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EXPONENTIALS IN LIE ALGEBRAS OF CHARACTERISTIC ρ
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B. Ju. VEiSFEILER AND V. G. KAC

Abstract. The relationship between the structure of a simple Lie algebra of finite
characteristic and the structure of the group of its automorphisms is investigated. The
results obtained are used to classify simple Lie algebras of characteristic ρ > 5 for
which the largest reduced subgroup in the scheme of automorphisms is a maximal sub-
scheme. An analogous classification theorem is proved for "simple" group schemes,
i.e. schemes every normal divisor of which lying in the reduced subscheme is the ker-
nel of some purely nonseparable isogeny. For characteristics 2 and 3» families of
counterexamples are constructed to all results obtained for ρ > 5·

The fundamental question considered in this work may be formulated briefly as

follows: What is the relationship between the structure of the group of automorphisms

of a finite-dimensional Lie algebra over a field of characteristic ρ and the structure of

the Lie algebra itself? Since much more is known about algebraic groups than about

Lie algebras, the study of this question permits one to carry over to some extent the

structural theory and classification from groups to Lie algebras.

Exponentials play the most important part in our considerations. In §2 they are

used to describe Lie algebras for p > 5 for which the reduced group of automorphisms

is isomorphic to the almost inner product of a reductive group and an arbitrary group

(Theorem 2.1). In particular, it turns out that if the group of automorphisms of a simple

Lie algebra G is reductive and nontrivial, then G is a Lie algebra of the classical

type. For p = 5 we succeed in proving only a partial analog of Theorem 2.1.

Since for characteristics 2 and 3 there are considerably fewer exponentials than for

p > 5, the assertion of Theorem 2.1, as one would expect, is not true for these charac-

teristics. In §3 several families of simple finite-dimensional Lie algebras of charac-

teristics 2 and 3 are constructed for which all the assertions of §2 are false. All these

families are obtained from the single construction studied in [4] for p > 3. The classi-

fication obtained in [4] for p > 3 is extended to p = 2 and 3 (Theorem 3.7). We thank

A. N. Fudakov, who informed us that earlier he and A. I. Kostrikin independently de-

vised examples of families of simple finite-dimensional Lie 3-algebras (see [16]).
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In §4 the results of §2 and the method of graded algebras, developed in [4], are used
to obtain a new characterization of Lie algebras of the Cartan type (Theorem 4.1). Theo-
rem 4.1 classifies simple Lie algebras over an algebraically closed field of characteris-
tic p > 5 for which the largest reduced subscheme in the scheme of all the automor-
phisms is maximal (modulo all the filtered Lie algebras for which the associated graded
Lie algebra is a Lie algebra of Cartan type s^ or hR).

This result is then used to study some group schemes which we call simple. The
fact is that it is not possible to define a simple group scheme as a scheme without any
nontrivial normal divisors, since there is always the kernel of the Frobenius homomor-
phism. Therefore it seems natural to us to consider a group scheme simple if every one
of its normal divisors which lies in the reduced subscheme is contained in the kernel of
some power of the Frobenius homomorphism. Obvious examples of such schemes are the
simple smooth groups and also schemes of automorphisms of Lie algebras of the Cartan
type. Theorem 4.7 is a step towards classifying schemes simple in the above sense.
As in Theorem 4.1, the fundamental restriction in Theorem 4.7 is the fact that the largest
reduced subscheme is to be maximal.

We express our gratitude to Ε. Β. Vinberg and D. A. Kazdan for interesting conver-
sations and helpful discussions.

§1. General observations and notation

Let k be an algebraically closed field of characteristic p > 0, let G be a Lie al-

gebra over k, and let §(G) be the largest reduced subgroup in the irreducible component

of the group scheme Aut G of all automorphisms of G. In particular, let §(G) be the

reduced irreducible affine algebraic group. By Diff G we shall denote the algebra of

the differentiations of the algebra G, and by Lie K, the Lie algebra of the group scheme

K. The embedding φ of the algebraic affine group §(G) into the group yJ-(G) of all

nonsingular linear transformations of the space G has for its differential the mapping

άφ: Lie §(G) -» M(G) (the algebra of all linear transformations of G).

The action of the group §(G) by means of automorphisms on G defines the mapping

<A:§(G) -» §(Diff G) by the formula φ(α)0 = φ(α)ϋφ(α)~1, a £ g(G), D 6 Diff G.

For convenience of reference, we shall enumerate several well-known and easily

verifiable facts [7].

Lemma 1.1. a) rf0(Lie §(G)) C Diff G.

b) // J( i ) . l € k, is an additive one-parameter subgroup {i.e. a subgroup isomorphic

to the group Ga) of §(G), then «?</>(Lie 7(1)) = k(dj/dt)(O).

c) // 3~(i), t € k*, is a multiplicative one-parameter subgroup (i.e. a subgroup iso-

morphic to GJ of g(G), then ^ ( L i e J(t)) = k(cff/dt)(l).

For D € Diff G, let E(D) = lp ~x
nD

m/m\. Instead of E(ad g), we shall usually

write E(g). The following lemma follows from the computation carried out on Russian

p. 17 in [2l.

Lemma 1.2. If D £ Diff G and Dp = 0, then E(D) is an automorphism of the Lie
algebra G if and only if
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2 — [D'x, Dri/J =0
l+r>p 'T

o<l,r<p

for any x, y G G. In particular, if [D X, Dry\ = 0 for I + r > p and for any x, y G G, or

Q(P l)/2 _ Q̂  tfjgfi E{tD), ί £ k, is an additive one-parameter subgroup of ^(G) and

o ^ L i e E(tD)) = VD.

Denote by §.(G) the subgroup of the group §(G) generated by all the one-parameter

subgroups of the form E(tg). Note that §,(G) is clearly a normal divisor of the group

§(G). However, it follows from [l3l that the Lie algebra J<£(Lie §j(G)) may be different

from ad G.

Example. Let p = 3 and let G be the factor algebra of the algebra Lie S£(2, k)

by the center. Then §j(G) is of type G 2 ·

Lemma 1.2 permits one to construct additive one-parameter subgroups of the group

§(G). We shall demonstrate how to construct multiplicative one-parameter subgroups.

Lemma 1.3. Let G be a Lie algebra and let Μ be a free abelian group of rank I.

Assume that G has a gradation G = © a e M G a. Then the group §(G) contains an I-

dimensional torus acting trivially on G and acting as a scalar on Ga.

Proof. Let m^, • · · , m^ be a basis for M. Suppose that d. = (?-j, · · · . ?,·;)> z =

1,2, · · · , /, are / linearly independent integral vectors. Define the homomorphism ω.:

k*-»§(G) by the formula ω .(t)a = t ; l'a if a G Ga, α = Ί,τ.η,. That ω .(/) is an auto-

morphism of G follows from the fact that the spaces G form a gradation of G. Clearly

the images of the various ω . commute with each other and, therefore, generate a torus.

This torus is /-dimensional, since the vectors d. are linearly independent.

Lemma 1.4. Suppose that all the conditions of Lemma 1.3 are satisfied and, in ad-

dition, that the following conditions hold.

a) The set Σ = ! α £ Μ : ΰ α ^ θ ! contains the basis m,, • • · , m. of the group M.

b) Let G be the algebra generated by the spaces G , i = 1, 2, · · · , /. If a G

Σ and a = Ir.m., r. > 0, then Ga f] G+ ^ 0.

c) If a G Σ, then there exists a number r such that (ad G )T Ga f] G a£ 0 for some

β € Σ, β = 2r.m., r. > 0.

Let h € GQ, let (ad hY = ad h, and suppose that ad h acts as a scalar on all the

G . Then there exists a one-dimensional subtorus S, in S(G) such that Lie J . =a. b h
k a d i .

Proof. Let λ α be an eigenvalue of ad h in Ga. Since (ad hy = ad h, we have

λ£ = λα, i.e. λ α G F . Choose integers qa such that λ α = ga(mod p). Let qi = qm .

Define the homomorphism ω: k*->§(G) by the formula ω(ί)α = t r' 'a if a G Ga, a =

ΣΓ.».. According to Lemma 1.3, ω(/) is an automorphism of G for all t € k*. Let S =

w(k*). We must show that J0(Lie J ) = k ad h. Let ^ ( L i e 3") = W, let h'G Diff G,
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and let (ad h'Y - ad h'. Then h' acts as a scalar on all the G a and its eigenvalues

in G ate equal to μ = ΣΓ.Ο. (mod p) (where α = ΣΓ.ΤΚ.). Clearly, λ μ .
α Ί Γα ι' ι ν r ' \ ; , ' / > τη { τ η ι

In accordance with condition b) and in view of the fact that h acts as a scalar on
all the G , we have, for α € Σ , α = ~Στ.πι., τ. > 0, that λ = ΣΓ.Χ . Since α. is de-er ' ' ι ι' ι — ' α ι τη-ι ~α

fined by this same formula, λ α = μ α for all such a . Now if α ε Σ , then according to

c) there exist a.,b.>0(i=l,··· , I) such that a. + Σα .m. - Σ& .m. and λ =

Σ& λ — Σα λ . From the definition of ω it once again follows that λ = μ . The
ι mj ζ mi ° a ra

lemma is proved.

