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To the memory of Adrian Albert (Nov., 9, 1905 - June 6, 1972)

on the 70th anniversary of his birth

As this is being written, the theory of graded
Lie algebras is developing rapidly. As is to be expected,
there is a parallel theory of graded Jordan algebras. It
seems to have independent intefest, and may in due course
shed some light on the Lie case. This paper is intended to
lay the foundations for the study of the Jordan case.

It is apprbpriate in a paper dedicated to Adrian
Albert that the setting matches that occurring in his
pioneering paper [}]. The only simple algebras that
arise are the expected ones. However, at the end of the
paper examples are given to show that there will be extra
simple algebras in future more general studies.

Basic definitions will now be given briefly. The
grading in this paper is by Z2, the integers mod 2,

Grading by 2, the integers, also merits study but is

left to the future. We pfefer to take our graded objects
as set-theoreétic unions rather than direct sums. So a
graded vector space V is a union VO W/ Vl of vector
spaces, disjoint except for a ccmmon O. U@ll vector
spaces in this paper are finite-diménsionéi.) Zlements
of Vj, (Vl) are even (odd). A graded algebra A = Ay U A

1
is a graded vector space with a multiplication satisfying
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AlAJ<: A1+J (éubscripts taken mod 2). The bracket [xy |
is xy - yx except when x and y are both odd in which
case it is xy + yx. The brace {Xy} is xy + yx except
when x and y are both odd in which case it is xy - yx.
The bracket motivates graded Lie algebras, the brace
graded Jordan algebras,

The linear transformations c¢cn a graded vector

space acquire a grading in a natural way. There is a

trace which we call the graded trace and denote by Tr.

(We keep the adjective "graded" since the usual ungraded
trace will also play a role.) The. graded trace of every

odd linear transformation is O; for an even T we define

Tr(T) = Tr(TO) - Tr(Tl) where T, and T, are the restrictions

of T to V., and Vl‘ A graded Jordan algebra of linear

0

transformations (GJALT) is a subspace closed under {'?.

Ideals and simplicity are defined in the obvious way.
Here are two key examplgs. The algebra of alls

linear transformations on a graded vector space is a

simple GJALT under §'§; call it full linear. Next assume

Bd -
/4‘23 Le. [ e a nondegenefffe bilinear form wnich is symmgtrlc on VO’
skew on Vl’ and makes VO and Vl orthogonal. Call a
linear transformation T on V self-adjoint if, as usual,
7
‘/ (Tx, y) = (x, Ty) for all x and y, except that when T and x
are both odd we insegﬁzﬁmm;nug sign. The self-adjoint -
e }
. linear transformations form a simple GJALT. If Vo and Vl
! . : . =i e
have dimensions s and 2r, its dimension is | 2;57;:7 7/&37;
(T )= L)Eﬁ’”)("TI — #s(s + 1) + 2r° - r + 2rs. /'67‘%' e A
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We call this algebra orthosymplectic. /1) 74“";’4;“4
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Theorem. Let J be a simple GJALT over an orf%e oyrpleclic conf

algebraically clé%d figld of characteristic Q. Assume .,

that the odd part of J is nonzero and that Tr is not .

linear algebra or an orthosymplectic algebra.

The proof will be carried out in a number of steps.

exe
/Q[L/l} Ou,/‘,‘&k(i ‘
ety . (1) Tr 4§xy§z = Trix{yz%i. This routine

Thee o xede y< BeTy HAk=/

verification is left to the reader., +jtk=~: (xeqloz- x,gam —[g[le b ¢
T vv<~~;< . ("J*IQ:Z»‘ -7)1[4/54 f'—] Z’ .(/7(- '74@14?’9

(2) 1f Trogxyg for all y then x = 0. That /@ 7 a,°fé G/

Mo A, N “roitllopto

the set of all such x's is an ideal follows from (1). ‘AW&%uﬂ w8 %
. . . . y ! 1, /

If this ideal is all of J, then Tr vanishes on éJJj, s a”"ﬁfLAﬁLA

- ~tu e e

which equals J by simplicity. Tnis contradicts our
hypothesis. Hence the ideal is O.
We write K and L for the even and odd parts of J,
reserving subscripts for components of Peirce deconD051tlons.
(3)eK is semlslmple. Let x be in the raalcal of K.

