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Graded Lie Algebras, I

Irving Kaplansky

(Preliminary version)

1. Introduction. Recent applications of graded ILie

algebras in physics have made it desirable to attempt to
develop a comprehensive structure theory. This paper,
hopefully the first ofva—series, is the begihning of
such an aﬁtempt.
~ Right away I call attehtion to the fact that
graded Lie algebras (finité-dimensi&nal and of characteristic
0) appear to share many features of the characteristic p
case of ordinary Lie algebra theory. I have therefore selected
ag the first target a study like the one Seligman pioneered
in [?i[." I assume that the algebré admits a representation
whose attached form is nonsingular; in general the representation
must be allowed to be #projective! as explained beiow; (The
stronger assumption that the Killing form is nonsingular is of
course the special case where the representatibn is the
‘regular - also called ad301nt - representatlon.) Very early in
Vthe work, however, I wpaken the hypotheSLS to the following |
-pair of assumptionss: that there is a nonsingular associative
form (not necessarily coming from any kind of representation),
and that the even part oiithe algebra is semisimple plus
abelian., (As far as I know at present, it is possible that no
actual weakenlng of hypotheses has occurred.) o
The;l’plan of the paper 1s as follows. Various
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-preliminary resulis are assembled in sections 2 to 7. At
this point I launch an axiomatic study of the Uroot systems"
that are emerging. ' The main differenée befween these
root systems and those that arisevin ordinary Lie algebra
theory is the possible presencekf isotropic vectors. The
axiomatic treatment makes it possible to handle the geometrlc
problem in self—contalned ,way, although admlttedly the

. Py Hamd (2.
axioms are a little artlf}el. In sectlonez I return to
graded Lie algebras to grapple with the possibility that root
spaces may not be l-dimensional. After this'possibility
has beén severely limited I retdrn to fhe robt systemsrand
complete the classifications Thelpshot is that there
are two infinite families ("special linear" and
“orfhosymplectic") that might well be called classical,
and in addition systems I label ('(4, B, C), I »y and P
(A, B, C) is actually an infinite family, with parameters
A, B, C free to roam, subject to A+B+C=0, The
ordinary Lie algebra Gz makes an appearance inside Fé, but
the 6ther excepiional algebras F4, E6, E7,and E8 do
- not show up at alls

.The arguments used in the classification of the
root systems are»elementary; tedious, and repetitive., I
hope there will soon be a better way to do the job. But I venture
eyt to say that it was worth while pushing thrbugh the
prqject:—three times I received a surprise. ‘
The next task of course is to answer the obvious

questions>concerning’the'éiistence'anqkﬁiqueneéé‘of gréded»
Lie algebras that go with these root systems, This study'-

ig in nrogsress.
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There exist simple graded Iie algebras which do n#iZ
satisfy the assumptions in this paper. :‘.L‘here are indications
that they are related to Cartan's infinite pseudo-groups,
just as is qoi;jéctured for characteristic p. Dr, Wa;riép.
Nichols is at work on this.

Many further topics invite attention: represemtations,
Whitehead and Levi fheorems, cohomology, real forms, Ado's
theorem, simplicity theorems of the Herstein type
(Speers L"ﬂ,' L?Jha,s made a start on this), graded Jordan

algebras, grading by Z (instead on 2, as in this paper), etcd

2
I am greatly indebted to Peter Freund of Chicago's

Physics Department for numeTous stimulating conversations

andtfor his patient attempts to teach me the role graded Lie 7

algebras are playing in physics. In the joint announcement {3]

the results contained in this paper are summarized.

2, Basic definitions. We present the bare minimm of

background that is needed,

All grading in thi_sbaper is by Zz, tﬁe infegers mod 2.
The first concept that is pertinent is that of a graded
vector space V over a field ,& (211 vector spaces are_'
finite~-dimensional ‘l:h:boughout the paper)., It appears to be
technically convenient to take V as é. set-theoretic union rather
than aff direct sum. So V = Vo U Vi where V, and V. are
vector spaces over k, disjoint except for their common 0.
An element in VO is gven, one in v, is odd.

A graded algebra A= AO W Al is a graded vector space
with a bilinear multiplication sa’clsfying A, Aj fos A, (notlcé'
that this includes A]_Al cs:Ao, since the subscripts are
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integers mod 2).

Linear transformations on a graded vector space V

- acquire a grading. Such a linear transformation is

- actuafly a pair of ordinary linear transformations. An

0dd linear transformation on V = V5 U ,Vl combines 1j.neaaé

‘transformations from V, to Vl and V to VO’

one combines 'VO -—}Vo and Vl-—évl.- The linear transformations

an§even

on V form a graded (associative) algebra which is in fact

. simple, - Here is an exercise for the reader: conversely

any simple graded associative algebra over an algebralcally

closed fleld has this form, To extend the result to a field
which is not algebraically closed, 1ntroduqe graded vec;t’or
sSpaces over a division ring., 7

We shall meke use of the trace of a’llnear transformation.
For an odd one we simply declare the trace w# to be 0. ZLet
T be an even linear transformation, comsisting of

Ty V’O-—}’ V-O and Ty3 V;—>V,. We define

B rr(1) = Ix(2y) - Tr(T).

Let T a.ndU’ be linear transformations on V.V We have

Pr(TU) = Tr(UT) except that
(v T2(TU) = - Tr(UT)

when T and U are both odd. ,
The bracket [:iy] of two elements in a%radea algebra is

"'defJ.ned as xy yx 1f ‘at least one of the two elements J.S

even.and xy + yx if both are odd, _W_e have the following

properties,
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(a) {xv] = -ngﬂ if at least one is even; Eg@:@bﬂ'
if both arve oad, |

(b) The Jacobi identity

[xJz] + [[32]5] +1 [e=ly] =
holdskf the number of even elements among x, y, z is 0, 2, or 3, '_
I§ two are oddrand one is even, take z to be even; then
| T xJz] -(:[jé]i] [[z=Jy] = 0.

We take (a) and (b) as the axioms for a graded Lie algeb

Remarks, 1. In treating an abstract graded Lie algebra
we write the eperation'merely’as juxtaposition;_the bracket is
reserved for actual commtation in an associative algebrao_

2. Addltlonal axioms ar%needed for characteristlcs 2 and 3¢
We omit these since we shall shortly be assuming characteristlc 0°

3 Observevthat a graded Lie algebrabs not a Lie algebra
“in the ordinary sense (though of course the even part is a
Lie algebra). In the first place this is trivially true
since our graded Lie algebras are not closed under. addition.
Naturally the m1331ng sums can be supplied, but even then
axioms (a) and (b) are tw1sted variants of the usual
antlcommutat1v1ty and Jacobi identlty.

The notlon of an ideal in a graded Lle algebra is the
obvious one, as is that of simplicity. Our project is to study
certain simple graded Lie algebras (over an algebraically

closed field of characteristic 0);

3¢ The form attached to a representation. A representation

x,5>S» of aggraded Lie algebra J = JOL/ Jl is defined in the
obvious way as a homomorphlsm of Jd 1nto the graded Lie algebra .
- of linear- transformatlons on a graded vecton space. The notion

of a homomorphlsm includes the assumptlon that S preserves

paritv nf elemanto Wo ococmnntinadka sxtdl & 2 w0 L.
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(X, Y) =A TE(SXSy)o

This form is symmetric on'JO and skew on Jl. Also,

JO and J, are orthogonal relative to the form. The.

1
form is associative (also called invariant):

(2) (xy, z) = (%, y2).
We give the verification of (2) in the most interesting
case: x and y odd and z even. Then 2) becomes ,
(3) Trl(s.s, +8.,808,] = ‘I‘rLSX(SySZ_—_SZSyﬂ .
Since Sy and 8_S_ are odd, (3) follows from (1).

The regulsr representation is defined by_x~§>LX
where Lx is ieft multiplica%ion by X on J, that is,
ny = Xy. The form arising from the regular

representation is the Killing form.

It is too restrictive to assumé that the
Killing form is nonsingular. For instance, let I be
the graded Lie algebra of linear transformations of
trace O on VO LIVi. Let m and n be the dimensions of
vV

cand V If m #n, L is simple and has a nonsingular

0 1°
Killing form. But if m = n, L is not simple. The
identity linear transfbrmation lies_ih L and spans
the one-dimensional center Z of L. It is the
‘quotient algebra IL* = L/Z that is simple for n2 2
(forn = 1, T is not simple). The Killing form |
vanishes identically on L and L*. But the very
definition of L giﬁés us a fepresentatibn of L. by
<smélléf matrices; the induced-fbrm~isinon—zero-onvw¥

L and in the obvious way it induces a nonsingular
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form on TL*.
This suggests introducing projective representations,

as was done for characUerlatlc p in 121, A projective -

renresenta ion of a graded Lie algebra J is a

homomorphism of J into an algebra L* = L/Z of the
type just described. One easily sees that ordinary
represeﬁtations can be viewed as 2 spéciél case of
projective representations. |

Now we can at last describe the class of graded
Iie algebras to be studied in this paper: éimple
ones (over an algebraically closed field of
characteristic O) which admit a projective repfesentation

whose induced form is nonsingular.

4, Cartan subalgebras. We fix the notation

Jd = JO U Jl for a simple graded Lie algebra over

an algebraically ciosed field k of éharacteristic 0.

