IRREDUCIBLE REPRESENTATIONS OF LIE
P-ALGEBRAS

B. Yu. Veisfeiler and V. G. Kats

We consider the irreducible representations of finite~dimensional Lie p-algebras over an algebrai-
cally closed field k of characteristic p > 0. The study of these representations was initiated in the 1940s by
Zassenhaus, who described the representations of nilpotent Lie algebras [14]. Next, Chang [11] studied the
representations of the Witt algebra in very great detail. After the war Zassenhaus obtained general re-
sults on the structure of the enveloping algebras of Lie p-algebras [15]. Using these results, A. N. Rudakov
and I. R. Shafarevich [8] studied the structure of the set of all representations of the algebra A. These in-
vestigations were extended by A. N. Rudakov [7] who found sufficient conditions for a representation of a
Lie algebra of classical type to have maximal dimension.

As in the case of characteristic zero, the problem concerning the representations is connected with
the action of the Lie algebra on the space G* conjugate to it. A linear form ly is canonically associated
with each irreducible representation of G in a space V. For completely solvable Lie algebras we describe
the irreducible representations entirely in terms of this form (Theorem 1). For the Lie p-algebras of
classical type Theorem 2 shows that the study of representations with an arbitrary form 7’y can be reduced
to the case when the element of the algebra G dual to Iy (relative to the Killing form) is nilpotent. For a
nilpotent element the problem is still open. But for an arbitrary Iy the connection with the action of G on
G* is given by Theorem 3. The p-representations of p-algebras of Cartan typearedescribed inTheorem 4.,

Our results reflect "in miniature" the general situation in the case of characteristic zero.

§1. THE MAIN DEFINITIONS

1. Let G be a Lie algebra over a field k, and let U(G) be its universal enveloping algebra. Then
(see [3], p. 207)

(@4-bY =ar -b° - A(@, b), a,béQG, (p0)

where Ala, b) € G. A Lie algebra G is said to be a Lie p-algebra if in G there is defined a mappinga —~a [p),
satisfying the conditions:

(a A b)IP] = qfrl -4 b[p] - A (ﬂ, b), (pl)
(aa)[p] = gPalr], Yaé€k, (r2
ad 61! — (ad b’ (p3)

If 2 mapping 2 —»alfb ] satisfying (p3) is defined on the basis {zi} of 2 Lie algebra G, then it uniquely defines
the structure of a Lie p-algebra in G [3].

Let G be a finite-dimensional Lie p-algebra, and let U# be the center of U(G). If V is a simple G-
module, then by Schur's Lemma u(x) = xV(u)x for all u € U# and for all x € V, where yy is a homomorphism
of U# into k. As is well known (see [3]) for every g € G the element gp-g[p] belongs to U#.

PROPOSITION 1.1. Let G be a Lie p-algebra, and let V be a simple G-module. We put I'y(g) = (xy
(gP—gP)))V/P, Then Iy €G*.
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Proof. It follows from (p0) and (p1) that ly(gy + g3 =1v(gy +Ily(gy and from (p2) that Iy{ag) =alyig.

2. Let U# < U# be the subalgebra generated by all of the elements gP—g[Pl, g €G, and 1; let K and
K, be the fields of the special rings of U# and U#, and let r = [K : Ky}, Let™ denote the set of all simple
G-modules, ¢ : ™ — Spec U# be the ma}inng defined by the formula (V) = yvy, V €®; we have ® _. Spec
U# L¥ Spec Uﬁ. Then dim V = R(“'r) 2V €W [15], and there exists an open everywhere dense set .4,
Spec U# such that dim v = p(0-T 2 gor v € @ {#) "and the mapping @ :d™* (#)— ./ is one-to-one. Tt
seems plausible that rr :Irg;ip dimG, (where G is the stationary subalgebra in the representation contra-
gredient to the adjoint representation). This conjecture can be verified for simple Lie algebras of classical
type {71, and its validity for completely solvable Lie p-algebras follows from the results in § 2. We note
that the degree of the covering 1* is equal to the degree of separability of K over K;. For nilpotent Lie alge-
bras, K is purely nonseparable over K; [15]. We can prove that this extension is separable for Lie aigebras
of classical type and for the Lie algebra Wp.