4 ‘/a,,f er T 7 /Lt‘ /,a\.;(c é'(ﬁ"“]

Then Trc{xﬂd = 0 since Tr vanishes on ‘nilpotent elements

and Tr 4xL% = O since Tr vanishes on odd elements.

Hence Tr {xJ% = 0, wkence x = 0 by (2).

v (4) J has a unit element. Let u be the unit element
offﬁfa/Wémsﬁail prove that u is the unit element of J.
Given x and y in J, our task will be accomplished if we
verify Tr 4(4ux} - x)yt = O. Only the case where x and y
are both odd needs attention. Then

Tr {duxbyf = Tr < uixybs = Tr Ixy?
since‘ixy} is even.
Ta (-x—vjy)e Talwxg=xq) = Talx-Lya-y /)

Vi fas t/ X Oy Rotat . Xy QAR
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At this point we can harmlessly assume that J

= 2 M U@U(v\/gj; . .

U= 071" % contains the identity linear transformation, since the
wgﬁﬂ%a,ery ‘

Qeeppaléd & U'Y) pest of the graded vector space on which J is acting is

irrelevant. Note that the unit element of J equals

o

% the identity linear transformation, because of our use

of xy + yx rather than (xy + yx)/2 for the Jordan operation.

el 2 crgace it g ln LA
(= UL (5) If e is a primitive idempotent of K then eJe //b
¢ N raee ale ,éMM
is one-dimensional. We know that eKe is one-dimensionszl, ‘Z:jfw
mq/tc

and so our problem is to prove that eLe = O, Write
Ji1 (= ede), J1o» J5, for the subspaces in the Peirce

decomposition relative to e. With x & eLe we wish
Ly
to show that Tr‘Sxy-J= O for any y; we can suppcse y to be
demee T 170 Bs 30 R T (k) @ e
- odd. The vanishing of Tr §xy; is clear for y in J12
J « For y in J,,, the alternative requires that
22 A 11 et v e
1 Lt by ey &N e
axy? Xy - yX be a nonzero scalar multiple of e. This
e-, hc dl/u\ e\/"’! -‘/0
makes the ungraded trace of e equal to O, an lmpOSSlblllty.

(Note the use of characteristic O here. A similar argument
appears in the next paragraph.)

(6) Let e, and e, be orthogonal primitive idempotents

ejgziekz <K belonglng fo the same sinmple summand of K. Then.
A l. Z e 4 Je £ J ER
% J{, e 2
[ N CTEE )J(el + e2) contains no nonzero odd elements.

With the usual subscripts for Peiézée subspaces, our
only problem is to prove L12 = 0, since Lll = Ly = O is
known from (5). By ordinary Jordan theory there exists
b4 &’Kl2 with z2 = e + es. Take x in L;5. In showing
that Tr qu} vanishes our only problem arises with

& Ff“"[";z -a lxe L '< ~——L” “12

ThixK}=o Tr 4xyp for y in Ly,. The elements sz} and /JZ; are

odd elements in Jy; + J,, and hence are 0, again by (5).



If this is nonzero then YX - XY is a nonzero scalar

v x4y

multiple of the identity matrix, an impossibility in

characteristic O.

J

o

~ g' We conclude the argument using a block matrix notation
\J'/
rﬁ'gﬂ for the elements of (el + eZ)J(el + 62). For a suitable
3 j choice of basis we have
13 ,
v , . [ O I>
Y Yy (‘I 0
¥y ooo¥ ’
g 2 ‘gx The equations {zx} = 0, %zy% = O show that x and y
\i -):,S éi\ have the form
X ¥
Wi:‘ 0O X 70 X
§<!.'3\1J : X = ,y:
NN -X 0. -Y 0~
WNS\ o
%{i :’: we have
VR S )
¥y N o s ¥X - XY 0 )
A XY = Xy = JX = / .
b dé X ST o YX - XY
4"\
s ?\ 3
N ¥ ogS
> ¥
%
g?

&;{ Z Asdy irtaeends Y 2 Conersede,

(7) K is not simple. Take a maximal set of

orthogonal primitive idempotents in K and apply (6).