Remark 1.5. Let G be any Lie algebra, let h € G, and let (ad h)p = ad h. Then

ad h can be reduced to diagonal form and its eigenvalues belong to the field F . ad h

defines in G the gradation G = φ G ., where G . = {g € G: [hg] = ig\. Let μ be

the group of the pth roots of unity (i.e. the group scheme with the lattice ring

kM/Oc'' — 1)). Then we can define the monomorphism ω: μ -» Aut G by the formula

a>(t) (a) = Z! a, for all a € G., where ζ is any integer such that i = i (mod p). Obvious-

ly we shall have here that Lie ω(μ ) = k ad h.

Definition. The element g €. G is called semisimple if ad g can be reduced to

diagonal form. The subalgebra Τ is called diagonalizable if ad Τ can be reduced to

diagonal form. A diagonalizable subalgebra Τ is called open if ad Τ C άφ(Lie £j(G)).

Proposition 1.6. Awy too maximal diagonalizable open subalgebras Τ and Τ of the

Lie algebra G are conjugate by an element of the group §(G).

Proof. Suppose that J is a maximal torus in §(G) and that Τ = Lie J . Then the

tori ad Τ and ad Τ are conjugate to the subalgebras of Τ [fi]. Since they are maximal

and Τ is diagonalizable, the sum of their images in Τ coincides with each one of them.

Therefore ad Τ and ad Τ are conjugate. Since the center of G is contained in both

Τ and Τ , it follows from this that Τ and Τ are conjugate.

§2. Lie algebras with a reductive group of automorphisms for p > 5

In this section, it is convenient to use the following definition.

Definition. For p > 3, the Lie algebras of reductive algebraic groups and also

their factor algebras by the center will be called Lie algebras of the classical type.

It is known (see, for example, [l3l) that if § is an almost simple algebraic group

of type Α , η + 1^0 (mod p), Β , · · · , Ε , then for p > 3 the Lie algebra § is simple.

Furthermore, if ^ is an almost simple group of type A;e_i> then we shall denote

by C the center of ĵ (in the sense of scheme theory) and by C its connected com-

ponent (which is isomorphic to the group μ of the pmth roots of unity). Then if (2° ^

i l l, Lie § has a one-dimensional center Lie C If £ = 1, then § is an adjoint group

and [Lie § , Lie §] is a simple Lie algebra A' _ l .

The following theorem is the main result of this article.
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Theorem 2.1. Let G be a Lie algebra without a center over an algebraically closed

field of characteristic p > 5, where G = [G, G]. Assume that g(G) is an almost inner

product, g(G) = g · g ' , where the group g is reductive. Then the following assertions

are true.

a) g is semisimple.

b) G = G θ G zs a direct sum of Lie algebras, where ad fG) = ^<£([Lie g , Lie g]),

G' = ZG(G), where (Aut G)° = g W g(G') = g ' .

We shall first prove (a).

Proposition 2.2. Let G be a Lie algebra without a center, and let p > 3. Then the

center of the group g(G) zs unipotent. In particular, the center of g(G) does not con-

tain a torus.

Proof. Suppose that j is a one-dimensional torus lying in the group §(G). The

group of characters of the torus Τ is isomorphic to the group Z. The torus J acts

completely reducibly on G. Suppose that G — © ,p_G. is a weighting decomposition

of G with respect to J. We have that [G .G.] CG. + .. Let η = min{z: G. 4- 0 | and m =

maxfz: G. Φ 0}. Suppose that n\ > m (for the case m > \n\ the proof is analogous).

Then (ad G ) G C © " 1 . ^ " G.. This space is equal to zero, since m + 3n < η (by vir-

tue of the condition that \n\ > m). Thus, by Lemma 1.2, g(G) contains (for p > 5) the

subgroup E(tg), t £ k, g 6 G . The torus J does not commute with this subgroup

(since the case G = G„ is impossible). The proposition is proved.

Let us turn to the proof of (b). Since G does not have a center, we may (and shall)

identify G with ad(G) C Diff G. Let & = ad (G) f) ^ ( L i e g) . Pecall (§1) that the

group g with the help of the homomorphism φ: {) -> £)(Diff G) acts on Diff G. The sub-

algebras G and G are invariant with respect to this action.

Let Τ be a maximal torus of g and let X be the group of its characters. As is

well known, λ" is a free abelian group. The action of j on Diff G is completely re-

ducible. The following are the weighting decompositions of the algebras ad G and G

with respect to 3":

ad G = φ Ga, G = φ //„.
x ex

Let

2 = {aEX:Ga+0}, Σ = {α εΧ :Ηαφ0}.

Suppose that D and D are closed convex covers of the sets Σ and Σ respectively in

the space X ®R. Let D' be the minimal closed convex centrally symmetric set in

X®R containing D. The following relationships clearly hold: D C D C D'.

Lemma 2.3. Suppose that p > 3. Then the following assertions are true.

(a) Σ fl i D ' C Σ, W G a C G /or all a € Σ f) <?D'.

(b) Σ zs a system of roots of g.

(c) &= D = D'.
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Proof. The symbol d will denote the boundary of a region. Let α € Σ (""] dD'.

Then (3a + D1) f| D' = 0 . As a matter of fact, suppose thai: Af is a plane of support of

the set D' at the point a . Since D1 is centrally symmetric, it is clear that λα + D1

and D' lie on different sides of Μ (and 3a + D' f| Μ = 0). Therefore (3a + D1) f| D' =

0. This means that (ad g) 3 = 0 for all g € G a. Hence, by Lemma 1.2, E(tg) C §iG).

Clearly 3" normalizes E(tg). Since 3" acts nontrivially on Ga,
 CJ acts nontrivially on

E(tg), i.e. E(ig) € g . Since Lie ECig) = k ad g (Lemma 1.2), it follows that ad g € C?,

i.e. Ga C G for all α £ Σ P| dD, and therefore Σ D Σ f| dD'. (a) is proved. In partic-

ular, Σ contains the roots of every simple component of the group § .

Assertion (b) follows from the fact that G is an ideal in Lie § containing the non-

trivial root subspace of every simple component of Lie § .

We shall prove (c). Since the region D is invariant with respect to the Weil group

of § , it is automatically centrally symmetric. Since D' is completely determined by the

vectors from Σ f] dD', since these vectors lie in Σ, and since D is centrally symmet-

ric, we must»have D = D , as was required.

Lemma 2.4. Suppose that p > 5. Then Σ = Σ and G = Η for any α Ε Σ\0.

Proof. It is sufficient to consider the case for which Σ is a connected system of

roots. If Σ is a system of roots of type G,, then, as is easy to see, D f] X = Σ, and

consequently, by Lemma 2.3, Σ = Σ. Moreover, if Σ is of type G 2 , then α + 4β f£ Σ

for any α, β €. Σ. Therefore (ad g) = 0 for all g € Ga, α £ Σ\0, and, by Lemma 1.2,

G a = H a for all α £ Σ.

If Σ is a system of roots not of type G 2 , then, as is known, the number of modules

of all the coordinates of those roots in the basis consisting of the fundamental weights

does not exceed two. By Lemma 2.3 this is true for the vectors of the system Σ.

Therefore β + γ + αα. £ Σ for a > 7, α, β, γ € Σ, α φ- 0, and consequently

[(ad g)rx, (ad g) y] = 0, / + r > 7, for all g € Ga, χ € G π and y £ G . Applying Lemma

1.2, we have that Σ = Σ and Ga = Ηa for all α € Σ\0 .

Proof of Theorem 2.1. Denote by G the subalgebra in G generated by the space

Φ ±*G „. Since G =©„,/„ G © G. and [Gn, G 1 < G „ for all α € Σ, G is an ideal in

G. Suppose that G' = ZG(G). Clearly G' C G Q . The intersection C = G f] G' lies in

the center of G. Therefore C C Lie 3", i.e. C C GQ. Since 'J acts trivially on GQ, C

lies in the center of GQ and consequently in the center of G'. Therefore C lies in the

center of G, i.e. C = 0. Thus G fi G' = 0.

We shall show that G = G (BG. In accordance with what has been said above, it is

sufficient that G = G + G. For the proof we shall use the condition [G, G] = G. Since

G is an ideal in G, it follows from the description of the Lie algebra of the differentia-

tions of a Lie algebra of the classical type. (See, for example, the Corollary to Lemma

3.4 in §3) that [Diff G, Diff G~] C ad (G). Let gv g2 € G. We have ad [g r g2]\G C

ad(G), i.e. ad[gj, g 2 U a d g 0 , g0 £ C . Hence [ g l , g 2 3 - g( | EC 1 , i.e. [ g , , g 2 ] € G1 +

G, i.e. [G, G] C G' + G, as required. The remaining assertions of the theorem are now
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obtained automatically.

The assertion formulated below is a modification of Theorem 2.1.

Proposition 2.5. Suppose that p > 5 and that G is a Lie algebra without a center,

g(G) = § · § ' , L§, § ' 1 = 1 , and g reductive. If ^ ( L i e g) C ad (G), then G = G1®

άφ(ΙΑε g) is α direct sum of Lie algebras.

Proof. We shall accept the notation and the agreements of the proof of Theorem 2.1.

Since i/</>(Lie g) C ad (G), it follows that (5 = Lie g . For g £ GQ we have ad g\c =

Alg)E. Let Τ = Lie J CC?, let Δ be a system of simple roots in Σ, and let φα, α €

Δ, be a dual basis. We shall formulate condition a). Suppose that ca (α € Δ) are any

elements of the field k. There exists a t € Τ such that λα(ί) = c Q for all α € Δ.