3. We denote by Uz# , I € G*, the subalgebra of Uﬁ generated by the elements of the form gp-g[p]—
l(p}(g}, g € G. We put Uy (G) = U{G}/Uf{U(G) . Let H be a p-subalgebra of a Lie p-algebra G,T=1|g and V
be an H-module such that its mucleus contains Uz#(H). The space VZG‘ = U1(G) @y )V is given the structure
of a G-module by putting gu ® x) = gu ® x,u € U7 (G), x ¢ V. We say that the G-module V? is induced by
the H-module V. We give several cbvious properties of induced modules:

a) if V is a simple G~module, ! =1y, H is a p-subalgebra of a Lie p-algebra G, and V'<V is an H-
submeodule, then V is a factor-module of the G-module VZ'G;

b) if V' is an H-module and H is a p-subalgebra of a Lie p-algebra G of codimension t, then dim VZ'G =

pt - dim v
¢) if H;© H,< G are p-subalgebras of a Lie p-algebra G, V' is an Hyj-module, and ! € G*, then (V"_HZ)IG
= V;%, where T =1ly,.

4. We fix our notation. Let G be a Lie p-algebra, let n(G) denote the nilradical of G (that is, the max-
imal ideal consisting of nilpotent elements), and let C(G) denote the center of G. If H is a subalgebra of G,
let N(H) [Z(H)] denote the normalizer [centralizer] of H. Let (1,1 € G*, denote the stationary subalgebra in
the representation contragredient to the adjoint representation. The sign ® symholizes the direct sum of
vector spaces.

§2. REPRESENTATIONS OF CCMPLETELY SOLVABLE LIE p-ALGEBRAS

. 1. Let G be a Lie algebra,l € G¥, and let H be a subalgebra such that I{[H, H}} =0. Since the dimen-
sion of the maximal isotropy subspace of G for the bilinear form B(x, y) = I([x, y]) is equal to (dim G + dim
G1)/2 =a(G, 1), we have dim H =< a(G, I). The set of subalgebras of G for which dim H = a(G, I) is denoted
by B{(G, I}. We note that every such subalgebra contains G and is a p-subalgebra of a Lie p~algebra.

LEMMA 2.1, Let G be a Lie algebra,l ¢G*, Gy be a éubalgebra of codimension one which contains
Gy, and 14 *~=ZIG1. Then B(Gy, 1) < B(G, 1).

Proof. Let H €¥(Gy, ly). We have
- dimH = a(Gy, 1) > (dimG— 1 +-dim G;)/2 = a (G, ) — /s
Since the number 2(G, 1) is an integer, we have dim H = @(G, 1) and H €3(G, I).

2. A Lie algebra G is said to be completely solvable if it contains a sequence of ideals G = G(g) @ Gyy)
= +..2 G(p), for which dim G(j) = n—i. A subalgebra and a factor-algebra of a completely solvable Lie
algebra G are completely solvable; each of its proper subalgebras is contained in a subalgebra of codimen-
sion 1 of G.

By induction on the dimension we obtain the following corollary from Lemma 2.1. \
COROLLARY. For a completely solvable Lie algebra G the set B(G, ) is nonempty.

PROPOSITION 2.2. Let G be a completely solvable Lie p-algebra. For a suitable choice of a p-struc-
ture in G the Lie algebra G/ n(G) is commutative. The commutativity of G/n(G) implies that G = T @ n(Q)
(semidirect sum), where T is any maximal torus of G. Conversely, if G =T @ n(G), then the Lie p~algebra
G is completely solvable.
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Proof. The splitting off of a maximal torus was proved in [5]; the remaining assertions are obvious.

3. LEMMA 2.3. Let G be a Lie p-algebra, let G; be a p~subalgebra of G of codimension 1, let V be
a simple G—module I=1y, let V'< V be a simple Gy-submodule, and let V' # V. Then a) if G4 is an ideal,
then V = Vl ; b) if the algebra G is solvable, then V = ViG

Proof. We prove a) first. ‘it follows from results in [14] that dim V =pt - dim V', t > 0. Since V is
a factor-module of the G~module Vl'G we have dim V =p dim V'; hence V = V,’G. Hence a) is proved.
From it we obtain by induction on dim G that if a Lie algebra G is solvable then dim V =pt. Assertion b)
~obviously follows from here.