If K is simple we find that L = O, contrary to hypothesis.
Now consider ortnogonal primitive idempotents

e and es residing in different simple sumrands of K.

We shall in due course prove that (in the same Peirce

notation as above) L12 is nonzero. As a temporary

expedient, let us call e; and e, related if L;, # C.

ﬁ; »(8) Let ey, ey, andﬂg5 be orthogonal primitive

idempotents in K, with e;, e, in tre szme simple summand.

of X and €z in a different cne. If ey and €3 are related
L2 nilaled & Qg
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S0 are e, and 3. Here and in the rest of the discussion
we continue to use the standard notation for a Peirce
C o 2
decomposition. Pick z in K12 with z~ = €] + e, pick y
nonzero in L,z;. Th
13 Then Fv}lles in L23 and a m?:flx o Tley)
computation shows that it is nonzero. o Vp ol onTy oy~ 13 ez

(9) Let e

17 €5 e3 be orthogonal primitive

idempotents in three different simple summands of K.

Then e; cannot be related to both e, and €z Assume
the contrary. Pick x and y nonzero in le and L’5° There

must exist z in L, 13 with {Jz% # 0; otherwise Trcnyl = 0.

deo“{?J

-e> M LR L-n.u"
hae ’7[7”3

So P(lj"‘:;' +0O

The vanishing of the ungraded trace of byz~ = yz = 2y
, CAREFULL o+ ¥N3

shows that {yz is a nonzero scalar multiple of e, - ei"\

Next we note that 4xy¢ and 4xz% are O, for they lie

in K = 0. So x commutes with y and z, hence with e
2> . 0= [x, 0423] = Lx,d@*%€: 1 = e(’D()‘//i:l

e] - €5, 2 contradiction. /ﬂ X#O, o

We choose, and hold fixed for the rest of the
discussion, a maximal set of orthogonal primitive

idempotents in K.

v'(10) Let A and B be two simple summands of K.

Suppgse that some primitive idempotent ip. A& ig.kelated

to scrme primitive idempotent in B. Then any primitive

idempotent in A is related to any primitive idempotent in.

B. This is quickly seen by iteratec use of (8).

(11) K has precisely two simple summands. K has at

lezst two by (7). As in (7), some primitive idempotents
from different simple summands of K (say A and B) must be

related, for otherwise L = O, Let u be the unit element



of A@®B. It follows from (9) and (10) that the

. L./? 40 = L' f<had e
off-diagonal Peirce space for the deccmposition given
by u is O. Thus if u £ 1, u yields a nontrivial direct
sum decomposition of J, contradicting simplicity. Hence

- A@B.

o s . L.
(32) Any Lij linking primitive idempotents in

the two summanddbf K is 2-dimensional. It follows
1

from (10) and (11) that L; . is nonzero. For x and y

» 5 : J NO! c@:cJ'
NOY . in L,. we have that &xy% = ce., - ck.TTor a scalar C. gufartrrccze
— 1dJ : 1 J
The map assigning ¢ to x, ¥y is an alternate form on
L... The usual appeal to Tr shows that this form i
1J crome=c ,av Fialylro = (xLyi=o = Taixl 3? O /”\““ X=0
nondegenerate. If the dlmen51on of L ij exceeds 2,
i we can arrange to have {xt? = &yt} = O with t nonzero
w"“’""(/[W n:dn
wes, (X870 and {xy% = €5 -de.. Then t commutes with x and Y ¢ T
}1 d(@“f 3 /"’uq oo A ([+d)€ wbd P( lﬁ-ﬂd¥ ‘/A "—I‘ >O

[5

. A bu:"z()
> e, abE hence with {xy a contradiction.

o
o algeba [P From this point on the identification of J with .

a full linear or orthosymplectlc GJALT is fairly

stralghtforward and also tedlous (involving case
distinctions and matrix computations). The procedure
will therefore only be sketched, with details left

to the reader.