It is assumed that J possesses a projective representation
whose induced form ( , ) is nonsingular. Recall that

the form is symmetric on JO’ skew on Jl, and that

Jo anval are Qrthqgonal. When restriéted to Jy the

fofm is sfill nonéinguiaf. Since thé notion of
projective representation is vacuous for ordinary Lie
algebras of characteristic O, we might as well say

that J, possesses an ordinary representation whose

0 .
| attached form is nonsingular. Hence @ Th. [ on p. 2?7

J, is the direct sum of its center and a semlslmple

0
algebra. -
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This is all the use we are going to make of
the aséumption that the form comes from a represehtation;
S0 it is natural to start all over again with a
weaker set of assumptions. We begin with a simple
graded Lie algebra J = JOiJ Jl over k. We assume
I = P @ Q where P is-semisiple and Q is abelian. We-
postulate the existence on J of a nonsingular '
‘bilinear form ( , ) which is symmetric on Jo» skew
on Jl, makes JO and J1 orthogonal, and satisfies
the stociativity condition (2). |
C1a551cal theory describes uho form on JO It
makes P and Q orthogonal, and on each simple summand
of P it:is & nonzero scalar multiple of the Killing form.
Let H be a Cartan subalgebra of JO; H is the
direct sum of Q and a Cartan subalgebra of P. One
knows that H is abelian. ¥When we decompose JO
relative to H, the root spzaces relative to the nonzero
roots are one—dlmen51onal and have numerous further
properties. We shall uynlnallv write R, £ , ¥ for

these roots and K K, K_ for the corresponding

L
root spaces.
WeAproceed to decompose J, relative to H.

Temporarily we allow for the possipility of a root
space in J, for the root O and write Ly for it, but
very shortly we shall prove tﬁat LO = 0. For the
nonzero—roots and»root spaces in-Jllwe typiqally-v
wrlte A }4 » Q and LA s L#;,  L)}, L?.»

Many things work wlth v1rtually no change from the
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L < K

. >\,+'/u

classical case. We have Ko(L;\ C_ L ’

L+ A? J&IJL
(L, , L}L) =0 except for M = -2, and the form is
nonsingular between Ll and L_;kf In particular,
LA. and L-A— have the same dimensiqn. Proofs are
left to the reader. Of course the analogous statements
about the K$.'S are ciassical.

At present we have no information about the
dimension of L)_ or how H acts on it. Much will be
proved in due course, but at this point we alert
the reader to the fact that it is possible for Ly to
be two-dimensional. )

The form remains nonsingular when reétricted to
H. Bo for each & or A there is a unique h,, h, £ H
inducing the linear function in question. It is
often harmless and convenient to make an "abuse of
language" and write o or A when we really mean qx
or h>~, and we shall freely do so.

There are two‘fairly immediate corollaries
of the classicél thof& that we éhéll wish to quqte.
They appear in the first two 1émmas.

Remerk., To avoid a lot of repetition our
lemmas will be stated in skeleton form. But the
two major theorems of the paper will be stated in full.

Lemma 1. Assume that o and f are not orthogonal.
Then the form is non—isotrOpic on the rational
subspace spanned by h, and he .

Proof.  The elements h and'hg lie in P, the

'sémisiple summand of JO. Since they>aré non-orthogonal,
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they lie in the sasme simple component of P. The
result now follows from classical theory.

Lemma 2. Suppose that (g,8 )/ (X &) is

a negative rational number., Then for any j , ¥ 1s orthogonal

-to at least one of<X,4@o

Proof. This time Qi andhé must lie in
different simple summands of P, for otherwise one
knows thaf (g y 8 )/ yot) is a_poéitive rational
number., ha.cannot lie in both of these summands;
and so must be orthogonal to at least oﬁe of h, h@ .

The following fact is standard Witggén Jg- |
Although the proof is identical in J,; we give it
for completeness.

Lemma 3. L2t s e.L;_be cnaracteristic under H
and let t be an element of L—A,’ not necessarily
characteristic. Then st = (s, t)h).o

Proof. We have st £ H. Since the form is

nonsingular when restricted to H, it suffices to

prove that (h, st) = (s, t) A(h) for any h H. Now

(n, st) = (hs, t) = (A(h)s, t)

since s is characteristic. _

Lemma 4. If (A,x) # O then LAL/_( or L—-AL/*
(or both) must be non-zero. The same is true if A or U
or both are replaced by roots in Jo.

Proof. We give the proof only for A andfio'

‘Suppose that on the contrary L).L/t= O';fL ;AL/L’>

Pick s in L; characteristic undet H and t in L_/l
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with (s, t) = 1. We have st = h) by Lemma 3. For

any.x E QM..the Jacobi identity tells us that
st.x + tx. s + xs.t = O.

Here the second and third terms vanish, but the first
.equals h?\x and does not vanish for nonzero x,
since (CX,/A) £ 0 impiies that §> is nonsingular
on %u . - N
We shall use Lemma 4 so frequently that after
a few initial references to Lemma 4 its use will
be tacit. #0

We recall that (&L, )Afor any « . This is not
necessarily true for A. So we make a distinction,
calling )\ isotropic if (A,A) =0 and ﬁon—isotropic
if (A, A). # 0. This calls for a refinement of our
fixed notation. From now on >, M Y, P owill
always denote isotropic roots and ~ will stand for a
non-isotropic root (ﬁnder the action of H on Jl). The

sotation for all these root spaces will continue

to be L with the appropriate subscript: L;l, cee 3 ch

5. Qdd non-isotropic roots, I.

Lemma 5. Assume that the nonzero element x
in LO‘ is characteristic under H. Then x° £ 0.

Proof.. Pick y & L_, with (x, y) = 1. Theg'
(iemma 3) Xy ='Yldv. By the Jacobi identity
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2
XY + XyoX + yXox = O,

so that x2y = -2xy.x (note that xy = yx since

x and y are odd). We have xy.x = hé.x = (o~ 0 )x:

since x is characteristic. Hence xy.x Z O and x2 A 0.

Thus the even element x° lies in the root

space K and in particular 20 1is a root in Jo-

20
Since 1in JO no robt'can be twice another, and
furthermore the foéts in JO are non-isotropic, we
conclude that the roots in JO and Jl are distinct.
So we are henceforth able to speak about even and
odd roots unambiguously. |

We emphasize the information that every odd

non-isotropic root is equal to half an even root.

6. Proof that LO = 0.. Recall that LO igs the

root subspace of J1 (the o0dd part of J) corresponding

to the zero linear function on H.

Lemms €. LO = 0.

Proof. We must have LOQX_='O'= LOL;\’ for

Lok, would lie in the non-existent L, , and likewise
LOL)\ C_K.?" er  set of e :
products of elements in the K's and L's (since we

have agreed never to add an even element and an odd

element, the sums are to be confined within JO and Jl)_j‘“.“_.

An easy induction using the Jacobi identity shows
that E is an ideal in J. By simplicity, B = J.

Another use of the Jacobi identity shows that the
annihilator'of-LO is a subalgebra;w:SinCé this -

annihilator contains the K's and L's, it eqguals J.

® P

= 0. Let E denote the set of 2ll sums of“&“
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Hence LO = 0. | -
It can now reasonably be said that H is a

Cartan subalgebra not just of JO but of all of J as well.

7. An even root and an isotropic root.

Lenma 7. ither Ka:LA.or K &_L\'is O

Proof. Assume that on the contrary both are
nonzero. Then A+ and A-o« are odd roots. There
are two possibilities for A+& If it is

“isotropic then
CO NN 2(A o) + (o, ) = 0.

If A+ol is non-isotropic then 2( A + o ) is an
even root. Since therisotropic root X lies in the
rational subspace spanned by « and 2( A + £ ) we

deduce from Lemma 1 that « and JA + « are orthogonal:
(5 (A,xX) + (L, X) =

Likewise we get from X -« that (6) or (7) holds:

(6) 2(Q, k) + (&, k) =0,

(7) § _j('?\,o'\) + (x, % =0.

Any of the four ways of combining (4) or (5) with

(6) or (7) yields the contradiction (£, RA) =
Lemms 8. Assume that (&, ) # 0. Then:
(a) 2( et , A)/(A,X) = F1 or +2,
(b) If 2(x , M)/( A, ) = =1 then X+ is

~an isotropic root,
(c) 1f2( &, })/(ot )

odd non-isotropic root ané %+ 2«_ is an 1sotrop1c root.

-2 then X+dk is an:



A

(d) If 2C e, A )/ (ot ,8) = =1 or -2 there are
no zero-divisors between Kd_ and LA.; i, e. the
result of multiplying a noﬁggéro element of %&. by a
nonzero elemsnt of P). is nonzero.

Proof. By Lemmas &4 and 7 exactly one of Kd-L;L,
K‘d]ak is 0. We first study the consequences of
K_&jla==0. Let x be any nonzero element of L
Then K-“'xi 0 and the Jacog; 1dent1ty shows that
K, x # 0. Multlply x repeatedly by Ky as long as
the product stays nonzero; say the last nonzero
product occurs after r multiplications, so that it
lies in.I“&+rd;. Then standard theory shows that
2(0X, AV /(R , %)

We have that \+oa is in any event a root and
it is odd. va it is isotropic we find r = 1. If it
is non-isotropic then 2( A + A ) is an even root.
Since A lies in the rational subspace spanned by A
and 2( A + K ) we deduce from Lemma 1 that of and )‘40_(
are orthogonal, whence r = 2,

If at the beginning we had assuﬂed K L;\-

:the dlSCUSSlOH would have been entlrely analogous

and would have led to 2( &, A)/(et,«) = 1 or 2.