Let v(H, l) denote the one-dimensional H-module defined by the mapping h T (hy, T €H* h €H,
7 ([H, H]} = 0.

_ THEOREM 1. Let G be a completely solvable Lie p-algebra, 7,1 €G* H € (G, 1) and I (h) =7 (h)~
[Y/pmMPl) for allh €H. Then

a) the G-module (v(H, T))ZG is simple;
b) every simple G-module V is isomorphic to one of the modules (v(H, T)),G a=1vy.

Proof. We prove b) by induction on dim G. Let V be a simple G-module. We remark that if Gy is a
p- subalgebra of G of codlmensmn one, and V'€ V is a simple Gy-submodule, then by the induction hypothe-
sis there exist 'Z"I € G, and H € B( G..l' ) for which the H-module v(H, T, y induces the Gy~module V'. IfV' =
V and there is an7 € G* such that Iy = lfG and G < Gy, then by Lemmas 2.1 and 2.3 H € P (G, T) and the H~
module v{(H, l) induces the G-module V.

Let G, be the annihilator of the G-module V, G =G/Gy, and C = C(G). Thendim C =1. We can ob-
viously assume that dim V > 1, and consequently, that G # C. We consider three separate cases.

CASE 1. Thereisa one-dimensional ideal ky < G not lying in C. Then it is obvious that for some
x €G we have G = Z(ky) @ kx and [x, y] =y. Lety be an image of yinG, Gy = {g ea: [g, ¥] € Gy} and let
V' be the simple G{~-module which is induced by the H-module v(H, lt) It is obvious that Gy is a p- subalge-
bra of G of codimension one and that Gj € G, for any I € G* for which llG = ll If V' =V theny €C, hence
y(v) = av for all v € V; in particular [x, y] =0 contradicting the choice of x, y.

CASE 2. Dim C =1 and C(G/C) #0. Letz €C, z =0, It is obvious that there are elements x,y €G
for which G = Z(ky) @ kx and [x, y] =z. The subsequent reasoning is the same as in Case 1,

CASE 3. DimC =1, C(G/C) =0 and C is the only one—d1mens10na1 idealinG. Letz €C,z = 0, ky
be a one-dimensional ideal in G/C, and y be an inverse-image of yin G such that y(v) =0 for some v €V,
v #0, It is obvious that there is an element x € G such that G = N(ky) ® kx and [x, y] =z. We put Gy =
{g €G:[g, y] €G;® ky}. Let V'SV be a simple Gy-submodule. We need to prove that V' # V. Let us
assume otherwise: V' = V. We have G4/G; = N(ky) and y(v) =0 for some v €V, v # 0, Then V is a simple
Gy-module, therefore every vector vy € V is a linear combination of vectors of the form gy . . . gk(v),
where gj € N(ky). By induction we have

yg1 -+ Be(V)=1y8il8: ... 8e(v) -giyg: -.. 8e(v)=0.
Hence y(V) =0 which contradicts the choice of y. This proves b), and a) is proved similarly.

LEMMA 2.4. Let G be a Lie algebra and V be a simple G-module for which all the elements from
[G, G] are nilpotent. Then dim V =1.

Proof. Let V; be the nucleus of the [G, G]-module V and G = G/[G, G]. By a theorem of Engel Vo =
0. It is obvious that V; is a submodule of the G-module V, hence V, =V and we can regard V as a G-
module. Since the Lie algebra G is commutative and the G-module V is simple, we have dim V = 1.

k+1 _
Let G =T @ n(G), where T denotes the maximal torus of the Lie p-algebra G, and (n(G)) [p]
Let V be a simple G-module and I =ly. Since (gP—glPhv =1P(g)v for all v €V, as is eas1ly seen, the endo—
morphism g € n(G) has a unique eigenvalue Ay(g) = I(g) +IP~YglPl) +.. .+ 1D k(g[p]K),

