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INTERDEPENDENCE OF SECTIONS

Section F provides motivations and examples for Sections D, E, G,

H, I, J, ¥, L, N, O, P.



INTRODUCTION

In this volume we give an exposition of some results and introduce
some notions which were encountered during attempts to find a good method of
graph identification.

Sections of this volume are based mostly on unpublished papers of
different people. I ask the reader who wishes to refer to papers constituting this
volume to refer to them by the names given inthe Table of Contents., Papers which
are not followed by any name can be cited as my own.

The beginning of our work was the research described in [ We3) . It
was shown in this paper how to put into correspondence with any graph a nice com-
binatorial object. The authors were not conscious at the time of the writing
[We 3] that this combinatorial object was related to other problems. Later it turned
out that the same object had been independently discovered and studied in detail
by D. G. Higman [Hi 3], [Hi5], [Hi6] and that such formations as strongly regular
graphs, symmetric block designs, centralizer rings of permutations groups are special
cases of this object (cf., Section ¥ and L18),

Although the properties of this object, called here 2 cellular algebra,
were discussed by D, G. Higman [Hi3], [Hi6], we decided o slafe here sane assertions
about them. Thsis done in the hope that it will helpa reader to get acquainted with
the notions and their use.

At the same time the main stress is on the description of operations
and constructions. Some assertions are proved to show how these constructions
work.

In an attempt to acquire a newunderstanding of the nature of our prob-

lems, much practical work was done, mostly with the help of computers, The
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most interesting outcome in this direction is probably the program which was de-
signed to generate all strongly regular graphs with < 32 vertices. This program
constructed all strongly regular graphs with 25, 26, 28 vertices, but failed, for ldk
of time, to construct such graphs with 29 vertices. This work is desgribed in
Sections S-V. The strongly regular graphs with 25 and 26 vertices were inten-
sively studied (cf., e.g., [Se 5], [Sh 4]).

Let us give now a brief descripticn of the content of this
volume.

We begin with a discussion of certain questions connected with the
graph isomorphism problem (SectionA}. Then we show in Section B how the develop-
ment of known and natural approaches leads to our main construction which is
described in detail in Section C. This construction gives rise to the notion of
cellular algebras. We discuss properties of cellular algebras in Sections D and
E,

We show then that centralizer rings of permutation group theory
are cellular algebras (Section F) and describe in Section G some general classes
of cellular algebras. The constructions of Section G are modeled on permu-
tation group theory.

Sections H-K deal with imprimitivity and primitivity of cellular
algebras. These classes of cellular algebras arise naturally when one tries to
describe the structure of general cellular algebras and they are analogous to the
corresponding notions of permutation group theory.

In Section L some arithmetical relations between the numerical
parameters of cellular algebras are obtained with help of algebraic theory.
This section shows that the algebra structure can be used to get combinatorial
information. RecentD. G. Higman's results [Hi5] ,[Hi6é] cover most results of

this Section.



In Section M we pass to the more algorithmic point of view. But
otherwise it is essentially a repetition of Section C. In Section N and O new
operations on graphs are introduced, and it is shown how the stability with re-
spect to these operations restricts the structure of a cellular algebra. In Section
P we show that the stability of a cellular algebra under some set of operations can
be used to prove results which hold for centralizer rings of permutation groups.

In Section Q we describe our setup and terminology before proceed-
ing to the study of algorithms. These algorithms are described in Sections R-T.
In Section U the results of the program based on the algorithms of Section T are
presented and the information based on these results is discussed.

In the Appendix (Sections AA-AE; the first A stands for "Appendix''}

we discuss different applications of the notions introduced in the main part of

this volume.



CONVENTIONS, ASSUMPTIONS, NOTATIONS.

1. The referencesinthis bookare organizedinthe following manner: Sections are
numbered by capital Roman letters; references inside one section do not use
indication of the section; references to other sections begin with the letter (or
letters) of the section. If several references to one section are written succes-
sively, they are divided by commas and the name of the section is used usually
once.

E.g., in Section L, references 4.1, 3.2; KI5, 16; B7.6.15 mean
that subsections 4.1, 3.2 of Section L, subsections 15, 16 of Section K, subsection
7.6.15 of Section B are referred to.

References to original papers begin with the firsttwo letters of the
name of the author.

2. Assumptions and Peculiarities of Terminology.

The word ''graph'' is used in two different senses: one is the usual
notion of a graph; for the second one, see Cl.

A simple graph is a graph without loops, multiple or directed
edges. The valency of a vertex of such a graph is the number of edges incident to
this vertex,

In Sections M-O, R a partial order satisfies an additional condition
of Section M2.1.

By the composition of a matrix A we mean the list of different
entries of A together with their multiplicities, E.g., if A = XIm,n’ then A is
composed of x with the multiplicity mn. We say that the compositions of A and

B are disjoint {or that A and B are disjoint) if A and B have no common
aisjointi 3

entries. We say that A and B have the same or equal composition if A and B
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are composed of the same entries with the same multiplicities. If A and B are
matrices whose entries belong to a partially ordered set M, we say that (fe compo-
sition of A) is greater than (the composition of B) or simply A > B if this holds for
compositions., Herethe members of the composition of a matrixare ordered correspond-
ingly to the order in M and comparison is understood lexicographically.
I A= (aij) is an {n Xm)-matrix, g ¢ Symn, he¢ Symm, then

gi, hj”"
Capital German letters ot, fr, £ usually denote a cellular algebra
or a normal subcell.

Letters X, Y, Z usually denote a graph (amatrix whose entriesare

independent variables). Letters U, V, W usually denote 2 set of points.

For typing reasons we write sometimes ES or Wse T etc., for

3. General Notations.

En - identity matrix,

Im a {(m Xn)-matrix all of whose entries are ones.

I =1 .

n n,n

T =1 -E.

n n n

io= In,l'

diag(al, e ,an) - diagonal (n Xn)-matrix with al, PN ,aLn as diagonal

entries,

hi =diag(0,...,0,1,0,...,0), with 1 at the position i,
ARB=| a B Ce , where A, B are (possibly) rectangu-

lar matrices and A = (aij).
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Sp A - trace of A,

dim A - number of different entries of (m Xn)-matrix A, e. g.,
dim(i f) =2, dimlm,n =1

|Al - degree (i.e., n) of a square {n Xn)-matrix A,

A' - transposed of A.

Sn = XEn + yfn - simplex,

A =R (said: A is split) means that dimA = nz, with |Aa] =n.

A

it

const (said: A is constant) denotes that dimA =1, i.e,,
A = XIm,n for appropriate x,m,n.
d{C) - the number of ones in any non-zero row of a (0,1l}-matrix
(is applied only when it does not depend on the row).
A B means that bij = b, _implies a'j =a
- 1

where A = (a, ),
i)

kd kd

If X is an (m Xn)-matrix, M a sbmatrix(i.e., a subset of the set

of mn positions (i,j}),and e,f are {0,1)-matrices, then

e M denotes that all ones of e lie in M;
e\ M 74 0 denotes that some ones of e lie in M;
eV M = 0 denotes that M contains only zeros of e;
e f (resp. e f # 0, resp. ef) f = 0) denotes that all (resp. some, resp. none)
ones of e are ones of f,
A(V,W) is the submatrix of A cut out by rows with numbers in V

and columns with numbers in W, that is, if A = (aij), then A(V,W) = (a,.)

ijlie vV, je W’

Z, N, @, IR, € denote the set of the integers, positive integers,

rational, real, complex numbers.

zt - nUo.
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[m,n] = {m,m+],...,n}.

{m,n) = greatest common divisor of m and n,

lVl - cardinality of a set. V.

Symn, Sym(n) - symmetric group of all permutations of n symbols.

Sym YV, Sym{V} - group of all permutations of a set V.



A. SOME REMARKS ABOUT THE PROBLEM
OF GRAPH IDENTIFICATION.

An algorithm of graph identification is an algorithm A whose
domain consists of pairs of graphs and whose result on a pair I‘l,f‘z is +1 if Fl
is isomorphic to I‘Z and -1 if not. Let us associate with A the function
("'speed'’) f(ﬂ,n), whose value at n is the maximum number of steps re-
quired by J%/, in order to find the result for any pair of graphs I’l, FZ with n
vertices.

The problem of graph identification is to find an algorithm

of graph identification which for any other such algorithm B3 yields
£(#,0) < £(Byn)

for all sufficiently large n.

The evident algorithm requires n! steps. Itis not clear whether
the function (M, n) for an "optimal" algorithm A is polynomial or not. Possibly,
for any constant b there is no algorithm 3 such that £(73, n) < nb for all n >> 0.
But in any case, as far as I know, there is even no algorithm for which it is

proved that

fA,n) - 27" 0 for c> 0.

For special classes of graphs such as trees or planar graphs, the
situation is much better. In these cases there exist algorithms which achieve
theoretical lower bounds on the number f(f{,n) {{Ho 3], [Sk1]).

In the general case there are at present some results which show
that the situation in some close problems is almost hopeless (cf. [Ka 1]).

There are two directions in the history of published approaches to

the problem of graph identification; let us call them conditionally '"local'' and



"'global".

In the global approach (e.g., [Val], [Li 1], [Li 3], [Tul]) the
tried different algebraic invariants of the adjacency matrices of the given graphs,
Most common here are the characteristic polynomial, the permanent, et al. There
is also a lot of literature where these invariants are shown to be insufficient,
However, there are many invariants (cf. Section AE), and a responsible approach
should consist of proving that the given invariants distinguish the graphs and could
themselves be computed sufficiently fast. Related questions are discussed in more
detail in Section AE.

In the local approach one tries to construct a sufficient number of
invariants of every vertex of the given graphs in terms of configurations containing
fixed (say, 2 or 3) numbers of points and passing through the given vertex. This
approach is the oldest one (cf. [Na 1], [Un 1], [Mo 1]—all ten years old). These
authors used configurations with € 2 points (i, e., they used edges). However, a
recursive application of this approach (cf. [Ba 1], [Sk 1]) can lead to more infor-
mation than at first glance would seem possible {for more details ¢f. Sections B, C).

The next step is to consider configurations with 3 points. Here we
also have many papers {e.g., [We 3], [Le 2]). A. A. Lehmann and B. Weis-
feiler's joint paper [We 3] (cf. also Section R)appearsio present the best algor-
ithm. Then we thought thatitwas time to stop and think, Indeed, the object whichwas
constructed with the help of configurations of size 3 is very nice, which probably
implies that it is natural and that our approach up to this moment was acorrect one.
However, nothing nice is seen before us or around us which implies (also prob-
ably) that we have to search further for a right road,

These geometrical approaches are discussed in more detail in the

next section. Some examples are also given there. The aim of all of them is to



construct a partition of the vertices of the given graph into orbits under the
automorphism group of this graph.

One more merit of these approaches is that one is forced to study
graphs, and even if a good algorithm is notfound, one can stillhopetofindinterest-
ing objects or unconventional results.

Anyway, now we still have to makean exhaustive search. Whatever

refinements and improvements we have made only make this search "somewhat"
shorter, but have not replaced it. In an exhaustive search we fix in turn all
vertices of the group of vertices having the same number of configurations & certain
given types. Then to the resulting graphs with one fixed vertex we again apply our
local geometrical approach. And so forth. There is no reason to avoid doing this.
However, if we do it too many times (of order n, say) then this would mean that
our algorithm requires 2" steps and in a sense is as good as the usual ex~
haustion. So the question is: What is the depth of our exhaustive search? This
question has not yet been non-trivially answered in any version of an algorithm

of graph identification.

Possibly in the absence of a good algorithm one can prove that this
algorithm is statistically good in some sense. For example, it would be nice (in
any case, with or without an estimate) to know the function F(Q,n,b), that is, the
number of pairs of graphs with n vertices forwhich chomputes the result infnb steps.

In the geometrical approach one tries, de facto, tofinda canonical
numeration of the vertices of the given graph and then to compare the results for two
of them. This procedure is usually disguised by making comparison after each
step of canonization. The algorithms we describe in Sections R and S are algor-
ithms of graph canonization,

This approach is better than the usual graph identification if one



has many graphs to compare {as, for example, the algorithm of Section S which
worked on results of algorithm of Section T). Namely, one has to canonize
every graph and to keep only different canonical forms. So in place of (;) appli-
cations of an algorithm of graph identification, one can use n times an algorithm

of graph canonization and then make 1’1) (or less) comparisons, Of course, this

(Z
approach is an unworthy one if one has a good algorithm of identification and a bad

algorithm of canonization.



B. MOTIVATION.

We discuss below steps which lead naturally to our main formalism.
The resulting construction permits us t associale with any finite graph T' a matrix
algebra which is uniquely determined by the graph up to permutation of the ele-
ments of the basis. This construction generalizes and develops different algor-
ithms used to approach the graph isomorphism problem. Here are some examples
of such algorithms,

1. Summation of the Weights of Vertices over Neighbours {e.g.,

[Mo 1]). Suppose we are given a simple graph I. The procedure is iterative. In
the first step every vertex is given weight 1 and all vertices form one unique class,
Suppose that in some of the later steps we have some partition V = V(I) :UVi
and the vertices of each V1 havethe same weights. In the next step we take the sum

of the weights of all vertices adjacent to the given one as the new weight of the given
vertex. The subsets of the new partition of V are the sets of all vertices

where the function of weight is a amstant. The process stops if we obtain no new

partitions.
Example:
2 3 Vertex 1 2 3 456
T . L
<{ >4 Step/Weight
6 5
1 111111
2 2 3 3 33
3 6 8 8 8 8

Therefore, the stabilization occurs at the second step and the partition of vertices
is (1,4), (2,3,6,5).