As is well known, this condition is fulfilled if G is a Lie algebra of an adjoint

group. The only case in which G may be not a Lie algebra of an adjoint group is the

case in which g is of type A ; j and C° 4 1. In this case Lie g has center C =

Lie C°, C C T, i.e. [C, G Q] = 0. Since Σ = Σ (Lemma 2.4 did not make use of the con-

dition [G, G] = G), we have [C, G J = 0, i.e. C is the center in G, i.e. C = 0. This

proves a).

Now we shall prove the proposition. Let g € GQ. Choose a i(g) € Τ such that

A^g) = Aa(i(g)) for all α £ Δ. Then Xa(g) = Aa(ig) for all α 6 Σ, and therefore g -

i(g) € ZG(Ci). Since G = £ + GQ, it follows that G = S ® Z G ( S ) , as required.

Corollary 2.6. Lei p > 5 anci /eZ G be α Lie algebra without a center. Assume that

G = [G, G] anrf Ζ&αί G is not a Lie algebra of the classical type and cannot be decom-

posed into a direct sum of two Lie algebras. Let \ be an unipotent radical in g(G).

Then the following assertions are true.

(a) // g(G)^ 1, then X + \.

Proof. Property (a) is an immediate consequence of Theorem 2.1. We shall prove

(b). Let g = g(G) and let Κ = £g(T[). The unipotent radical ΪΓ of the group Κ lies,

by construction, in the center of K. Now we shall need two lemmas.

Lemma 2.7. Let Η be an algebraic group whose unipotent radical J[' lies in the

center. Then Κ = Κ' χ 71', where Κ' is a reductive group.

Proof. Following Humphreys' example [9], we shall consider Κ as an extension

of the reductive group K' = K/ft' by means of the periodic group Jl' (of period pl for

some suitable /). In accordance with Steinberg's results ([12], 3.2, 5.1), we must have

7ί' f) [Η, Κ] = 1. Assuming that Κ' = [Κ, Κ1, we obtain our assertion.

Lemma 2.8. Let g be an algebraic group, let Ti be an unipotent radical of g , and

let K' be a reductive group in g centralizing 71. Then g = K' · g ' is an almost

inner product of K' and some subgroup of g ' .
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Proof. Let ω: g -• g/ft be the natural projection. Then cu(g) = ω(Η') χ g is an

almost inner product. Let g ' = a ~ ' ( g ) , let 58' be any Borel group in g ' , and let h be

a semisimple element of K'. Then h acts trivially on %'f)\ = ω(ίΒ') and on Jl. From

this, in view of [6], pp. 4-13, it follows that [b, %'] = 1, i.e. {%', K'] = 1. Since any

element of Cj is contained in some suitable Borel group, it follows from this that

[ g \ b] = 1. Recalling that H' is generated by its semisimple elements, we have

La > H'] = 1, i.e. g = g ' χ Κ', as required.

Corollary· 2.6 is obtained by successive application of Lemmas 2.7, 2.8 and Theo-

rem 2.1.

Corollary 2.9. Suppose that G is a Lie algebra without a center, [G, G] = G. Let

p > 5 and let ad (G) f| «V>(Lie g(G)) = & φ £ ' , w/bere & zs a Lie algebra of the clas-

sical type. Then G = C?®G"'.

Proof. Suppose that Jl is an unipotent radical in g(G), Then Ν = Lie Jl is a nil-

radical in Lie g(G) [5]. On the other hand, ad (G) is an ideal of Diff G, i.e. δ* θ &'

is an ideal of Lie g(G). Therefore [&θ&' , Ν] CN f] £ ' C 2". Let Λ/' = Ν f] &'.

We are given that [G, N1] = 0. We have shown that & acts trivially on Ν /Ν'. If g €

G is a semisimple element, it follows from this that [g, N] -•- 0. Since G is generated

by semisimple elements, [&, N] = 0. Hence <5?(ji>(Lie g(G)) = &ΘΝ. Suppose that 3* is

a subtorus in g(G) such that <s?0(Lie 3") is a maximal subtorus in G (the existence of

J follows from the results of [5]). Suppose that g is a subgroup of g(G) generated by

all the tori g^g~ , g € g(G). Clearly Lie *§ 3G and J is a maximal torus in g . We

have rf<^>(Lie g ) - G (Β Ν, Ν C N. From this it follows, again by [9] (see also Lemmas

2.7 and 2.8), that Lie g — G, i.e. g is a semisimple group which is an almost inner

factor in g(G). Our assertion now follows from Theorem 2.1.

The following assertion will be needed in §4.

Corollary 2.10. Let G be a Lie algebra without a center, let Jl be an unipotent

radical in g(G), let GQ = ^ ( L i e g(G)) f| ad (G), and suppose that GQ does not con-

tain any ideals of G. Then for p > 5 the following assertions are true.

(a) // GQ = ad (G), then G is a Lie algebra of the classical type.

(b) // i/(£(Lie Ti) f| G o = 0, then G is a Lie algebra of the classical type.

(c) Z G (Lie U f] ad (G)) C Lie Jl.

Proof. The proof of (a) does not, in general, make use of Theorem 2.1. If GQ = ad (G)

and G is simple, then GQ is a simple ideal of Lie g(G). After the factorization of

Lie g(G) by a nilpotent radical, GQ is mapped isomorphically onto a simple ideal of a

Lie algebra of the classical type. Consequently GQ is also a Lie algebra of the

classical type.

We now prove (b). If d(f>(Lle Jl) f] GQ = 0, then GQ is an ideal of Lie g(G) which

does not intersect Lie Tl. From this it follows that GQ is a Lie algebra of the classi-

cal type. This actually was used in the proof of Theorem 2.1 to establish that
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[Lie §(G), Lie g(G)] is an ideal of the Lie algebra ad(G) (lying in GQ). Note that the

restriction G - [G, G] was not used here. Consequently ad (G) = GQ - [Lie £j(G), Lie §(G)]

and G is a Lie algebra of the classical type.

Finally, we prove (c). If Z G (Lie fl f] ad (G)) <£ Lie Τϊ, then the method of proof

of Corollary 2.6 leads to the conclusion that there is an ideal of G in GQ isomorphic to

a Lie algebra of the classical type. The assertion is proved.

We shall now formulate the best approximation of Theorem 2.1 for p = 5 which we

have obtained.

Theorem 2.11. Let G and §(G) satisfy the conditions of Theorem 2.1, and let

p = 5. Then the following assertions are true.

(a) The group ĵ j is semisimple.

(b) // § does not contain a component of type C , η > 1, then G satisfies the

conclusions of Theorem 2.1.

(c) // § is an adjoint group, then G satisfies the conclusions of Theorem 2.1.

Property (a) was proved in (2.2). First we shall assume that § is an almost sim-

ple group. It is clear that we can assume this without loss of generality. We shall

prove the analog of Lemma 2.4 (since this is the only place in the proof of Theorem 2.1

where the condition that p > 5 was used).

Lemma 2.12. // g is of type G 2 or A2 and p = 5, then Σ = Σ and Ga = Ηα for

all a e l .

Proof. If Σ is of type G 2, one can immediately verify that Σ f| D - Σ (since any

weight lying in D is a root). It can also immediately be verified that if α, β, γ £ Σ,

then a + β + αγ £ Σ for all a > 5. From this it follows, by Lemma 1.2, that G C G,

i.e. Gy = Η for all γ £ Σ\0, as required. If Σ is of type A2, then X f] D is a

system of roots of G 2 , and consequently the lemma is also true for A 2 ·

Lemma 2.13. // ρ = 5, i/berc G a = tfa /or β// α € Σ.

Proof. By virtue of 2.12, we may assume that Σ is not of type G 9 . Then all the

roots from Σ lie on dD'. (If all the roots in Σ are of the same length, they are all

vertices of the polyhedron D. If Σ is of type B n , C^, or F 4 , then the long roots are

vertices of the polyhedron D and the short ones lie on the boundaries.) From this and

from Lemma 2.3 (a), Lemma 2.13 follows.

Lemma 2.14. // Σ is not of type A_.,G,, of C , η > 1, then for any nonzero

weights λ, μ £ Σ it is true that λ + 3μ £ Σ. If Σ is of type C and λ + 3μ £ Σ, then

λ and μ are proportional to the highest root of C or to its conjugate with respect to

the Weil group.

Proof. We shall assume that Σ is different from G2- Suppose that Aj, · · · , λ

is a system of fundamental weights, the dual of the system of simple roots. Let λ =

Σ&Χ and μ = Σ/Α;.. Since for λ € Σ we have \k .\ < 2 for all z, it follows from
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Lemma 2.3 that \k ,\ < 2 for all i and if \k \ = 2 for some i, then λ € Σ Γ) d?f. More-

over, if λ + 3μ € Σ, then |/.| < 1 for all ζ. Note that any root from Σ is taken by the

Weil group into the root θ = Σδ λ., for which all the s . > 0. For all systems Σ this

root is equal to one of the fundamental weights λ except for the highest root of A ,

which is equal to Aj + A ,̂ and the highest root of C , which is equal to 2A,. We shall

consider the two cases separately.

Case Ι. λ lies in the interior of D, and consequently \k.\ < 1 for all i. Then,

clearly, if λ + 3/i 6 Σ, then λ + 3μ € Σ f] 3D. Using the Weil group, we may assume

that λ + 3μ = θ. If θ = λ and θ — 3μ € Σ, we clearly have μ = λ and θ — 3μ =

— 2λ 6 Σ, which is not possible in view of our assumption that λ lies in the interior

of D. If θ = λ, + A (case A ), then μ = λ, or λ , which again contradicts our as-

sumption. If θ = 2Aj is the highest root of C , clearly μ = Aj and λ = — λ,.