So the assumption in parts (b), (c), and (d) of the
lemma that 2(oL ,A)/(a¢ , *) = -1 or -2 is inconsistent
_with szgk = 0 and requires K_O(L;\= 0. Everything

stated in the lemma has now been proved.
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8. Axioms for root systems. It is a good idea

in the classical theory of simple Lie algebras to
pause at a suitable point and put down as axioms the
crucial properties thus far established for root
systems. Then one proceeds to the clean se]f~conta1ned
geometric problem thus posed.
We shall do the same here. We postulate a
finite-dimensional vector space V over a field k
of characteristic O (which need not be algebraically
closed). V is equipped with a nonsingular symmetric
form ( , ). InV a finite seﬁfof nonzero vectors
is given; we call thermembers o I’ "roots", [Mis a
disjoint set-theoretic union o€f23£sets whose members
we call "even" and "odd". We continue to write
<y @ ;¢ for even roots, A, Ay ¥, for odd
isotropic roots, 4 for an odd non-isotropic root.
There are six axioms. In due course we shall
add two more, |
1. Along with any vector, r’contains its
negative. A root and its negative have the Same parity.
2. The even roots in [ constitufe the system
of roots of a semisimple (ungraded) Lie algebra. |
(As a consequence, all even roots are non-isotropic.)
5. TFor any two non-orthogonal odd roots the sum

or the difference is an even root. In particular,

for any ¢, 26 is an even root.
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4, 2(k , A)/(L, ) = 0, 41, or + 2.

5. If 2(a ,A)/(k,*&) = =1 then A+« is a root.

f

it

6. If 2(L,A)/(KL,0t) = -2 then A+ and
A+ 24 are roots. A+4 is odd. | _

Note that in axioms 5 and 6 respectively, A +«
and A+ 2A are isotrobic (and hence of course odd).
It is also to be noted that axiom 2 makes Lemmas 1
and 2 available.

We can dispose at once of one question concerning
parity.

Lemma 9. Suppose that ( A,/L) £ 0 and that ;\+/L
is a root. Then :N+fL is even.

Proof. IfMpis odd it is an odd non-isotropic
root so that d7=‘2( P +-/&) is even. ‘But we find
2(ok , A)/( ok, o) = 1/2, a contradiction.

We shall use Lemma 9 quite frequently and shall

not quote it.

9. Three isotropic rooius,r, In this section

and the next it is to be understood that the axioms
of €58 for root systems are in- force.

We proceed to two lemmas concerning three -
distinct isotropic roots A y A Y. We fix the
notation (/u,v) = A, (v,2) =B, (7\,/(/\) = C.

TLemma 10. Assume that A = O, that B and C are
nonzero, and that\g;fﬁgg 2 + ¥ are roots. Then B - -C.

LRV L a e LT SN

Proof. We have

SL(?‘-P/“,.’V) : - B 3[%4’9,_//(_') <,
Qs gL ) < (A4 2,2+2) B
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Each of B/C, C/B is equal to 4+ 1 or + 2. This forces
each toAbe_;tl. It remains to exclude the possibility

B =C. IfB = C we have
(%+/l,>«+v)=23;éo.

The rationsl subspace spanned by 9+}§Aand 24+ 7
is non-isotropic (Lemmé 1) and contains the isotropic
vector M -7 . Hence [1= Y , whereas we assumed/L and »/
to be distinct. '

Lemma 11. Assume that A, B, C are nonzero and
that o+, %+ A, A +p are roots. Then
A +B + C = 0. PNoreover, /'l+/( +7 is an
isotropic root.

Proof. Buppose that A + B + C is not zero.
Note that A + B + C is equal to the inner product of
any two of }(+ Y, Y+, and A f/(. So these three
vectors are pairwise non-orthogonal., The ordinary
theory of Lie algebras tells us that the ratio between

any two of
(/A +r);1//\+7)), (')""A)'V‘l'A)’('A‘*'/(:)\‘*'/L()

is 1, 2, 3, 1/2, or 1/3. These ratios are A/B, etc.

Furthermore
02(/(-#0’,90 B#—Co

§!L-+-ﬂJC/u + V) - A




NT

S0 B/A and C/A,.two ratios from the list above,

must add up to 1 or 2. Dhisg can only be done if both
are 1/2 or beth are 1. But if a fraction is l/é
its.reciprocal is 2. We see that A - B = C s forced.

We now have
()+/¢,a'+/u);(a+a),>‘+>))
(3+/(JA+V)

This cowbination cannot occur in the roots of a
semisimple Eie algebra. This contradiction arose
from out initial assumption that A + B + C was not
zero. We have pfoved A +B+C =0.

To see that 2 + P+ 1s an isotropic root

we need only note that

lpu+ 252) 2(C+8) | |
éa_;v,/u)?) B 2A & el

-10. Sum and difference both roots. The lemmas

in this section will be used in é;l2 in the study of
the dimensioné df roét spaces.

Lemma 12, Assume that (Q.ULL) # 0 and that
both ;l+//. and A__—/u are .roots. Then for any 7/
different from jjl,fya. one of the foliowing is
true: % is orthogonal to both A and/x or %’ is not
, orthogonal to. either or M - In the latter case

it is impossible for both :>+ » and A- % to be roots,
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Prqof. Assume that j~ is‘ not orthogonal to
both X\ and M, say (A, w) £ 0. Bj changing the
sign of ) if necessary we can suppose that A+ 22 is
a root. We proceed to rule out (/L,’))) = 0. If
(/,{, 5/) does vanish, Lemma 10 is applicable to yield
(A ,/() = -(A,"). Fﬁrthermore, Lemma 10 can be
applied a second time to the triple 1, “H Y to
yield ( X, —/a) = ~-(N,w»), a contradiction.

Suppose now that A+ » and A+ » are both
roots. It is harmless to assume that /+>/ is a root.
~We now apply Lemma 11 to the triples 2,/4 ,» and

-/\,/4 , > . We get two eguations

0

il

(/\’/’()+ (A7V)+(/(sy)

() = )+ Ca, M = 0,
which combine to yield the contradiction (/u , V) = 0.

A note is in order about the notation ih the
next lemma: by Iq-A we mean the set-theoretic
complement of A within I'yand (A, M-A) =0
means that every member of A is orthogonal to every
member of T - 4. |

Lemma 1% is designed to avoid repeating an
argument that will be used several times,

Lemma 13. Let A be a root subsystem of the
root system . Assume that A is spanned by its

isotropic members. Assume further that every isotropic

root in ['-/ is orthogonal to A. - Then:y
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(a) Any eveu root in i~ A which is not
orthogonal to A has the form r\+/u or ( \ +/.,L)/2
with 1, /L non-orchogonal in A,

(b) If every even root in [=A is orthogonal
to S, then (A, [ - A)

Proof. (a) Take ot in "= A, (4 ,A) ZO. Then
(of V) £ 0 for some ¥ inA. It follows that one
of Y+, ¥ +24 is an isotropic root, and since
it is not orthogonal to ¥ it must by hypothesis lie
in/\. This gives the desired result. .

(b) It remains to prove (A,6) =0 for 6 € f’--A.
Assuming the contrary we have (;\,04) £#0, A€A,
One of ¢4\ is an even root, and so we may supvose
that o = 5‘+)_ is an even root. « is not orthogonal
to X and so by hypothesis Le D . If 2@ /(od o)
or 2 then ¢= o -\ lies in A, a contradiction.
Therefore 2( « ,N)/(«,X) = -1 or ~-2. But this also

leads to trouble for we find
72(26—: A)/(2 &, 2d) =-1/4 OI"l/B,
a contradiction since 2¢— is an even root,

11. 0Qdd non-isotropic roots, IT. In this section

and the next we return to our “"concrete" simple graded
Lie algebra J;

~Lemma 14 Lcr is one-dimensional,

Proof. We continue the analysis of & where

_Lemma 5 left off. Pick x as in that lemma. If
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I (and hence L ) is more than one-dimensional,
g -
we can find a nonzero z in L*U‘ with xz = 0. From
the Jacobi identity, as in Lemma 5, we get x2z =
2 .
-xz.x = 0. Now x, h26‘ , and an appropriate element

in K form a simple 3-dimensional ordinary Lie

_20~
algebra Y. We have h26x2 = 4(0“,6-)x2, h,, 2z = -2( g ,07)z.
One knows (from the representation theory of Y) that

this is inconsistent with x°z = O.

12. Two-dimensional root spacese.

Lemma 15. Assume (A,u) # O. Then L, and L
/ | A e

are at most 2-dimensional.

Proof. I or L_ L_ must be nonzero

L

AH A
(Lemma 4). Let us say IQ)IQL £ O. We have a
bilinear multiplication of L . and L into the

A

l1-dimensional space KA+}L. Suppose, for instance,
that the dimengion of ;%‘ is 3 or more. Pick x E,I?\ y
yel_, with xy = h)_(Lemma %). We can find z # O

in EWL annihilating x and y. In the eguation
Xy.Z + YZ2.X + ZX.J = G

the first term is nonzero, the second and third zero.
TLemma 16. Assume that (?L,/A) # 0 and that L;L
is 2-dimensional. Then 9»0 is also 2-dimensional.
Furthermore L;\ L/u and L 2 L-‘/u, are both nonzero.
Again we quote Lemma 4 ©o assert that at least

one of L%L/LL s L%L__/’L is r}onzero. Let us say
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# 0. Write & =_/(-—A . We have
2,2 _ alu-», »)
Celoet) L=, )

By part (d) of Lemma 8, there are no zero-divisors

L/\L__/u_
= —/.

between Ka4 and L;\ in the multiplication that lands
in L/Lo Hence %/L‘is at least 2-dimenoional..:By
Lemma 15, it is exactly 2-dimensional, If we had initially
assumedilwkiy(é O we would have found prL to be
2-dimensional. But L and L have the same

, M - _
dimension.