PROPOSITION 2.5. Let G =T ® n{G), V be a simple G-module, I =1y, and A = Ay. Let H be the sub-
algebra of the highest dimension for which A([H, H]) = 0. Then every single submodule of the H-module V
is one~dimensional and induces V.
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Proof. By Theorem 1 the G-module V is induced by a one-dimensional submodule of some subalge-
bra H. It is obvious that l(l'H, H]) =0, Next if AJH, H) = 0, by Lemma 2.4 every simple submodule of
the H-module V is one-dimensional; hence dim H = dim H. ‘

COROLLARY 2.6. Let G =T @ n(G), and let V', V" be simple G-modules for which Iy =lyr. Then
dimV'=dim V" if T = 0 then the G-modules V*and V" are isomorphic.

Remark. In a somewhat different form a classification of the irreducible representations of nil-
potent Lie algebras over k is derived in {14]. For the characteristic zero case resulls similar to Theorem
1 are well known.

§3. REPRESENTATIONS OF LIE ALGEBRAS OF CLASSICAL TYPE

1. Let G be a simple Lie algebra over k of classical type with the nondegenerate, invariant, symme-
tric bilinear form F considered in {4, 8], This form determines an isomorphism F : G*—~ G.

Remark. Apparéntly the results we have obtained can be extended to any factor-algebras of the alge-
bras Lie %, where % is a smooth semisimple algebraic group.

Let ¥ = Aut G and let % be a simply connected covering of §. As is well known G is a factor-
algebra of the algebra Lie %: let ® : Lie % — G be the corresponding projection. If ¥ is a Borel sub-
group of ¥ the subalgebra @®(Lie®)CG is called a Borel subalgebra of G. Then G is the union of its Borel
subalgebras {10]. Let! €G*, q € Fg(l), and BS G be a Borel subalgebra such that g € B. Then 11 (B, B~
and by Lemma 2.4 in each G-module V for which Iy =1 the subalgebra B has an eigenvector.

2. Letq =qg +qp denote the decomposition of q into semi-simple and nilpotent parts, G' = Zg(qg),
T, be the center of G'and G, = [G', G'].

We choose a Borel subdlgebra B, of G' such that q € By,. Let B be a Borel subalgebra of G which con-
tains By, Then P = B +G, is a parabolic subalgebra of G. Let T be the maximal torus of G, B2 T2 T,,
N be the nilradical of P, £ be the system of roots of G relative to T, Z% be the system of positive roots in
Z defined by B, &, = {@ : eq € Gy}, 2' =Z*\Z,, 2" =—3%', and G, =keg +khy +ke_q. In view of our
choice of B and G, we have

I(eg) =0, VacZ*{JZXx. (*)

THEOREM 2. LetV be a 'simple U7 (G)-module and V'SV be a simple P-submodule, ThenV = ViG
In particular, dim V =pdim N . dim V', and the dimension of any Uj (G)-module is divisible by pdlm N,

LEMMA 3.1. Let A denote the system of simple roots in £+, There is an indexing of the roots in
Zn:Zv={a, a,, ... ag} such that if £, = Z+, A, = A, 24, =sq,Zi, and Aj+g = Sa;Aj, then Zj is the
system of positive roots in Z, Aj is the system of simple roots in Zj and —ej € Aj.

Proof.(communicated to us by E. B, Vinbert). Let R™ = R * Z, Xq be the hyperplane orthogonal to
the root o, ot &, and C', C" be the Weyl chambers in RM corresponding to the systems of positive roots Z' 1] ED s
Zry zq . We take points y' € C', y" & C" such that the straight line 2 through y’, y" does not pass
through X, N Xg, o, B € Z. (This is possible since a chamber is an open set.) Let 2, denote the seg-
ment of 9 between y' and y". When we move along 7, from y’ to y" we can write down and successively
enumerate the negative roots corresponding to the planes Xy which we cross. Let them Bts « » «» Bm.
Since 2, meets a plane at not more than one point we have Bj = Bj for i # j. It is obvious that {8y, ...,
Bm} > &'. Next let Bj be a root such that the chambers C', C" lie on different sides of the plane Xp;- But
all the negative roots with this property lie in Z", thatis,Bi € Z' for all i. Thus the lemma is proved.

