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1. IntfodﬁCtion, In.fhis‘ééqualﬂﬁé E?} i

settle dfflrmatlvelv the existence and uﬁ;quenes& of

51mnle graded Lie algebras atuaahed to the Lcct Svstens""

that arsse in E?j S o _
By and 1ange, def1n1t¢onq will not be repgatce frmm (2“[wké

2. Uniqueness. Let us recall he basic setup. | f

J = T, LiJI is a. s;mple gradﬂd Iie algeb%a with.&m“sééw::~>i

appropriate form. ;IO P& Q Wlth P SemlSlmﬁlﬁv;*d; ;¥
Q abelian. Any Carbaa subalgebra of JQ acts dia Qnaily
cn Jl" The root svaces are l-dimensicnal excebt - |
possibly when J is l4-dimensional, One of the obdectlves B
of this paper is to settie that the exce ytlsa Qése? |
is unique (stated withouf proof in E?])& A root Sysﬁéé
is attached to.Jo Let J' be a second such algeb“" and
suppose that J aner' have isomorphic root systems.f qu 7i‘
problem is to prove that J and J¢ are isomérphica} The |
theory of ungraded ILie algebras shuwDrﬁhat oné’caﬁ: |
reconstruct from the root system the structure of J, and _if
the representation of JO on Jl. Thus only the S |
multiplication JlJl CZJO is needed. |

I give a unified argument for the cases where Jl

irreducible under P. These cases are: QSp(m, n) with



(2)

n >1, #Sp(m, n), M4, B, C), PZ and F%. (The case

of no isotropic roots, frested in the last section of'[g],

fits in as EdSp(m, O) znd needa no further comment.

Incidentally, this is the only case where dJg is 31mple )

This leaves SL(m, n), 0Sp(m, l), and the l4~d1mensxonal ‘;L it"

exception; these I treat individually,- ‘ 2 .
We assume then}that we are in the caséfwhéfé :

Jd, is ltredu0lb1~ under P and proaeed to bulld the ;i

1
desired lscﬁqrnhlsm F of J onto J‘ As was aS@eLted

abova, we can begln w1th an 1somorphlsm ¥ of J onto Jg ;gﬁh.‘_i

‘(we syntematlcally put a pere ‘on an’ obgect atﬁ&che& ta J“

to get the corresponding object autachea to J')
Moreover it is easy to see that F can be selacted o
to be form-preserving. |

Pick a system:of simple roots in P, and lef ﬁé_.v
write & for a set of root vectors, one for each simple
root. Write T for a similar set of root vectors ion,thef
negatives of the simple roots. &ince Jl is irreducible
under P, the subset of J, annibilated by is a }'
}-dimensional subspace S. Likewise thé annihilator’in Ji l'f?
of 2 is a lmdimensional subgpace T. Ji is spanﬁéd by S fb
and the elements obtained by multiplying S repeatedly by
members of ¥ , and the same statement holds with S and 2&  ?
replaced bt T and T. S and T are root spaces for roots
which are negativés of sach other. These facté follow
from representation theory; they can also be checked by‘ll
inspection in the root systems at hand. »

Pick s and t different from O in S and T, We

tentatively proceed to extend F to Jl by defining F(s) to
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be any nonzerc element in S;, There is then a unique
extension oi F to a module iscmorphism of Jl onta Jl',»aﬁd o
in particular the extended F sends T onto T‘.‘ But F
need.not‘be multinlicative on Jy. For instance, e

F(st) = CF(S)F(t) with ¢ a nonzero scalar thCh need not :.'
be - By r@placlng F by F/{m‘on Jl we can make the map ‘
multlpllcatlve at least on st. Let us do so and change 5 ‘t M
notation SQ that the adjusted map is a&aln F, We can' !f
then. show that F 1s multlpllcatlve on Jl and.;hus‘ﬂv-.

furn&shes thc dealred mapa

" We- take a, b»e.Jl amd set out to prove F(, ; %:Efajﬁtﬁ)j%

We can taxe a and b in the form

B._:R IJp LI Y L157 b = Mq o @ Mlt; . . s . S ’/
where each Li, resp. Mj’ denotes left»multiplicaticnfby “_’1
some member of F , resp. 7. We argue by inductionm on - .