We turn to the final statement of the lemma..
Suppose that on the contrary L Laly,=0. Multiplication
of L by L lands in the l-dimensional space K °

- T T ’ PREE A
Hence we can find rnonzero elements x'g_L_;&, y Ee%fc

with xy = 0. Pick z g ?A with xz = h In

))D
Xy.z + ¥z.X + zx.y = 0O
. the first two terms vanish but not the third.

We need a lemma assuring us that in suitable
oircumstances orthogonality of roots implies that
the product of the corresponding root spaces vanishes.'

é?—-/

Lemma 17. (a) If (}\,/u) = O then LAL/“

(b) If (A, o) = 0 then LyL,=0. (c) If (A, )

= O then L,\KoL= 0. el g e

Proof. (a) If LAL/u;é O¢ then r\+/,L is an evon

root, hence non-isotropic. But the sum of two

orthogonal isotropic vectors is isotropic.
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(b) Assume 1L, £ C. Then A +4& is an even
A O‘
root. Moreover 2¢ is an even root. We have
(A +6, 260 ) %zO. But Ais in the rational
subspace spanned-by A +06 and 20, and this
contradicts Lemma 1.
(c) From L, &, 4 O we get, as in the proof of
lemma 7, that either equation (4) or equation (5)
holds. In conjunction with (A, ) = O this leads
to the contiadiction (&£ ,0L) = 0.
Lemma 18. For any A,there'exists'afx with
(A ,/u) £ 0.
Proof. Assume the contrary; Let T denote
the system of all roots in J; let A denote the root
- subsystem consisting just of A and -A (it is indeed
a2 subsystem). The hypothe8®s of Lemma 1% are

fulfilled. Evidently the conclusion reached in

N

L.

part (a) of Lemma 13 cannot be tolerated. So we

pass to part (b) and conclude that A is orthogonal

to "-A. Since \ is in addition orthogonal to

itself, it is achbually orthogonal to all rotts. Lemma 17

now tells us that L annlhllates a’l root snacps

- . —,,;‘, T e ‘w«v, -.:,,,_‘ A A) - ‘T—L( C ot L,,\ L NN !,.. - L L‘ s \‘, Hpn :
- ocher than L . We now argue. uaS%lj that L\ +“§4 Ao,
¥ N\ b L>\ ﬁ'g\ \f e 20 Moz ‘—-ﬂ'\_ b |5 S W N %N‘,ik [BIN
‘ is an 1deal in. J mpllClty glveQ a yon*Pacht1onﬁ ‘ A
- T % ?L_%r:Q'f R P P =0 B ML L, hE O, %

At this point we launch an investigation of ¢

~£ the structure of J in the case where some L, is

o
¥,

2-dimensional. The discussion will proceed in

several stages.

VoS
\ﬁ: e 5,
~3
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(1) Apoly Lemma 18 %o get/u with (;Lﬂ%t) £ 0.

(2) Apply Lemma 16 to learn that L, is also
2_‘dimensional and that L/\ I;'u. and L L_ ‘L/are nonzero,
making both ,\,+//,( and A -4 roots.

(%) Let 22 be any isotropic root other than
T A y P We claim that » is orthogonal to A and y2
if, for example, (™, 2) £ O we apply Lemma 16 |
again to get A+7y both to be roots. Then Lemma 12
gives the desired contradiction.

(4) Let I’ be the full root system of J and /\
the subsystem Consisting of 2, & ,+( QA +/u.),
and + ( » ‘/M—)° What we have just seeﬁ in (3)
shows that the hypotheses of Lemma 1% are fulfilled.
The possibility of (a) in that lemma is ruled out
at once. So we conclude that (A ; 7 -A) =0,

(5) Let W be the subspace of J spanned by
Tia s Top BGan Koo L L, ,andT,TL_, .
We claim that W is a subalgebra of J. Closure of
W under multiplication by H is apﬁarent (and will
be used again in (6) below). The rest of the

closure of W under multiplication is either visible

or covered by the following remarks. We have h\g; LA L—;&

and %ﬁ'g QM_Lju (Lemma 3). KAt#Kﬂkjﬂcon51sts of
scalar multiples of bx+fc= h + %ﬂ-' A similar
‘remark covers KAjA%u-A' We have KAﬁkKAﬂM = 0, etc.

Finnaly, all products like L/LKA+/Lvanish, as follows

for instance from Lemmas 7 and 8.
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(6) We claim that W is actually an ideal in J.
Since we know that W is a subalgebra closed under
multiplication by H, it only remains to check closure
of W under multiplication by a root space external
to W, say R. It follows from item (4) above and

Lemma 17 that R annihilates L and L . By the

| X iy
Jacobi identity, R also annihilates products such

as L3\L">~ and Lr\L . By Lemma 16, L_ L, # 0

S AT

and therefore spans the l-dimensional space K .
. : Atp

Hence R annihilates %xf/iand the same is true for

K-Qvfpﬂ and K+(A—/9' This completes the verification

that W is an ideal in E._

(7) By simplicity, W = J. We next examine

L_L more closely. Pick a basis a, b for L
AT =N X

with b characteristic under H, and likewise a basis

¢, 4 for L_\ with d characteristic., The four
p _
products gc, ad, bc, bd span L)\LTA}.~ By Lemma 3

the last three are scalar multiples of %& . We
now provide an argument shbwing that the same is
true for e = ac.

The Jacobi identity for the triple a, a, c,
together with the fact that 52 = 0, tells us that
ea = 0. This shows that A(e) = 0 and so e acts as
a nilposent linear transformation on L, . Thus e
annihilated b as well as a and we have e%a = O.

We proceed to argue that e acts as a scalar

onL, . Pick x £ 0 in K By part (d) of

s M=
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of Lemma 8, L;\x = L/u. So it suffises to study
ths action of e on L?vx. We have Just seen that
e annihilates LA ; ex is a scalar multiple of x
since %u—» is lédimensional; by the Jacobi identity
e acts as a scalar on L;\x = %/4" _
All this applies equslly well to LfLL_}L, The
upshot is that we have at last proved that all of H
acts diagonally on everysrdét space. So (Lemma 3)

L, L_

. b . .
A is spanned by q*, and IygLﬁy_ is spanned by h}L

A

(8) At this point we interpolate the observation

that we have acquired a new axiom for our abstract

root systems. Since J is siﬁple it is in partisular

eqﬁal to its square. We deduce that H is spanned

by the qx's and sﬁ:s. For the abstract root

systems of §;8, this msans the following statement:

V is spanned by I (This is not really a significant

addition if the subspace of V spanned by *is nonsingular,

but up to this point the possibility existed that

this subspace was singular.) This axiom will not be

invoked until the final moments of the classification (§19).
(9) We have that J is l4-dimensional and that

its root space structure is fully at hand. That such

an algebra exists will be seen ih §19. It is a fact

that the multiplication can be pinned down uniquely

(up to isomorphism), and so J must be isomorphic to

this l4-dimensional algebra. This discussion will
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fit better in the projected second paper of the series,

and so is Omitted-here. Bgt we vgnture to make the

_as%értion a part 0f the following summarizing theorem.
 Theorem 1. Let J = Jo U I, be 2 simple

graded -Lie élgebra_over”an°a1éebraicglly'closed

. field of characteris#ic 6. Assume that 35 is the

dirept Sum b% é semisimple‘algebra and an?abelian

algebra. Kssﬁme further that J possesses a nonsingular

associative form which is symmetric on JO, skew on Jl’

~

and makes:JO and Jl,drthbgona%, Decomposé J relative
to a Cartaﬂ’éﬁbalgebra:of Ig and write X for a

root on JO;‘?-for an isotropic root on J,, and 4 for
a non-isotropic root on Jl. Then the root space

for 3 of ¢ is 1l-dimensional. ‘*“he root spaée fof,ﬁ

is at most 2-dimensional. The 2-dimensional case

4

occurs only in a certain l4-dimensianal algebra.

»

The s&stem of roots in J fulfils the axioms set
forth in éé,;augménted by the stabement bhat_V is
spanhed by . '

‘From now on we are entitled to assume that

-root spaces are l-dimensional. We proceed to acquire

° ?

a new piece of information. .

Lemma 19. Assume that ( A,}L)'ﬁ,o and that

L. and ., are l-dimensional. Then exactly one

A el .
Cof A . ,'A‘—/L—i? a root.



~ T e

Proof, We can assume L ,L,, # 0. We proceed

A
to rule out the possibility thazﬁﬂ47;§ is a root.
If so, it is an even root (Lemma 9); call it & We
find 2( ¢, \)/(X, X)) = -1. Part (d) of Lemma 8
tells us that there are no zero-divisors in_the

multiplication of K& and L_ that lands in %/L.

A

Take nonzero elements a and x in K, and L;\.

oL

Since Ed' is l-dimensional it is spanned by ax.
“S

Theujécobi identity for the E?ple X, X, a, in

2 - 0, yields the

conjunction with the fact that x
information x.ax = O. Thus IU\EV‘ = 0, a
contradiction.

In our investigation of abstract root systems
we are now in a position to adjoin still another axiom:
(;2,/u) Z 0 implies that exactly one of rﬁ+/A(, /X—/A(
is a root. This will be invoked for the first time
in {lq

13, Three isotropic roots, IT. The axioms

of §8 are in force. In the notation ofc£9 there is
one more case to explore.

Lemma 20. Assume that A, B; C are nonzero
and that /4—‘17, Y -, A -/A_are roots. Then
either A, B, C are all equal or two are equal and
the third is equal to twice or three times this
common value.