3. Let B; denote the Borel subalgebra of G corresponding to Z; in Lemma 3.1. We put P;=Bi +

keay;, Uj = Uy (Pj), Uj =U;(By), Nj = 3 © ke, (the nilradical of Py, Gi =Gays €i = eaj, and fi =e_g;.
i Gy

Since the G~module V is simple, V is the factor-module of the G-module W = Vl'G with respect to some
maximal G-submodule W. We put Wy =1® V'S W, Wj4y = Ui ® U1 Wj. This definition is correct since
Bj+{< Pj and therefore Wj can be regarded as a Bj+j-module. We assume that Wj is embedded in W.
Let M1 be a simple Pj-submodule of W N Wj (Mj = 0 if W N'W; =0, and Ml =0if WN Wi = 0). We put

= {w €Wj : Nj—w = 0}. Let us note the following facts:

(a) l{eq) = 0 for all @ € Zi (see (*)), ! (hg) # O for all @ € Z" (because if I(hy) = l(e ta) = 0 then
a € Eo);
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(b) Nj-Mj =0, Mj is a simple Gj-module (because ! (eq) =0 for all eq € Nj+¢);

(c)f{nMi # 0 for m =p-—1, e{nMi # 0 for m = p—1 (this is a property of any simple Gi-module with
a form { for which l(ey) =1 (fj) = 0,1 (ha;) = 0
DW= @ €W, ,j=0,1,...,p—1 (by the definition of the tensor product);

oiSp—1

(e) eqel = effeq - 2 ( ) (—1>ie§3((ad eglileq)) ([31, p. 49).
j=0

LEMMA 3.2. If Mj =0 then Mj4+; © ¢ €W, |

————————— 0[S p—1

Proof. Letx= 3 €lxj ¢ Miy, ;6 W, . Then e[x € Mj+4 for all m =p-—1. By (b) we have Nij(e[™%) =0

forallm. Letx=x +ejX; +... -%eixt. We put yy = e{’ ~t+m-1y for all m =0, 1, ..., t. Then Ym =
eg M-t oL L+ ep Ixt-m. We show that for the vectory = 2, €z, zj €Wi, zp-y # 0, the condition
osjgp—t

Njy =0 means that zp-y € Wij. By applying this assertion to all the vectors yyy, m =90, 1, ..., t we obtain
Xt-m € Wi, as required. Let eq €Nj. We have 0 = eqy = 2 e+ 2 [eq, €]z; - We note that

e
IS gp—1
ep ’eazp -t (?ep Wi, and in view of (e) and since (ad eym eq €Nj for all m L all the remaining terms in our

stm lie in <@ €W, . Therefore, in view of (d) (and by the condition eqy = 0) we must have ep ‘eazp_
o<igp—2

0, that is egZp-q =0. Thus the lemma is proved, then M, = 0.
LEMMA 3.3. If M; =0 and f;Wj =0,

Proof. Inview of Lemma 3.2 we bave M; (1< UjWi. By (c) there exists an x € Mj+4 for which
fmx #0forallm =p—1. Let x= D, dx; yXj €Wy, xp#0,5=0,1,...,t<p. By considering fix and

ogikt

taking account of (e) and the condition fix¢ = 0, we obtain fix € @ i, . Since f{"x =0 for all m =p-1,

0SSt
by applying fl to x exactly t times we obtain, as above, that ft =y €Wj. Since y # 0 (because t < p) we
have M;+q N W; = 0, that is, Mj # 0. Thus, we arrive at a contradtctlon.

LEMMA 3.4. Let Ki+y = {w €Wi4; : ejx = 0}, Then Kj+y = eP7lwy.