2. Summation of the Weights over a Partition of the Vertices (e. g.,

[Sk1]). In this case one associates with a vertex a vector of weights. The number



of coordinates of this vector is the number of subsets into which VvV = V(I') is
partitioned.

In the first step (as in 1 above) every vertex is given weight 1,
and the partition is trivial (it consists only of V). Suppose now that we have some
partition V =\U Vi' Then the weight of a vertex v ¢ V in the next step is the
vector whose i-th component is the sum of thevalencies ofallvertices whichbelong
to the i-th class Vi and which are adjacent to v. The subsets of the new parti-
tion are those subsets where the weight is constant. These subsets are numbered
according tothe {dictionary) order of weights they represent. The process stops

when there are no new partitions,

Examples: 2 3 5
1 4 31
6 5 2

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
Step/Weight

1 111 11 1 1 1 111

2 2 3 3 2 3 3 2 3 3 2 3 3

3 (0,2) 1,2) (1,2) (0,2) (1,2) (1,2)[(0,2) (1,2) 1,2) (0,2) (1,2) (1,2) .

It is not possible to do more with these graphs since the achieved
partition is a partition into orbits of the automorphism group.
Note however that for regular graphs these methods will notgive a

partition of vertices.

3. We can now try to partition the edges of the graphs., Asafirst
approximation, we can consider the number of vertices incident to both vertices
of the edge. In the first example above we have two edges which are contained in
triangles. In the second example there are no such edges. Therefore, this pair

of graphs is not isomorphic, although there is no distinction o the vector weights of



the vertices, However, the following graph

is also immune to this procedure. Nevertheless, it can be seen that the auto-

morphism group of this graph is not transitive,

4. To further strengthen the procedure brdetecting the differences
of vertices and edges, we can consider not only the edges of the given graph but
also the edges of its complement T (Recall that vertices of T are vertices of
T’, and edges of T are non-edges of I ) In the above example of the graph I
fwith 10 vertices) the use of I’ permits us to distinguish the pair 1,6 of vertices.
Namely, any edge of the graph I’ incident to these vertices is contained in one
triangle with two sides in I" and one (given) side in T. On the other hand, fe edges
of T incident to remaining vertices are partitioned into three classes according
to the number of triangles which contain a given edge and whose two sides are in
I For instance, for vertex 2 these classes are;

edge (2,8) is not contained in a triangle with two sides in I}

edges (2,4), (2,5), (2,6), (2,10) are contained in one triangle each;

edge (2, 9) is contained in two triangles,

5. Once we began to distinguish edges and vertices, we have to use
convenient and effective machinery to describe this. We use the following formal-
ization. Instead of the adjacency matrix of a simple graph I" we consider the

matrix X = X(I') whose elements are independent variables. We replace



the ones by one variable x, say; the non-diagonal zeros by another variable,
say y; and the diagonal zeros by a third variable, say z.

Now the process described in 1 above consists simply of taking the
sum of the entries of X over its rows.

The process described in 2 can be described as a reconstruction of
X. Namely, first the diagonal elements of X are changed according to the

respective row-sums. Call the new matrix Y then we have, for X = (Xij)’

Y = (Yij)’

y.. =Y. <= Zx,, =Zx_.
ii ji X ik Kk jk
This means that we get a partition of vertices. Now edges joining vertices of

different classes zlso belong to different classes. So we require, next, that

= = = = .
Vi T Ve T Vi T Ve Y5 T Vg

Stabilization in 2 above corresponds to iteration of this construction.

5.1. Remark, The above description is not an algorithm because for an algor-
ithm one needs to introduce some ordering (cf. Section M), We hope that the

present discussion is sufficient for introductory purposes.

5.2. Remark. Another virtue of this approach is that it works equally well for

graphs with loops, multiple edges, etc. (cf. also Cl, M2).

6. The same formalism is convenient for a description of step 4,
designed to distinguish edges. Note that if we consider the square of a matrix X,
then the (i, j)-entry of this square describes the set of paths of length 2 from the

vertex i to j. If, moreover, we assume that the variables of X do not



commute, this (i, j)-th entry describes the set of ordered paths.

using the rule

2 .
is the following. We consider X = (zij), and we construct the matrix Y = (Yij)

V.. =

Y

Ve

<=z . =2z

1]

ke”

So the next step

(Here again one has to use some ordering, cf. Section M, but we disregard this

for a moment. )

7.

sidered in 4,

Let us show how this approach works for the graph I" con-

variables in place of independent variables.
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In the matrices X, Y, Z we shall write the indices of independent



x1 : X].Xl + 3X2X2 + 6x3x3

x2 : xlx2 + xle + 2x3x2 + 2x2x3 + 4x3x3

x3 : x1x3 + x3x1 + XZX2 + 2x3x2 + 2x2x3 + 3x3x3

Xy P EPRg T HXF 3N 3K, 2x%,

Xy @ XK b X X)L E, XXX E, b AxE,

x1 : XIXI + 3X2X2 + 6x3x3

X2 s xlx1 + 3x2x2 + 4x2x3 + X4x4 + x5x5

X3 H XlXZ + xle + 2x3x2 + 2x2x3 + 2x3x3 + x3x4 + x3x5

: 2
x4 xlx3 + x2x2 + XSXI + 2x3x2 + x2x3+x3x3+x3x4 + x3x5

x5 : xlxz + xle + szx3 + 2x3x2 + 4x3x3

x6 H X1X3 + x3x1 + x2x4 + XZXS + 3x3x3 + 2x3x2 + XZXZ

X, XX, b X X +2x % +2x.x +2x_ X, +X X_+x_X

7 12 21 273 32 33 4 3 53
X8 : X1X3 + x3x1 + XZXZ + 2x2x3 + 2x3x2 + x3x3 + x4x3 + x5x3
x9 : X1X3 + X3X1 + X4X2 + XSXZ + 3x3x3 + szx3 + xzx2
XlO : XIXZ + XZXl + X2x3 + x3x2 + 2x3x3 + XZX5 + XSXZ + x3x4 + x4x3
Xll s X1X3 + X3Xl + X2X3 + x3x2 + XZXZ + >(;3X3 + XZX4 + x4x2 + XZXS + x5x3
Xt xlx3 + XBXI + XZXZ + szx3 + 2x3x2 + x3x3 + x4x5 + x5x4
X3t XIXZ + xle + 2x3x3 + szx3 + 2x3x2 + X5x4 + x4x5
VRSt + LS + szzx3 + 3x3x2 + XX, + X%,
Kig ¢ XIXS + XSXI + ZXZXZ + Zx3x3 + XZXS + x3x2 + x3x4 + x4x3
X XlX5 + X5X1 + ZXZXZ + 4x3x3 + XZX4 + x4x2
X x1x4 + x4X1 + 2x3x3 + 2x2x3 + 2x3x2 + XZXS + X5X2

The matrix X contains threevariables; % is for the diagonal entries, xZ is for the edges o



the graph T, x_, is for edges of the complementary graph of I Thevariables of Y

3
correspond to five different polynomials which are the entries of the matrix X’2 The
square Y2 of Y already contains 17 different polynomials; to each of them there
corresponds an independent variable of the matrix Z. I, finally, one considers
ZZ, one sees that diagonal variables are partitioned into three classes (1,6},
2,5,8,9) and (3,4,7,10) and further squaring does not lead to new partitions. The
permutations (written cyeclically) (2,5)(3,43(7,10)(8,9) and (3,7)(4,10) and
(1,63(2,9)(5,8) are automorphisms of the graph . They
generate a group which acts transitively on the vertices of each
class (and also on the edges of each class), Thus we have revealed all differences
of vertices and edges of the graph I

Let us note that the application of the described procedure to a

simple graph can lead to an''orientation" of certain edges. For instance, in

: 1 2 3
5

the edge (1,2) can be considered as oriented (in the sense that its vertices are sit-

the graph below

uated differently with respect to the whole graph). In Sections AA, AB, AC
examples are given of simple graphs whose edges acquire "orientation' although
the ends of the edges have no differences,

The use of matrix X, with independent variables as entries, per-
mits one to employ the described procedure not only for simple graphs but also
for oriented graphs, for graphs with multiple or coloured edges, etc, Thus, any
graphisinterpretedas a complete graph with some coloring o fe edges and the vertices.

This approach leads to a generalization of the definition of a graph (cf. Cl).



Let us also note here that our definition generalizes the definition of A. A. Zykov
[Zy 1] in the sense that in place of boolean rings we consider arbitrary rings. On
the other hand, our definition is needed only to facilitate and formalize the exposi-

tion. All considerations might be (and sometimes are} also conducted in geometri-

cal terms.



C. A CONSTRUCTION OF A STATIONARY GRAPH.

In this section we systematically describe the proceduresintroduced in
the preceding section., The result of these procedures is an invariant of the given
graph, This invariant is constructed in the same manner for all graphs (simple,
with coloured, directed, or multiple edges,and with coloured vertices). But even
if one begins with a simple graph, it can acquire orientation of edges, colouration
of vertices, etc. (cf. the preceding section and Sections AA, AB, AC; in these
sections one can also find examples of the application of the constructions of this
section ).

Since we are forced to consider quite different kinds of graphs, it is

convenient to make the following definition.

1, Definition. An {nXn)}-matrix X = (X'j) is called a graph if its entries are
— i

independent variables z for s #t. The number

" k=1,...,N, and if Xii%xs

t
n is called the degree of X and the number N of different variables which are

entries of X 1is called the dimension of X, Notations: n = !X|, N =dimX. We

assume throughout that independent variables do not commute.

If a geometrical image of a graph is preferred,
one can consider the complete graph with coloured vertices and
edges., It can be assumed that at each vertex there is a loop, having the same
colour as the vertex; this colour is coded in our matrix X by the corresponding
diagonal entry. For each pair of vertices i and j there is either one undirected
edge of colour Xij (if x,, = in), or, if Xij #in’ there is the directed edge of

1)

colour Xij from i to j and the directed edge of colour in from j to i,
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2. Definitions. Let X = (Xij) and Y = (Yij) be two graphs of degree n. We say
that:

2,1, A permutation matrix g of degree n is an isomorphism of X and Y if
ng-1 =Y. If X=7Y, then g is called an automorphism of X. The set of all
automorphisms of X is denoted AutX.

2.2. X is imbedded in Y (denoted Xg Y) if yij = ykl for all 1i,j,k,¢.

2.3. X is equivalentto Y (denoted X ~Y)if XC Y and Y(CX.

2.4. An embedding Xg Y is canonical if AutX = AutY.

To get the geometrical meaning of these definitions, suppose that
equally numbered vertices of X and Y are identified. Then ¢ is an auto-
morphism of X means that the pair of vertices before and after permutation o
are connected by an edge of the same colour. Further, X is imbedded in Y if

equally coloured vertices of Y are also equally coloured in X.

3. Remarks.

3.1, If XC Y, then dimX< dimY.

3.2, I XCY, then Aut YC AutX.

3.3, 1f XCY, YCZ, then XC Z.

3.4, If X~Y, Y~2Z, then X~Z. So ~ is an equivalence relation.

3.5. Any graph of degree n contains the simplex Sn' This is the only graph of
dimension 2; its matrix is xEn+y?n. In our approach we simultaneously consider
several ordinary graphs; in the case of Sn these graphs are the complete
graph and the empty graph. S '"simplex'is the name for the equivalence class of
these two graphs.

3.6. Every graph of degree n is imbedded in a graph of degree n and dimension

nz, whichis uniqueup to equivalence. We call this graph the split graph and denote it



15

by R.

4. Definitions. Let X = (Xij) and Y = (yij) be two graphs of degree n. We say

that:

4.1. The graph Z = (Zij) is the superimposition of graphs X and Y (notation

Z=XWVY})if
= <= = S .
157 i %57 %k 2P Yy Vi
4.2. The graph Z = (zij} is the product of X and Y (notation Z =X Y} if

= <= = .
Zij “xa z:Xisysj kasysfz
(Recall that our variables do not commute. )
4.3, afX)= (X X}V (X o X) is the extension of X (A' is the transpose of A).

4.4. X is stationary if ao(X)~X.

These definitions depend only on the equivalence class of X and
Y, and the resulting graph of 4.1, 4.2, 4.3 is also defined up to equivalence.

To geometrically understand the meaning of the superimposition, one
should imagine the colouring of an edge of XVY as the (ordered) mixture of the colour-
ings of edges of X and Y.

In the case of the product, the colour of the edge between vertices
i and ] depends on the number and colouration of the paths of length 2 between
vertices i and j such that the first edge of each path is an edge of X and the

second one is an edge of Y. The polynomial Exisysj completely describes the
s
set of these paths,
5. Lemma. Let X = (Xij)’ Y = (y,j), Z = (Zij) be graphs of degree n and
—_— i

7Z =X ° Y. 'Then X # ij implies that Z # ij‘ Analogously Vi # ij implies

that
a Zki?{zfj for all k, £.



Proof. The second assertion is proved in the same way as the first one., So let
us only prove the first one. We have to compare the set of paths of length 2
from the i-th to the k-th vertex with the analogous set from the j-th to the
£-th. Each set contains only one path beginning with a loop, namely, the first
begins with the loop of the colour x. and then goes through the edge Vi The
second one begins with the loop of colour ij' Since X # ij' these sets of paths

do not coincide, whence the assertion.

Formally, z,

ik corresponds to ?Xisysk and ij corresponds to

ZX,

szsﬂ' The first sum contains only summands XYk and x

i Kk involving

diagonal variables and the second only ijyjﬂ and Since by assumption

AT
x., # x.. and variables do not commute and since diagonal variables are
ii i

different from non-diagonal ones by the definition of a graph, our assertion

follows once more.