Proof. Note that
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(/u—v,v—/\)¥A+B—C.

if two such expressions, say A + B - C and A +C -3,
are zero then A = 0, & contradiction. So at least
two are nonzero. It follows that #- 9, > - A, A - A
all lie in the same simple summand of the semisimple
Lie algebra giving rise to the root system of even
roots. Note that the sum of these three vectors is 0.

The situation then is’that we have two
non-orfhogonal vectors in the root system of a
simple Lie algebra with their sum again a root. They
lie in a root system of type A2, B2, or G2. The
possibilities for the squares of thier lengthé are:

(i) A1l equal in the case of A,,

(ii) Two of them equal with the third twice
as big in the case of B2,

- (iii) Two of them equal with the third three

times as big in the case of G,. |

This proves the lemma.

14. The root system [l,. TLet us investigate the
last case that occurs in Lemma 20. Suppose A is the
number which is the triple of B and G. Let us

normalize the form so that B = C =1, A = 3. We have

Ap -, ») 204 -8)
(/t— ?\;/uw\) . -2C
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So Y+ p -A and Y+ 2 - 22\ are odd-roots, )
non-isotropic and isotropic respectively. 2( oY% +/u_ -A)
is an even root. By symmetry, A 2% - 2\ is

an isotropic root. Next

o?,('?)—-)) 7+23/¢“5LA,) _ 2/2/4;3 5—;122) ~

=/
(2,72 8 -

so that 277 + 2/( - 3A is an isotropic root. Finally

2O ) R(CBA .;3
E A )?“;LL) - ~2C g

S0 thaﬁ/“—))+2() —///L) =2 - and |
-2+ 302 —/L) =3 A - 2/,(‘—:\)are even roots,
as is 3N - 2% —/{, by symmetry. |
This mass of roots can be put in a prettier
form. Invenﬁ vectors p, q, r withp + ¢ + r = 0,
(py, p) = (q, @) = (¢, v) = =2, (g, ) = (z, D) =
(p, q) = 1. Throw in a ve.ct'or f perpendicular to

p, a, ¢ with (£, £f) = 2. Pair off as follows.
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PN - f-p
'/pL f+q
>’ | f+rr
o+ - a f
2Q e+ YV -p) 2f
v+ 2/w‘— 27 f - r
M+ 27 - 2A f - q
Z/u,+ 2% - 34 f+p
Y/ +Y =22 p
=Y 'q -
A= q
Q—/& r
2+ - 34 p-T
27+ s~ 3 P -9

" In the new versipn we ha?e the even fdots
P, ¢, *,q-7r,r~-p, P-q, 2f; the isotrépic
roots f + py f—+ q, f+ r; and the odd non-isotropic
root f (and the negatives of all these roots). It
is toleably easy to see that the system closes off
nicely and satisfies all the axioms. The system
is 31-dimensional and its even part is the root

system of Gy 63A1' Let us call this root system FE.
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15. Four isotropic roots, I. Let us return

to the setup of Lemma 11. The isotropic roots

+ A, ilu, <+, +( }\+/,L + » ), together with the
even roots j‘(/u +¥ ), 2+ (»+ A), +( A +/,L)
close splendidly to form a root system.fulfilling
the axioms. We shall céll it 77(a, B, C). We
proceed to study the possibility of enlarging
(4, B, C).

Lemma 21. Let be a root system which does
not contain e copy of rn,. As'surrie that 7 c'ontainvs
a subsystem_A of the form (7(A, B, C) with né two
of A, B, C equal. Suppose that @ lies in I - A .
Write (€ , A\) =D, (f”/*) = E, ( 6’3}) = F, and
assume that D, E, and F are not all 0. Then:

(a) D, E, F are all nonzero,

| (b) It carnot be»the case that g +§& , (’+/LL,
and €+N? are all roots,

(c) Suppose that ?+/’l s €+1u , and ?_,))
are roots. Then C = -3%3A and furthérmore either

B =2A or A = 2B. If B = 2A we have either

D

PA, E = A, F = -2A
or

D=A, E=2A, F = -A.

i

Proof. (a) Suppose that on the contrary F = O.
We can assume D # O, and by changing the sign of g if
necessary we can arrange that Q-+ﬂ.is a root}' We

apply Lemma 10 to the triple A, 1’,(’ to get B = -D.
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If E = 0 we similarly get C = -D from the triple
;l,/Ll, {7. So E £ 0. We now make a case distinction.
I.~€+7u is a root. Iemma 11 is applicable to
the triple A, /L, P to yield C + D + E = 0. From
Lemma 10 applied_to the triple c,}k ,7’ we get A = ~E.
So C +D + B = O_beéomes C*B* A =0. Inconjunction
with A + B + C = O we get C = O, a contradiction.
IT. (?—/L is a root. Lenmma 20 is applicable
to the triple -\ ’4“" Q . The pertinent triple of
inner products is -C, -D, E. So two of these three.
are equal and the third is equal or double (but not
riple, since we have excluded the presence of Pé).
Now we know that -D and B are equal so the triple
can be rewritten -C, B, E. Iquality of -C and B
is ruled out since it would force A = O. BSo we
must be in the case where one of -C, B, E is
double the others and it must be -C or B that is
the doublé. In any event B = -2C or C = -2B. These
two statements are symmetric, combining with
A+3B+C =0 tomake A equal to B or C. This
_ fiﬁishes part (a) of Lemma 21.
(b) Apply Lemma 11 to the three following

riples.
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Js ﬂl,.g : A+E+F =0,
ry,;.,'{): B+D+F =0,
).,/M,,le : C+D+ E =0,

Adding, we get
(A+B+C)+2(D+E+7F) = o

and we deduce D + E + F = O. Hence D = A, B = B,

F = C. Now we find

(ﬁ+/£,?t+//t)=2c;

#

(9f+p, fr+{>) 2c,

B+A+D+ E = =2C.

CAsp, Y 0)

This forces '2+?a, (o + £ ) and yields g = -( )>f/1 + ),

a contradiction since f was assumed not to be in A .

(c) As in part (b), the triple A, Ao ?
yields

(8) C+D+E =0,

Lemma 20 is applicable to - A, YV, e , With

inner products

(9) -B, -D, F

and -‘/2, Y, ? , with inner producté
(10) -E, F, -A.

Now for a raft of cases.



B
(I) Equality holds in both (9) and (10).
Then -B = F = -A,.a contradiction.
(II) Equality holds in just one of (9) and
(10). We shall assume that it is (9) wherevequality
holds; the opposite assumption gives identical
results except that thg'rdles of A and B are
interchanged. With F = -B in hand from (9) we
cannot tolerate F = —A. Therefore F or —-A is the

one that is the double in (10).
(III) -A is the double. We have

(11) -B = -D = F,

(12) =B = F = -A/2,

Equations (8), (11), and (12) enable us to express
everything in terms of B. We find E = B, A = 2B,
C=-D~-E = -2B. But this, in conjunction with
A+B+C = O, forces B = O,

(IT.) F is the double. We have

5)
(13) -k = -A = F/2.

We use (8), (11), and (13) to express everything
in terms of A:

B=2A,C=-3A, D=2A, =24, F ==2A.

(III) Equality holds in neither (9) nor (10).

On the face of it we might make nine case distinctionms.

But Symmetry cuts this down to the six we display

in tabular form.



(4

Element 1 Element !
which is which is - Result
double in double in
(9) (10)
T S TTTT—
by F A =38
-3 -A A =8B
-D - =K A =B
7 -B | WéhavaB:D,F:-EE,F:-»A,E=2A.
In terms of B we get A = 28, D = B, E = 4B.
Then (8) yields C = -5B and
A+B +C =20 is vﬁélated
F -A We héve B=D,F=-2B, -E=F, A = 2E.
in terms of B we get 4 = 4B, D = B, E = 2B.
From (8), C = -~3B. Again
” A +B +C =0 is violated.
B | -5 We have -D = F, B = 2D, -A = F, E = 2A
and deduce B = 24, C = =34, D = A,

l E =24, and F = -A.

With this thé proof of Lemma 21 is complete.

16. The'root éystem F%. Here is a root
system which we label P5. Its system of even roots
p
is a drect sum of B3 and Al’ as follows. We

A
represent B5 by the vectors

©1r 8y €3, €y ez, &5 e, e e,
and their negatives, where the e;'s are orthogonal
and satisfy (e;, e;) = 2. The A, part is of course

orthogonal to the ei's and is spanned by a vector f



with (£, f) = -6, The 16 odd vectors are
(2e « €2+ 83 + 1)/2,

all combinations of signs being used. We leave it
to the reader to check that all the axioms are indeed
fulfllled

Lemma 22, TIet r'be 8 root system whlch does
not contain a copy of r7 Suppose that contains
a copy,/l of r7(1 2, -3) and also a root @ not in A
and not orthogonal to A . fThen f’contalns\a copy
of r%.

Proof. We apply Lemma 21. By changing the
sign of.Q if necessary we can arrange to be in
the situation covered by part (c) of that lemma,
and we now show how to builg up 17 in each of
the two cases,.

We pair Awith (- —ey=e, - ez + £)/2, » i with
(e +e, + ez + £)/2 and 3)w1th (- —ey - e, + €3 = £)/2.
In the case D = 2, B =1, F = -2 we pair £ with
(-el + e, - ez - £)/2. In the case D = 1, E=2,
F = -1 we pair e with (e1 - e, + ez - £)/2. It
is a routine matter to verify that al1 inner rroducts

thus far arecorrect and that F% gets generated.