Case II. λ € Σ and again we may assume that λ— Θ. In all cases where θ is not

the highest root of C , we have θ + 3μ = α € Σ. Once again, this is impossible when

θ - λ and θ is not proportional to the highest root of C . If θ = λ, + λ , then, as

can easily be seen, this is possible only in the case of A2<

The lemma is proved.

Assertion (b) of Theorem 2.11 follows from Lemmas 2.12 and 2.14, taking into

account Lemma 1.2.

Lemma 2.15. Assertion 2.11 (c) is true.

The proof may be obtained immediately upon observing that in the case in which §

is an adjoint group we have X = ΖΣ and X f| D = Σ. On the other hand, this asser-

tion follows form (2.12)—(2.14) and from the fact that an adjoint group of type C does

not have a representation with weight Aj.

Remark. Analogous considerations show that Lemma 2.3 holds for p = 3. For p =

2, counterexamples will be constructed in §3. We will also construct there counter-

examples to Lemma 2.4 for p — 3.

§}. Contragredient Lie algebras for characteristics 2 and 3

From the results of [4], §2, it is easy to prove that for p > 3 every simple finite-

dimensional contragredient Lie algebra is isomorphic to one of the simple Lie algebras

of the classical type. We shall show that for p = 2 and 3 the picture changes sharply.

There exist families of simple finite-dimensional contragredient Lie algebras such that

the groups of automorphisms of all these Lie algebras are reductive. In particular, it

follows from this that for p = 2 and 3, Theorem 2.1 is not true. For p = 5, the ques-

tion remains open.

Let us recall the definition of a contragredient Lie algebra.

Suppose that A - (a..), i, j €. 1 = {1, 2, · · · n\, is a matrix with elements from the

field k. Denote by u(A) the Lie algebra over k with generators e ; , /\ and h;., i G I,

and the following defining relations (i, j C /):
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\eifj] = buhu [hihj] = 0, [hie-,] = αι,-β,·, [hifj\ = — a,·///.

Letting deg e . = 1, deg /. = - 1 and deg i . = 0, i 6 /, we transform C?(A) into a graded

Lie algebra, δ(Α) = φ S.. Let /(A) be a maximal homogeneous ideal in G(A) such

that /(A) f| ( δ _ , Φ 2?,) = 0 (such an ideal is unique). The Lie algebra G(A) =

&(A)//(A) is called a contragredient Lie algebra and the matrix A is its Cartan matrix.

Since in changing h. to ch. and / to cf., c € k* the z'th row of the matrix A is mul-

tiplied by c, the contragredient Lie algebras associated with Cartan matrices with pro-

portional corresponding rows are isomorphic.

If the matrix A can be obtained form the matrix A by multiplying any rows by non-

zero numbers and by renumbering the indices, then the matrices A and A will be called

equivalent. Contragredient Lie algebras with equivalent Cartan matrices are isomorphic.

For p > 3, A , η + 1 φ 0 (mod p), A' _ j , B n , · · · , E g are examples of simple

finite-dimensional contragredient Lie algebras. For p = 3, all these Lie algebras are

simple finite-dimensional contragredient Lie algebras except E g and G2- The Lie al-

gebra E 6 contains a one-dimensional center and the factor algebra Eg of E& by the

center is a simple finite-dimensional contragredient Lie algebra. G2 contains a unique

maximal ideal A 2 · For p = 2, the Lie algebras A , η + 1 φ 0 (mod 2), A . ., E, and

Eg, and also the factor algebras of the Lie algebras D 2 n + 1 an<^ ^7 ^ t ' l e o n e"dinien-

sional centers Π' 2 π + 1 and Ε ' , respectively, and of D 2 n by the two-dimensional center

D, , are simple finite-dimensional contragredient Lie algebras. Furthermore, F , and

C contain unique maximal ideals Π . and D , respectively, and R contains a unique

maximal ideal the factor algebra by which is D' . All the above-mentioned simple Lie

algebras for characteristics 2 and 3 will be called simple Lie algebras of the classical

type in these characteristics.

Suppose that G(A) = ® - e Z G . is an induced gradation in G(A).

Let gO4) = g(G(A)), D(A)= Diff G(A), and P(A) = \D Ε D(A): D(e .) = a .e., D(f.) =

-a ./., D(h.) = 0 for all i Ε Ι\.

Lemma 3.1. If D Ε P(A) and Dp = D, then there exists a multiplicative one-param-

eter group 7(t) in g(A) such that (eff/dt) (1) = D.

Proof (compare with 1.4). Since DP = D, we have D(e.)=k.e. and D(f.) = -k.f.,

where k{ Ε F , i Ε I. Let k ; € Ζ be any preimage of k{ under the homomorphism Ζ ->

Fp. For t e k*, let

This automorphism of the local part G_j θ GQ (B G l of the graded Lie algebra G(A) may

be extended to an automorphism of G(A) (see [3], Chapter I, §2), which will be the one

required.

Clearly there exists a basis of the Lie algebra P(A) consisting of the elements

D l> · * · Dk, for which Dr. - D{. The multiplicative one-parameter subgroups correspond-
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ing to all these elements generate a torus in the group §W), which we shall denote by

J(A). We have

Lemma 3.2. // there exists an isomorphism Ψ: G(A) -» G(X) and the group §

C/04) is finite dimensional, then there exists an isomorphism Φ: G(A) -* G(A) which

takes every weight space in G(A) with respect to 'J(A) into a weight space in G(X)

with respect to j (A).

Proof. As can easily be seen, the factor algebra of the Lie algebra G(A) by the

center is a contragredient Lie algebra without center, and it is sufficient to prove the

lemma for the latter. Therefore we may assume that the center of G(A) is trivial. f

is a maximal torus of the group §04), since every torus containing 7(A) preserves the

weighting decomposition with respect to J 04) and, since the center of G(A) is trivial,

it must obviously coincide with J (A). Since all the maximal tori in an algebraic group

over an algebraically closed field are conjugates, 304) = ω,\ (Α)ω~ for some ω 6 §W)

Then the element Φ= ωΨ will clearly be the one required.

Lemma 3.3. Let G(A) = φΤ ! __ G. be a finite-dimensional contragredient Lie al-

gebra. For the Lie algebra G(A) to be simple, it is necessary and sufficient for the

matrix A to have the following property:

(m) For any i, j Ε I, there exists a sequence i j , · · · , if € / for which

Proof. If condition (m) is not satisfied for some i, j € I, then, as can easily be

seen, the ideal generated by the element e. does not contain e .. Therefore condition

(m) is necessary. We shall prove that it is sufficient. Let / be a nonzero ideal in G(A)

and let g = Σ.> g . be a decomposition of the nonzero element g £ / into homogeneous

components, where r is the largest number for all the nonzero g £ ]. Then fgrGj] = 0,

and consequently the space

0 (ad G^f (ad G0)'gr

is a nonzero homogeneous ideal in G(A). Therefore r = m and g is a homogeneous el-

ement. The ideal generated by the element g is homogeneous and is contained in /.

Therefore from the definition of a contragredient Lie algebra it follows that / f|

(G χ θ Gj) Φ 0. From this it clearly follows that e{ (or /;) € / for some i 6 /. It can

easily be seen that condition (m) now implies that e{, f. € / for all i € /, and conse-

quently that / = G(A). The lemma is proved.

The following is a weight decomposition of the Lie algebra G(A) with respect to

G(/4)= ©Ga
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and with respect to ad GQ its weight decomposition is

G(A)= © G(a).
a e G o

Lemma 3.4. Let G(A) be a contragredient Lie algebra having the following proper-

ties :
a) dim G . . = 1 for <x^ 0 and p > 3, and dim G(a) = 2 for a 4 0 and p = 2.

b) For p = 2 aW for any i €. I, there exists a j £ / such that

fl/i ί

Then D(A) = ad(G(A)) + P(A). In particular, if in addition to this det A / 0 ,

all the differentiations of the Lie algebra G(A) are inner differentiations.

Proof. Since the space ad(G0) lies in P(A), it consists of semisimple elements.

Therefore D(A) contains in addition to ad(G(A)) a subspace V which is invariant with

respect to the adjoint representation of ad(GQ) in D(A). Since ad(G(A)) is an ideal in

D(A), [ad(GQ), V] - 0. Consequently every space G.. is invariant with respect to the

differentiations from V. Therefore, by virtue of condition a), V C P(A) for p > 3. If

p = 2, then by condition b) the subalgebra Η in G(A) generated by the elements e.,

e ., /. and /. is isomorphic to Α., where, by virtue of wliat we said above, D(H) C Η

for any D €. V. By direct computations in A2, it is now easy to obtain that once again

VCPC4).

Corollary (compare with [13]). In the simple Lie algebras of the classical type, all

the differentiations are inner with the exception of the Lie algebras A, , for any p >

0, Fg for p = 3, and D^ and Ε'? for p = 2. The Lie algebras Aj j with the excep-

tion of A j for p = 2 and A'2 for p = 3, and also E 6 for p = 3 and F,' for p = 2, are

ideals of codimensionality 1 z'w £&e Lz'e algebra of differentiations. The Lie algebra of

differentiations of the Lie algebra A'2 for p = 3 is G 2, of the Lie algebra D^ for p-

2 and η ^ 4 is C , and of the Lie algebra D , for p = 2 z'i F,. // G,, · · · , G, are

any o/ i^e above-mentioned Lie algebras, then Diff( φ ._. G.) = φ . _. Diff G,-.