6. Lemma. Let X and Y be graphs of degree n.
6.1. XCXVY, YCXVY.

6.2. XCX-Y, YCX- vV

Proof. 6.1is evident. The second part of 6.2 is proved similarly to its first
part. So let us prove the first part. We have to prove that X'j # X implies
i

X,y

is # Exksysjz. The only entries in these sums which contain the diagonal

sj

variables on the right are Xijy" and XY 00

respectively. Since Xij # Xy

the sums are different, which is our assertion.

7. Corollaries. Let X and Y be graphs of degree n.

7.1.  Auwt(XVY)

Aut XM Aut Y.

7.2, Aut(X e Y) = Aut X/ AutY.
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7.3. The imbedding XgX e X is a canonical one. In particular, X is canoni-

cally imbedded in a(X), AutX = AutX ° X).

Proof. 7.land 7.2 follow from 6.1, 6.2 and 3.2; 7, 3 follows from 7.1, 7.2.

8. Stabilization.

Let X be a graph of degree n. Put x\O = x, x - ox), By
. (i) . (i+1}
Lemma 6 we have dim X < dimX . On the other hand, we have
dimx™ < n® for all 1. Since by 6.1, 6.2, XV C x| we have x < x@ for

A
some q and for all i> q. Let us denote this graph X(q) by X.
8.1, Lemma., Suppose X is a stationary graph and Y any graph. If Yg X,

A~
then YC X. In particular, AutX( Aut¥ = AutY.
This follows directly from Lemma 6 and Corollary 7. 3.

From the above it follows:
8.2, Theorem. For any graph X there exists a unique
(up to equivalence) stationary graph 9( such that X is
canonically imbedded in )? . For every stationary graph Y such that X is
canonically imbedded in Y one has }%g Y. In particular, for o ¢ Symf(n), one

- AL
has (0Xo l) ~oXo 1.

9. Elementary Properties of Stationary Graphs. Let X = (Xij) be a stationary
graph,

9.1. X o X ~X, that is,

9.2. X ~X', that is,



. 3. L= i i = .= .
9 x1J X implies X=X ij X0,
9.4. xS ka implies fxsi = szk and ;‘:Xis = ?xks'
s

Proof. These properties are evident corollaries of 4.3, 4.4, 5, 6.1, 6.2.

Geometrically we interpret them  as follows. If we have edges
{say , Xij’ ka) of the same colour in X, then the sets of (ordered) paths of
length 2 from the first vertices of these edges {i.e.,, i and k respectively) to
the other vertices of these edges (i.e., j and [ respectively) contain the same
number of paths of every colour. This is an interpretation of 9.1. The property
9.2 means that if two ordered pairs of vertices are connected by edges of the same
colour, then the edges, connecting the same pairs of vertices but in opposite
directions, also have the same colour.

The property 9. 3 means that edges of the same colour are incident
to equally coloured vertices.

The property 9.4 means that the set of colours (counted with multi-

plicity) of edges incident to equally coloured vertices is the same,

10. Stability with Respect to Paths of Greater Length,

Let <i-j>t denote the set of the paths of length t from the vertex i
to the vertex j of X. We say that <i—j>t and <k-£>t have the same composi-
tion if the multiplicities of the set of paths coloured in the same way are the same

for both sets,

Theorem. Let X = (Xij) be a stationary graph. If Xij =X, then <i-j>t and

<k-{ >t have the same composition.

Proof. By induction. For t =1 there is nothing to prove., For t =2, it is the



definition of a stationary graph. Now remark (as already mentioned in the remarks
after 4.4) thatif Y and 2 are graphs, then the (i,])-th element of Y- Z
describes paths of length 2 from i to ] whose first edge belongs to Y and the

second to Z. By induction <i—j>JC has the same composition as

-1

<k-£>t , that is, the (i,j)-th and (k,f)-th elements of Xt-l coincide. But

1
since X is stationary, the (i,j)-th and (k,£)-th elements of Xt~1-X also

coincide, as required.

11. The Matrix Algebra and the Basic Elements of a Stationary Graph.

Let X be a stationary graph. Consider the set (U{X) of the matrices

A = (aij) (with entries in some ring) such that
ij = Tkt ij ke’
11.1. Lemma. The set 0({X)} is a matrix algebra, stable under transposition.

This is a direct corollary of 9.1, 9.2,

11.,1.1. The matrix X is a generic point of the algebra 0U{X) (cf. Section L.

11.2. Again let X be a stationary graph, m = dimX. Let x S be the

Rk
distinct variables which are the entries of X, Let 9 be P,l)-matrices obtained by
substitutiond % = 1, x, = 0 for i#k,in X. The matrices e, form a base of the
algebra 0UX)., We call them the basic elements of X and 0U(X). Since they can
be considered as adjacency matrices of graphs (directed or not) we sometimes
call them the basic graphs. We have

X = Zx.e,.

11

Let us point out some properties of the set of basic elements,

11.2.1, If e; is a basic element, then so is e{ {it follows from 9.2).



20

11.2.2, ¥ e, and ej are basic elements, then

eiej = Ekaijek

k
where aij are non-negative integers. (In fact, according to the remarks after
4.4, the number ai(j is the number of triangles of the form

ii tj
a b

k

with fixed vertices a,b {connected by an edge of colour k}j.
11.2.3. The graphs e, are quasiregular in the sense that any vertex of this
graph lying on an edge has the same number of entering edges and the same num-

ber of exiting edges (this follows from 9. 4).

12. Examples,

a. 01 01 X vy z ¥y
1 2 1 01 ¢© x z
T A(T) : , Xy =¥ Y
4 3 01 01 zZ y Xy |
1 01 0 y zy x/
X X= (pij)

= = o= = 1 1 t
Py = Ppg = P33 Py =3 T2y +ouz
Py " Py Py T Py3 TPy T Pay =Py TPy =Xy yx! dayl +yz
= = = = ! ' !
pl3 pz4 p31 p42 xz' + 2yy' + =zx'.

Thus, X ~a(X), i.e., X is a stationary graph.

e [foren frye
z Xy 2z
r 4 3 Al OQOl’X(F) zZ z Xy
1 6 0 0/ yzzx/
X°X=(P.1j)

Pyy = Ppp T P33 TPy, =X +yz' +ozal +azy
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= = = = ! * i
Pjp T Pp3 T P3y TPy XY Fyx' 4 222

Pi3 = Ppy T Py = Pyp = %2 iy +oex! 2z

Pig = Py = P3, = p43 =xz' + yz! + zy' + zx',

Xy z u
Thus, X « X ~Y = :ii }Zr It is easy to verify that o(Y) ~Y, hence s\(=Y.
y z u X
c 1 611100
1 01 01 0
11 0001
r A 1 00011
01 01 01
AR\ :
5 > 0011190
X yvyy 2z z
Yy Xy 2z v 2
X(1r) vy Xz 2z Yy
y 2z X yY
zZy zyxy
ZZYYYX
X o =
X (pij)
p].l:pZZ: . =p66:XX + 3yy' + zz

Pyg T P1g T Pag TPpq TP3y TP35 TPy TPy3 TPy TPs3 TPy TPy T

=xz' + yz'+ 2yy' + 2y’ + zx!

g N g X
Ng e KN
<< R ggn
“ R oE N g
M N g g

It is easy to check that Y is stationary, Y = a(Y). Thus Y has exactly four
basic elements:

9

6

1 1

e, (corresponds to y) A f}
3 2 5

e, {corresponds to x}

000009
1 2 345

sy
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1 2 3
e3 (corresponds to z) [ I J

4 5 6
1 5

e, (corresponds to u) 6@3
2 4

d. One more example of stabilization is given in the preceding section. Sections

AA, AB, AC can also be considered as examples of stabilization,



D. PROPERTIES OF CELLS.

In the preceding section it was shown that the procedure of stabiliza-
tion leads naturally to the stationary graph )/% It was shown also that a stationary
graph ﬁ defines the matrix algebra O‘C(}A(). In this section we describe in detail the
properties of a special class of such algebras. A more general (but also more
formal) discussion of properties of algebras of this sort will be given in the next
section., For examples, see Sections F, G.

The exposition below is based on [We 3]. The results are the

analogues of certain well-known properties of permutation groups ([Wi 1] ,[Hi 2] ).

1. We begin by giving an axiomatic definition.

1.1. Definitions. A cellular algebra is a matrix algebra 0U having the following

properties.
i} 0L has a basis B = {ei, i=1,2,...,d4}, where the e, are (0, 1)-matrices.
The basis {ei} is called a standard basis of 01; standard bases differ only by the
order of their elements,
ity If e‘l ¢ B, then ei ¢ B.
iii) Eei = In' where n is the degree of matrices of 00l; n is called the degree of 0L.
iv) There exists an integer-valued function d(ei) such that the number of ones
in any non~zerc row of ei is equal to d(ei). In this section (and also rather fre-
quently elsewhere) we use the notation n, = d(ei),
The basis {ﬁl} of the underlying space V of the matrices of
JdL 1is called the standard basis of V,
The matrix X = Exiei, where the x, are independent variables is
called the matrix of the cellular algebra o1, written X = X(or). If 0L is a cellu-

lar algebra with unity, then X{st) is a stationary graph. On the other hand, if X
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is a stationary graph, then there exists a cellular algebra 0T with unity such that

X = X(01); in this case we write 0 = 0U(X).

1.2, Definition. A cellular algebra dr is called a cell if the number of ones in

any row of every e, is not zero.
i

1. 3. Definition. A cellular algebra % is called a cellular subalgebra of a

cellular algebra ¢T if L oisa subalgebra of 4t.
In this case the elements of a standard basis of ¥ are sums of

some elements of a standard basis of ¢L. This follows from 1.1 i}, iii).

2. Remark. The set of elements of the standard basis of a cellular algebra can
be considered as a set of relations on [1,n] X[l,n]. This set of relations forms a

coherent configuration in the sense of D. G. Higman (cf. [Hi 3]). Conversely, any

coherent configuration can be obtained in this way. So our cellular algebras and
D. G. Higman's coherent configurations are equivalent objects. In [Hi 5],[Hi6] DG
Higman uses the term ""adjacency algebra' where we use the term ‘cellular

algebra",

3. Remarks. i) The application of 1.1 iv) to e!1 shows that the number of ones
in any non-zero column of e, is the same (and equal to d(e!l ).
ii) Geometrically, a cell with unity is a stationary graph X (cf., C 4.4) with the
following properties:

a) All vertices of X have the same colour (are incident to loops of
the samme colour),

b) All basic elements of X are regular (cf. C11.2.3)}.

4. Properties of Cells with Unity. Let 6T be a cell with unity, B its standard
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. . k
basis, B={e,, i=0,1,...,d-1}, e =E . Put ee. =5 a..e , e, =e, .
i 0 n i kij k¥ if i n

cl. Z‘s f_] :1 T s 1i(s ;1'

Proof. This equality expresses the associativity of ¢L. Geometrically, ¢l has
the following meaning, Consider the number a;f of paths of length 3 and
colour (i, j,f) which are cut short by an edge of colour k. (By cl10 this number
does not depend on the edge of colour k but only on the sequence (i,j,£,k).) This
number can be computed in two ways. First, one can consider the paths of colour
{s,1) along the given edge, and for each a.ls(]Z of such paths, one can consider the

paths of colour (i,j) along its edge of colour s, The number of the latter is

s
a-i..
: ak J as
is i
i {
k

Thus for s fixed, the product azfafj is equal to the number of paths of colour
(i,j,£) along an edge of colour k under the condition that the first and the third
vertices are connected by an edge of colour s. Summing over s one obtains
evidently the number a%(. . Thus a%(. == a,s_ak .
ijf ij s i} st
On the other hand, one can consider paths of colour (i,s}) along an

edge of colour k and then paths of colour (j,{) along an edge of colour s. In

this case one obtains alf. =z ak

) S isajl (see figure above). Comparing these two

. k
expressions for a, . We obtain our formula,
1
c. n, =n,.

Proof. In the case of a cell, the basic elements e, and e, are regular.
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Therefore, for each vertex the entering and exiting valencies coincide.
c3. {(Zb.e }rI=1.{£b.e,) = (Zb.n,)L
ii i'd it

Proof. By l.liv) and c2, ei- I=Ie =nl Hence our assertion follows by the
A i i

distributive law of multiplication.

i i}
cd. PP T TR T By TR

s
Proof. By c3, we have, nkI =1 e = (Eiei)- e = Z)i(eiek) = Zizsaikes = ZS
8 S
= = . 3 1- .
(ziaik)es ankes whence ziaik n, Applying ananalogous sequence of equalities
to e I', we obtain Zialii =0 The last equality is evident,

Geometrically, our property has the following interpretation.
Consider a fixed edge of colour j and the paths of length 2 and colour (k,1i}

along it, If k, i are fixed, the number of these paths is ai.. Summing over i
i
we obtain the number of the paths of length 2 along the given edge,which begin

with an edge of colour k, that is, we obtain the valency n_ of graph e

k k’

c5, = as

s%ijs T Ny
s
Proof. (nil=e (e, 1) = (ee) 1= (Zaisjes)- I=(Za )L
Geometrically, n is equal to the number of edges of colour s

exiting from a vertex, and aisj is equal to the number of paths of colour (i, j)
along an edge of colour s, Hence, Zaisjns is the number of all paths of colour
(i, j) exiting from a fixed vertex., On the other hand, this number evidently
equals ninj, since ni edges of colour i leave a vertex, and nj edges of

colour j leave the endpoints of all those edges.

ch, a .=d, n j;a._ = 6'j {where & . is the Kronecker symbol)}.
i ij
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Proof. Since e .= E and e, =-e!, we have a? =n,, On the other hand,
—_— 0 n il i it i
0 o
zjaij =n, by c4, hence 3 = 0 if j#i'. This proves the first equality. To
prove the second, one considers the equality ej =ey ej = Eianei'
0

Geometrically, aij equals the number of the paths of the
form (i, j) whose source- and end-points coincide, Evidently, this number is
zero if i' # j, and it is equal to the degree of e if 1i=j'. To interpret the
second equality, let us consider those paths of length 2 along an edge of colour i

which begin with the loop {colour 0} and then continue by an edge of colour j. It

is evident that the number a.  of those paths is 1 if i =j, and is 0 otherwise.