D + q. The induction starts successfully at p+q =0, for s

Ere =

we have prearrangede(st) = F(s)PF(t). So P+ q is -
positive; by symnetry we may assume that D is pOnltive'
Suppose that L is 1eft~mult1pllcatlan by X and wr:te_ o

a = xd. We_have ,

(la) db.x - bx.d + xd.b = O. |

We studgfxb = Lqu coe Mlt by systematically pushing

Lp to the right of the M's. For a given J there are

two cases. If the root for Mj is not the negative of_

that for Lp, then Lp and Mj commute. In the contrary o
case, the commutator G of I and M, is left-multiplication .
by an element of the Cartan subalgebra. The commutator df G.
and an M is a scalar multiple of that M, so we can

systematically push G to the right till it hits t and
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sends 1t into a scalar multiple of itself. When Lé
reacnes t we have Lpt = 0. The upshot of all this is
that we see by induction that

"F(d.xb) = F(A)F(xb),

#

or equivalently,

(1b) CB(bx.d) = F(bx)F(d).

]

This looks after the mldale term of (la) As legards fhe

first term, W@fhave F(dp) = F(d)F(b) by lnductlon, *t |
F(x.db) = F(X)F(db) Slnce F is an 1somorph19m on Jo,fr"“”
and F(xd) = F(x)F(d) since F preserves the aetjon of s
Jg on Jl‘;,These:comb;na to give ' - E

F(x) . F(ED),

#-

F(x.db)
or equivalently,

(1c) - F(db.x)

i

F(A)F(b).F(x).
By the Jacobi identity:
(1d) F(Q)F(b).F(x) - F(b)h(x) F(d) + F(X)E(d) F(h)
In (1d) we may replace F(b)F(x) by F(bx) and.F(x)F(d)
by F(xd) = F(a), again since F preserves the action of fflﬁ'i'
Jy on J;. Now apply F to (1a) and use (1b), (lc), ard thef L“
modified form of (14d). The resuly is the desired - =
equation F(ab) = F(a)F(Db). " :

This concludes our discussion of uﬁiqueness for
all the cases where J; is irreducible under P. ‘Wé tufnv;
to SL{m, n), the first of the remaining cases. Let J be a 'i
simple graded Lie algebra with SL(m, B) as its root '
system. We shall identify J with an appropriate "special'”
linear algebra" in a quite straightforward way.

As in [g:lwe exhibit the algebra matrix styie,

using m + n by m + n matrices. The odd ones have the form
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n by m 9] f.

and the even ones

/' m by m o -
?
Kﬁ 0 nbyn A

where the displayed m by m and n by n matrices haveyf

equal traces,‘se that the "graded trace" is 0« We dssume' i
m % n at Dresmnt at the end of the dlscuSSJon we shall -
f  1ndlcate the changes needed when m 3v3;ﬁ LheS&-.&ppxce$¥"°

form a s;mple gradea LlP algebra call it J‘RP

It is convenient to chance notatlon Jn.ﬁfs roct'
system. Replace €15 »evs € 'l’ cees fn'by

gl’ ooy gm’ “gm+l, 20 0 & "gm+n. ) Then we Can ul’]iformly

assert that the roots ére given bv all gy - ga

(i # j,}i; J=1, ese, M + n). Pick any nonzero element

in the root space for 81 ~ 84 (i =2, cce, m + n) and

call it Eli' Pick E.l in the root space lor g..«'gﬁ

satisfying (B 11 ull) = 1. Define E.. = E. lFla fqy :
for i #4 3, i, J, = 2, ee., M + n. We now have ’
representatives for all the root spaces. Together

with the elements h, _ , i =2, ..., m + n, which
81781

form a basis for the Cartan subalgebra of J, we hava‘

a basis of J. We now map J into J' by sending Eij‘ SR

into e, . (the usual matrix unit), h into eq; -~ €55

1J gl”g

Lor 2-<'1 < m, and into €11 + € form+ 1<i<m+ n.

ii = T =



That this is an isomorphism is a fairly automatic
verification, left toc the reader.