Lemma 3.5. Suppose that G(A) is a finite-dimensional contragredient Lie algebra

satisfying conditions a) and b) of Lemma 3.4, and suppose, moreover, that the matrix

A possesses the following property.

(M) From a .. — 0 it follows that a .. = 0; and for any set z' · · · , i €, I,

Then the group §(/4) is reductive.

Proof. Let Jl be an unipotent radical of the group §(A) and let Ζ be the center

of the Lie algebra Lie Jl.
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The reductiveness of the group §04) means that 71 = 1, which is clearly equivalent

to the equation άφ{Ζ) = 0. By Lemma 3.4, άφ(Ζ) C ad(G(A)). By virtue of condition a)

of Lemma 3.4, all the weight spaces Ga, a 4 0, of the Lie algebra G(A) with respect

to the torus I) (A) are one dimensional. The subalgebra άφ{Ζ) in G(A) is clearly homo-

geneous with respect to this weight decomposition. Assume that άφ(Ζ) Φ- 0. Then

άφ(Ζ) contains a nonzero element g €, G , a^ 0. Since there exists an automorphism σ

of the Lie algebra G(A) for which a(e.) = /. and a(f.) = e., it follows that άφ(Ζ) also

contains a{g) € G_a.

Condition (M) ensures the existence on G{A) of an invariant bilinear form ( , ) for

which the coupling of the spaces G_a and Ga is nonsingular, [ea, e_a) = (ea, e_a)ha,

where ea € G a, e_ a € G_a and ha€.G0 (see [3], Chapter II, §2). Since dimGa =

dim G a = 1, we obtain that [g, a(gj] ^ 0, which contradicts the commutativity of άφ(Ζ).

Thus άφ(Ζ) = 0, and the lemma is proved.

We now turn to concrete examples. Suppose that

Ms, a —

are matrices of characteristic 3 and
inc

0

a

0

0

"Μ
]

1

1

0
1

0

0

1

0

1

0\

ο 1

τ
0/

I 2

n =

"I

1

0

• i \

oj

1

0

1 .

1 .

Ό

1

0

are matrices of characteristic 2.

Table 1

Cartan matrix A dim G(A)

10

16

34

in

3

4

8

2 n — 1

p-stiuc-
ture

e x i s t s

η on e

e x i s t s

none

(A) Isomorphism s

3.a

aek\(0,l)

aek\(0,l)

η = 1,2, . . .

X

X A x x

A 3 X Aj

a = a', a = —a' — 1

2' + β
a = j ' + S ·

«.β.τ. γ δ

η = η'
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Proposition 3.6. All the contragredient Lie algebras enumerated in Table 1 are

finite dimensional and simple. Table 1 indicates their dimensions, the greatest number

of the gradation m, the existence of a p-structure, the irreducible component of the

group of automorphisms §04), and also all cases of isomorphisms of these Lie algebras.

Proof. The proof of finite dimensionality and the computation of the dimension of

the Lie algebras from Table 1 are easy to carry out on the basis of the following obvious

considerations. If G(A) = G(A)/J(A) is a contragredient Lie algebra, then, since g €

C? ., i > 1, and [g, /.] = 0 for all i € /, it follows that g € ](A), and since there exists

an i € / such that [g, /.] € ](A), it follows that g € J(A). For i < - 1 , the same results

may be obtained as for i > 1 by exchanging e ; and /\, which can be done because the

automorphism σ exists. Applying this reasoning, we find successively the bases of the

spaces G + , , G + , , · · · , G + m · At the same time, from these computations we find that

the contragredient Lie algebras with Cartan matrices C 2 a, C- a, and F 4 a satisfy con-

dition a) of Lemma 3.4. From this lemma it therefore follows that all the differentiations

of the Lie algebras C 2 and F 4 are inner and C- is an ideal of codimension 1 in

the Lie algebra of differentiations. Therefore, in particular, C 2 and F . have p-

structures. As in the proof of Lemma 3.4, this process of reasoning leads to the conclu-

sion that in the Lie algebra Δ η the differentiations (ad g)2, together with the inner dif-

ferentiations, generate the space of all differentiations.

The fact that the Lie algebras of Table 1 are simple follows from their finite dimen-

sionality and from Lemma 3.3.

We turn to the computation of the groups §04) for the Lie algebras of Table 1. For

this we shall first find the subalgebra H(A) = i/0(Lie §04)) C D(A). The Lie algebra

H(A) is a homogeneous subalgebra with respect to the weight decomposition of D(A)

under the action of the torus $(A), and D(A) = 0 α ε χ ^ α . where, by virtue of the ex-

istence of the automorphism σ, the subalgebra H(A) contains, together with 7J , Cr_a·

For the sake of brevity, we shall call such a subalgebra symmetric. We have, further,

that H(A) = Η0(Α) Φ Η j(/4) is a direct sum of spaces which are invariant with respect to

5.04), where ΗQ(A) f] ad(G(A))= 0 and Ηt(A) is a symmetric subalgebra in G(A). We

shall prove that D(A) = HQ(A)® ad(G(A)). For C 2 a, F 4 a, and C ? fl this is obvious,

since for the first two ΗQ(A) = 0 and for C ? a, ΗQ(A) C P(A). For Δ^ this follows from

the fact that if g is a weight vector and (adg)2 ^ 0, then, by Lemma 1.2, £(i(ad g)2)

is a one-parameter group in %(A).

Thus, it is only left for us to compute the Lie algebra Η Λ A). First, note that

r/j(/4) φ G(A), since otherwise all the maximal tori of G(A) would be conjugate to the

torus GQ (Proposition 1.6) and the matrix A would be equivalent to the Cartan matrix of

a simple Lie algebra of the classical type, which obviously is not so. Further, for all

the Lie algebras of Table 1, we shall construct a group of automorphisms §'(A) for

which the Lie algebra Η'χ{Α) = aty(Lie §'04)) is a maximal symmetric subalgebra in

tfjO4). By the same token, the Lie algebra tfj(A)= H'^A) will be computed.
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By Lemma 1.2, the automorphisms for the Lie algabras C, will be E(te ) and

E(t[eχε2e2]), t € k. The symmetric subalgebra in C2 fl containing the elements e and

[e1e2e 2] is clearly a maximal symmetric subalgebra and is isomorphic to Α, θ Α..

Let

It can immediately be verified that A Jit) may be extended to an automorphism of the Lie

algebras C, a and F 4 a for i / 2 and of the Lie algebra Δ for i 4 1. It can also im-

mediately be verified that the mapping E(t\_e ^e2e e ^\), defined on the generators e. and

/\, i € I, may be extended to an automorphism of the Lie algebras C- and F . , and

the mapping E(t[e^e^e j]), to an automorphism of Δ . In all cases, the symmetric sub-

algebras in G(A) containing all the above-mentioned elements are maximal symmetric

subalgebras isomorphic in the case of C- a to the Lie algebra Aj Θ Αι® Aj, in the

case of F , , to Α, Φ A,, and in the case of Δ , to D .
A,a' 1 3 η η

Therefore the Lie algebra H(A) is computed in the cases C 2 , C, a, F^ a'. Since

by Lemma 3.5 the corresponding group §(A) is reductive, we obtain that it is isomorphic

in these cases to those groups which appear in Table 1.

As can now easily be seen, in the case of Δ the Lie algebra H(A) is isomorphic

to C . The reductiveness of the group §(A) in this case may be proved on the basis

of the information obtained concerning the Lie algebra H(A), just as Lemma 3.5. There-

fore §04) is a group of type C .

We now turn to the proof of the fact that the Lie algebras of Table 1 are noniso-

morphic. It is clear that the Lie algebras from the different rows of this table are not

isomorphic and also that Δ and Δ' are isomorphic only for η = η . Furthermore, by

Lemma 3.2, if the Lie algebras G(A) and G(A) from the same row of Table 1 are iso-

morphic, then there exists an isomorphism Φ which takes any weight subspace in G(A)

with respect to 7(A) into a weight subspace in G(A) with respect to j(A). Suppose

that 3>(e.) C G-v, C G(A). The weights a., i €. I, generate a basis over Q in the group

of characters of the torus fl(A) and a . — a . is not a weight for i φ j . Such a system of

weights is called a system of simple roots. Suppose that e+~ G G+^. and h%m = [ea., e_a ].

Clearly the matrix (a .ih^, )) is equivalent to A. The matrix A will be called the

Cartan matrix of the system of simple roots a{. Note that if the systems of simple roots

are conjugate with respect to the group §04), then their Cartan matrices are equivalent.

Therefore G(A) and G(A) are isomorphic if and only if G(A) contains a system of

simple roots with Cartan matrix A. For the Lie algebra C 2 there exists only one

system of simple roots which is not conjugate to the standard system ctj, a^, and this
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is the system of roots <x^, — (a. + 2a ), corresponding to the Cartan matrix C, _ ,·

For the Lie algebra C, there exist, besides the standard system, three pairwise non-

conjugate systems of simple roots with Cartan matrices

a n d

1
0

a -f 1 0

Finally, for the Lie algebra F , there exist, besides the standard system, four pair-

wise nonconjugate systems of simple roots with Cartan matrices

-ο
a
0

0

a
0

a +
0

1

0

a-l·
0

1

1
0
0

1

0

0
1

α -Ι-

Ο

1

1
0

a

0

α -τ-
α

0

a

1 (r
0

a

0_

a-'-

The proof of the proposition is complete.