0j
1
c7. al.<. = al.(, ‘o
ij j'i
1
Proof. Ea?.e' = (e,e) =ele' = Za.s, ., €' . Geometrically, it is sufficient to con-
e ij s ij ji jti' s

sider, together with the paths (i,j) along an edge of colour k, the same paths
in reverse direction. These latter are paths of the form (j',i') along the

edge of colour k',
c8. na. =na.,=n a

Proof. Take ¢l with ¢ = 0:

= as aO £ aO as
s ik si s js ki’
and use cb:
it s s O 0 s s i
a = ) = = 2 = 6 = ar ..
PPk T E s ™ T etk si T Tstys ki T Tyt ek Nk

The second equality is proved analogously,
Geometrically, equality ¢8 has the following meaning. Consider

all paths of the form (j,k,i) whose source- and end-points coincide. First,
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fixing the third edge {of colour i} of one of these cycles, one sees that each such
it

edge cuts short a;k cycles (cf. Fig. below). Since from each vertex there

it
exist n, edges of colour i, one obtains n,a?k as the number of cycles of the
i

Fig.

form (j,k,i). On the other hand, fixing an edge of colour ] one obtains j sets
3!

of cycles and each set contains ai](i cycles.

max(n, ;n,)
i

il
. f —) < .
c9 I ajk # 0, then P <n
1)
it o 8 ni it it it
i i —_— = = > 3 3
Proof. If ajk% , ¢8 implies n 2k aik-—l' Therefore 25 1 a multiple
n, 5 n,
of ——_ Since by ¢4, n_>a_ , we obtain n, > —J — Similarly,
{(n.,n.) k — ik k— {(n,,n.)
i ] LR
n,
i
k (n,,n.)
i
cl0. The following assertions are proved similarly:

it
a) a’. isa multiple of

kj
nj nk njnk(ni, nj, nk)
L.C. M. n,n.)’ (n,n ) :(n n j{n,,n )n,,n
i "7k FAE LA S L

k)‘

at
In addition, since n > a11<j we have:

(m,n)n.,n )n,n
P IS T .
) if 24 #0,

>
b) nk— (n,,n_,n
1]

k

and analogous inequalities hold for n, and nj.



E. PROPERTIES OF CELLULAR ALGEBRAS OF RANK GREATER THAN ONE.

In this section we give short proofs of certain properties of general
cellular algebras. Theseproperties admit, of course, a similar geometrical interpre-
tationasinthepreceding section. After this we introduce some general notions (homo-

morphism, equivalence, etc.) and showhow the corresponding properties canbe established.

The definition of a homomorphism requires reference to Sections H and I. This
does not lead to a loop. The results in 5.2-5, 5 are used in the study of correct
cellular algebras {cf. J6) which play an important role in the algorithm of Section
R. The assertion 5.6 is also used in this algorithm.

We begin with a proposition which shows that the matrix of a cellu-
lar algebra naturally falls into blocks (''cells’), This is the reason why our alge-

bras are called cellular,

1. Decomposition of Cellular Algebras with Unity.

Proposition. Let 0T be a cellular algebra with unity (i. e., En e 0L, where

n= }GLI), and let {ei}ieI be its standard basis, Then

a) E =X e where 1  is an appropriate set of indices;

n 1510 0
2 .
b) e =e, e =e, forall ie I;
i i i i 0
¢) let T(i,j)={r:ee e =e } for i,jc I, then I =U ) T{i, 1)
irj r 0 e,

d) for any 1ice IO, o'(_i = eic)‘l_ei is the cell with a standard basis {ej, je T(i,i)}
with respect o e basis {gt s eiét = ét} of the space Vi = eiV; ei is the unity of
ol.;

i

di = 1 i “
e) 1.1’nVi Spei for all i IO
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Proof. Since {ei} is a basis of 0T and En e 0L, one has En :Eaiei. By

D1.1 iii), the matrices e do not intersect. Thus a, = 0 or 1. Setting
IO ={i: a.i = 1}, one obtains a).

It is clear that thematrices e, i¢ I only have ones at the diagonal;
1

0’
this proves b},

Let us prove c¢). If ee e #0, then e =e,e e ¢ 60, hence

irj ir j

e = Zaiei. By b}, it is clear that eger. If e 75 er, then by DI1.1 iii), the decom-
position e = Zaiei is impossible, hence e = er. This means that
e.e e #£0 implies ee e =e . Q.E.D.
ir j irj r

The assertions d) and e) are now evident,

2. Corollary. By a simultaneous permutation of rows and columns the matrix

X = Z}xiei can be brought into a block form:

Xll XlZ' .. Xlt

Xij)i,jel b

N~

tl 27"t

where Xij = Ede ’I‘(i,j)xded'
If Ni = Sp e ie IO, then Xij is an (N.1 XNj)—matrix. A representa-

tion of X 1in the form (Xij) will be called a central decomposition, or simply a

decomposition of X,

Proof. Let Vi = eiVi, ie IO. From {éi} =U({§j}ﬂ Vi) and from 1d) our
t

assertion follows.

3. Assumptions and Notations.

Let (1 be a cellular algebra with unity, X = X{01) its matrix,
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X = (Xij) its decomposition (c¢f, 2 above). We write, and call

lot| = |X| the degree of 0t and X;
dim 0l = dim X the dimension of 6t and X;

i1 the rank of 00 and X;

0 i

¥ .. the connection block of X.., with X.;
ij ii ii
V(0U = V(X) the vertices of X;
VIX,.)={j:ef =£} the vertices of the cell X_;
ii i3 i Em— ii
em, = e‘m - it is clear that m e T(i,j} implies that m' ¢ T{j,i);

n, = d(e,) - the number of ones inany non-zero row of e ;
i i i

ni, = d(ei) - the number of ones inany non-zero column of ei:
2
X =R, 6L=R - X and 0L are split (i.e., dimX = |X|”, dimot =
2
lot}™);

X =8 - X isthe simplex, if X = xEn+y1~n_

3.1, Remark. In his study of coherent configurations (cf. D2), D. G. Higman,
uses the word '"rank' where we use the word "'dimension''. Qur "split' case cor-

responds to his "trivial',

4. General Properties of Structure Constants.

Proposition {compare D4). Put N =Spe for ae I  and e = = e for
a a 0 ap te T(a, B) t

a,Be IO. Let a,B,N, u,P,0¢ I, me T{a,B), ie T{k,u), je T{p,0). Then

O,
a) n «N_=n N ;

m! B m a
b . = i X
) S 0 if B #N;
°m % 7 = a:nl s’ fml6 +'
se T(a, u)
c) = as mo_ a?n~as
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d) ( = e e = z n b )6 e ;
A A
meT(a,p) ® ™ M meT(a,p ™ Ph ook
e (= be)=( =T =n ,b )6 e ;
A "
umsT(a,B)mm meT(a,ﬁ)m mpa AP
m
e) = a.. =56 6 & n;
jeT(B, o) B #P OPRad
t
£) a:,n;l,‘ =aI,I‘1;
itj ji
S
g Zai% T 0m Pt Y
m
=5 & b ;
h) api o or all PeIO,
i) a° =6 & .n, forall pe I
im ~ Cim' pA i o’
m' it
) n_,a . =na, .
m' ij i jm

Proof. a)is obtained by counting ones in e in two ways: N'nm, (resp.

N- nm) is the number of ones in any non-zero column (resp. row) multiplied by the
number of non-zero columns (resp. rows).

b) If B#NX\, then e_e, =0, e € hence (emeﬁ)ei =0, If

B mp "

B=\, onehas e (e_e)e =(ec e Jee )=e e,6 whence e e Ce ., It
a "mi u am iu m i mi= auy

follows that

e e, = z amies'
m i
se T(a, u)

Since em, e,, e are matrices with non-negative elements, from Di.1liii) one
i’ s

sees that a,s, > 0 and a,s. € Z.
£ i}

. s _ s
¢} Further, ei(ejez) = (eiej)eg, that is, ei(ZSajEeS) = {Zsaijes)eg,

t
whence T a.a. e = Za-e. Comparing coefficients of e_ on both sides, one
jtis t sf t t
s,t s,t
obtains cJ.

d) is evident.

e} Let us consider eig {cf, d}}). From

=nd e
po - 4 upekcr
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gp 6 = = e. and ei; o = = = ais.es, one obtains g),
7 jeTlp,0) se T(a, p) je T, o)
f} follows from the equality (e.e.)' =ele! =e e .,
i'j ji iti
g) One has nmni6ﬁ7\e)\v = em(nie)\v) = em(eie,uv) = (emei}e‘uv =

= { = a® e )E = { z a® n )g v whence gJ.
a

) .
seT(a, ) 0 % ' seT(a,w TP

h) is the property 2c¢) of the idempotents written in terms of
ij’
i) becomes evident if we note thatthediagonal entries of e;e are ob-
tained by multiplication of t-th row of e, by t-th column of e . By Dl.1ii),
1ii) the product is # 0 iff m =i'. In the latter case it is equal to the number of

ones in the t-th row of ei.

j) Letus use c¢) with m=8,f =m. We have = a,s,aB =
s ij sm
=3 a? aLs . By i) aﬁ =& “n s a? =6 -6  n, ., Substituting this in our
s is jm sm sm' m! is BN si' i
1 it 1t
form of c¢) we obtain agl LI Sﬁxniajl'm' If B #\, then a;m =0 by b). This

proves j).

5. Weak Isomorphism, Homomorphism and Weak Equivalency,

5.1, Definitions. Let X, Y be stationary graphs, We say X isweakly isomorphic to

Y (written X%Y) if IXI = IYl and there exists a substitution ¢ such that

cXﬁhl ~Y; o is called aweakisomorphism, Wesaythat Y isa homomorphic image

of X = (X'j) if Xii contains anormal subcell Qfa'l {cf, Hl,1)suchthat Y isweakly iso-
1
morphic to the factor-graph of X by the system {171} of normal subcells {cf. I4).

We say that X = Zis x.e. and Y = }:j€ Jyjfj are weakly equivalent (written X ~Y)

ITi
P) Kk
PEIPG) T where

if there exists a one-to-one map ¢ :1-J suchthat b

eiej = Ea;‘ek’fifj = Zbi(jek. The map @ is called a weak equivalency. We sometimes
write @ :X—>Y and q?(ai)=f .y instead of @ :I-1J, We say that this

P
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mapping 99 is a natural one if dimX =dim¥Y, X = zie IXiei’ Y = Zie Ixifi and

Cf(ei) = fi (that is, the name of the variable is conserved under the mapping}.

A weak equivalency is called natural if the corresponding mapping of I onto T

is natural. Of course, a natural weak isomorphism is an isomorphism.

5.2. Proposition. Let X = (Xij) be a stationary graph, Xi' =z If

i Fierich
d{e_ }=d(e_,) =1 for some me¢ J, then X =X, andthere exists a substitu-
m m ii ii

ti h that X X .-g.
ion ge Sym(|Xii1)) suc a o i g

Proof. Evidently one can assume that rgX =2, i =1, j=2. Since d(em) =

d(emr) =1 it follows from 4a) that ?XHI = QXZZI =n. Then em[ " is the

X by gX21,

matrix of some substitution g. Let us substitute X by Xlzg_l, 21

12

-1
d . h
ZZg an X11 by the same X11 Then emlxlz

X by gX

22 changes into En and

X into an isomorphic graph. Since 0U(X) is an algebra, we have Xll' XlZ Qxij.

. hat i _ . s .
Hence Xll EngXIZ’ that is, Xll Q"XIZ Analogously XZZ QXIZ On the other

hand, X, - xlz(_j_ X,, and X12'X21QX11 imply xlzgxz

X12 ~X11 NXZZ' Q.E.D.

2 and Xlngll' Thus

)

5.3. Proposition. Let X=(X be a stationary graph. Let us write i~

ij'i, jel

if there exists e (_ X., suchthat d{e_)=d(e’' })=1. Then this relation ~ is an
m ij m m

equivalency relation. In particular, I :L)It {a disjoint union) where 1,j ¢ It iff

i~j.

Proof. Let i~j, j~k. Letustake e (X ,e (X. with dle )=d(e ,) =
e m ij’ n ik m

ml
= d(en) = d(enx y=1. Then emenc Xik’ and since emf y and enlxjk

x are per-

mutation matrices, the matrix e e | is also a permutation matrix, There-
m n X,
ik

fore, e_ e =-e, d(e,) =d(e,, ) =1, thatis, i ~k. Since relations i ~i and
m n t t t!
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i~j{iff j~1i) are evident, we have proved our assertion,

5.4. Corollary. In notations of the preceding proposition, the stationary graph
X 1is isomorphic to a stationary graph X = (X,,) such that X,  ~X for all
ij ij mn

i,j,m,ne It and for any t.

