irreducible for m = 4 and ¢ = 2. This
case only appears as part of (4.6) (1) with N = 4, and was partially treated
before, when we considered (K (m,¢), K(—m, N —¢)). The only pairing
which is left to compute is ¢ (t?*16;6,,19716,0,), but by changing the indices
this case is also equivalent to (4.14).

We will now use induction to calculate (4.14). The case (4.16) can be
treated in a similar way. As starting point of the induction we use the
cocylce on K (2;(e1,¢€z2)), where €; = €3 = 0 or 1 (as starting point for (4.16)
the reader can take K(2;(1,0)), see (4.1) and (4.4)). The cocycle between
elements of the form (4.14) in K (2;(e1,¢€2)) is
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1 b
(4.17) ¢(tm+101,t”+191) = g(c(m + kl)2 + Z)5m+n+2k1.0>

1
(4.18) ¢(tm+19192;tn+19102) = é-c(m + k1 + k2)5m+n+2k1+2kg,0-

Now assume that ¢ > 2, using the Jacobi identity for the elements Dyp+14,, ,
Dyiat1g,..9; and Dy—p—g-2k1—m2kip1+19, g9, , 39 induction step we obtain

1
(4.19) (t™11010205,t"116,6,05) = §C§m+n+2k1+2k2+2ks,0,

(4.20) ¢(tm+101920394, tn+191020304) =

1 c
§m+k1+k2+k3+k4

Omtnt2ky+...42ke,0-

Clearly using this Jacobi identity it is also possible to express (4.14) for
t > 4 in terms of ¢c. However in that case the Jacobi identity of the elements
Diyp+14,6,05)s Dea+165050, a0d Din+1g,9,4,, forces c to be zero. Hence if N > 4,
¢ = 0 and we get that (4.14) is equal to zero for ¢ > 1. Making similar type
of induction calculations for (4.16) starting with (4.3) and (4.4) we obtain
that ¢(tP+19;...9;,t9%16,...6;) = O for ¢ > 3. This finishes the calculations
of cocycles for K'(N;e). It is not difficult to see that £z = Dj, and that
(4-N)"d= D}i—ky-..mkyg, 4, if N # 4. We conclude from all this that
there exists no non-trivial cocycle for N > 4. K'(4;¢) with ¢ + €3 +es+¢€4 €
27 has 3 non-equivalent non-trivial cocycles, and in all other cases (N = 4
and €; + €3 + €3 + €4 odd or N < 4) there exists only one non-trivial cocycle.

We now can list the non-trivial cocycles on K/(N;¢) for N < 4. We have
taken the €/s again arbitrary O or 1 and k; = %(1 —€;). As before the cocycle
is assumed to be zero in all unlisted cases:

(4.21) (e, 0+ = %m(mz = 1)8mtn,0;
¢ 1
¢(tm+19,‘,tn+10;’) = §«m + ]ci)2 - Z)5m+n+2k.-,0;
[
¢(tm+19’,9i’ tn+1950j) = g(m + ki + kj)5m+n+2k.‘+2k,‘,0;

(4
D™ 110;:0,00,6"710,0,0) = —Omintzki+2k,+2k0,0}
3 0
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6 Ey+..+2k4,0
tm+10 05940 ’tn+la 0,0:0,) = COmin+2k;+...+2k,, )
W( 102030, 1020304) 30m+ ky+ oo+ ko)

The cocycle for K(N;e€) with N > 3 is given by the first N + 1 formulas of
(4.21). If k1 + k2 + k3 + k4 € Z we also have the following two non-trivial
cocycles ((d,e) = (1,0) or (0,1)):

(4-22) 1/’(tm+1, tn+101929394) = (md+ e)5m+n+k1+...+k4,0;

d 1
¢(tm+19:',t"+1ﬁ(91929394)) = ((m+ ki)d + 53)5m+n+k1+...+k4,0;