Theorem 3.7. For characteristics 3 and 2, all the finite-dimensional simple contra-

gredient Lie algebras are exhausted by the simple Lie algebras of the classical type

and by the Lie algebras enumerated in Table 1.

We shall first prove Theorem 3.7 for characteristic 3.

Lemma 3.8. Suppose that the matrix A satisfies condition (M) and let ( , ) be an

invariant bilinear form on G(A). Then, if a is a weight of G(A) with respect to j(A)

and (a, a) 4 0. then 2a + 3/3 is not a weight for any β € X and dim Ga = 1.

Proof. Exactly as in Proposition 24 of [3], it can be proved that if A is a matrix

of order > 3 in characteristic 3 all the elements of which are equal to 2, then

dim G(A) = oe.

Since G. . and G, a . are dual with respect to the form ( , ), we have that

dim G.. < 2. If dim G a = 2, then [Ga, G j 4 0, and consequently G2a4 0; therefore

dim G.a. > 2. Thus dim Ga= 1. We shall now prove that G_a + , a = 0.

If this is not so, then, reasoning as in Lemma 19 of [3], we find that the contra-

/ 2 — 2\
gredient Lie algebra with Cartan matrix [ ^ ^ | is finite dimensional, which is

v — 2 2

not so, as shown in §7 of [3]. The lemma is proved.

Lemma 3.9. / / A is a matrix of order 2 over a field of characteristic 3 and

dim G(A) < o», then either A has a zero row, or A is equivalent to the matrix E, or A

is equivalent to the matrix C 2 fl, where a € k [j o·.

/2
Proof. We must show that if A = , then either a = —1 or b = —1. If A =

— 1 0
, then a = —1, and the case A - /0 1

1 0
is impossible. If a 4 0 and b 4 0,
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then in all three cases the conditions of Lemma 3.8 are satisfied. It is easy to show

that cij and 2<x ^ + 3a 2 are roots and (a^, a j) 4 0, if, in the first case, a and b are

different from· —1 and, in the second, a ^ — 1 which, by Lemma 3.8, implies that these

Lie algebras are infinite dimensional. The third case drops out, since then a. l + a^

and 2(a t + a 2 ) are roots and (tXj + a 2 , a,j + a 2 ) Φ 0. Therefore it remains to show

that the cases A =\ Ι , α φ 0, and A = I I are impossible. In these

\a 2) V— 1 0/
cases, in the system of roots (a.j + 2 a 2 , a 2 + 2 a } ) the Cartan matrix is equal to

2 — 2\
ο 9 I , and consequently the corresponding contragredient Lie algebras are

infinite dimensional.

Lemma 3.10. // A is a matrix of order 3 over a field of characteristic 3 satisfying

condition (m) of Lemma 3.3, then it is equivalent to the Cartan matrix of the simple

Lie algebra of the classical type A,, B,, or C,.

Proof. Note that every principal submatrix of order 2 in the matrix A must be one

of those enumerated in Lemma 3.9. The Cartan matrices of the systems of roots

(α£ι, a,2 -(- a,-,), (a ; i + a,,, a i a + a / s) and (ait + 2a,·,, a*,),

where (z'j, ;'2, z,) is some permutation, also must be matrices; enumerated in Lemma

3.9. By direct computation it can be verified that these conditions and condition (m)

are satisfied only by the matrices A,, B», C, and also by A2, B 2 , C 2 from Table 1

of [3]. But, as has been shown in §7 of [3], the last three Lie algebras are infinite

dimensional.

Lemma 3.11. // A is a matrix over a field of characteristic p > 3 satisfying con-

dition (m) of Lemma 3.3 and dim G(A) < <*>, then for any set of distinct numbers z'j,

z'2, · · · , i € /, r > 2, the following equation is true:

aiii2aUis ... air_lirairii = 0.

Proof. We shall prove the lemma by induction on r. For r = 3, the lemma is true

in accordance with Lemma 3.10. For τ > 3, consider the system of roots

(a;,, a i2, . . . , a i r_,, a i r_ x + ai(.).

Then, as can easily be seen, if a. . · · · a. . ^ 0, then for the Cartan matrix of this

system of roots

α ί 2 · α 2 3 . . . a r_i, t=/= 0.

The lemma is proved.

Now it is easy to complete the proof of Theorem 3.7 for p = 3. Since G(A) is

simple, by Lemma 3.3 A satisfies condition (m). For matrices of order 2 and 3,
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Theorem 2 follows from Lemmas 3.9 and 3.10. Now let Λ be a matrix of order > 3 over

a field of characteristic 3 satisfying condition (m) and suppose that dim G(A) < •».

From Lemma 3.Π, since a{. = 0, it clearly follows that a,. = 0 for any z, / 6 /. We

shall prove that after the transformation to the equivalent matrix, we have afj = 2, and

if (a{., a ) 4 (0, 0), then (a ;., a..) = (-1, 1) or (-1,-2) . By condition (m), there exists

a & such that α.. Φ 0· Taking the principal submatrix of the matrix A corresponding
jit

to the indices i, j , k of Lemma 3.9, we obtain the required result.

Suppose that 5 is a Dynkin scheme of the matrix A. By condition (m), S is con-

nected. By Lemma 3.10, every connected subscheme consisting of three points is one

of the Dynkin schemes A,, B,, or C,. By Lemma 3.H, S does not contain any cycles.

In accordance with the results of [3], §7, S does not contain any schemes from Tables

1—3 of [3l. As can easily be seen, a Dynkin scheme which has the properties enumer-

ated above may only be a Dynkin scheme of a Lie algebra of the classical type. Theo-

rem 3.7 is proved for p = 3.

The proof of Theorem 3.7 for characteristic 2 requires much more involved computa-

tions. We give only an outline of the proof.

Lemma 3.12. // A is a matrix of order 2 over a field of characteristic 2 and

dim G(A) < oe, then either A contains a zero row, or A is equivalent to the matrix E,

or A is equivalent to the matrix A2 or Δ 2 ·

Lemma 3.13. // A is a matrix of order 3 over a field of characteristic 2 having

property (m) and dim G(A) < °e, then A is equivalent either to A, or to A, or /o C, ,

a €. k, or to the matrix

for some a G k.

Lemma 3.14. / / A is a matrix of order 4 over a field of characteristic 2 having

property (m) and dim G(A) < »·, then A is equivalent either to one of the matrices Α.,

D 4 , Δ 4 , F 4 a, a 6 k, or to one of the matrices

for some a 6 k

-o
α
0

_o

α
0

a + 1
0

0
a+ 1

0
1

o-
0
1

0.

- o
a

a + 1
0

a
0
1

0

α -ί-

Ι
0

1

1 0
0
1

0

Lemma 3.15. // A is a matrix of order 5 in characteristic 2 satisfying condition

(m) of Lemma 3.5 and dim G(A) < o·, then G(A) is a simple Lie algebra of the classi-

cal type.
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These lemmas are proved on the basis of the same considerations that were employ-

ed in Lemmas 3.9 and 3.10. Furthermore, just as in Lemma 3.11, it may be shown that

for any set of distinct numbers i^, z'2, · · · , if € I, r > 4, it is true that

β.,ί, · • · a.ir_lirairii = 0.

Theorem 3.7 may now be proved for characteristic 2 just as for characteristic 3, on

the basis of Lemmas 3.12—3.15, taking into account the condition that contragredient

Lie algebras with the Cartan matrices given in Lemmas 3.13 and 3.14 are isomorphic to

the Lie algebras C ? a and F 4 a, respectively (see the proof of Proposition 3.6).

Remark. It is not difficult to prove Lemma 3.5 for p > 3 not using the fact that

G(A) satisfies condition a). Therefore Theorem 2.1 and Lemma 3.11 give a new and

simple proof of the fact that every simple finite-dimensional contragredient Lie algebra

of characteristic p > 5 is a Lie algebra of the classical type.

Remark. In A. I. Kostrikin's article [16], a family of Lie: 3-algebras L(() has been

constructed. It is easy to show that L(() = C 2 2e/(t+e)"

§4. Applications to the classification of simple Lie algebras

and group schemes

In this section, k is an algebraically closed field of characteristic p > 5.

A. Definition. Suppose that L is a Lie algebra without a center. Let L. = ad L Q

άφ(\Αε §(L)). The algebra L will be called primitive if LQ is a maximal §(L)-invari-

ant subalgebra in L and LQ does not contain nonzero ideals of L.

Note that L is primitive if the largest reduced subscheme in the scheme of its

automorphisms is a maximal subscheme. All the known examples of primitive Lie alge-

bras may be divided into two classes. The first class consists of the simple Lie alge-

bras of the classical type; for these, L = LQ. The second class is contained among the

graded Lie algebras G = ®{^ζ^ί °̂  Cartan type w^, s^, h r , cs^, ch n and kn (for

their definitions see [4]), and also among the filtered Lie algebras with which they are

associated; for these LQ C $ I > 0 G . . For L 4 LQ, following the process in [ l ] , we

shall construct in L a noncondensing §(L)-filtration. Suppose that L , is a minimal

§(L)-invariant subspace in L containing LQ and distinct from LQ. Since LQ is a

maximal §(L)-invariant subalgebra in L, we have L = L for some d. Let

Then, as is easy to see, L - L_d 3 · · · D L_j 3 LQ 3) Lj 3 · · · is a filtered Lie alge-

bra, where all the subspaces L ; are §(L)-invariant. The constructed filtration will be

called a standard filtration of the primitive Lie algebra L.

