THE HASSE PRINCIPLE FOR ALGEBRAIC GROUPS
SPLIT OVER A QUADRATIC EXTENSION

B. Yu. Veisfeiler

At the present time the Hasse principle is known to be valid for the majority of algebraic groups.
However, its proof [1] makes use of the classification of algebraic groups. In this paper it will be shown
that for groups which are split over a quadratic extension, the Hasse principle is a result of the strong
approximation theorem for split groups and the Hasse principle for quaternions. We shall essentially use
the approach given in [3, 4]. Let k be a field of algebraic numbers; K a quadratic extension, 6 =T (K /%),
¢ = 1, R (respectively, R,), the set of all valuations of k (respectively, Archimedian valuations of k).
Furthermore, let Uy denote the identity of the field kp(r €R), R' = {rer: Kr=kr9® kr},‘R" ={rer:
Krisa fieldf, Rp = {r €R" : Kr/ky is unramifiedi. Let G be a semisimple simply connected algebraic
group defined over k and split over K. As in [3, 4], we call a maximal subtorus in G "admissible" if it is
defined and is anisotropic over k and split over K. Let {AqJucz, Ao = #* mod N (K*), denote the set being
represented by the group G with respect to the admissible torus T. Let R (T, ¢) ={r = R: 4, & N (K,)},

R(I)= U R(T, o) ,and let N denote the norm from K to k, and from K to ky.

Definition. Let G, H be semisimple algebraic groups over k, and for each r € R let there be given a
ky-isomorphism ¢,: G —H. We call the system {‘Pr}r ¢R "consistent" if for any class of parabolic sub-
groups # in G and £ in H

reR: 9, (P)=B=0,(P)=F Vr=R.

(If H = Gand £ = P , then the expression "system of consistent isomorphisms" is synonymous with the
expression "system of inner automorphisms.")

Let Ty denote kp~tori in G and let A, = {a,,,, ..., a,,;} be an ordered system of simple roots in the
root system of the group G with respect to Ty. We say that the system Ay is "consistent” if for alli € [1,
n] there exists a class #; of maximal parabolic subgroups in G such that in all Ay the root aj,r corres-
ponds to the class P;.

THEOREM. Let E o R’,R> R(T) Jy (R"\R,) U R,, |R|< o . Let the group G be anisotropic
over k, and let Tr, r € R, be an admissible ky-torus in G. Let A be consistent systems of simple roots
of G with respect to Ty, and let {ia,r}ae,gr be a set represented by the group G with respect to the torus
Ty (over ky). Then there exists an admissible k-torus T' and a system of simple roots 'A' with respect to
T' satisfying the conditions:

a) A'={ay, ..., a,} is consistent with Ay forall r €R;

b) if {Ax}aca is a set represented by the group G with respect to T', then Vie(l,n] we have
hEM N(K) VreR and A,=N(K) VreR\ R
i G4

COROLLARY 1. IfGisa semisimple algebraic k-group split over K, andbrgkr G>0forallr €R,
then rgix G > 0.

COROLLARY 2. If G is an admissible algebraic group over k, and {9:: G- G).=r is a consistent
system of isomorphisms, then G and G are isomorphic over k.
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Proof of the Theorem., Let uw(t) and ugy,r(t) be root subgroups with respect to the tori T and Ty,
respectively, with parameters t normalized as in [4] (pt. 3).

LEMMA. There exists gy € GK,. such that gu, (g7 = u.. (4.

There exists an m € (Aut G)Ky such that m{uy(t)) = Ugy, r(t). Since the systems Ay are consistent,
then, varying the numbering of the roots in A, we may suppose that m is an inner automorphism. Let M
be a subgroup in (ad G)Kr, generated by the unipotent elements, and let D be the centralizer of the torus
Trin(ad G)Ky. Then [2} @d G)gky =D+ M, m=d-m',d €D, m' € M. The substitution of ug,r(t) for
d- 1(uo,,r(’c)) corresponds to the substitution of the parameter t. Having made this substitution we may as-
sume that m € M. Since M = {ad g, g € GKI} and since the substitutions which were made do not alter the
conditions of the theorem, the lemma is proved.