Proof. Let I = {il,...,ir}. Choos e from all xilj, je It-il, a matrix © i) with
de_ . )=4d(e’ . )=1 By permutation of V(X..) we bring e . into E ,
( m(j} m(J)) v P ( JJ) & m(J)lXij q
1
where = |X..|. Then e . e =E X. for j,ke I-i,, By 5,3 this
a=| JJ] m(j) m(k) qC jk ] Ol

implies that Xij ~an for all i,j,m,n e It' Since the It do ot intersect, the

operation can be performed independently for all It’ whence our assertion follows,

5.5. Proposition. If ()0 s 0L Isr is a weak equivalency, then 97 is an iso~-
morphism of algebras, U and J have the same rank and degrees of a central

decomposition (cf. 2).

Proof. Since, by definition, J preserves the structure constants, clearly is
an isomorphism of algebras.
k
From d(ei) = Ejaij (if this sum is not zero (cf. 4e)), it follows that

(g (ei)) = d(ei). This implies the remaining assertions.

5.6. Proposition. Let ¢L and Lo be split cellular algebras, If ¢ :o0L — & is

a natural weak equivalenc then is an isomorphism,
Y’ p

Proof. One has n = |ot] = | B], dimot = dim b= 2. Let E =%, _e, =
E— n 1eIO i

=3, fj’ where e, € oL, fj € fy By the preceding assertion, C)O(IO) = J_ (since

_]eJ’O 0

2
ie IO iff ei2 = ei). One can assume that IO = JO =[l,n], I=J=[1,n]. After an

gpropriate permutation of the elements of a standard basis of the underlying space of
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Ol one can assume that

ei=d1ag(0,...,0,1,0,...,0) , ¢ IO'

A permutation of the underlying space of 15 brings f, into the form
1

I’i:e.1 for all i IO=JO.

Assume now that the underlying spaces of 0L and J;' and their standard bases are
identified and e, = f,1 for all i« IO. I assert that in this united basis the equality
e = fm holds for all me I. Indeed, if m ¢ I, there exists a unique pair i,

je IO, such that eiemej # 0. Then since ¢ is a natural weak equivalency, we

also have fifrnfj # 0. From the above form of matrices ei = fi’ ie IO’ one con-

cludes that e =f for all me¢ I as asserted,
m m

6. Some Numerical Invariants of Cellular Algebras. The numerical invariants

introduced below are used in Section N,

6.1, Let X =(X..) be a stationary graph. Let us assume that we are given

iji,jeI
a partition ]| of the index set I: I =\ Im' ¥ p= (pl,pz, v ,pt) is a vector

whose components P, lie in some linearly ordered set, let us denote by Pora the

i > > > =
vector (pi seea Py )} with pi ~pi - _pi . Ifp (pi)isl we denote by

1 t 1 2 t

Pord the vector whose components are ordered only within each Im and com-
2l —_—

ponents numbered by different Im‘ s denot mix, When we compare vectors of

different length, we assume that short vectors are supplemented by zeros.

6.2, Let X,,= Z x e, Put
S IR g
T(i, j)
X)) = (d(eil),...,d(eir)), where {i,...,1} = T(,J);

n X = (%1 |xjj|,dimxjj, by X 0 g

)
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G M X (X, (uy (X))

ﬂ);

ord,

My TT (X} = (“z,ﬂ X..)

i 1"

“3,1_[(X) = (rgX,(u3,ﬂ(X)) —T)‘

ord,

6.3, Remark, This set of invariants is sufficient for our immediate goals. Let us
note, however, that one can consider iterations of these invariants. For example,
one can substitute |X., in X.) b — (X,, etc, , until stabilization,.
n ute | 11| H ( 1J) y oty &
Furthermore, one can consider both matrix and vector

invariants., For instance, one can consider the matrix (;.zz 7 XN Itisa
N

ij7i,je T

matrix with linearly ordered entries. For this matrix one can construct its
stationary graph {cf. M3) and subsequently compare such graphs., One can also
put into correspondence with . the matrix (ainj) and thereupon compare these

matrices, One can substitute the latter matrices into the definition of ul(Xij).

This leads to tensors of order 3, etc.




F. CELLULAR ALGEBRAS ARISING IN THE THEORY OF PERMUTATION GROUPS,

Although cellular algebras arise in different contexts {in our case
as the result of graph stabilization) (cf. also [Hi 3]}, the most important examples
of cellular algebras are the centralizer rings of finite permutation groups (see below).
It is known (the graphs of the 26-family of Section U are examples) that there exist
cellular algebras which are not centralizers. However, centralizer rings provide
us with a variety of notions and approaches which prove to be useful.  Most of
the constructions of Sections G-{QQ are based on the corresponding notions in per-.

mutation group theory,

1. Let G be a permutation group on a set M =[1,n], and Ml’ vy Mr be its

orbits. Ietus considerthevector space V with basis £ , §n. We define an

R
action of G on V by

o, =¢
i

oi’

Let }(G, M) be the centralizer ring of G, that is,
3(G, M) = {(Bem_: g'lBg =B for all ge G}. Then %(G, M) is a cellular alge-
bra {cf. [Hi2] and 2. 3 below) with respect to the basis {ij,i}, and {éi} is a

standard basis of V. Below we shall construct a standard basis of }(G, M).

2., I xe M, then Gx denotes the stabilizer of a point x, Let us choose a point

x; in each orbit Mi of G on M, Let D ..,...,

D . . . . beorbits of G on
1ij r(i, §). 1, X

i

M..
J

2,1, We construct graphs Fmij in the following manner, We connect the point
gx, with all points of the set gDmij’ for all g ¢ G, This definition does not
1

depend on g, Specifically, if gx, = hxi, then h-lg ¢ Gx , and therefore
i
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gb .,.=D_..,i.e., gD ,.=hD_,,, Let e ., be the adjacency matrix of
mij mij mij mij mij

r ..
mij

2,2, Assertion, Thematrices emij form a basis of the centralizer algebra

3,(G, M}

Proof. We shall write }(G) for }(G, M). First, all matrices e .. are in
—_— mij
}(G). Actually, if he G, then in I‘m,, the incidence of hgxi to points of
1]

hgD .. implies that he AutI'’ , . Hence e .. commutes withall he G,

mij mij mij

Take now A ¢ 3, {G). Since D .. are orbits of G , the conditions
mij x,

hxi =x; hAh_l = A imply that in row x, of A all positions corresponding to

.. are occupied by equal elements, say a_ ... Then the matrix

mij mij

B=A- =

is in 3,(6), and all elements of row Xi of B are equal
m,i,j

a ..e .
mij mij
to zero, Using the transitivity of G on Mi’ and the condition ng-l =B, ge¢ G,

one establishes that B =0. Q.E.D,

2.3. Corollary, ;(G, M) is a cellular algebra with unity and {emij}ls its
standard basis,

Unity of 3,((}, M) is the sum of matrices e ., Where

mii), 1,1
m(i),i,i i

2.4. Remark, There is no inverse correspondence, that is, in general

}(G, M) = }(H, M) does mtimply G = H. As a trivial example, one can take the

case G = SymM. Then for any doubly transitive group H on M one has

}(G, M) = ;{(H, M) = Sn' A less trivial (but nonetheless very special) example is

given in G2,6,
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3. Remark. The purpose of our constructions is the following . If a graph I
is given, how does one construct the matrix algebra g(AutP, V(I')). Every
stabilization (cf, Sections C, M, N, O) draws the algebras ¢7(I"} and }(Autl", v(I'))

more and more together,

4, Let us once more point out the meaning of the notions of Sections D and E in
the case when the cellular algebra is the centralizer algebra of some permutation

group. Let G be a permutation group of a finite set M, & = ;(G, M), X = X(&).

4.1. Graphs em. If {ei} is a standard basis of 01, then G acts transitively
on edges of every graph e - This explains our aspiration to find differences be-

tween non-diagonal variables of a graph,

4,2, I X = (Xij) {cf. E2), then V(Xﬁ) is an analogue of an orbit of a group. In

particular, for % the sets V(iii} are orbits of G (and also of Aut%),

4.3, I emC Xij’ then d(em) is an analogue of the length of the orbit of the stabi-
lizer of x ¢ V(Xii) on V(ij). For ;(, this number is equal to the length of an

orbitof G on V()NC..).
x 1]



G. SOME CLASSES OF CELLULAR ALGEBRAS,

Some general classes of cellular algebras are constructed below,
Most of them are modeled on the corresponding notions of permutation group
theory or of the theory of algebras, Some of the classes introduced below are
used in the canonization algorithm of Section R,
The description of the properties of some classes requires the use of
results of subsequent sections. We introduce them nowinthe hope that they

can be useful as a f{rame of reference,

1. Group Rings,

1.1, To each finite group G there corresponds the cell Z[G]. It is defined in
the following manner:

i} V = Z[G] is the group algebra of G, and the standard basis of V consists of
elements of G;

ii) a standard basis of our cell consists of the operators of left multiplication

ei = Lgi : g-»gig, for all ge G,

We call this cell the group algebra (or ring) of G,

1.2, Clearly d{ei} =1, for every element of a standard basis of Z[G]. The con-

verse assertion is also true.

Proposition. Let 06U be a cell. If d(ei) =1 for all e then 0L = Z[G], where

G is an appropriate group.

Proof., Since d(ei) =1, ei is a permutation matrix, Since oL is an algebra,

e.e

.=e_,. .. Therefore, matrices e, form some group G. Clearly,
iy mii,j) i

oL = Z[G].
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1.3. Remark, Z[G] is the centralizer algebra (cf, the preceding section) of the

permutation representation of G on itself by right translations.
2, Direct Sum,

2.1, = .. - ) L . '
Let Y (Yij)i,J ¢ [1,m] z (Zij)i,J ¢ [1,n] be disjoint stationary graphs

Let us define the graph X =Y @ Z = (X, ) by the conditions:
i, jef 1, min]

Xij = Yij for i,je [1,m];
i+m, j+m = Zij for i,je [l,n];
Xij = const for ie [I,m], je [m+tl, min]
or for ie [mtl,mi+n], je [1,m].
In addition, let the Xij be all pairwise disjoint,and disjoint from Z and

Y. The graph Y @ Z will be called the direct sum of 7 and Y. It is defined

up to equivalence and depends only on the equivalence classes of Z and Y.

2.2. Proposition., AutX = AutY X AutZ (direct product of permutation groups,

cf, 2,6 below).

Proof. AutX preserves V(Y)C V(X) and V(Z)_ V(X) since Y and Z are
disjoint, Take ge Sym V(Y)( Sym V(X), g ¢ AutY. Thenitfollows from the con-

stancy of the blacks Xij’ ie [l,m], je [mtl,mtn], that ge AutX., Q.E.D.

2.3. Proposition. If Y and Z are stationary graphs, then X =Y @ Z is also

stationary.

Proof, Evident,

2.4. Proposition, Let Y, Z be stationary graphs, otL= oY @ Z}, l’;: 9L{Y),

f=GL(Z). Let 0_'(?, 3, E be ideals in the algebras Gt,:(;—, L, respectively,
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complementary to the idaa]sa?f, £, z of Lé., Then 0L =3 @ L (direct sum of

algebras),

Proof. Evidently follows from definitions of the direct sum of graphs,and of the

ideals 0T, >, £ (cf. Lb).

2.5. Remark, This assertion shows that the notions of direct sum for algebras and

for cellular algebras are rather close.

2.6, Remark. The direct sum of graphs is an analogue of the direct product of
permutation groups. Namely, let G and H be permutation groups actingon V
and W respectively. Let X and Y be the stationary graphs of the central-
izer rings }(G, V) and }(H,W), respectively., Then (G XH acts on V X W, and

X 5 Y is the stationary graph of }(G X H, VXW),

It is possible, however, for some group G acting on V, that the
stationary graph of ;/\",(G, V) is a direct sum, but this action is not a direct
product of actions of two different groups. This happens, e.g., if G has two

orbits V1 and Vz on V, and Gx’ X ¢ Vl’ acts transitively on VZ (since XlZ =

const by F4,3), A more concrete example: Take G = Sym(5),

V. = Sym(5)/Sym(4), VZ = Sym(5)/

1 Then |G| =120, |V

=5, |v, | =6.

Nsym(s)”s’ )| 2
For emC X12 we have by E4a): 5- d(em) =6 d(e]‘m). Therefore, 6 divides d(em)
and since d{e_ )< 6, we have d(e_ ) = 6, whence X, ,6 = const,
m - m 12
On the other hand, Aut(X & Y) is the direct product of AutX and

AutyY.
3. Tensor Product,

3,1, Let Y, Z be graphs, Define the graph X in the following manner:
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where xij,kd = an,rt iff Vi = Vonr and z,, = Z 4 Y ® Z is called the tensor

product of X and Y.

3.3, Lemma, If Y and Z are stationary graphs, then Y ® Z is also a sta-

tionary graph and rgX =rgY.-rgZ.
Proof, Evident,
3.3, Corollary, If Y and Z are cells, then X =Y E) Z 1is also a cell,

3.4. Proposition, If Y and Z are stationary graphs, £=6’L(Y), L = §L(Z),

oL = oU(Y ® Z), then oL =£’® .,Ex (tensor product of algebras}),

Proof. Follows evidently from the interpretation of X as a generic point of the

algebra L,

3.5. Proposition, If Y and Z are cells, X = Y% Z, then X contains two
normal subcells fy and ,C' such that (cf, J5.4).

a) X/&=Y, X/ =2;

b) X(B)~Z, X(L)~Y.