Theorem 4.1. Let L be a primitive Lie algebra over k, L o = ad L f| dcf^lSe §(L)).

Then either L = LQ, and then L is a simple hie algebra of the classical type, or L 4

LQ, and then the graded Lie algebra G, associated with the standard filtration in L,
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is isomorphic to one of the algebras of the Carton type wn, sn, h^, es^, ch^ or kn- If G is

a Lie algebra of Cartan type wn, cs^, chn, or kn, then L - G.

Note at once that if L = LQ, then, by virtue of Corollary 2.10, L is a Lie algebra

of the classical type. Therefore, in what follows, we shall assume that L 4 LQ . Sup-

pose that

is a standard filtration in L and let G = (&{ΒΖ6{ be the associated graded Lie algebra.

The following properties of G are obvious:

1°. If χ £ G., ζ >'O, and [xG A = 0, then χ = 0.

2°. G:_j = G _ f , £> 0.

Let fl be an unipotent radical of the group §(L). By Corollary 2.10, L'^ =

a?<£(Lie Ή) ρ L. ^ 0. Since the unipotent radical lies in the kernel of the irreducible

representation, Lj lies in the kernel of the representation of LQ on L_j/LQ. From

this, by the definition of a standard filtration, it follows that L', C L J . In particular, we

obtain

3°. Gj fi 0.

Since the spaces L . are §(L)-invariant, §(L) acts by automorphisms on the Lie

algebra G, preserving the gradation. Since [Lj, L l̂ C [Lj, L ]̂ C L f.+ 1, fl acts trivi-

ally on G. Letting Κ = §(L)At, we obtain the following properties.

4°. There exists a reductive subgroup Κ in Aut G such that KG. C G..

5°. The K-module G , is exact and simple.

6°. ad(GQ) C <^>(Lie K).

To prove Theorem 4.1, we shall need several lemmas. The fundamental lemma is

the following slightly modified version of Theorem 3 of [4],

Lemma 4.2. Let G = φ .__ G. be a finite-dimensional graded Lie algebra satis-

fying conditions 1°—6°. Then if the G^-module Gj is exact, there exists a homoge-

neous ideal / C © . ^ , G. such that G/l is either a graded Lie algebra of Cartan type
wn' sn' ' V c s « ' C*V OT "Si' 0T a simP^e Lie algebra of the classical type with one of
the standard gradations.

Proof. Let / be a maximal homogeneous ideal lying in φ .< j G.. Let G » G/l =

®G ; . . Since the ideal / is obviously Η-invariant, Κ acts by automorphisms on G,

where all the properties l°-6° are preserved for G. By virtue of 4°, [Lie K, G.] C G..

Letting G'Q = Lie Κ and G'. = G. for i φ 0, in the space G' = φ · β ζ G* we obtain in

the natural manner, by virtue of 6°, the structure of a graded Lie algebra containing G

as a homogeneous ideal. Clearly the Lie algebra G' also satisfies all the conditions

1°—6°, where equality holds in 6°.

By virtue of 1° and because G'x is an exact G'0-module, the graded Lie algebra G'

is transitive (using the terminology of [4]). By 6°, G'Q is a Lie algebra of the classical
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type.O) In order to make use of Theorem 3 of [4], it remains for us to prove that the G' -

module G , is simple and is a p-representation.

Let Λ = Σ£Α;. (ki € Ζ; the A;. are fundamental weights) be the highest weight of

the Η-module G'_ l (see condition °̂) and let Μ = Ί,πι.λ. be the lowest weight of any

simple submodule G'J of the K-module Gj. Let Λ=Σ&.λ. and M = Sm.A., where k.

and mi are images of k{ and m. under the homomorphism Ζ -• F . From the results of

[15] it follows that the G'0-module G'_j (analogously G'J) is isomorphic to the tensor

product of the simple G'0*module with the highest weight Λ and the trivial module, where

G , is simple if and only if 0 < k. < p for all i.

Let VA be the space of all the highest weight vectors of the G'-module G' .. By

1°, for any χ €V^ and y € Vu, we have [x, y] = B(x, y) e_a, where a = —(Λ + M) is a

root of the group K, and where the bilinear form B(x, y) brings about a nonsingular

coupling of the space VM with some subspace KA of the space V..

We shall show that dim V = 1. If this is not so, then we shall take two linearly

independent vectors y χ, y2 € 1/ and their dual vectors χ ν * 2 € VA with respect to the

bilinear form B(x, y). We shall consider two cases. First, suppose that a ^ 0; for

definiteness take α > 0. From the proof of Lemma 4.1 of [4] it follows that Λ = Aj and

Μ = —Aj — Θ, where α = θ is the highest root of G' . Therefore, in particular, A(ba) 4

0. Let e{ = [y ;, e j and /\ = x{, i = 1, 2. By Lemma 2.1 of [4] these elements generate

an infinite-dimensional algebra, which is impossible. If α = 0, then from Lemma 2.4 of

[4] it follows that [e_ jc.] ^ 0 and the elements e . = y . and f. - χ., i = 1, 2, once

again generate an infinite-dimensional algebra. Thus dim V . = 1, and therefore 0<

m. < p for all i. If α = 0, then from this it follows that 0 < k. < ρ and, therefore,

dim VA = 1. If α 4 0, then M= —Aj — Θ, A = —Μ — θ = A, and again dim VA = 1. From

this it follows that the G'-module G' , is simple and is a /^-representation.

Thus the Lie algebra G' satisfies all the conditions of Theorem 3 from [4], and

consequently G', and also G, are Lie algebras of one of the types enumerated in the

formulation of the lemma.

At the same time, we have proved that the G0-module G_j is simple, from which

it follows that / C ® ; < j G{. The proof of the lemma is completed.

Lemma 4.3. Let G = φ c ~ G. be a finite-dimensional graded Lie algebra for which

conditions 1°— 6° are satisfied. If the G„-module G. is not exact, then Gj = 0 for

i > 1.

Proof. Assume the contrary; that is, suppose that G2 ^ 0. Let Eu be the lowest

weighting vector of any simple submodule of the GQ-module G2· Let GQ = GV

Q ' Θ Gy

Q ',

where G [ , 2 ) is the kernel of the GQ-module Gχ. There exists a highest weighting vector

F A of the GQ-module G_χ for which [FkEu ] = χ χ is a nonzero weighting vector of Gj.

(1) To avoid misunderstanding, we point out that the terminology here differs from that in
[4]: in [4], a Lie algebra of the classical type is a Lie algebra of a simple (and not reductive)
group.
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There exists a sequence of root vectors e. , · · · , e{ corresponding to the simple roots

of the Lie algebra G(

Q

l) for which the vector EM = fx^e. · · · e. ] is the lowest weight-

ing vector of the G0-module Gy Letting χμ=[ΕΗ^.^ ··· e .], we obviously have

[FAx ] = Eu . Note that [x J λ = 0 if /. = e_ a . , where a. is a simple root of G^K

As in Lemma 4.1 of [4], we obtain that [FA EU ] = eθ, where θ is the highest root of

G ' 2 \ Let /, = e , where a.j is a simple root of G^2) for which θ - αγ is a root.

We have [[/,FA FA ]χμ] = [[/,FjE M ^ = [/j^l = 0. Therefore, since clearly [/,FA FA ] is

the highest weighting vector of G 2, we have [t/jFA FA ], EM ] ^ 0. As can easily be

seen, in view of Lemma 2.4 and Theorem 2 of [3] this contradicts the finite-dimension-

ality of G. The lemma is proved.

Lemma 4.4. Let G = ®c~ G. be the Lie algebra of Cartan type w , cs , eh , k

or a Lie algebra of the classical type with one of the standard gradations; then 1 = 0

and G-L.

Proof. Let Τ be a maximal torus in §(L). It is clear that the J-modules G and

L are isomorphic. In all the cases enumerated in the lemma, with the exception of

A, j , there exists a one-dimensional subtorus JQ in 5" acting trivially on GQ. Then

ίΓ0 acts as a scalar on G., and here the character of JQ on G^ is equal to k\, where

λ is the character of 3*Q on Gj. These characters of the torus 3"0 are also realized

on L. Let G^ = {/€ L: t (/) = Xk(t)l Wt € TQl In the case of A / p _ , , denote by 2^

the sum of the weighting spaces in L corresponding to those same weights as the

weighting spaces from G. . In this way we transform L into a graded Lie algebra which

is clearly isomorphic to G. Since / + L. is a proper subalgebra of L containing LQt

it follows, since L. is maximal, that 1=0. The lemma is proved.

Lemma 4.5. Let G = Θ Ζ · 6 Ζ G. be the Lie algebra of Theorem 4.1. // G = G/7 is

a Lie algebra of Cartan type s or h , then I = 0.