This concludes the treatment oi SL(m, ﬁ) for m # n.
When m = n we take m 2, since m = n = 2 is the |
l4-dimensional case with 2-dimensional root spaces ﬁo be‘;
discussed beiew. Both J' and. J unaargo a 1~almen$xcnal
shrinkage, The ldentlty matrix has trace O and lle;.f‘m
in J'; it soans the l-dimensional center Z of J*::;He[j ;i
: pass to T'/Z 1nstead and lnduige in an abuse of notatlen;

by - contlnu¢ng to wr¢te e. although s?rlctly'upaaging

S By R
Cwe neea' new aymbol for the homomarphlc Lmage of_ela

In d the new I»ature is that we have

B + oeee * B " Bpq e ™ Bogpe = O
Thus the Carfan subalgebra is (2m - 2)-dimensional and‘ S

a basis for 1t is obtained by deletlng (say) the last

element b - h from the list used abovv.v Subaect todi&f’;ﬁ'
81 : ggm o . PR, .
these chaﬁaeq, the 1somorphlsm of J onto J* is deflned as besze

We turn to the l4-dimensienal exceptlon.' We taPe J*“
exactly as in the preceding paragraph, withm = n = 2. The 1;7,;

algebra J is equipped with the following rootst‘*k 4:}&
acltd
as Imedseemde roots, and -f7“+/A,(all four 515na) as even
Ag- :
roots. > and/a, isotropic and we have (A /L) = 1. The —exszer ﬁ?(a(

root spaces L are 2- dlmen51onal, whlle the eﬁﬁyﬂu€41

+TA’ :*/LL
ones K are l-dimensional. Take El2 nonzero in -

)f}b
K Qnd 5 3 ™ :_ » - v*, 1
7\7’( o1 & K-—,\--/u, with (E12’ bzl) = .l., ‘llaf»@‘Ela
nQnZsLo 3 ox B ' %
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Multipiieaticn induce
c-dimensighna =)
2=di ns;ﬁﬁizlspac S LA s %&

nongegenerate. Suppose on

from the .-

mexSional

%)
o]
d
e
}J .
H
)—A

L

i@/; nonzerc element r j o
b Vs

ends the

Multiplication by r

yields a contdadiction

3'  -
~ o

We take El§ to be any nonzerc element in L
We next make a tentative selection of EBl in L_
- with (515, E31> = 1. By what was proved in the

preceding paragraph, the annihilator of El} in




R

1-diménssonal spaé“ K . Th andihi INef of B in

1«dlmen51onal, and we plck le‘ta ber~ -

any nonzero elemant in this L"dlmﬁnSlcnal Spacael Bxkew1365’

we find E,; in LJAL annlhﬁlattng m}l’ unlque up to a } 

scalare Ncw +~here is a difficulty. de w;sh to have
(314, 41) £ O and_may have failed. Let us retrace -
our steps and make a fresh choice 531 :; 31 * % with -
z £ 0, (ElB’ z)‘: 0. This changes E&l to E@l 5 SaXs
Since E}l and Esl' are linearly 1ndependend, SO are
v If(.mq? l)

is aiso O then E,, annihilates all of L/u, a cantradlctloner

a1 ' .
their ann1h¢lators b 41 and E 41 in L

of the nondegennracy proved in thempreced&ng paragraph

50 by our. revLsea choice of EBl we have achleve&

(after a cnange of notation) (Elb? E.,) # 0. A “}
further normalization (multlollcatlon of E4l by a
suitable scalar) allows us to assume (314, M#l)

For i # j, i, j = 2, 3, 4, we next define
hnl T “"C' “ ‘
bij EllEl Before proceeding further we need to
ctieck that the 12 E's, along with the basis h}., %/‘
for the Cartan subalgebra, form a basis of J. There

are two typical points to settle.

(1) E

-~

318, = b54 is nonzero, and therefore

spans K\-fc This is deduced at once from the

Jacobi identity
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E15E31.E14 + 351314’E13 + E14E1§.351 = Q,

for the last term vanishes while the first is nonzero,

ﬁr;o—*' 5 = 97' ¢, i = ¢ |

since EyzEz) h;L » By Lo and \%»?ji) 1 .
(2) b15 and E42 form a basgs of L\ The alternatm'ze-"1

is that E,, is a scalar multiple of El§ and therefore = -

14
this means the vanlshlng of bhe_§§§m$ term . 1n

annihilates E,,. Since qu equals E lEIZ by def1n$ﬁlon,

El‘"”g"‘*l"ER E’*:'LEIB"EIAL 12El4°“*41 "';Q
The third term vamshes since El2 & K?‘d!/,l,’ 14% /4_ ::_;,
2 +/u is not a root. The first term does notgLwa
Bl = Brpe
Using this basis of J we map J to J' as before:

vanish since E14341 = ?ﬂb Tty

Eﬁj to eij’ h;k to ell‘+ 853, %}ﬁ-to Epp *+ e44.l>The”_. 2
routine verification that we have an isomorphism is - f "'
again left to the reader. m