_ The gfucial. case..~ the first in which there is.
AhﬁA‘fz; é,,“?}work to do - is that in which the simple summands

A=Fe 6-F€ ¢p B of K have degrees 2 and 1. The easy deduction

[ = Frt Fy
[xu]l=2"% of the general case from this will be totally omitted.
FuULL MA'ri’\‘l LS

Bur o Dudd=ne "
£f=C’03*e —6ﬂ14)Jordan algebra of degree 2. We shall build up the

So B is l-dimensional, and A is an (ordinary)

=
e

e /] O - jool
<= (512597 ks)
X=42tPy Y= a3~ ?
cm (-6, +ezs) (& = &) GET ONCY  [S2T0PCs A el mATRIX !
=028, = €3 20‘
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structure of J in a 3 by 3 block matrix notation, the

blocks having the sizes indicated:

2 /T by r r by rf r by s
per Nai
45¢;1¢bf r'by r r‘by r’ r’'by s .
& At e . - - .
b/‘i,\ 1‘( l:’iﬁlz“(o" T T r?)
b s by r s by r | s by s

The algebra A occupies the four blocks in the upper

left. The matrices down the main diagonal are scalar.

We write
0 0 P 0 0 R
P = 0 0 0 , ¥ = 0 0 0
Q 0 0 S 0 0

for a basis of LlB' As we noted above, A contains

2 + e2 and it can be taken in the form

an element z with z°~ = el
"0 I 0
zZ = I 0 0 R
0 0 0
We have
. PS - RQ 0 0 e
[ipt@? - 0 0 0 .
0 0 QR - SP

So PS - RQ and QR - SP are nonzero scalar matrices.

The elements {;pé, 5?t% form a basis of Lyz, built in
exactly the same fashion out of P, Q, R, S. Multiplying
we find that

L and L

13 23
o fpp) = [0 00D L oseth= (000
ciep ‘< o
OOFP €34 S R

0,4 Wy |
{zs 3 o q o O PSo )
1=Lp el Fpa, P .tS, 1 PS KRG, {aq;\» ¢,



PS=-PR=T,

Ps-ﬂ@:ol.l—r
Q({-gpe e T,
r-d+s-c=o

PG © O

/[ O PS O LA 0= OR@0>
qg=|-RQ O 0] . o © o

lies in A. Now come the various cases.
Case I. A is 3-dimensional. Then g must be a

scalar multiple of z, so that PS = -QR = a scalar , )
(SR
multiple of I; we can normalize to make them equal I. é J,)

¢ N \
o~ p" (qJP
In the matrix for q we may replace(ﬁ)by Q and R by P j%(
and the resulting element will also be a multiple of z.

ey R
This tells us that\PQ = O(and likewise we have[gs = 82

Suppose that GR - SP is the scalar ¢ times the identity.

Right-multiply by Q to get -Q = ¢cQ, ¢ = -1. Since the

5
ungraded trace oﬂ {pt} is O, we deduce that s = 2r. )(
Bases may now be chosen sc¢ as to make P = (I O), R = (O -I), .
o © o A2
P:( o o Ooj t=/ o o oo
- [\ s (). 7 g 88 ({,%5’3
I/ 0

On Qeflating th%matrices by a factor of r we recognize
a:;?%plectic algebra, acting on a four-dimensional
vector space with two-dimensional symmetric and
skew components,

From now on A is more than 3-dimensional. The

remaining basis elements of A may be assumed to

anticommute with z and therefore have the form

/0 X O



We may further assume X24= I,
A L H-duminal ool el
Case II. \X is a scalar. Wwe may assume X
/

It is possible to take Q = R = 0. Then'PS an#SP

H
HH
°

are both scalar matrices, r must equal s, and P and S
can be normalized to I. A deflation by r yields
GITA LT

the full linear admebza on a 3-dimensional vector space.

Case ITI. A is 4-dimensional and X is not a
scalar. Again we find r = s. It turns out that,
Jd can bedeXhibitedr?S'the full linear GJALT on a
5-dimensional vector space repeated a certain number
of times, and then repeated a certain number of times
with each matrix transposed, the total number of
replicas being r. In any event, J is isomorphic to
that algebra.