Proof. We have Wj4y = a<< eW; . Since I(ej) = 0, eil)“tWiC‘ Kij+¢» Onthe other hand if ¢ * x €
Sigp-1
x€Kiu[) & €W by (d eix = 0. Thus the lemma is proved W4y = 0.
</gp—2

LEMMA 35. Wi eP %P t. . . "Wy fi4q=0
Proof. We put qj = elij"leil’_'1 . ..el7L As for (d) it follows from the definition of the tensor product

that
(dn Wii= D e'e ...é". W,
uf\-‘,mj gp—1
f — , ""i myy; - — - -
We pUt WHL‘ -—ugltzf\ifu—-l:‘.‘:/rn,‘<ifp —1\8! e W/l * By Lemma 3.4 Wi+1c Ki+1" Let x Ewi+1' x= eIlJ ly’

y €Wj. Then0 =ej_x =eP7Hej_y) + [ej-y eli)"I]y. Since by (e) we have [ej-y, ef"]y € W; ¢, we obtain
by (d)] ej-sy =0, that is, x € eg'i . e?_‘iwi-i. When we apply €j—,, - . ., €; in succession to x we obtain
that Wi, € qiWy.

Now let @ € 20 S T4, x= qiy, y €Wy. Again egx = gj(eqy) mod Wi+q. Since Zfc 2y, for all m,
we have eq €Nj. Therefore, if x €Wj., then egx =0 for all @ € Z). Hence eay = =0 for all o 6240 . We

now note that e, W =0 for all y € Z'. Therefore, {y €W, :eqy=0foralle €2} =W, Thus Wj+;C
%Wp that is, we have proved the first assertion.

Next suppose that x = giy EWH.I, y GWP We have ~@j44 € Zi N Ztand fi+X = qi(fi+4y) mod Wlﬂ
Since f1+1W1+1CW1+1s W1+1C qlwi, f1+1W1 = 0, we have fisx = 0 as required.

4. PROOF OF THEOREM 2. Since W is a maximal G-submodule of W we have My = Wy nNw=0 (be-
cause Wy is a simple P-module). We assume that Wt N W =0, that is, M¢-q = 0. We show that Mt = 0.
By Lemma 3.5 ft-Wi_4 = 0, whence by Lemma 3.3 we have My = 0 as required.
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Remark. The method of proving Theorem 2 (the extension of the properties of the algebras A4 to ar-
bitrary algebras of classical type) is similar to the method employed in [1, 2] (p. 443), and [13] (p. 123).

5. THEOREM 3. Let V be a simple G-module and ly # 0. Weputt = . gﬂn (dim G—dim GZ)/Z.
€6™\{ v}

Then dim V is divisible by pt.

"~ Proof. Let eq be a'root vector. Since-the Liealgebra G is simple, the linear hull of the'orbit of eq

- under-the action of the adjoint group coincides with G. Therefore, there is a Borel:subalgebra B and an

- ordering of its roots such that ly(eg) * 0y where:6 is the highest root. Let ¥, be a simple submodule ‘of the
B-module V. By Theorem 1 there exist ! ¢ B* and H:¢ B(B, T) for which the:B-module V, is induced by a
one-dimensional H-submodule. Therefore, dim Vy = pt1 where t; = (dim B—dim By)/2. In additionl(eg) =
0, for otherwise we would have eg ¢ Bf € H and l(eg) = (eg) = 0, which is impossible.

Let1' € G*be a form such thatl'(eqp) =0 fora = 9, I'(T) = 0 andI'(eg) = 0. Let]'=1" IB- Ifg=

> eq€ B+, then it is obvious that eq € Bj' for the smallest root @ from M. Therefore, d1m Bl = dim By".
weM

We have
24y > (dim B — dim By, ) = (dim G — dim G-) > 2¢.

Thus dim V, is divisible by pt. But by Corollary 2.6 all the composition factors of the B-module V have
the same dimension. Hence dim V is divisible by pt.

~ Remark. It appears that for every simple G-module V dim V is divisible by p(dim o)/ 2, where @ =
9(lv) . Theorems 2 and 3 support this conjecture.

§4. p-REPRESENTATIONS OF LIE ALGEBRAS OF CARTAN TYPE

An irreducible representation of a Lie p-algebra G is called a p-representation if Iy =0. Every-
where in this section the word "module"” means the module of a p-representation.