17. Injectivity lemmas.

Lemma 23, Iet " be a8 root system contalnlng f7
as a subsystem. Then (17 - 2)
Proof. 1In this proof we depart from the

procedure envisaged in Lemma 13 and tackle first
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an-even o & [’ - r’2' The vectors

P 49 ¥r, e -1), Hr-p), +(p-q)
constitute a copy of the root system of G2. We
know that it is impossible to adjoin to (}2 a
non-orthogonal vector; hénce oA is orthogonai to
D, 9, and r. We are done with & if it is also
orthoéonal to f and so we assume (¢, £) £ O.

Then «Kis not orthogonal to any isotropic root,

for instance p + f. We have

2@, ) _ RLprE) L4y or o,

Cﬁ()ou : (O()QZ)

But 2 is ruled out since the consequence
20, 2£)/(oL 4ol ) =+ & is an impossible relation
Detween the even roots o and 2f. We normalize the
sign of K so that 2(«, £)/{L ,Y = -1. The
relation 2(ot, 2£)/(oL ,clz)i:’!‘?etween & and 2f shows
Shet (2f, 2£)/(ol, () = 2. Since (£, £) = 2, we
et (£ 3 ) = &, and then ('OQ, f) = -2. 1In
vacticular, (e + £, £) = O. Sincew + f is
«~thogonal to f, p, q, r i% cannot lie in the
subspace they span, and neither can o .

We have that «/®» p + £ is an isbtropic root.
Is inner product with q + f is (p, q) = 1. So
Jitrer the sﬁm or the difference of oL + p + £ and

q + £ is an even root. But neither the sum nor the



-difference is orthogonal to p. So then even root
in question musj: lie in r’2 This forces of to lie
in the subspace spanned by r’2, which we have seen to
be impossible. - We have proved & to be orthogonal to l?z.

We tackle an isotropic )\ in [M- M. It
suffices to prove A orthogonal to all the isotropic
roots in P, for they span [7.. Suppose that}/\. is
not orthogonal to'p + f. Normalize/'l so that A+ p+ £
is a root, say ¢ . VWe claim that§ cannot lie.in
?2', for if we check éf p--'"f~for iso;t:ropy in )
everSr case we find that the successful cases put‘ A
into 5+ So: @ & r’ Byi what we have alre.sady
p:oved (§ 0 2) = 0. In particular, (A+p +f, p+ 1) =
yielding the contradiction (A, p+£f) =0.

Part (b) 'of Lemma 13 completes the proof.

in the remaiping "inj{ectivity" oproofs the plan
set _forth(in&:emma 15 will be used. At this point we
make a rematk that :simplifie’s; the use of Lemma 13.
Guppose that the subsystém li*c;f that;lemma has the
following property (which wili become an axiom
in :,.19) (A, /A) % 0 implies that exactly one of ?\-f-/u.

is a root. Then the poss:.bllltyg( A Vs in (a) of

&)

_Teama 15' is clearly ruled aut; only L= ( >\+/LL )Y/2

w®

:eed be con‘templated.-
Lemma 21}—' Let {7 be a. root system containing
w ~uhsystem Aof the ferm ((A, B, C) with no two

¢r A4, B, C equal and none‘ equal teo twic@ another.
7?4.77@4 Lo 4"44{/0, /ﬁ\( reed The ApL B 7



Assume further that |’ does not contain a copy of [7,.
Then (A, "= A) = 0.

Proof. Let ¢ be isotropic in A- [7. We
prove (Q ;&) = 0. Assume on the con;%ary that
_ (Q s, ), (? ,)_,L), and (_,Q,’D) are not all 0. Temma
21 can be quoted, first telling us that these three
numbers are éll norzero. 3y symmetry, and by
changihg the éign off: if necess‘ar'y, we can arrahge

that either

“

é+A1€+/LL, g+

are all roots, or

RF A gt R

are all roots. Le'mma 21 then yields a contradiction,.

| In view of the remark just preceding this
lemma, Lemma 13 finishes the proof as soon as we
rule Ol:lt the possible existence in T-A of an even
robt equal to half the sum of two non-orthogonal
isotropic roots in A. In view of the symmetry that
holds among the isotropic roots of A = {7(a, B, C)
there is really just one case to examine, say of =
(/«L - A)/2. We cannot have ( X , ») = O for this
implies A = B, So'(o( yP¥) £0and Y2 or Y+ 24
égorl/cg/yt;his isotr;;fc root irs not orthogonal to Y it

lies in N by what we proved in the preceding paragraph,

But identifying it with an isotropic root in A



gives a linear dependence between X\, M and ¥,
and this is unacceptable for they are linearly

independent (their matrix of inner products

O ¢€é B
¢ O A
B A O

has nonzero determinant).
Lemma 25. Let I be a root system which does
not contain a copy of {72. Assume 'that I contains
a subsystem/\isomorphic to 173. Then (A , T -A) =0.
Proof. We take N in the form exhibited above
for PB' OQur first task is to prove (p ,A) =0
forg ET-D ., Now e is an even root. Hence
2(ei, Q)/(ei, ei) = 0, +1, or x2., Since (ei, ei) =2
this means (ei,g ) =0, %1, or +2. Next,

e; + e‘_j (i # j) is an even root. Hence

2((ei + eJ.), Q)/(ei + ej,'gi + eJ.)

is also O, *+1, or +2, whence

[(ei, e )+ (ej, 9 )YV2 =0, *1, or =+ 2,
and in particular is integrsl. Therefore (el, e,
(e2, Q'), and (85’ Q) all have the same parity. f is
also an even root, so that 2(1‘,(? Y/(£, £) = G, ‘j_—l,
or +2. Since (f, £) = -6 this means (f, 9) =
0, +3, or x6.

Now take the three isotropic roots
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A = (-el - ey - g+ £)/2,

= (el + é2 + ez + f£)/2,

v = (-ey —vep + €5 - £)/2. | |
They satisfy (/u,,*y) =1, (v,A) = 2, (?\,/L) = =3
and the sum of any two of them lies in A, so
Lemma 21 is applicable...One possibility is that € is
orthogonal to A, /L., » . Otherwise either final
conclusion of Lemma 21 tells us that ('f’_’ A),
(f ,/t), and (? ,v):are all 41 or +2. -In any
event these numbers are integral. It follows that
(f,Q) has the same parity as the (ei,Q)'s. There
are now two cases.

1. The- (ei,. Q)'s and (f, Q)vare odd. .Symmetryé
in T75 {change: the signs .of ey, €5y €3, f as
necessary) allows us to assume that each (ei, f’)’ = 1
and (f, ¢) = 3. But then (/L ,(-;3') = 3.

2. The (ei, f)'s and (f, ¢) are even. it
follows that ({, A), ( 0 ,/,L), and (e , V) all have
the same parity. But either final conclusion of
Lemma 21 is now violated.

» 50 \-ﬂe must retreat to the conclusion that (? is
orthogonal to. A ,/4 , V. Since (for instance) /L
cculd have been ahy isotropic root of P} by symmetry,
we deduce that €is orthogonal to every isotropic

oot in PB and hence to all of r3 = _A.
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'As in the proof_ of Lemma 2%, the remaining
task is to rule out the possible presence in M-AN
of an even root okﬂqual to half the sum of two
non-orthegonal 1sotrom.c roots in A. The gfypical

| possibllities are a( (el + ey + e )/2 and ¢L= ‘-'-

| (e.l' + ez. + f)/ 2 In the first case-
" z[aé, ["e,; e, + eg-;—stj/a)
- [n(, a() |

WA
=6)

'_'.and in, the secomt
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18, Four 1sotrop1c roots, II.

Lemmd 26 Let f’ be a root system nbt 'contéining
. a copy of F(l 2 -3)._ Then the following 1s
'impossz.ble in r’ (?L f’l) =1, (A }«42) =%+ 2,
'(?\ /'L3) +2 /\,+/1-1 is a root (i = 1, 2, 3),
prftpe

Proof We begln by noting that Lemma lO
| rules out (/Ll,/(.z) = 0 and (éul’/‘l?) = 0. We make
a survey of the pOSSlbllltleS for &y, M- Iﬁ_‘
/LL]_ /(g is a root, then Lemma 11 applles to the
triple A /‘l’ /{2 The choice (A /Lz) = 2 leads
to the forbldden presence of V(l 2, -3). So

()‘ fp) = -2 and (Mrspro) =1 I8 S - fo



)

is a root, Lemma 20 applies fo the triple - 4 , /41’/"2‘
We have (—}\,/Ll) = -1, (—-/\,/l2) = =+ 2 thus far,
and so (A ’/‘2) = 2 and 9‘1»/‘2) = -1 are forced.
21, All this

Note that in any event (/ll,/u 2)
applies equally well with /‘2 replaced by /43. There
now follows the usual array of cases and subcases.

| (1) (/‘2,/5)5 0. By Lemma 10, (A,/az) =
_.(/'\., /(3)f Symmetry between A, and f{; allows us

to write (/\?/LZ,) =2, (N ’/LB) = -2. The remarks
in the preceding paragraph yield: (/Ll,/laz) = -1,

(/ul’f(B) =vl, /Ll - /-(2 and /-Ll + /’3 roots. But

now the triple /‘l, - A5 /éa fails to fulfil Lemma 10.
(11 (/‘2,/(3) £ 0, /&2 + /L3 a root. ;’ile apply
Lemma 11 to A, Mo /LT The conclusion is that
(N ,/¢2) and (A %(3) must have the same sign, and
(/42,/(5) = tu, Bgt in conjunction with (_/‘—l,/l 2) = +1,
(/l 1,/L3) =+1, we have a conflict with Lemma 11
or Lemma 20, whickhever is applicable.
(1I11) (/L2’/L3) £ 0, /‘-2 -//—3 a root. Lenma
20 is applicable to - A ,/Lz, /5. The conclusion
is that (A ,/(2) and (A »’/LB) are equal, and that
(/L2’/('3) is 2, + 4, or x 6. The possibility + 4
is ruled out as in the preceding paragraph, and

essentially the same argument applies to } 6.