The final case of reduClbllltY of Jl which we =

nust handle in a special way is OSp(m,~l). ~We follow S
the same pattern as the discussion of SL,.flrst'settlngbwﬁ"i?ﬁ“
vup a "concrete" aigebré J' as a target. We exhibit R
J' as the set of all 2m + 2 by 2m + 2 matrices_v B

of the form
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A s
[
-
£

- xo_p ok
A A2m . A B

lm um Tm

1 2 m QO =-a.

Here the A's and B's are 2 by 2, each Aii hé$'tra@é C,Tan&,

. : (AR
/‘a b fa -b \- : by /4 .
Kbc a < a ]’ ¢ :
The rocts in the algebra J are:'jTEQi and<4;%
, N A o
e, &°f (i =1, «es , m). Pick any nonvzgg elements S

Sy S5y eee 5 Spy s' in ths root spaces forﬁZel,h,

& ~ €5 «e. 5 € - e, € - f. Pick t, by, y Tgy b )

in the root spaces for the negatives of these roots,

making each iﬁner precduct equal.to 1. We claim'that“f“
the following assignment determines uniquely an o
iscmorphisn of J onto J': ‘
S->815) T2y .
S; —» 8 251 T C2i,20 i ®%2,0i T C2i-1,1 (G =2,000m)
s' > °1,2m+1 * e2m+2,2’ v > ©2,2m+2 +re2m+l,l'

Detzils are omitted.



M(a, B, f') We simply exhibit a multiplication

table; this is not too. Onerous for a l?—dlﬂensxonal

algebra treated ﬁlth a llb@”a dose Qf symmetry,; But we A

shall bfiefly eyolaln how the table was consfruated,F f
Pursuing the bo&l of symmeury, we use the nctatlon'vﬁ
a, (i =1, «.u; 4) for root vectors for ‘2 ‘/6 >»

i A
and - A-zﬂ "V, Xy for the cowrespendwn negat lve root v

vectors, and h for the corresponding eiements of Lhe

Cartan subalgebra. The relation hl‘+ h2 + h3 + h vO

is required. The products a;x; are normalized to be him

i
"In place of the scalars A, B, C the notation pji"is‘"'

used:; here i £ j, i and j range from 1 to 4-\*13 = pji,_

o
=
5

pij = pkﬁ 1¢r i, j, k, m dliferenu, The rewtrlctvon ;@Q;'f ;

P1s * P13 + Py = 0 is imposed, reflecting A‘+ B+ C«« 0

o

The re1a+1ops helow are now all *nev1tab1e,“w1*h

one exception: the equations x,x. = a,a, (and thexr

-

D Cu

i
Th

~ONS2guUences.) need not ho:d. elerxents x.xj and ay ey

1

are related by a scalar, and it turns out that the

SC

Q3

lar is invariant under permutations of i, j, k, m.

I,

A fresh selection cof a4 normalizes the scalar to be 1.
Tt would be redundant to offer a proof since all this is

2 consequence of the uniqueness proved in the preceding section.
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Hare are thz 17 basis elements: a,, a., d,, 8 , X, Xo,
l’ 27 5’ 4? l” ) 2’

X5’ X, s h s} h

1> Por Bys B1p0 B3 By B30 By, and ag,.