Proof. Let |Y|~m, |Z]| ~n. As a generic point of £ (resp. ) me con toke the

matrix En ®7Z (resp, Y ® Em). Our assertions are now evident,

3.6. Remark. Theorem J5.4 shows that Proposition 3.5 is close to a charac~

terization of tensor products,

3.7. Remark, A tensor product of graphs is analogous to both the tensor

product of algebras and the direct product of permutation groups acting on
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the direct product of their domains, Explicitly, if G and H are permutation

groups acting on Vl and VZ, respectively,and if X and Y are stationary graphs

corresponding to ?(G, Vl) and }{G, Vz), respectively, then X ®BY corresponds

to }(G XH,V XVZ).

1

4., ‘Wreath Products. We shall define this construction only for cells.

4.1, Let Yl’ PEERRE Yn be a set of naturally weakly equivalent cells (cf., E5.1)
of degree m, and let Z be a cell of degree n disjoint from Yi' Let Z = xEn+E

Y . Put

where Z has zero diagonal and entries different from those of Yl’ cees ¥

X=(Yy,...,Y )\wrZ =%h BY+Z B,
n 1 1 n

17
and let us call X the wreath product of the system {Yi} with Z. (Recall: hi is

the matrix with 1 only in position (i,i) and O in all other positions.)

4.2, Remark. A definition closer to that of group theory would be obtained

in the case when Yl = Y2 = L., 0= Yn and Yi are cells (cf, 4.5 below). In this

case the cell (cf. 4. 3 below} X would be a subcell of the cell Yl B Z.
4.3, Lermma. X is a cell,

Proof, Evident,

4,4, Lemma, If Jf?’ is the normal subcell of X with the matrix Ehi ® Yi' then

X/& =z,
Proof, Evident.

4,5, Let [1,n] :UIt where Y, is isomorphic to Yj for all i,je 1. Suppose

that there exists no isomorphism of Y, and Y, if i and j do
i
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lieinthe samelt. Let G be the subgroup in AutZ preserving all It’ and Gt be

the restriction of G to It' Let H = HiAu.f:(hi ® Yi) (the direct product of per-

mutation groups), Ht = Aut Yi’ ie It'

Proposition. AutX = |H|. |G|; AutX permutes the sets V(hi 2] Yi) in the same
manner as G acts on I. The restriction of AutX to Uieltv(hi @Yi) is Htht
(the wreath product of Ht and Gt)'
Proof. Clearly, AutX preserves the partition of V(X) into the sets
V(hi ] Yi)' By 4.4 it permutes the sets V(h,1 B Yi) as some subgroup of AutZ.
Let us denote this subgroup by G. If there is no isomorphism of Yi onto
Yj' then G cannot transfer i in j. Hence (G preserves each It'

If ge AutX, there existsag' ¢ G such that g'g_l preserves all
V(hi B Yi) and induces an automorphism on each of them. Now our assertion

follows immediately.

4.6, Proposition (compare L 7). The algebra 0U(X) contains an ideal defined

over @) and isomorphic as an algebra to the algebra o¢z(Z).

Proof, The subalgebra with a generic point XC defined in H7 for the normal sub-

cell f¥ from Lemma 4,4 is, clearly, an ideal. The rest is evident,

4.7, Example. Let Yl’ cees YIS be all distinct graphs of the 25-family (cf.
Section U), and let X be the simplex, Z = xEn+yfn, where x,y ¢ Yi’ ie [1,15].
Then

X=(Y1,...,Y ywr Z

15
is a cell (such a cell is called correct, cf. J6), The group AutX preserves all

subsets [15j+1,15(j+1)] for j=0,1,...,14, and it acts on [15j+1,15(j+1)] as the
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group Awut Y.+

410 Moreover, AutX is the direct product of the groups Aut Yj'

4.8. Although example 4,7 shows that the automorphism group of a wreath
product of graphs can be very small, the notion of the wreath product of graphs is
an analogue of the wreath product of groups. Indeed, let

G and H be transitive permutation groups acting on

V and W. Letus assume that V ={l,n]. Let X and Y be the stationary graphs

1 2
,Xn)wr Y corresponds to } (GfH, VXW) (here GJH is the wreath product

of },{G, V} and Z’L(H,W) respectively, Set X =X_ =... =Xn = X, Then
(Xl’ ...

of G with H, cf. [Ha2]).



"H. IMPRIMITIVE CELLS AND CONSTRUCTION OF FACTOR-CELLS,

The notions introduced in this section are modeled on the corres-
ponding notions of the permutation group theory. As in the group theory, they
serve to reduce the study to the case of ''primitive' cells (quotation marks can be
omitted here). Probably, the passage to the quotient can be used in an algorithm
of graph identification, Our use of this tool in the algorithm of Section R is in-
direct, and it relates only to correct stationary graphs,

The analogous situation in the permutation group theory is as follows.

Let G act transitively on V. If V is imprimitive, then

v= U V. and gV._ is some V, for ge G. This gives the action of G on
. i i j
ie[1,n]

1,n]. In the terminology introduced below, G,[1,n]) is said to be the quotient
y q

of g(G, V) by the normal subcell (cf. definition below) defined by V = U Vi'

ie[1, n]
1. Let 6 be a cell of degree n and {ei} be its standard basis.
1.1. Definitions, Let ,(f be a subcellof ot, f ,£,...,f Dbe a standard basis of

01 k

f- We call Jf a normal subcell if
i) for every i< k there exists j such that fi = ej;
ii} fere exists a permutation of a standard basis of V which brings C = Zi< kfi

into block-triangular form

(31 0 0 0
*
C2 6 0
* ok
C;t

The property " ;f?'is a normal subcell of (T ' is denoted by Z@«ﬂ &I,

We shall show below (see Lemma 2) that C can be brought into
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block-diagonal form with diagonal blocks of the same degree, C = Er B Im. We
shall write f.[ﬂ = d{C) and call }[{ the degree of the normal subcell L. The
fact mentioned above also implies that Ei< kxifi is of the form 2:=1hi ) Xi’
where every X,1 is the matrix of a cell and hi is the diagonal matrix with the only
non-zero entry equal to one at position (i, i), Zi< kxifi is called the matrix of
the normal subcell .,C', or its generic point, If all Xi are isomorphic, X(,C’)
is simply Xi.

Sometimes, if it does not lead to misunderstanding, we call

{f

i}i< k a standard basis of the normal subcell L. One can assume that fi = e,1
for i< k., We sometimes write € for matrix C to ewphasizeits dependence

on L. We write e, € £ if eiﬂ C = e,. The metrices e, € L are called the ele-

ments of a standard basis of £ . We write L=1if C= En, n=|ot.

We say that a normal subcell ¥> is contained in a normal subcell
.d {notation J;’ ‘C_.C) if efyg e£, . A normal subcell J> is trivial if either
e33‘= En or e;fy:ln'

A cell which contains no non-trivial normal subcell is called
primitive; in the contrary case it is called imprimitive.

If nC is a normal subcell of U and, as above,
Ei<kxifi = E::lhi B Xi’ we call the system of sets V(hi 2 Xi) the system of im-
primitivity in 01, associated with OC Each set V(hi 4] Xi) is called a set of
imprimitivity in O0C.

Henceforth, up to the end of the section we assume that k is fixed

and f =e, for i<k,
i i

1.2. Examples,

1.2.1. Let us first take the case of }/(G,V), G an imprimitive transitive
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permutation group of V. Let V= U V, be some imprimitive system for
ie[1,n] t

(G,V). Let Gi be the subgroup of G preserving Vi' and Xi be the stationary

graph of }(Gi,vi). Then Ehi B Xi is the matrix of a normal subcell in }{(G, V).

The corresponding imprimitivity system is, of course, {Vi}'
1.2.2. All graphs of Cl2 are imprimitive cells.

1,2.3. Simple examples of primitive cells yield oriented cycles with prime

number of vertices.

1,2.4, ©Petersen's graph is an example of a primitive cell of degree 10. It has
three basic graphs:

e. : loops, graph;

B

e, : the complementary graph of e

1.2.5. Examples of imprimitive cells are constructed in G3, 4,
2, Lemma, Let aC ‘be a normal subcell of a cell L. If C = Ei< kei (in the
assumptions of 1.1) has a block-triangular form, then it can be brought into

block-diagonal form,such that diagonal blocks contain no zeros and have pairwise

equal degrees,

Proof., Let us consider fk and f!, They have the following form;

k
11 ... 1 )
11 1 o
f = =
K T
\ ) A [ A d
\ \11 1




By definition of a cell {cf. DL.2) each row of A contains d ones. Therefore,

- . ' 533 = f1
A =1, But since fkﬂ fk # 0, we have from D1, 1iii) that fk fk'

Set C= X e,. Since £ =f!, C=1 -f
i k n

i<k k k

C' = C, whence the first assertion of our lemma. Let I" be the graph whose

(where n = |oL|), we have

adjacency matrix is C-En, then I' is a simple graph, Let I.,T,... ,I"‘r be its

1’2

connected components. By our assumption, r > 2, Let us renumber thevertices of

I" in such a way that C is brought to the form

C1 0 0 0
0 0
C2 4]
o 0 C3 ... O
0 0 0 C
T
where Ci_Elc I is the adjacency matrix of Fi'
i
Let us show that C, = I We have 57 CT =X, . af
il Ve Fmat T iR
. n m
Clearly, ak = 0. Since the I."i are connected, we have Em:lci DI|Ci|. There-
b D . iii = = = .
fore,by DL.liii) we have Ei< kfi Ei< kei I!Ci|, whence Ci Ilci|
Since }Ct] =d{Cj = Ei< eri = m does not depend on t, we have

tCtI =m for all t, i.e., Ct = Im, whence the last assertion of the lemma,

3. Bringing C into a block-diagonal form, we define a partition of the matrix

X = ¥x,e, into (m Xm)-blocks X,
ii i)

Xll XlZ er \

X X .. X /

v orl r2 rr,

Proposition., Any two rows (and columns) of blocks of the matrix X = (Xij) either

have coinciding composition or have disjoint composition,
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Proof, Let % be a row of block X'j and o, be a row of Xkl' Suppose that
- 1

Eo Xij # ):0 xij’ that is, that our rows have different composition, Then there
1 2

evidently exists a variable x suchthat I x,.=pxX +..., X X, =p,X +...
q o; i 1'q o, 1 2q

and 121 # P, Consider then the product eq- C. All entries of the row o of this

matrix are equal to and all entries of row ¢, are equal to . By definition
Py P, y

2

of a cell, it follows from the above that 61 and 02 have no variables in common,

that is, our assertion holds.
Let us note that the above proof also holds for two rows of one

block,

4, Definition., Blocks Xij and X are called similar (notation Xijzx ) if

kd kd

for every row (column) of Xij there exists a row (column) of X with equal

kd

composition and if the same holds for the pair Xkd' Xij'

Proposition. All diagonal blocks are pairwise similar (inother words, all cells
Xii are pairwise naturally weakly equivalent), Every non-diagonal block is not

similar to a diagonal one,

Proof, Both assertions follow from 2 and from the definition of a cell, Indeed,
all variables Xi’ i< k, are in diagonal blocks, and all other variables are outside

diagonal blocks,

Proposition, Two non-similar blocks Xij and Xkl have no variables in

common, In other words, if e has ones in X_,, then e MX . =0,
¢ ij q Kl

Proof, Let Xij# Xkl' Then, by definition, Xij contains a row o such that all

rows of Xk have different {from o) composition, By Proposition 3, ¢ and X

1 k1

have disjoint composition, For any column 71 of Xij’ Xkl does not contain the
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element 7/( 1o of this column (since it is an element of ¢}, Therdore, the composi-
tions of 7 and Xkl are disjoint (by Proposition 3 applied to columns), Since 7

is an arbitrary column of X‘j’ our assertion is proved.
i

6. Proposition, Let Xijzxkl be similar blocks of X, Then

z x =X X,
Xij uv Xkl uv

that is, similar blocks have the same composition,

Proof, It is sufficient to show that Xij and X . have an equal number of rows

kl

of any given composition, Let oy be a row of Xij’ and suppose that Xij (resp.

Xkl} contains P {resp. pz) rows of the same composition as o) Note that by

Proposition 3 no variable of the row o, lies outside those Py {resp. pz) TOWS,

1

differ by their com-

Therefore, if , any two columns of X,. and X
P 7Py Y ij Kl

position. This yields a contradiction to the condition Xij :Xkl'

7. Definition, Let 0L be a cell with unity, X = EXiei its graph, £ a normal
subcell of ¢, m the degree of diagonal blocks of C, n = m-r. A factor-cell is

a graph Z (and its algebra ¢UL(Z)) of degree r defined by the conditions:

Z,. = Zst iff Xij NXst‘

The notation is Z = X/ and 01(Z) = 0t /L. The factor-cell /1 is also called the

quotient of T by L .
Theorem, The factor-cell ot/ is a cell.

Proof. Let us consider the matrix XC ~Z® Im of degree n. (It is obtained

from X by changing each block Xij into a constant block Zy Im in such a man-

ner that non-similar blocks give rise to different variables, )
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To begin with, let us note that in the product XC- XC, in place of
entries of some block Xij’ there arise equal polynomials, Further, let us show
that in place of equal entries of matrix XC in XC' XC there arise equal poly-

nomials. Suppose it is false for blocks X and X , X =X ., Set
st pa st rq

g.. = > e . Then one has g.rg MX =al_, g .-g ,(1X =bl
ij emmxijfom ij "kd st m’ “ij “kd Pq

a #b, for some i, j, k, d. By definition of a cell, this contradicts our assumption

that qu~Xst. Q.E.D.