1.4 d

m+1lg g, n+
00 e 3

(61620204)) =

(m+ ki + kj)dbmtntk,...+ka,0-

(Note that Dyi—k,—k3-ks—keg,g,0,0, & K'(45€).)
So finally we have proven the main theorem:

THEOREM 4.1
Let g be one of the superalgebras W(N),S(N;a) with N > 1l and a € C
and K(N;e) where € = (e, €2, ...,e5) with ¢ = 0 or 1. Then

(a) ¢ := [g, ] is simple; moreover g' = g for W(N), S(N;a) with « ¢ Z
and K(N;e) with N # 4or N =4 and (g + €2 + €3 + &) ¢ Z,
in all other cases g’ is an ideal of codimension 1 in g. The following
superalgebras are isomorphic:

S'(N;a) ~ S'(N;8) when 8 —a € Z;

K'(N;(e1, ... en)) = K'(N; (84, ...,6n)) when D (& - &) €22;

K(2;(0,0)) ~ K(2;(1,1)) =~ W(1).

(b) For W(N),S'(N;a) and K'(Nj;e¢) there exists no non-trivial 2-cocycles
for N > 2,N > 2, N > 4, respectively. All up to equivalence non-
trivial cocycles for W(1),W(2),5'(2;a) and K'(N;e) (N < 4) are
given by (2.10), (2.14), (3.9), (4.21 and 22), respectively. a
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The superalgebras K'(N; €) are nothing else but the SO y-superconformal
algebras. Our results on the cocycles (4.21- 22) are in agreement with the
results of K. Schoutens [16,17], he chooses d = e. In [19] another supercon-
formal algebra is considered; again this is K'(4;¢). The authors say that the
" twisted” cocycle is removed by their choice of generators. However, their
element U is a center and corresponds to our cocycle e, so implicitly they
still have a twisted cocycle.

We conclude this section with the conjecture promised in the introduc-
tion.

CONJECTURE 1
A 7-graded superconformal algebra is isomorphic to either W(N)(N > 0),
or S'(N;a)(N > 2),or K'(N;€)(N > 1).

Let Af(N) = C[’t] ® A(N), then W, (N) := derA}(N) is a subalgebra
-of W(N). We let S, (N;a) = S'(N;a) "W, (N), K, (N;¢) = K'(N;¢) N
W, (N). It is easy to see that the superalgebras W (N), S, (N;0) and K', (N;0)
are simple.
Furthermore, given a finite-dimensional simple Lie superalgebra g and
its order m automorphism o, we denote by & the automorphism of the Lie
superalgebra § = C[t,t™!] ®c g defined by

274 )43 @ o),

&'(tj ® g) = (exp — -

and denote by L(g,a) the fixed point set of & on §.

REMARK
L(g,0) depends only on the connected component of o in Aut(g).

We are taking this opportunity to propose another conjecture, which is
a generalization of a conjecture of one of the authors [7] for Lie algebras,
solved recently by Mathieu [13].

CONIJECTURE 2

A 7Z-graded Lie superalgebra with only trivial graded ideals and of growth
1 is either isomorphic to one of the superalgebras W(N),W,(N) S'(N;a),
S_’,_(N ;0) K'(N;e), K_’,_(N ;0), or is isomorphic to one of the Lie superalge-
bras L(g,o).

23



5 Representations V, 4 of K'(N;e¢)

In this section we construct a two parameter family of positive energy rep-
resentations of the Lie superalgebras K'(N;e).

Let w, be the differential form given by (1.12). The superalgebra K'(N;¢)
acts in a natural way on V, g, the space of ”densities” of the form tog(t, 0y, ...,0n)W2,
where a and g are fixed complex parameters and g € A«(N) arbitrary (see
also (1.16)).

(5.1) Dy(t2gwf) = (Ds(t%g) + (~1)*% 1 %% 926159 D*(f))w?!