Case IV. A is more than 4-dimensional. Since
A admits a 4~dimensional module, Jordan mcdule theory
(see [5]) shows that the dimension of A is at most 6. A
fifth basis element may be chosen with square the
identity and anticommuting with both z and our &th

basis element. One then sees that our 4th and 5th

basis elements can be put in the form

o
() b S 0 O o ©
> -T
’?; O O N —(I o @ O ’
o o U , 0 o U



Here we find that r must equal 2s and we can normalize

so that Q = (0 I), s = (I 0),

)

After deflating the matrices by a factor of s we have

the orthosymplectic algebra that acts on a 5-dimensicnal
vector space, consisting of a 4-dimensional skew piece
and a l-dimensional symmetric piece. With this the

proof of the theorem is complete,

We now present a number of examples which
hopefully will point the way to future investigations.

Example 1. The characteristic is 3, the algebra
is 3-dimensional, and it acts on a 3-dimensional graded
vector space in which the first two basis vectors are
even and the third odd. A basis for the algebra
consists of the identity matrix and

i O 0 1 \ /0 0 O

0 0 0 I 0 o -1 ?
o/

0 1 1 0 0

The commutator of these two matrices is the identity,
so the algebra closes and it is simple. The graded
trace of the identity is 1. This shows the thedrem
failing for characteristic # O. From now on all
examnples are in characteristic O.

Example 2. Take the 2n2-dimensional graded »
asgociative algebra where the even and odd elements

are of the form



Unogin” & T = My 0)= ] (12) S
' L= 1, k)@, kLu]  paced avr =y . '
J= At ‘PO ' Q o\

Ko p) ' (o Q
P and Q ranging.auef.alled-by Quigirices. Under § f this

is a simple GJALT. The graded trace vanishes identically.,

If we use L ] instead, and trim by one dimension at

top and bottom, we obtain the graded Lie algsbras of ;
Gell-Mann and Radicati (see page 567 of [é]). e

Example 5. Take 2n by 2n matrices divided into

blocks of size n. The map

T= HiA ) |

)F/d/{/ IM/MC P Q ~ VIS|§ "Q’)
W{W{a&m e 7/25(.;&1, ;, ' ‘

/q:;/ﬁzntub\ RS 4 RY PV

(' = transpose)

is an involution ip the graded sense (cpne requires

_ .
<:z;) (xy)* = —;& when x and y are both odd}. Give the

algebra a Z-grading as follows:

P ®0 0 Q\ o= 0
- degree O, degree 1, . degree -1
0O =S 0 0y Rw O/

i We can convert this to a Z2—grading by lumping
together the portions of degrees.l, =1. The self-adjoint

~_elements have thne form |
- - ———

/ P ® skew\

Ksymm. pt /

and form a simple GJALT. Again theFraﬁﬂﬂhtrace
vanishes identically. The Lie counterpart (consisting
of all elements skew with respect to the involution)
appears in [53 under the gdesignation P(m) and also

-7 i
at the end of [&;. .



(13)

. Consider the following GJALT's: full linear,
ortnosymplectic, and those of Examples 2 and 3. It is a
fact that they exhaust the simple GJALT's obtainable
by taking all of a simple graded associative algebra
(these are known - see [?J), or the self-adjoint
elements under an involution. The analogous remark
applies to the Lie case. |

What identity (in addition to commutativity,
graded style) should one postulate for general graded

\éordan algebras? One notes that aeb.a = a2.ba is

inadequate since it yields nothing when a is odd. The

linearization is fine, however. Assume
ab.cd + ac.db + ad.bc = (bec.a)d + (cd.a)b + (db.a)c

except when two elements are odd and two even, If

a,b are evén and ¢, 4 are odd the assumption is changed to

ab.cd + ac.db - ad.bc = (bc.a)d + (cd.a)b - (db.a)c.

Example 4, With x and y 0odd and xy = =yx = 1

we have a 3-dimensional simple graded Jordan algebra.
For characteristic O it is not "special", i. e. It
cennot be represented by linear transformastions, at

least on a finite-dimensional vector space; but in

~—

[PV —. e

" SR

Example 1 it is so exhibited for characteristic 3.
Anderson [?, D. 1206] has encountered this algebra

in a different context.

| To conclude the paper we make a remark on the
connection with triple systems. Consider the odd elements

of a GJALT. They of ccurse ciose under {{ab%c}. From
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the ungraded point of view the operation is actually;

‘{Zgﬁjc}. Likewise the odd elements of a graded Li®
algebra lead to [{ab}d]. These "mixed triple systems" \
have occurred in physics and may merit the attention

of mathematicians.
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