The first 8 are odd and the remaining O are even. It

is convenient to use both a.j and aji, setting them .

equal. Tn the table, praductq are given in only one' R

order, since parity determines the sign of the @Bp@ﬁlte.%
product.. All squari\of basis elements are 0 and are>n”

omitted from the display. The qubscrints are always dJStIHCu;;

éiaj j,‘a x; = hy, a; Xy = 0, h a; varjf;f?‘ﬁ
hiaj = plJ K 333 5 =tO, 15 ay, Plaxﬁ, xl 5 =agégi? L
hyx =0, “1XJ Pig%yr 1%t = le it %k =9 ‘ff;ljé
Bty = O Myagy = PygBip Midge = Pudge 2% 7 O
S T ¥

The task of verva1ng the Jacobi identity is
left to the reader ‘ It is helpful to begln by rccognlzlng
that the 9 even ba51s elements span the (Qrdlnary) Lle e
algebra A 1 ©4 €9A1, and that the 8 odd elementa_ >i i
span a representation space for it. If symmetrj is

- fully used, only a nandful of easy verl;lcatlons remaln.vl '

Pé; Take Iy to be(%zéﬁAl. Take the l#mdlmen51ona1  %§ %
Jl to be CQ V where C denotes the 7-dimensional sgace IR
of elements of trace O in a Cayle%»mﬂxiX.algebta ind
Vis =& 2-dimensional space carrying a nonsingular .
alternate product ( , ). One has G, acting on C in the S

}Q‘To o

facilitate use of the material on pages 142-3 of (}:]

standard way and Al on V in thé'natural way

T will in this discussion place linear transformations

on the right.

;;A%L-an.Zip«ﬁf;b 4ué&wﬁ/u%éJé;€ ij%z'fgﬂnw19*rb/
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Tt remains to define the multiplication on Jl‘
We first define certain maps @ and 99.
F: CX C->G,. Thi

on 1, p. 13[: (e, @ = [T 'Ldj v [LRa [+ R Rd})L

and R donotlng left and right multwnllcatlon."It

¢ man whicih appears

 turns out that Q\c, d) defines a derivation of tbe

Fayley matrlx algebra and so lles in 62, ‘Note that‘ fi

@ is a?ternate.‘ ' o | S L
9[7 V%V-—%A For v, w in v deflne t{'(v, w)

to be the llnear transfornatlcn on V glven by \

xﬂf(v w\ - (x v)w + (x, w)v‘/
We need to know that %’is alternate relative to thé‘ﬁ
form, i. e. we need

@ (xgb;y)—m(x,yw)

Equation (2) is cor;ect since it reduces to-v

(x, ¥)(w, 3) + (x, W(v, ¥) = s v)(x, ) - (y,';’w)('x,

50 W E Al’ Note also tha% ¥ is symmetrlc as a .

function of v and w: \f'(v, w) = lf(wg v)

The product from Jl'}(J to Jg is now deflned by

(c ®wa®@w = (v, woigle, @) +4tr(cd)\P(v, w,,

where tr denotes the trace on the Gajley matrlx

algebra, normallzad so that tr(l) = 1. Since (v, w) S

and @(c, d) are both alternate bilinear funct;onq,?/
while tr(cd) and ﬁb(v, w) are both symmetric, this

multiplication is commutative.
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The Jacobi identity must now be verified. Although
thig is a task that can be mechanized, some detail is
cffered. There are two major cases.

I. Two elements of Jl and one of JO. Tavéuthe

members of J; as c& v and d@ w, and the member of JO asf’

D+ T, with T an alternate linear transform&tlgnAQn‘v and‘bi

a derivation,of:cgﬁmore accuratély, a derivatign df‘ﬁﬁéi:ﬁ

Cayley-matr;zvalgébra of which Gris the'subéét<éf‘éiéﬁe£tg

of trace 0). The Jacobi identity r@ads':wv e

(3) (¢ V)(CL@W) (D + 1) “(d@W)(D+T) (cg;v)
+ (D + (e @v). f@@@

Tn working with (3), it is to be observed that D or T to the~

left of an slenent gives a result which is the negatlve of';
what 1s obt alned when it is placed on the r:ght.f Thus i
(d@®@w)(D +T) = dAD@w + d®@wT and (D+T)(c®v) |
- cD@v - ¢c@® vl. Note also that the first term of (3) is fg-}
really a conmutator. We check the four constltuents SRR
of (3) separately. |

(i) Tue Ay

suppressing & factor 4tr{cd) we find

(4) [ (v, w, T] - $r, v) - W(?T, W)

as the expression we have to prove equal to O. Apply

—conponent arising from T. After -

(4) to x & V. The result is
{(x, VDw + (x, Wvp T - {KXT v)w + (xT, w)V‘§
-{(x, wl)v + (x, VwTh - {(x, vDw + (x," w)vT} |
which does indeed vanish (use the f;% that T is alternate)