In order to give a basis of V,, g we define an ordering on A(N )5 and A(N);:

w; < wj, where w; = 6;,...6;, and w; = 8;,...0;, with f] <13 < .. <1, and

J1 < ja < ..<jaifr <sorif r=s and i} < jj for the first k for which

it # Je. Now let w; (resp. w; i) be the i-th element in that ordering on
A(N)g (resp. A(N)i), here i =0,1,...2N~1 — 1, then the elements.

) 1 4 1

(5.2) ¢2N-‘m—i = t“""’w,-wf‘ =0, '2',1,...,2N 1_ '2'

form a basis of V, 5. We can identify ¥; (j € 3Z) with an infinite column
vector with 1 as the j-th entry and O elsewhere. The Lie superalgebra a0
of matrices (ai); ;e élsuch that a;; = O for |§ — 5| >> 0 acts in a natural
way on Vg 5[9):

(5.3) Eij e = b5k,

Combining (5.1), (5.2) and (5.3) gives an embedding pa g : K'(N;e) —
Ggojoo- For instance for N = 2, this embedding is

Pa,p(Dim+1) = Z B(m+1)+ a— k) Ez(i—m),2x+
ke Z

1 €
((B+ )+ 1)+ =k = 3) By y 2n-iF

(B+1)(m+1)+a-k— % - %)E2(k—m)—1,2k—l+

1 €
((B+)m+1)+a—k= 2By s 203

The Lie superalgebra ae has up to equivalence only one non-trivial
2-cocycle, it is given by [9]:
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(5.4) Y(Eij, Byi) = (1)) y(Ey, Ej) = (-1)¥ifi <0< j,
(5.5) ¥(Eij, Exe) =0 in all other cases.
Pulling back the cocycle via p, 5 we get a cocycle 45 on K'(N;¢). For

simplicity we choose a = 0, because 4 4(z,y) = Yo,4(z,y) + fas([z,y]) for
some f € K'(N;¢)*. Denote 5 = to g, then we get.

(5.6) Yp(Dim+1, Dint1) =

3(-128%2 + 128 — 2)m(m? — 1)6p _pn for N =0,
3(128 - 3)ym(m? — (1 - €1))6m -n for N=1,
g(—G)m(mz -(1-—€e1—€))0m-n for N=2,
0 for N > 3.

(Compare this with (4.21).) Now substituting 8 = —1 (the adjoint repre-
sentation of K'(N;¢)), we obtain ¢ = —26,—-15,-6,0,0 for N =0,1,2, 3,4,
respectively. This is related to the fact that ¢ = 26,15,6,0,0 is the critical
central charge of K'(N;¢), where N = 0,1,2,3, 4 respectively.

From now on let N =1 and ¢; = 0, i.e., K(1;0) is the Neveu-Schwarz
algebra. Its embedding into G)oo 1S given by

(5.7) Pap(Demt1) =2 (B(m+1) + & — k) B s+ )
kel

((B+(m+ 1) +a-BE, s, 4,

Pa,8(Dim+1g,) = Z(2ﬂ(m +1)+a- k)Ek—-m—%,k - Ek—m—1,k—§-
kez

Then its corresponding cocycle is
(5.8) ipa'ﬂ(Dtm-{-l, Dtn-f-l) = ((4/5 - 1)m(m2 b 1) - 4am)5m+n’0,
Ya,p(Dim+1g,, Dymt19,) = m(m + 1) — @)bmins1,0-

In [9] we defined for every m € Z a highest weight representation #,,
of the Lie superalgebra a,)o, With vacuum vector |m > (its corresponding
module was denoted by V). The action on |m > is as follows

(5.9) #m(Eij)im >=0fors < j;
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1 1
‘i’m(E,',')Im >=0fori # —5,0, -i;

N m|lm> form>0
x’“(E‘i‘%)lm >={ 0 | form<0;

0 form>0

#m(Hoo)|m >= { —lm> form<0’