So (/LZ’/(B) =+ 2.



| (I11a) (A, p) (A,p35) = 2. Then (/‘2’ 5) = 2,
(/&l)/bz) = (/01’//3) = -l’ /ll—l/‘:z and/‘l -’//(,3
are roots. Since
2 (fr-Hey Hz) | =1,
(/41 ‘/Lg_)/l/'/‘lz)
o - A - /13 is a root. The triple 2, Pat
/¢l - /éé - /45 has the forbidden array of inner

products: 1, 2, -3.

(IIIb) (2,/(2)'= (}\,/’—(3) = -2. Then
(Pos fig) = 2, (g fo) = (fp f5) = 1o /2y + /%
and(/ﬁl +//'¢3 are roots. Lemmna 20 applied to the
triple 1/“1, /ﬂé,[/ls gives the unacceptable inner
products -1, -1, 2.

19. The general case. In this section we

shall at last complete the classification of root
systems. As stated earlier, we add at this point
two axioms to join the six in é78. From now on we
assume: r’spans V, and (;1,/L) £ O implies that
only one of A-+/u s A 7/& is a root.

There is a natural notion of a direct sum of
root systems: take V to be an orthogonal direct sum
of subspaces Vi, and r7a set-theoretic union of
subsystems ﬁi’ each ]7i spanning Vi. It is an easy
exercise that the expression of a root system as a direct
sum of indecomposable ones is absolutely unique. So

it suffices for us to study indecomposable systems.
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The numerous statements ([ , § - D) =0
that have ocecurred throughout the paper can now be
rephrased as assertions that A is a direct summand
of [", and the "injectivity"” of 17 is now seen
to have the usual meanipg of being a universal direct
summand. (But note that the injectivity in Lemmas
24 and 25 is proved onlj in the absence of copies of ‘Eib)
| Theisystems (a, B, ©), {;, and f% are '
indecomposable; we accept them as entries on the
final list of answers, and put them aside. Ndw if
we assemble all the strands of our previous work
(especially Lemmas 23, 24, and 25) we see that the
following may be éssumed: (a) in the situation of
Lemma 11, two of A, B, C nust be equal (so that the
triple is proportional to 1, 1, -2), (b) in the
situation of Lemma 20, the possibility of one inner
product being three times the others is excludee,
Furthermore, Lemma 26 is available.

Subject to all this, let us take an indecomposable
root system Y ana analyze it. The method will be
to fix M and theﬁ collect all [LLi with (A ’/’Li) £ O.
Right away we make a normalization: we pick Aso
that the number of fL's is as large as possible.

The second of our new axioms tells us that
exactly one of A + /li, - /&i is a root. A
choice of sign for/Li is available, and we take
advantage of it by arranging that Q\#:},i is a

root for all i.
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Given /ti and /aj it might be the case that
(/Li,/uj) = 0; if so, Lemma 10 tells us that
(),’,/L.i) = =-(A ,/LLJ,). If (/ti,/Lj) £ O there
are various possibilities. In view of the remarks
above all of them lead to (A ’,/('i) = +( }\,/_.Lj),

. = ¢ : ; .. = -+ - e

()’/Li) iz( A,/Lj)) OI‘(“,/LJ) ,2(?",5&1)

Now comes a major case distinction. I& may -
be that we always have (A ’/Li) =% ( ?,/u.j). We put
this case aside for the moment. Suppose that at least
once we have (%,/li) =+2( ?*,/«ij). Lemma 26 tells
us that the element /‘i for which this occurs is
unique. Let us give this preferred element the
symbol A*. Further more let us normalize the form
by multiplying by an appropriate scalar so as %o
arrange (}\, ,)"‘) = =2, Then for every other /li
we have (A ,/Uvi) 7
write /LL's for the elements with (‘(\,/'Li) = -1

+1. We change notation:

and 's for the elements with (2,’1)3) = 1.
We can introduce similar notation in the case
where there is no A* (i. e. (A ’f"'i) always
equals * ( ?,/Lj)) but note that the choice of which
elements are /L's and which «'s is then arbitrary.
At any rate we again have (after normalizing the
form) ( ?s,/l,i) = -1, (A, 7’3.) = 1, but there is no )\ *.
In both cases inspection of the triple A,

Fi *)/j, in the light of Lemmas 11 and 20 leads to
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the conclu;ion (/,li, ))j) = 0. Prom this point
on we distinguish the cases.

Case I (no N\*). We begin oy pinning down the
possible behavior of a pair of /u,'s, say /Lti and /”-r.
Lenma 10 shows that (/ui,/lr) is nonzero, Lemmas‘

11 and 20 then leave three possibilities:

(a) /Li - . is a root and._(/lfi,/"i,)' = -1,
(b) o /r is a root and‘(/‘vi,,ur) = =2,
(c) M + pt. is a root and (/Li,/Lr) =

But the absence of an element like X\* ensbles us

|

i
no
e

to rule out (b) and (¢). In (c), with o = ps +
- we have 2( ot , N)/(d, ) = 1, so /o e -A is an
isotropic root. Its inner product with Ais -2,
In (b) the argument is longer. With 6 = A- Pt
and y = /»i - /Lr we have 2(@ ,'a)/(_f ,?) = =2,
Hence 6\ = 2@ +Y = 2A - /Li _/"Lr is an even root.
Next 2(&,1)/(f,g) = 1. Hence A- & is an
isotropic root, and its inner product with Ais -2.
Thus only the possibility (a) survives. The
situation with the -'s is virtually identical:
we have ‘VJ. - ')/%: root and ( vj, ')/s) = -1,
Now we exhibit the model which will be our

target. We call it a special linear root system

and write it SL(m, n). Here M®m and n are any
positive integers except that the ceasesm = n = 1 or 2
degeneré*':e and are discarded. Take an inner product

space W as the orthogonal direct sum X@ Y, where X
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has an orthonormal basis €19 evey € and Y has a
"negative orthonormal” basis f, e £, {this means
that the f's are orthogonal and each (fj’ fj) = =1).
In SL(m, n) all odd roots are isotropic; they are
the 2mn vectors :t(ei +.f5). The even roots consist
of all e, - e and all fj - £ (142, J#s). (Note,
for instance, that-if n = 1 no even roots are
are differences of f's; they are all differences
of e's.) The subspace V spanned by SL(m} n) is
(m.+ n - l)-dimensional and is theFrthogonal
complement qf the vector ziei + Eifj. For m # n,
V is nonsingular. For m = n, the vector Ze; +§fj
is isotropic, lies in V, and spans the‘%—dimensiona%ﬁ
annihilator of V. We té?efore redefine SL(m, n)
by dividing by this l-dimensional subspace, thus
depresging the dimensién tom +n - 2. We shall
continue to write 85 s fj’ etc. although strictly
speaking we need new symbols for their homomorphic
images. |

We pause to note the two cases of collapse.
When m = n = 1, the only roots present are j:(el + fl)
and they mapvto O. When m = n = 2, the identification
of e, + e, + f; + £, with O coalesces the isotropic

1 2

roots e, + f, and —(e2 + f2), and also e; + 5

and -(62 + fi). If we write A= e, + f, and

1 1
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'//L-.- e + f2 then both A -/a. = fl - f2 and ,;L+/LL,

equal to 2el + fl + f2 and congruent to €1 ~ €5

are roots, violating our most recent axiom. We

shall return to these degenerate cases once more

below, when the algebras that accompany them make

an appearance.

Now we procéed to identify the indecomposable

root system 7 under study with the appropriate

SL(m, n). Pair A with eq + fy, the //,.'s with

e.
1

(3
we

It

+ £y (i =2, ..., m) and the 4s with e; + f;j

2, «.., n). All properties are preserved and

"

see that V contains a copy (say A ) of SL(m, n).
remains to argue that there is nothing else in T7.

The pattern of the argument is the familiar

one that uses Lemma 13. Take ) in T'- A, Ife is

not orthogonal to A , it fails to be orthogonal to

some A' in AN . The symmetry in SL(m, n) shows that,

within SL(m, n), A and \' admit the same number

of
A

non-orthogonal isotropic roots. But then replacing

by A\' gives us a larger total number of

non-orthogonal isotropic roots; this contradicts

the maximality we assumed for A . Hence (e ,A) = 0.

To finish the job by Lemma 13 we have to

exclude the possible presence in - A of an even

root & equal to half the sum of two non-orthogonal

isotropic roots in A . There is an exceptional

case here, given by m = 1, n = 2 or (the same by
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symmetry) m = 2, n = 1. We shall return to it at

the end of the argument. A sufficiently typical

choice for A is = (2e:L + £, + £5)/2. We have
available as an extra isotropic root either e, + fl :
or e, + f3' Both give .a contradiction. In the casé

of e + f3 we have 2( o, ey + f3)/(g4,cx) =4, In

the case of e2'+ fi we have 2( o, e, + fl)/(o(,aL) é%ﬁ@
so that e, * fl + 2 = 2e1'+ e, + 2fl + f2 is an

- isotropic root. But it does not lie in A and it

is not orthogonal to A since it is not orthogonal

to e, + T,.