1. LetG = i }@ G; be a Lie p-algebra of Cartan type with the natural gradation (see [5, 6]). It is
m
known that
(a) If G * Wy, then G4 and G, generate G, and G, generates e%'G,-.
i>

(b) G-y and G4 consist of nilpotent elements.
2. LetV be a simple G-module. WeputG™ = o G,G = ®G, V® = {veV:Giv =0}, It is ob-
[>2)

i<—1

vious that V* and V™ are submodules of the Gj~module V.
THEOREM 4. a) V' and V™ are simple Gy~modules.

b) For any simple Gj-module V' there are simple G-modules V, and V, such that the Gy-modules V{'
and V3 are isomorphic to V'.

c¢) If V4 and V, are simple G-modules, and the Gy-modules Vf and V; (respectively Vi and V;) are
isomorphic, then the G-modules V; and V, are isomorphic.

- Proof, We restrict ourselves to the "-" case. We show first that W = v-n G4V is equal to 0. Let
Uo(Gi) ' U U,(G) be the subalgebra generated by Gy, and let Uy(Gy) =Uy(G) ® k - 1. We have that Uy(G)W <
Ug(GpV = V since Uy(G,) is nilpotent (Property (b)). The space Uy(Gy)W is a G-y-submodule since G_{W = 0;
it is obviously also a Gy- and a Gy-submodule. We obtain from (a) that Uy(G)W is a G-submodule. Since
Uy(Gy))W = V, and because V is a simple G-module we obtain that Uy(Gy)W =0 and in particular that W =0,

We put Vy = V™, Vj4; =GyVi. By reasoning as above we obtain that the sum of all the spaces Vj is V.

We show by induction that this sum is direct. We assume otherwise: V49N @ V;3vs0 . Then
agi<m

G.qv #0 since W=0. But G.yv V.1 @ V; which is impossible. Thus V= 5 V;. It follows from

L<n<m—1 20
~ here that the Gy-module V, is ‘simple, for if V; is a proper submodule of:the:Gy=moduleV,,itis.obviousthat
Uo(Gi)Vo is a'proper submodule of the G-module V.
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To prove b} we define the action of G~ @ G, on V' by putting G™V' =0. Then the desired G-module is
a factor-module of Vi&. Every simple G-module V can be obtained in this way. Since V = ¢ V;, the ker-

nel of the mapping ¢ : V{G — V is homogeneous with respect to the decomposition VG vie @ GV ; in
izo

view of the simplicity of the Gy~module V' this kernel does not intersect V'. Thus the kernel of the map-

ping @ is defined uniquely as the sum of the homogeneous submodules of the G-module V4G, and c)

is proved,

We obtain the following corollary from Theorem 4 and Lemma 2.4.

COROLLARY 1. Let B be a Borel subalgebra of G, € G, B> T, where T is the maximal torus of G,
and let hi be a basis of T for which hi{PT = hij. We put B* =G* ® B. Then every simple G-module is iso-
morphic to a factor-module of a G-module induced by a one-dimensional B ~module (respectively B+~
module), and is determined uniquely by the latter, that is, there is a one~to-one correspondence between
the p-representations of the Lie algebra G and the linear forms A4 € T* for which A4 (hj) € Fp (respectively
A

A similar description of the p-representations of a Lie algebra of classical type was obtained in [12].

COROLLARY 2. Let V and V* be contragredient simple G-modules. Then the Gy,-modules (V)% and
(V*)” are isomorphic. There exists a non-degenerate, invariant, bilinear form on V if and only if the Gy~
modules (V*}* and V™ are isomorphic.

Proof. Let V' =GV, V*={v €V* : v(V) = 0}. Then V¥ = (V% and consequently, there is a non~
degenerate pairing between V- = V/V' and (V*)*; this proves the first assertion. The second assertion
is equivalent to the isomorphism condition on the G-modules V* and V, hence it follows from the first as-
sertion and from Theorem 4c).

We thank E. B. Vinberg, D. A. Kazhdan, G. L. Litvinov, and A. D. Rudakov for usefpl discussions.
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