Thus we have just shown that XC is a generic point of an algebra

(i.e., (X (XC) implies (XC~X = (XC-XC) ). Since XC ~Z B Im’ we

chj = kd cij kd
have shown that Z is a stationary graph. Since by Proposition 4 the diagonal

entries of Z are equal, it follows that Z 1is a cell,
8.1, Remark, ¥ £ and £ are cells, then there exists an imprimitive cell

6t with a normal subcell J¥ ""isomorphic' to L> (in the sense that

z = Er ® X(5)) such that a/&;*\%ﬁ Examples of such cells 0T are given

I<Ki'1
in G3, 4.
8.2, Remark, Inthe case JU = Z[G], normal subcells are subcells Z[H], where
H is a subgroup of G. Factorization corresponds to the construction of the

algebra of double cosets H\G/H, which is } (G, G/H), The sense of factorization

in the general case of an imprimitive group (G, V) was described in the introduc-

tion to this section.

9. A Geometrical Interpretation of the Notions of Subsections 4-7. Let us con-

sider a cell with unity 6T and its graph X. Let JU contain a normal subcell,

, e , be its basic elements chosen as in 1,1. Let us con-~

andlet e _=E , e
0 n

T k-1

id . - .
sider the matrix A Heick®

H
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Lemma 2. A is the adjacency matrix of the disjoint union of r complete graphs
Fl, e ’Fr having the same number m of vertices. The set of the edges of the

, is characterized by a row

graph X which connect a ¢ V(I‘j) with vertices of I‘,l
of the block Xij'

If a,be V{X), then Proposition 3 asserts that the sets of the edges from
a to V(I“‘i) and from b to V(Fj) are either the same (as to colouring and multi-
plicity) or have no colour in common, (The cases a =b and/or l“.1 = I‘j are not
excluded, } Finally, Proposition 5 and 6 assert that for any i, j, k, d the sets of
edges leading from V(Fi) to V(I‘j) and from V(Fk) to V(Fd) are either the same
or have no colour in common,

The factor graph is constructed in the following manner, All
vertices of each I‘i are identified,and edges connecting new vertices 'inherit"

the "colour' of the set of edges leading from V(Fi) to V(Pj)'

10. Definition. An oriented graph I' is called strongly connected if there is an

oriented path from any of its vertices to any other vertex, If, however, for every
two vertices a and b at least one (and, possibly, only one) path exists from a

to b or from b to a, I' is called connected,

1l. Lemma, Let 01 be a cell and {e,} its standard basis. Let A =X, be
i i

17
the sum of some basic graphs, Let I" be the graph whose adjacency matrix is A,

If I is connected, it is strongly connected,

Proof. ILet ae V{I). Let D(a) be the set of vertices which can be reached
from a., Put
A= {be V(I') : b #a, ac D(b), b ¢ D(a)}

B_ = {be V() :b #£a, ae DB), be D@a)}
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c, = {be V(I') : b #a, a ¢ D(b), b e Dia}}.

It is evident that V(') = alJ AaU B C,.

Now, in the graph I', from a there exist paths only to the points of
Bau Ca, Consider b e Aa' Then from b there exist paths to points of
BaU CaUa and, possibly, to some points of AL KA #¢, then D{a) and
D(b), b« Aa’ have unequal cardinality, This contradicts Cl0 and D3ii). Hence
Aa =¢.

Hence BaU CaUa = V(I"). Since by Cl0 this equality holds for

every a ¢ V(I'}) it follows that I" is connected.

12. Proposition. A cell T with unity is imprimitive iff it contains a discon-

nected basic graph e i> 0.

Proof. If J is a normal subcell of 0T , then every ei ¢  is disconnected,

Suppose now that e, is disconnected, Put

1

B = En em = Lhe, .
m=1"1 ii

It is clear from geometrical considerations that the graphs e, for which bi £0
are disconnected, and thatthe vertices of each of their connected components are contained
inthevertices of some connected component of e It may be assumed that bi #0

for i=0,1,2,...,k-1, and bi:O for 1> k, Then X,

i< kei = Er 2 Im for some

r and m., Therefore, eo,el,.

normal subcell, Q. E.D,

s ek 1 is & standard basis of some non-trivial

13, Theorem. A cell 60U is imprimitive iff there exists a {proper) subset K of

e, has two equal rows and B # I.

indices such that matrix B = I, .
jek i

Proof. Let £ be a normal subcell of sr.. Then fk (in notations of 1.1)
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satisfies our conditions,

Conversly, let B =X K # I contain equal rows. Let

0, =0,=... = Gq be the first ¢ rows of B and suppose that o # oy for all

s 2 0. (This is mt restriction of generality since it can be obtained by simultaneous
permutation of rows and columns, ) Let d(B)=d. Consider the product B:B!',
All entries of the principal (g Xq)-minor M of the matrix B-B' are equal to d,
Furthermore, all other entries of the first q rows are < d. By defini-

tion of a cell it follows that B- B! = %L, de, + T,
i€ i ie K

a, e, where a, < d for
1 5 11 i

K
ie KZ‘ As follows from the previous discussions, from Dl.1iii) and from

Lemma 11, all ei, ice KL’ are disconnected, Thus our cell is imprimitive by

Proposition 12,



I. CONSTRUCTION OF THE QUOTIENT IN THE CASE

OF CELLULAR ALGEBRAS OF RANK GREATER THAN ORNE,

Similarly to the definition of factor-cells (i.e., rank one case, see the
preceding Section), a definition of the quotient can also be given for general
cellular algebras. Such a definition is needed to complete the picture,

It is in this generality that the notion of the quotient may be used in the study of
isomorphisms of graphs.

Since the extension to the general case of cellular algebras does mot require any
new ideas, we give in this Section exact definitions and omit proofs (with the

exception of the proof of Lemma 2).

1. Let X = (Xij) be a stationary graph. Let "Ei be a normal subcell of X , and

my 11
V(Xii) = U Vt be the corresponding partition of V<Xii) into imprimitivity sets., We
i=1
do not exclude the cases |V.| =1 for all t and |Vi| = |X..]. Set N = |X |,
t 1 ii i ii

s . i
i The partition of V(Xii) into sets Vt

k,=|£,|’ C,:e =
17 1y z,

e .
e
e "Di "

induces the partition of matrices Xi' into (ki X kj)-blocks Xi' = X(V;,Vi).

j,ts
Definitions.
1.1, Two rows {(columns) O < X, . and T < X, , are called similar (notation
ij,ts 13,P9 _—
O =T}, if
X 0 Xuv T x Le’r Xuv
uv uv
1.2, Two blocks X, , and X, are called similar (notation X,, ~ X, ),
ij,ts ij,pq —_— ij,ts 13,P9
if for every row (column) O < X, ., there exists a similar row (column) T < X, ,
ij,ts 1J,Pd
and the same holds with the roles of X, , and X, , interchanged.
ij,st 11,Pq
2., Lemma., Let 0. C X, . and O, < X, be two rows (columns) of blocks of
_— 1 ij,pq 2 ij,ts

X. .. If O %0, then O, and O_ have no variables in common.
ij 1 2 L 2
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Th . : - - . .

e Proof will be given only for rows. Let ?1 X.Z%G L) 22 x.zéc X Since
uv 1 uv 2

oy 'é o, there exists a variable % such that Xl = arx, + vee 22 = ayx, + e

and a; Fd ay. Consider the matrix e Cj' This matrix has ay for each entry of

Tow Oy and a for each entry of row ¢ By the definition of a stationary graph,

2 2°

this implies that oy and g, have no variables in common.

3. Proposition

3.1. If X, # X, . then these blocks have disjoint composition.
13,P4 ij,ts

3.2. 1f then these blocks have equal composition, that is

X_. ~X.,
ii,pq ij,ts

E X == E X L3

uv uv
x eX. . x eX. .
uv’ ij,pq uv ij,st

The Proof is exactly the same as for cells (see H5, 6),

4, Definition. The factor graph Y = (Yij) of a graph X = (X by a system

)1, jer
{A:i} of normal subcells J:i'm X, 1is defined in the following manner:
1

15

a) The vertices of Y are the sets Vi, ie I, te [1,mi];

b) If y_ , Ver € Yij’ then ypq =y if and only if

pq st

X, . ~X., .
13,Pq ij,st
5. Theorem, The factor-graph of a stationary graph X = (Xij) by a system {{,} of

normal subcells J:i'ﬂ Xii is a stationary graph of the same rank as X.
The Proof is the same as that of H7,

6. ©Notations., Keeping notations of &4, we write
Y- LN X5/ ,,Cj .
iIf i = j, we abbreviate

Y, .= X /do .
1i 11 1

=1 for all t) we write Y, .=X /L., ¥,.= &L .NX, ..
i] 1] K| Ji 1 1]
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J. ON THE STRUCTURE OF CORRECT STATIONARY GRAPHS

AND CELLS HAVING MORE THAN ONE NORMAL SUBCELL.

We begin this Section by stating simple properties of factorization and some
conditions for existence of normal subcells,

We then pass to the study of cells with two or more normal subcells, The
results here are analogous to results of Kuhn [Ku 1] about imprimitive permutation
groups. We give these results to show how some of the notions introduced in the
preceding Sections can be used to restrict the structure of stationary graphs. The
annex, described below in 4,3,can be used in algorithms of graph canonization
{although it is not used in Section R).

The Section is concluded by the study of correct cellular algebras, These
algebras form an obvious obstruction to usual algorithms of graph canonization
(cf. R 9.2). We describe in 6.7 a construction which permits dealing easily with
these graphs. Other parts of Subsection 6 are dedicated to the proof that the
approach based on 6,7 can be used and can be used with advantage (its use is
described in R 5,4.2, R 6.2). A non-trivial example of a correct cell is given in

G 4.7.

1. Elementary properties of factorization

Let X be a stationary graph and X = (Xij) be its decomposition.
1.1, Proposition., Let 45, 4z, ., J5,q X, . Then
1 i1 J 1]

DNE By = BN L) = N\ IR,

Proof, Evident,

1.2, Proposition - Definition, Let J;’Q Xii’ Zird xii/zﬁ. Then there exists

i
FA <2xii such that ez) gea&,,

> ¢
images in V(Xii) of the imprimitivity sets ford> inm Xii/lﬂ. A is called the

4 s
and the imprimitivity sets for 19 are inverse

inverse image of L QX /& in X, ..
ii ii
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Proof, Evident,

1.3. Proposition. Let < Xii’ L« Xii and e»:C Sezf

Then

~

a) Xii/’c contains a normal subcell L whose inverse image in Xii is Xg);
DER WS-SR INAATE 2
Proof, Evident,

1.4. Corollary. A normal subcell Zﬁ' of Xii is maximal (i.e., there does not

exist o < Xii with e£ < ez’) if and only if the cell Xii/,ﬂ) is primitive.
The Proof follows immediately from 1.2,

2, A condition for the existence of normal subgells
Proposition (compare H13). Let X = (Xij) be a stationary graph,

e =X, . Assume that the non-zero rows of e with

- o -
€rs weny € ., € 11 €0 4 < 1xjj

1]

the indices M5y enns

. @re equal, and that all other rows are not equal to these t

rows, Then {ml,...,mt} is a set of imprimitivity for some normal subcell Lot Xig

Proof, Put W = {ml, cees mt}, and consider ee' = (apq)' Then

apq = d(e) 1if p,q e W ;

a <d(e) if peW, qé¥w
pq P s 94
or qeW, pédW
Put ;g‘ = L a. e,
i1

, I = {1 : a; = d(;)}. By the above discussion I £ ¢, and the

graph f = is disconnected., Moreover, £ N X(W’V(Xii)) = (It,O).

2
( rel er)lX..
ii
Thus our assertion follows.
Geometrically, our proof shows that if each vertex from a set of vertices W
in V(Xii) is comnected by & in the same way to some set of vertices in V(ij),

then this set W is distinguished, The fact that it defines an imprimitivity

system follows from the properties of cells,
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3. A condition for the existence of a homomorphism.

position. = X, i L= L,
Proposition Let X (le) be a stationary graph, XlJ ieT xlel If
d(em,) =1 for some me I, then Xii is a homomorphic image of ij.
Proof. Put d(e) =t, |X | =n,
— m ii
V1 v V3 V4
X = X, . _— X..
ii _ ij
X,.
13

Since d(em,) =1, d(em) = t, it follows that t columns of the matrix are

emIX. .

1]
pairwise equal,and that they are mot equal to any other column of e - Let {5 be the
normal subcell of ij defined (cf, Prop, 3) by equality of the rows of e Passing
to the quotient of X by the system {1 <ﬂXPP, p £ 3, bd ij} of normal sub-
cells,we see that Xij/zg contains a basic element fm (the image of em) which
has the property d(fm) = d(fm,) = 1. Then by E 5.2, fm defines a weak isomorphism
of X, and X_ /X as desired.

i1 i3

Geometrically, e~ serves to paint groups of vertices and edges of ij in the

color of the vertices of V(X,.). If equally painted vertices are identified, we
ii

get the graph Xii'

4, Connection blocks of normal subcells.

4,1, Defipition. Let X be a cell, and let.y and « be two normal subcells of X.

Let X X

17 %90 X3, X4 be four graphs which are equivalent to X and have pairwise

disjoint composition. Then

Y. .). .
lj)l,JQ[l,Z]



is a stationary graph of rank 2,
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One takes & q Y95

ConX(]g),,[:) = z;\ le/,C ’

L qy,,.

and call this matrix the connection block of Zi) with oC .

4.2, Proposition. Let X be a cell, ,fb a X, ,C q X.

be a stationary graph of rank 3 with

Let

Z = (

Set

Zij>i,j=1:2;3

Zyy = XD, 2,, = XL, Zyy = X, Zyy = Conx(z),l), Zyy = Con (L,1).