(ii) The G2—componenu arising from T. This is 51mply'j
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- (wT; v)@(d, c) - {(vT, w)@(c, 4)
and vanishes because @ is alternate, theyform on V is
alternate, and T is alternate relative to the fonm;
(iii) Lhe Alwcomponent arxs;ng from D. Aiter‘ o
suppression of a factor «4§Q(V, w) thlo is tr(dﬁ c) + tr(cD d),"
whosge vanlsh1n5 is a known property Gf derlvatgens af .

a Cayley algebrae

(1v) The szccmponent aflSlﬁF from D. Wa need f”»
(5) (v, w)&ﬁ(c, aj, ﬁj - {w, v)ﬁ(de c) - (v, W}@(cﬂ é)
The fact that D is a der1Vaflon lmplles

(6) | tz"cbj = Lepy Ei Dml

for any ¢ € C. By two appl CatlQﬂa of the flrat

half of (6) we get

(7)  LIgD = Ly(Typ + DLg) = L Lgp + (Typ + DL )de |
In (/) interchange ¢ and d and subtract the two‘“ "“
equations.. The result is 4

(8) [lx Ld:l_Dj[ [LCLdDj {Lcﬁ :(

By two similar camnutaflons we get '

(9 [REQH - ‘EBcHdDj + [Rep Q

(10) I:E§cgé]@]. L[?cRdD:l * 'E}CD Rd;

Add (8), (9), and (10): | |

(11) EQi(c, d), 13:] - @(c, D) + @B(cD, a). |
In view of the fact that ( , ) and @ are bcfh alternate,’ g

"

the desired equabion (5) is a consequence of (11).
IT. Threé elements of Jl | | o S
(i) Suppose that the ’«componentq of the three elements .
are linearly dependent in pairs. Since the deflnltlon of yV

shows that v%,b(v, v) = 0, it follows readlly that each of the
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triple products appearing in the Jaccbti identity vanishes.

(ii) Ve suppose the contrary. We may then fakﬂ tre
three elements to be ¢ &v, d B v, and e & w, thh,(v, w) 1.

We take the requisite Jacobi identity in the form _
(12) (e ®w).(c @v}(d»@v} + (c@v);(d@v)(e@w)u

L Ha@ e@we@ W = 0.
xpand (12) by the defwnltﬂonm, and use‘mgl(v, ) = ~av,4f

V"y(v, w) = v. 'We reach : ‘ > ,
(13) =8tr(c)(e Qv) + (c @W)B(4, &) + leir(da)(c@ v)
| : | (a BB c, e) + 4&3:(66;)&1 @)V)

Since the second factor of the tensor is aLWays v, (}3) ls

4

the tenaor product of v with

(14) -8tr(cd)e + cB(d, e) + 4tr(dedc + af(c, e) + 4tr(ce)d.

Expand c@(de) by the definition of #:

(15)Ac¢(d, e) = e.dc - d ec + dc.e ~ d.ce + cd.e — ce.d.

g

To get d@(c, &) we interchange ¢ and 4 in (15).. The upahot is

that we need the following identity for Cayle} numhers

jo 7]

(16) 2(cd + dcle + e(ca +vdc) - d(ec + ce) - c(da-;‘éd)i:;f; 
- ce.d ~ de.c = 8tr(cd)e - a4tr({de)c - 4tr(ce)d

So our discussion concludes with a verification of (16) Thé.‘

fundamenstal ingredi@nt is the fact that the square of any'Cajiéy

number of trace 0 is & scalar. Linearizing this wévget thétf 

cd + dc is a scalar for c, 4 & C. This scalar is | |

equal to 2tr{cd). So we have

45D, llcd+de) = 2a£nlcdl £

(1%) 2(cd + dc)e + e{cd + dc) = 6tr(cd)e,

(1& d(sc + ce)

(2®) c(de + ed)

2tr(cej)d,

fl

2tr(de)c
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the associator ec.d - e.cd is an alternating function
of its arguments. Hesnce

(21) (ec.d = e.ca) + (ed.c -~ e,dc) = O.

By combining (17)-(21) we get (16).