Let B and By be Borel subgroups in G generated by the tori T and Ty and by the subgroups uq ().
¢ = A, and u.r(), a & A, , respectively (r € R). Let q € R' be fixed, and let Ax(q) denote the adéle pro-
duct of thealgebras Ky over all r € R\{q/.

Now we take g = (gr) € GAK(q), € = 1 for all r € R\ R\ {4}, 2,u. () g =us r(t)for r €R. LetT" = (T
be an "Ag(q)-torus" in G, where Ty = T for r er\R\{d, Ty = Ty for r €R. We define the "root subgroups"
u&(t) and the "sets" {i;},-s analogously.

From the strong approximation theorem for G (over K}, we may choose h € Gk arbitrarily close to g
in the topology of the group GAK(q). Let 7" = hBhL \ (hBh~1) . Since T =B\ B>. T, = B, N B, r = R,
the torus T' may be taken to be arbitrarily close to the torus T". There exists an n € Uk (the unipotent
portion of the group By) suchthat T'=h(nTn"Y)h~!. Since the tori hTh™! and T' are close, n is close to unity,
and therefore, substituting, if necessary, h for hn, we obtain T' = hTh™1, :

Let ugy (£) = huy(t) ™!, We have
w, (0)° = ula (M%), uz (6)° = uly (Af%),
ul, ) =ul (M), i ()= uh (7).

Since ¢ is a contimious operator, the closeness of uy(t) and uy(t) follows from the closeness of
uy () and uy ()9, Hence, choosing h, we can say that Ay, is arbitrarily close to A, and A},~! is arbitrarily
close to Ay ", This means that A\ "1 is arbitrarily close to 1. We have AMhat=U, = N(K,) forallr €
R"™\R since R © Rp, and MA =k, =N(K,) forr€R'. Forr€R, Ahot  lies in an arbitrarily small
neighborhood of the identity of the field ky, and, in particular, A, L=N(K,), r=R . Our assertion follows
from this since 7\?1,1‘ € N(Ky) for r € R\R as a consequence of the choice of R(R 2 R(T)).

Proof of Corollary 1. Let R = R(T) U (R"\Rp) U Rg. Let A denote the system of simple roots in G,
and let 6 denote a long root, 0 € A. We will show that there exists an admissible ke-torus Ty in G, r €R,
such that A;, =V (K,) forre€ R (where b\a,r} is a set represented by the torus Ty). Actually, from sec.
9 of [4], A8,r € N(Ky) for some 8 € Z. If Bis a long root, then by means of an element of the Wey! group we
can transform S into 6, Hence, in this case we have A5 r € N(Ky). If Bis a short root, then we can find a
long root y such that 2' = (QB +Qy) N Zis a system of roots of type G, or B,. The corresponding group is
isotropic; by using the classification of isotropic groups of this type it is easy to find in G(Z') an admissible
subtorus ’f, with respect to which Ag,r € N(Ky) for the long root 3.

From the above we have 7\8,1. € N(Ky) for all r. Applying the theorem we establish our assertion.

Proof of Corollary 2. We take an admissible torus T in G and let R = R(T) U R(T) U (R"\Rp) U Ry,
Let {)\a} denote the set represented by the group G with respect to the torus T. Let Ty = @ p(T) for all
r €R, and apply the theorem. According to the theorem, G contains an admissible k-torus T' such that the
set 'U\;!JL represented by the group G with respect to T' satisfies the conditions: Ap, € Ay *N(Kp) forr €R
(since X, € N(Ky) and Ay € N(Kp) for r € R\R (as a consequence of the choice of R). Hence, by the theorem
of global norms, Ay € T@ « N(K); i.e., G and G represent the same set and therefore are k~isomorphisms.

The author wishes to thank E. B. Vinberg and D. A. Kazhdan for useful discussions.
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