0 form>0

xm(E_%,_%)lm >={ (m+1)|m> form<0 "’

Define (see e.g. [11])
. 1 1
(510) L= Wm(pa,ﬂ(—EDt"H)) - '2_a6"-0 and

Gy =7?m(pa,ﬁ(_Dt‘+101))'

1
2
Then

i@ -1

(6-11) [Li, Ls] = (¢ = 5) Lisj + 8imj =525

.. 1 1,
[Girys Lil = (i + 5 = 59)Gissugs
f+ l)2 _1
[G‘-_‘_%,Gj_%] = 2Liy; + 5;,_,-£—2-§—-———‘-‘-c,9, where

cg =128 - 3.

Hence we obtain a positive energy representation of the Neveu-Schwarz al-
gebra on V,, with central charge cg:

(5.12) L,-!m>=OandGH_%]m>=0fori>0,

Lo | m >= hyy | m >, where

he = -(ﬂ+a—%)m—%a form > 0,
" -B+a+z)m-3(1+a) form<0.
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6 On positive energy representations of super-
conformal algebras

Let g be a Lie superalgebra and let Lo be an even element of g such that edLg
is diagonalizable with finite-dimensional eigenspaces and real eigenvalues.
We have the triangular decomposition:

g=“—+b+“+:

where h is the O-eigenspace of Lo and n_ (resp. nj) is the sum of all
eigenspaces with negative (resp. positive) eigenvalues.

A representation 7 of g on a vector space V is called a positive en-
ergy representation if n(Lg) is diagonalizable with real eigenvalues, the min-
imal eigenvalue exists, and the eigenspaces are finite-dimensional. Note that
each eigenspace of 7(Lg) is invariant with respect to h; we denote the rep-
resentation of § on the eigenspace V? with minimal eigenvalue by =o.

LEMMA 6.1
The map r — =g is a bijection between irreducible positive energy repre-
sentations of ¢ and finite-dimensional irreducible representations of §.

Proof.

An irreducible positive energy representation r if g on V' is a quotient by the
unique maximal subrepresentation of the representation of g by left multi-
plication on the space

7 = Uls) @ypen_y V° (= U(ns)VO).

Here U(p) denotes the universal enveloping algebra of the Lie algebra p and
the representation xp of § on V is extended trivially to n_. |

Recall that the power series

chy i= trq™lo) = z (dimVy)¢?
A€Spec x(Lo)

is called the character of . Let ¢ = ¢“™",Im r > 0. The representation 7
is called modular invariant if ¢®ch, is a modular function in 7 on the upper
half-plane, for some a € R [12].

Let w be an antilinear anti-involution of g (i.e. w is antilinear, w?® =
1 and w([z,y]) = [w(y),w(z)]), and assume that w(Lo) = Lo. Given a
representation » of g on V', a Hermitian form on V' is called contravariant
if, with respect to this form,

2xir
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(x(z))* = =(w(=)),

where * denotes the adjoint operator. Note that, with respect to a con-
travariant form, the eigenspaces of x(Lg) are orthogonal. For an irreducible
positive energy representation, this form is determined by its restriction to
V0. The representation « is called unitary if the contravariant Hermitian
form is positive definite. Then, of course, the representation mo of h on Vo
is unitary, but the converse is not true.

Note that if o is an antilinear involution of g, we obtain the associated
antilinear anti-involution w as follows:

w |g,= —ow |g,= t0.
EXAMPLE 6.1
Let o be an antilinear involution of the superalgebra A¢(N) defined by
o(t) = t™1,0(8;) = iti"19;. Then o(we) = —t?w,, hence o induces an

antilinear involution of K(Nje),

Let now § be a central extension of a superconformal algebra g and let
Vir be its subalgebra corresponding to Vir € g. Let w be an antilinear
anti-involution of g such that w(L,) = L_n. Note that if the restriction of
the 2-cocycle to Vir is trivial (in particular if § = g), then g has no non-
trivial unitary positive irreducible energy representations (since Vir has no
such representations). One can check that the only involutions of K (Nje)
that allow unitary representation (for N < 4) are those associated to o of
Example 6.1. There has been a great deal of work done recently on classifica-
tion of these unitary representations. On the other hand, the classification of
the much more universal class of modular invariant representations is known
only for the Virasoro, Neveu-Schwarz and Ramond algebras [12]. At present
it is even not clear which of the superconformal algebras admit non-trivial
irreducible modular invariant representations.