Proof. In all the cases enumerated in the lemma, G 2 = 0. Therefore by Lemma

4.2 we have / = ®,<_ 2

G , · · In particular, [G_ 2 , Gj] = 0. This means that [L ,L,]

C LQ. Assume that L_ 2 4 0. Consider the §(L)-module L 2^0' ^ e t ω : ^ 2 ~*

L_2/LQ be the natural projection. Then <u(L_ j) is a simple K-submodule in L , ^ η

isomorphic to the Η-module G_ j . Since L_2 = [L·_ ji-_ j], all the remaining factors

of L_2/LQ ace contained in the M-module G_1 AG_j (the surface square). But the

K-module G_l is a simpler module of the group A^ or C , and therefore G . A G

does not contain a submodule isomorphic to G .. From this it follows that the

§(L)-module L_2/LQ may be decomposed into a direct sum of the module tu(L ) and

some module M. Take in Μ the simple g(L)-submodule Mj. It is an K-module which

is not isomorphic to the K-module G_,. Let L' = ω~ 1(Μ ).

Since [L_2LX~\ C LQ, we have [ L ^ J L J ] C LQ. Therefore, if we construct a stan-

dard filtration over L'_v then for the graded Lie algebra G' = ® C ' . associated with

it, the GQ-modules G. and G'. for i > 1 will be isomorphic, and G_t and G'_l will
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be nonisomorphic, where G'_j C G J Λ G_j . This obviously contradicts Lemma 4.2.

Proof of Theorem 4.1. We may assume that L 4 L. or, equivalently, that L is not

a Lie algebra of the classical type. Let L = L_ , D · · · D L , 3 Ln D · · · be a primitive

Lie algebra with a standard filtration. As has been shown, the associated graded Lie

algebra G satisfies conditions 1°—6°.

In order to apply Lemma 4.2, we must still prove that Gj is an exact G.-module.

Assume the contrary. Then the K-module Gj is not exact. Since L. = 0 by Lemma 4.3,

the K-module L, is not exact either. But this contradicts Corollary 2.10.

Thus by Lemma 4.2 there exists a homogeneous ideal / C φ ., G . for which G =

G/1 is a Lie algebra of the Cartan or classical type.

By Lemmas 4.4 and 4.5 we have / = 0, i.e. G = G. By Lemma 4.4, the cases for

which G is a Lie algebra of the classical type drop out. By the same lemma, G — L

for the Lie algebras of types w , cs , ch , and k . The theorem is proved.

B. In the remaining part of this article we shall study the group schemes over the

field k.

Let us recall some properties of affine group schemes [?]. In what follows, the

adjective "affine" is omitted (but understood). If § is a group scheme, then § contains

a (unique) largest reduced subgroup § ,. The group schemes C, and § , are either

both reducible or both irreducible. To every group scheme we make correspond its Lie

algebra Lie § , which is a ^-algebra. Conversely, if G is any Lie p-algebra, then there

exists a unique group scheme § , , such that Lie §._ = G and §^, is annihilated by the

Frobenius endomorphism. If Φ is a Frobenius endomorphism of the group scheme §

with § . its kernel, then Lie § φ = Lie § . If Η is a normal divisor of the group scheme

§ , then Lie Κ is an ideal in Lie § . Conversely, if Η is a ^-invariant ideal in Lie §

(in the sense of a p-algebra), then the subgroup § „ of the group g^is the kernel of

some suitable purely nonseparable isogeny (which may be defined as the composition of

the homomorphism Φ and some group homomorphism which may be annihilated by Φ). By

the definition of a purely nonseparable isogeny, its kernel is contained in the kernel of

some degree of the Frobenius endomorphism. In particular, (Ker ω) , = 1.

Below we employ the terms "group" and "group scheme" in one and the same sense.

Definition. The group scheme § will be called simple if every normal divisor in §

lying in § , is the kernel of a purely nonseparable isogeny.

Applying the same reasoning as in the proof of Lemma 3.4, we can show that the

algebra of differentiations of the Lie p-algebra L of the Cartan type is a Lie ^-algebra

σί the same Cartan type. In particular, from this it follows that these algebras of differ-

entiations do not contain ideals lying in rf(£(Lie §(L)). Therefore every normal divisor

in Aut L lying in §(L) is the kernel of a purely nonseparable isogeny. Thus the scheme

of automorphisms of every Lie p-algebra of the Cartan type is a simple group scheme.

Lemma 4.6. Let § be a group scheme, let Κ = § e d , let G and Η be Lie algebras

of the groups § and H, and let H1 be a subalgebra in G containing Η and invariant

with respect to K. Then Q, contains a subgroup K' whose Lie algebra is H' and which
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contains K.

Proof. Let K' = § „ ' C § v The subgroup of g generated by H' and Κ is the required

group.

The following theorem is the fundamental result of this section.

Theorem 4.7. Let § be a simple group scheme without a center, and let Η = § ,,

L = Lie § , and LQ = Lie K. Assume that Κ is a maximal group subscheme in § and

that p > 5. Then the following possibilities exist: either L is a Lie algebra of the

classical type, or L is a primitive Lie p-algebra and the graded Lie algebra G associ-

ated with its standard filtration is isomorphic to one of the Lie p-alge bras of Cartan

type w , s , h , cs , ch , or k .
J r η' η' η η' η ' η

Before proving the theorem, we shall state some of its corollaries.

Corollary 4.8. Suppose that § and Η are the same as in Theorem 4.7, and let tl

be a unipotent radical in K. If § is not a smooth group, then Κ Αϊ is isomorphic to

one of the groups GL(n), SL{n), Sp(n), or CSp(n).

Corollary 4.9. In the notation of Theorem 4.7, if G is a Lie algebra of Cartan type

w or k , η φ — 3 (mod p), then § is a scheme of automorphisms of the Lie p-algebra

W or Κ , respectively,
η η' r J

Proof. Since G is a Lie p-algebra, it is isomorphic to W or Κ . From Theorem

4.1 it follows that then L is also a Lie algebra W or Κ {η ^ — 3 (mod p)). But all the

differentiations of these Lie algebras are inner ([10] and [8]). Therefore Lie (Aut L) *

L, i.e. § = Aut L, as required.

Proof of Theorem 4.7. If C is the center of the Lie algebra L, then § _ is a cen-

tral subgroup in § . Therefore C = 0. Furthermore, by Lemma 4.6, LQ is a maximal

Η-invariant subalgebra in L. If ad L C Lie §(L), then, by Corollary 2.10 (a), L is a

Lie algebra of the classical type. Therefore we shall assume that L ^ L and that L

is not a Lie algebra of the classical type. Note that then, by Corollary 2.10, Z , (N) C

N, where Ν = Lie Jl' f] LQ and W is a unipotent radical of g(L).

It remains for us to show that LQ does not contain ideals of L. Suppose that / is

the largest such ideal, / Φ 0. Then, by virtue of what has been said above, / f| Ν ^ 0.

Let Ζ be the center of the Lie algebra I f] N. Clearly Ζ Φ 0. Let g € Ζ and χ € L.

Then (ad g) χ € I C LQ, (ad G)2 χ e I C Ν, and (ad g) 3 χ = 0. Thus (ad g) 3 = 0 for any

g € Z. Therefore, by Lemma 1.2, for p > 3 and g € Ζ we have E(g) € § . Denote by

JIL the subgroup in § consisting of the automorphisms of E(g), where g £ Z. Let )1Ϊ

be the subgroup in § generated by the subgroups § . and M.. We shall prove that )K

is a normal divisor in § . As a matter of fact, the group )ϊί is clearly invariant with

respect to Κ and § , which, because of the maximality of H, generate (5. Since

^r d "* ^ 1 ^ ^' w e h a v e r e a c h e d a contradiction to the conditions on § . The theorem

is proved.

The proof of Theorem 4.7 may be modified to prove the following assertion.
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Proposition 4.10. Let £} be a group scheme without a center which does not have

any reduced normal divisors, and let p > 5. Suppose that Η is a subgroup of § satisfy-

ing the conditions of Theorem 4.7. Then the conclusions of Theorem 4.7 are true for § .

Proof. We shall show that the ideal / (see the proof of Theorem 4.7) may be chosen

so that / = Lie i, where 4 is a reduced normal divisor in K. Then clearly I is a normal

divisor in § φ • Κ, from which it follows that $ ?s a normal divisor in § .

Lemma 4.11. L does not have nil ideals.

Proof. If R is a nil ideal in L, then [R, R] is also a nil ideal, and consequently

we may assume that [R, R] = 0. Then the group \E(g): g € R\ C § is the required nor-

mal divisor (Lemma 1.2).

Lemma 4.12. Le/ Lj = U € LQ: ad x | L / L = 0|. Then LlCN.

Proof. Let K. be the kernel of the representation of the group Κ on L/Ln. Sup-

pose that Η is the normal divisor in Κ generated by all the tori from K,. If J is a

torus from H, then J acts trivially on L/Lie Κ (3" acts trivially on L/LQ ) since 3* C

K,; J acts trivially on Lg/LieK, since Η is a normal divisor in H). Therefore Κ acts

trivially on L/Lie K, and consequently Lie Κ is an ideal in L. Thus, if Κ Φ i l i , we

reach a contradiction. This means that Η = {1}, i.e. K, does not contain any tori.

Let / be a maximal ideal of the Lie algebra L lying in LQ. The Lie algebra L/\

clearly satisfies all the conditions of Theorem 4.1. From what has been proved above

it follows that the factor groups by the unipotent radicals of the groups §(L) and §(L//)

are isomorphic. The ^(L)- and the §(L//)-modules L/LQ clearly have isomorphic

composition series. From Theorem 4.1 it now follows that L. CN. The lemma is

proved.

Since ad 1\L>L = 0, by Lemma 4.12 we have that / C N. Therefore / is a nil

ideal in L, which is impossible in view of Lemma 4.11. Proposition 4.10 is proved.
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