2 1l .
We return to the omitted case m = 1, n = 2. The

only isotropic roots present are +> and *+ .
Recall that A - is a root and ( A,») = 1. We
can regard this equally well as falling under Case II
where this an element A\ *; renormalize the form
by multiplying all inner products by -2 and take » to
be AA*. With this the discussion of Case I is
finished. _

We mention briefly that there exist "classical%ﬁ
simple graded Lie algebras that have these root

systems. Take the set of all matrices of the form

Wt
£k 33
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with Tr(aA) = Tr(D). More exactly, we should say

the set-theoretic union of the even ones of the form

(s )

and the odd ones, of the form

¢

If m = n the identity matrix is central and the
l—dimensional subspace it spans should be divided
ouf} Take as Cartan subalgebra all diagonal matrices.
With €; fj written for the usual diagonal matrix
units in the entries A, D, respectively, we do
indeed find the root éystem SL(m, n).

For m = n = 1 the 2-dimensional algebra
obtained is not simple (it is nilpoent). For m = n = 2
we have a l4-dimensional algebra. It has 2-dimensional
root spaces and is the algebra referred to in Theorem 1
and the discussion immediately preceding that theorem..

For instance, a 2-dimensional root space is spanned by

o
0

0

0
o 0
\e o

and

o O O = |
O O O O
o O O O
H O O O
o O O 0O
o O O O
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Case II (there is a root N\*). Let us inspect
the triple A, n*, /ui’ Recall that we have
Ay \*) = =2, (?\,//«i) = -l) A - A* and ) - /Li
are roots. Lemma 10 shows that (‘k*,/xi) =0 is
ruled out. If QX* +/“'ivis a root then Lemma 1l is
apolicable to the tripler— P ,X*,(pci and gives
us the forbidden inner products 1, 2, -3. Therefaore
n* t/L is a root, and we deduce (A", /“i
from Lemma 20. The similar arcument for ¥ J (where
we have (A, VJ.) = 1) is left to the reader; the
conclusion this time is that )* + ))j is a root
and ('X*,‘Vj) = =1,
Write « = A- A*. Then 2(«, vj)/(oc,oq =
so that o - .'VJ. = A- A* - ¥;is an isotropic root. .
Its inner product with Ais 1 and the differente
between it and Ais a root. Thus it is one of
the ~'s. So: the ~'s come in pairs adding up to d= A—A
The setup is not symmetric here and the
corresponding argument for the!/L’s is more involved.
Let § = A - /L We have 2( L, F)/(€ ‘8) = 2 so that
y o= - 2@ is an even root. Mext 2( 7}, /L (Y, =1
so that /Q. —2’ is an isotropic root. In fact,
/Af. - y works out to be A+ A* a/a_ Its inner
product with ) is -1 and its difference with A is
a root. It is one of thel/u's. So: the f& s come
in pais adding up to A+ /'\* ‘Notice that A+ A*

is not a root.



N\ T/

A change of notation is indicated at this
point. Let /. ¢ stand for half the old oLy
where we arbitrarily pick one of each pair adding
up to A+ )E._ Treat the 7's similarly, picking
one of each pair adding up to J - A *. Note that
the inner product (/ti; A+ A* - H5) between/&i
and its mate is -2, and for ‘25 the co¥responding
ihner product is ("yj, A= AT - ¥ =2

We investigate (in this revised notation)

the relation between /ui and./hr for i # r. The
triple A, )ui,A/ur’a priori admits all three cases
listed at the beginning of the discussion of Cse T.
But now we promptly rule out (b) and (¢) by Lemma 26,
fof /“i already has an element - its mat%those
,innef-product with &t is -2. The same remark applies
o the o's.

. We are ready for the next model. We call it

an orthosymplectic root system and use the notation

0Sp(m, n). The vector space W = X@ Y and the e's
~and f's are exactly the same as in SL(ml n). This
time the -isotropic roots aré'twicevas numerous,
consisting of all jfei_i;fj (with all four choices

of sign). The even roots on the e's consist of all
+2e; and all xe, *e, (this is the root system

of the Lie algebra Cm of all 2m by 2m skew-symplectic

matrices). On the f's the even roots are all j:fj ;tfg

(the root system of Dn - all 2n by 2n skew-symmetric
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matrices).

As before we pair A with ey + £5, g with
ey + £, WS with e; + fj' Now in addition we pair
A* with -ey + f,. The correspondence is perfect

1

and we find insidel’ a copy 4 of 0Sp(m, n).

Let pe F_A. The proof thaﬁ (@ ,A)Y =0
is identical with phe'corresponding proof in Case I.

Take e [' - A . There are three typical
choicés for « , The first is the same as in Case I:
A = (2e1 { £, + £5)/2. This time we do not need
extra room to demoiish it; we just observe
’»2(0( » £+ f2)/ (A, ) = 4, The second choice is
o = ( A~ A*)/2 = ey, which is ruled out since
it is half an even root already present. The third
isod = ( A+ A*)/2 = £;. TFor the first time in the
numerous arguments of this type, something'different
happens. This adjunction is legal!

We present our last model, calling it EQSp(m, n),
. Bhe "E" suggesting "enlarged". The enlargeﬁent
consists of throwing in :tfi, ooy ;tfn-as even
roots and +&;, .., +e as odd (of courée
non-isotropic) roots. The augmented system of
even roots Suilt out of the f's is the root system
of Bn’ the Lie algebra of 2n + 1 by 2n + 1 skew-symmetric
matrices. The even roots attached to the e's
-constitute C-m unchanged, but half of each "long"

root has been adjoined as an odd root. Notegthat
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0Sp(m, n) and EOSp(m, n) have the same isotropic roots.
It is quite routine ta see that once fl has
been adjoined to OSp(m, n) we move all the way to
EOSp(m, n). So we have the final context for an
application of Lemma 13: I’ has a subsystem .A
isomerphic to EOSp(m, n). The handling of an
iseotropic root in M - A works exactly as before. Since
" there ére no new isotropic rcots, as compared with
(0Sp(m, n), there are no new possibilities for an
even root in [ -A . We havé completed the proof
of Theorem 2.
Theorem 2. Let [' be a root'system satisfying
the axioms of 5'8 and in addition the two axioms
added at the beginning of this section. Assume
that r7is indecompbsable and that it contains
isotropic réots° The up to homothety (multiplication
of the form by a nonzero scalar) [ is isomorphic
to one of the following: M(a, B, C), ‘F2’ FB,
SL(m, n), 0OSp(m,,n), BOSp(m, n).

- To conclude this section, the classical algebras
that go Qith the orthosymplectic root systems (and
give rise to the name) will be briefly describedf
A basig-freé'description will be given, rather than
one by matrices. Take a vector space direct sum
M =8& U, regarded as a graded vector space with

B8 odd and U even. Impose on S and U nonsingular

bilinear forms, skew for S and symmetric for U. Say
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S is 2m-dimensional and U is g-dimensional. We take

the set of all skew linear transformations on M. The

skewness condition on a linear transformation T is
(14) | (Tx, v) = -(x, Ty)

as usual, with the appropriate graded modification:
if x and T are both odd, then the minus sign in (14)
is dropped. When,q is even, q = 2n, we get ‘the root

system'OSp(h, ny.- Por g = 2n + 1 we get EQSp(m, n).

'20. No isotropic roots. The= gbstract root
systems we‘have defined do not furnish a sﬁitable
frameﬁorkffor studying graded simple Lie algebras
in the case where there are no isotropic roots.
Rather than invent a modifies abstraction, we shall,
in this final section, give a direct discussion of
the algebras.

So let J be a simple graded Lie algebra-with
our. standard properties: the even part ié semisiple
plus abelian and there exists a nonsingular
associative form. Assume that al1 roots are
non-isotropic (relative to a given Cartan subalgebra).

Let o« and § be non-orthogonal evén roots.
Suppose that & = »/ 2 is an odd root. Then
( 53? Y £ 0. Then d‘+F or é‘—F is a root,
necessarily odd and non-isotropic. We claim that
it is not possible for both to be roots, for if
they are then o+ Ef and o - 2@ are even roots,
a forbidden array of even roots. So exactly one

of &‘+F R (1-9 is a rooft.



w

Let us say K Lf_# 0, K_@LJ_ = 0. It is

p

impossible to continue further with multiplication

P
and its double o + 4@ is an even root, a contradiction.

by K.: if X L O then &+ 28 i ad &
N " Jﬁ?AA e F is an odd roo

So thg string ends at a‘+f . Thié shows thét

26 ,6/C4, ) = -1, whence 2( 8, 2)/(g, @) = -2,
and (o , L) = 2( (-é'-, @) follows. We thus find that
oA_and @ generate a root system of type C2 (or
equivalen.tly B2) withda long vector, t_ashort.

We next notice that the even subalgebra JO is

actually simple. The absence ofAisotrbpic roots

implies that there is no abelian summand in JO. So
JO is semisimple. An orthogonal decomposition of
the root system of JO carries with it a decomposition
for all the roots (since each 0dd root is half an
even root) and this in turn is readily seen to make
J an-algebra direct sum. Therefore JO must be
simple. The only simple Lie algebras with a root
system containing a copy of Ca,are Bn’ Cn’ and F4.

vLet us return to the root & above. We saw that
any even root not orthogonal to « must be short. This
bromptly rules'odt‘Bn-and F,, leaving only C_. A
routine argument moreover shows that half of every
long vector in Cn must occur as an odd root.

In sum, we have identified the root system

of J as follows: the even roots form a copy of the

roots of Cn’ and the odd roots are obtained by



g
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taking half of every long vector in C . This of
course cces not yet identify the algebra, a project

left for a later paper.
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