28



References

[1]

3]

[4]

[5]

[7]

8]

[9]

[10]

[11]

M. Ademollo, L. Brink, A. D’Adda, R. D’Auria, E. Napolitano, S. Sci-
uto, E. Del Giudice, P. Di Vecchia, S. Ferrara, F. Gliozzi, R. Musto and
R. Pettorino, Supersymmetric strings and colour confinement, Phys.
Lett. B 62 (1976), 105-110.

M. Ademollo, L. Brink, A. D’Adda, R. D’Auria, E. Napolitano, S. Sci-
uto, E. Del Giudice, P. Di Vecchia, S. Ferrara, F. Gliozzi, R. Musto,
R. Pettorino and J. Schwarz, Nucl. Phys. B 111 (1976), 77-110.

E. Arbarello, C. de Concini, V. Kac and C. Procesi, Moduli spaces of
curves and representation theory, Commun. Math. Phys. 117 (1988),
1-36. ‘

N. Bourbaki, Algébre homologique (Algébre Ch. 10), Masson, Paris,
1980.

B.L. Feigin and D.A. Leites, New Lie superalgebras of string theory,
in Group theoretical methods in physics, Harvard publishing company
1986. .

V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-96.

V.G. Kac, Some problems on infinite dimensional Lie algebras, in Lec-
ture Notes in Math. 933 (1982), 117-126.

V.G. Kac, Infinite dimensional Lie algebras, Progress in Mathematics
44, Birkhiuser, Boston, 1983. Second edition, Cambridge University
Press, 1985.

V.G. Kac and J.W. van de Leur, Super boson-fermion correspondence,
Ann. Inst. Fourier 37 (1987), 99-137.

V.G. Kac and A.K. Raina, Bombay lectures on highest weight represen-
tations of infinite-dimensional Lie algebras, Advanced Series in Math.
Phys. 2, World Scientific, Singapore, 1987.

V.G. Kac and L. T. Todorov, Superconformal current algebras and their
unitary representations. Commun. Math. Phys. 102 (1985), 337-347.
Erratum, Commun. Math. Phys. 104 (1986), 175.

29



[12] V.G. Kac and M. Wakimoto, Modular invariant representations of in-
finite dimensional Lie algebras, Proc. Natl. Acad. Sci. USA 85 (1988),
4956-4960.

[13] O.Mathieu, Classification des algebres de Lie graduées simples de crois-
sance < 1, Invent. Math. 86 (1986), 371-426.

[14] A. Neveu, J.H. Schwarz, Factorizable dual models of pions, Nucl. Phys.
B31 (1971), 86-112.

[15] P. Ramond, Dual theory for free fermions, Phys. Rev. D3(1971), 2415-
2418.

[16] K. Schoutens, A non-linear representation of the d = 2 so(4)-extended
superconformal algebra. Phys. Lett. B194 (1987), 75-80.

[17] K. Schoutens, O(N)-extended superconformal field theory in super-
space, Nucl. Phys. B295 (1988), 634-652.

[18] A. Schwimmer and N. Seiberg, Comments on the N = 2,3, 4 supercon-
formal algebras in two dimensions, Phys. Lett. B184 (1987), 191-196.

[19] A. Severin, W. Troost and A. Van Proeyen, Superconformal algebras
in two dimensions with N = 4, preprint KUL-TF-88/6.

30