Then

le = Conx(z,', ,;[;) .

m
11 213 E—
O'\ s - - - ™
A
299
Zy3
Z33
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Proof. By definition of 213 there exists a basic element e < 213 such that

d(em) =1, and e defines (cf. Prop. 3) a homomorphism of 233 into le (em is

the image of the identity matrix, cf, Definition 4.1). It can be assumed that

= i = = e imprimi-
e =E @i, where r = | £ =d(e). Let v, v, ,vr} be the impri

Zyqls

tivity system of Qﬁ). We can consider the similarity of those parts of the rows

of the matrix 223 which lie over sets Vi (see the definition of‘factorization, 14).
Set (aij) =e 232 c 212. It is clear that aij’ icg V(All), je V(Zzz) depends

only on the similarity class of the part of the row X(j,vi) cz This means

3,2°
that ConX(ZD,JS) < 212.

Now consider the first colummn © = X(V(Zzz),l) of the matrix Z One has

21°

C . e < Z Moreover, the first column of the matrix © - e is equal to O,

237

Thus if the i-th and j-th elements of column ¢ are equal, then parts of
rows X(j,Vl) and X(i,Vl) are similar, which yields the converse inclusion, i.e.,

con (B, L) 2 2,

4,3, Annex.
Since the passage to the quotient simplifies a picture, but also leads to the

loss of a useful information, we propose the following construction.

)

Let X = (Xij i,je[1,mn] be a stationary graph, ZL be a normal subcell of
X s
tt

~

Definition. The following stationary graph X - X

)

of rank {(m+ 1) is

ii’i,3e[0,m]

called the annexed graph of X with respect to

Xij = Xij if i,je [1,m]

Xoo - xtt/,,i), Xop = (;onxtt(;é),l)

Yoj = Ji’z\xtj for § # t.

The block X00 is called the annex,
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5. Imprimitive cells with several normal subcells

5.1, Let X be a cell, {Zi}ie[l,t] and {Vi}ie[l,?] be two systems of imprimiti

vity for X, and Jﬁz and £J be the corresponding normal subcells of X,

Proposition. If Vi n Vj # 4, then X contains a normal subcell L' of degree

a = |Viﬂvjl and &' < B, Z)'SZ).

Proof, Let {et, t ¢ J} be the set of all those basic graphs e, whose edges
connect points of the set Vi n Vj. By the definition of normal subcells, and by
Lemma H2, it is clear that et € D, et [ aZ) for all te J. Hence, any path

i

it). Consequently, zteJ e, defines a normal subcell %' and the set \A ﬂ"\ij

along the edges of e, must remain in both sets V, and Vj (if it begins inside

is contained in some imprimitivity system of z)'. Q.E.D.

5,2. Corollary. Keeping the notation of 5,1 one has:

if [V, NV,| -a/o0, then al (| Dol, 15D,

In particular, if (|£)[,\i)|) = 1, then |Vi n VJ,‘ =1 or 0 for all i,j.
5.3. Let us keep the notation of 5.1.
Proposition, Suppose that ConX( KJ, Z;)) = const. Then

a) There exists a ¢ N such that Vv, n '\7 = a for all 1i,j ;
i J

b) |v.| = at, |Vj| = at, for all 1i,j, (recall that t = |X/B|, T = |/ %)),

¢) There exists a normal subcell L'<] X such that | ﬁ;'] -a, ' c L,

Proof. Let |V1 n Vl| =a. Since T = Conx(z), z)) = const, and from the defini-
tion of connection blocks (cf., also 4.2),one concludes that |V1 n’Vi| = a for all

i. This proves (a). Since v, N Vj = ¢ and v, nu '\71 =V, one obtains (b)
i
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from (a). (c¢) coincides with 5.1.

5.4. Let B and JU be two normal subcells of X, f=e,, T= ez
t= XD, T- %/

Let us assume that Conx(li ,Z;) = const, and IVi l V}l =1 for all

i,].

(The latter assumption is not restrictive,since in the general case we can pass to

the quotient of X by the normal subcell L' of 5.3.) We can assume that

V.= i@ -1+ 1, 1F] and v, n’ﬁj = {i(T - 1) + 3},  Then

£=E @iy, T-1 @

Let X = (Xij) (resp, X = (?;j)) be the partition of X into blocks corrxespond-

ing to 2:’ (resp. to 25 ), V(Xii) = Vi (resp. V(X;i) = ?;>.

Theorem. (compare G3). In the above notations

a) |4 - Bl = [
b) The cell X|Z  is weakly isomorphic to a subcell of all cells

(Xii)’ ie [1,t];

1

c) Xi' is embedded into the matrix Xii\/ ij (superimposition of Xi' and

X. confer C&4,1).

j}

Proof. (a) follows from 5,3b. Set

X = diag (Xll’ Xyps ey Xtt)

Then from £ = I_(YE~ and from X-Fc X, Fxc X, the assertion
t t - -

of (¢) follows.

Let us prove (b). Lat e, € OL(X). Define the t X te-matrix Ei =

the following manner:

a . =1 if and only if e, NX__ £ 0,
pqi i P4

[
it

. 0 if and only if e, NX =0,
pPq1 I Pq

(a

pqi)

in
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It is clear that Zi is a basic graph of the cell X/20 (the image of e, inm
/%Y. Identify V(X/®) and ’xfl. Namely, V. € V(X/L’) 1is identified with

i(?'- )+ 1¢ Vi). If ei connects the points p(E - 1) 41 and q(E'- 1) + 1

~

of V&, then e, € Z and e, connects blocks Vp’ Vq e V(X/L)). Hence

e, = e,fv
1

: This yields the embedding of X/Z’ into X

11° Since 1 can be

1°
replaced by any r ¢ [I,Ej, without affecting the proof, our assertion is

established.

5.5. Corollary, (compare [Ku 1]). Suppose that a cell X contains three normal

subcells 21&, sz, 213 and Conx(zgg, L)) = const for all i # j. Suppose
J

further that the cardinalities of the intersections of the imprimitivity sets of

I;;l and B, , and of “&2 and ,&3 , is onme, Then
o 12y - 18- 1B

b) The cardinality of the intersections of the imprimitivity sets of QZ§1 and

J:% is also ome,
Proof follows immediately from 5.3,

6. Correct cellular algebras

6.1, Definitions, Let Yl’ ceey Yn be arbitrary (m X r)-matrices. The constant

(nm X nr)-matrices and the matrices (compare G4.1) of the form
I -~
X(¥p, eeey ¥) = 2 hi®Yi + x In®1m,r

are called fully correct., {(Recall that h o= diag(0, ..., 0, 1, 0 ..,, 0).) A
stationary graph X = (Xij) is called correct if there exist permutations Oij and

T.. of degrees |[X,

1] and |X, |, respectively,such that for 1 £ j the matrices

1i[ ii
0., X, T,, and for i = j the matrices o,, X,. OT% are fully correct,
ij "ij ij 14 Tii Tii

6.2, Proposition. If X is a correct cell, then X «contains a unique maximal

normal subcell,

e

Proof. Let {eo = En’ 12 e er} be a standard basis of X, One can assume
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=T = e - -1 - = . si
that er In1GD It, where mt n. Then e i<r ei In er Entca It ince
the graph e is obviously connected, one concludes that for every normal subcell JS

in X, e, < e, Thus e defines the unique maximal normal subcell, Q.E.D.

4

6.2.1, Remark, Geometrically, a correct cell is a stationary graph, whose vertices
are partitiomed, V = U Vi, and any pair of vertices from different Vi is comnected

by an edge of the same fixed color.
6.3. Qorollary. Any factorcell of a correct cell is correct.

6.4, Theorem. Let X be a correct stationary graph. There exist permutations Gi

| such that o, X G}l is a fully correct matrix,for all i,j.

of degrees |X_.

ii ij
Proof. Let us bring the diagonal blocks Xii into a fully correct form, Now consid-
er non-diagonal blocks, Let Xij = Z§71 X, ei. We can assume without loss of
generality that Xij # const (in the contrary case Xij is fully correct) and that
ey = U(T;IQDIm r)T for some permutations ¢ and T, Then m rows of e1 are

b4
pairwise equal, These rows define (Proposition 2) a normal subcell 29 of Xii'
Analogously, r equal columns of Xij define a normal subcell 25' of ij.
Consider the factor-graph of X by this system of normal subcells. We have

(. _ t _ —
z;\xij/z& =x £ +y f,, d(f,) = d(£)) - 1. Therefore (cf, E5.2) xii/z)_ S,
ij/zﬂ' =8 . Then 6.2 and 1.4 imply that pA (resp, ') is the unique maximal
normal subcell of X, ., (resp, X,.).
11 1]
Let J;& be the (unique) maximal normal subcell of Xii (for every 1i).

Consider the factor-graph X of the graph X by this system of normal subcells.

As was shown above,

* X -2 _
*) X5 i\xij/Z)j TR ITRE TN

—_ 1 .
ij i 8 14 d(gij) = d(gij) =1

if and only if Xij £ const,

ek . P . _
(*%) ZQ;\ Xij/lig = const if and only if Xij = const

Now using Corollary E5.4, one can bring X into a fully correct form. By (¥)
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and (**) the same permutation (mutatis mutandis) also brings X into a fully correct

form.

6.5. Corollary. Every correct stationary graph is isomorphic to a fully correct
graph X = (Xij)' Moreover, X 1is decomposable into the direct sum of fully correct
graphs Xt having the following property:
Let Zsi be the maximal normal subcell of Xii' Then there exists a natural
t

number n = n(t), such that Xij < X implies that ;ﬁa\\xij/jﬁﬁ is of the form

xEn + yIn.

Proof follows by 6.4(%), 6.4(%*) from the proof of Theorem 6.4, from E5.4 and from

1.4,

6.6 Corollary., a) A cell ZieI X, ey is correct if and only if there exists

e =X such that e = %, e, defines a normal subcell,
m iel-m 1i

b) Let X = (Xij) be a stationary graph,and let all cells Xii be correct.
Let 22& be the maximal normal subcells of Xii' The graph X is correct if and only

if,for every X.. # comst, there exists e <C X, ., such that
ij m ij
d(em) = iXJJ1 - ‘ZZ'J‘: d(emv) = ‘Xii‘ - ‘zli"

and such that 2;1 and Z% are defined by the equality of the non-zero rows and

columns respectively of the matrix e

6.7. Let X = (Xij) be a fully correct stationary graph, which cannot be

i, jel

decomposed into a direct sum of graphs (cf., 6.5). Then Xij # const for all 1i,j,

and
= 0 T .
X5 = Ty B OY y tx e Imimj
- s 'y o = - X' i
Definition., Put Yk (Ykij)i,jel and F(X) {Yl, ceey Yn} The set F(X) is

called the disassemblage of X.
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Lemma. For all k, the graphs Yk are stationary graphs of the same rank as X.

Proof. Evident,

6.8. Theorem, (compare G4.5). Let X, Y and F(X) be as in 6.7, Suppose

k
further that [1,n] =U Jes and that Yo, Yj’ i, 1eJ, are isomorphic, but that Y.
and Yj are not isomorphic when i, j come from different Jt. Then Aut X

contains (as a subgroup of the group Sym V(X)) the direct product of permuta~

tion groups Gt which
a) preserve the partition of V(X) into the sets V(Ykii);

b) have the same induced action on Jt as Sym (Jt);

¢) act on U v(
kEJt

Ykii) as the diagonal of some direct product of groups

S .

yu (I3

Proof., Let v, = V(Yi) and let {gli’ cee, gri} be those elements of the standard
basis of the underlying space of X which lie in Vie By our conditions, we can
in addition assume (after an appropriate permutation of bases of Vi) that

¥, = Yj for i,j e J.» Then define the action of O ¢ Sym(Jt) on {gmr} by

O € mr = & m,0(x) for all r g Jt 5

0 8mr =& m,r for all r 4 Jt

The O defined in this manner commutes with the matrix 2 = (Z'j)’ where
i

2., =58 1 Y . : - L T .
. o1 k»@@ Kij Since Xij Zy, =% I ® Imi,mj, 0  also commutes with X,

that is, O €& Aut X. Q.E.D.



K. PROPERTIES OF PRIMITIVE CELLS.

Sections H~-J show the importance of factorization, The question arises: 'What
is the structure of those cells which cannot be factorized?” In particular, how can
one describe the result of factorization? The properties of these cells (called primi-
tive, cf, H 1.1) are mostly unknown. The results which we give below are of an
arithmetical nature, that is, they give some restrictions on numbers a:j. Such
results possibly can be used to estimate the performance of an algorithm of graph
identification.

The results of this Section are analogous to the results about primitive per-
mutation groups (cf, [Wi 1, 17,5, 17,4, 18,7], [Hi 1, 4.1, 4.2]).

Let Ol be a cell with unity, {e. }

i db' :X 3E.
iie1 its standar asis, X (oL}, eo

n
Suppose that Ot is primitive (that is, does not contain nontrivial normal subcells,

cf, H 1.1), Then all the basic graphs e i e I-0, are connected (by H 12),

1, Proposition. If 6CL is primitive and n, =1 for some 1 # 0, then

oL Z[ZP], the group algebra of the cyclic group Zp’ p a prime,

Remark. In this case, any basic graph e i £ 0, 1is an oriented cycle of length p.

To prove the Proposition we need the following:

1.1, Lemma., Let A; be a cell of degree =n, and suppose that

n, =10, = ... =n_=1,m#£ 0, and n, >1 for i>m. Then ey, e, ..., e

0" 1 m 07 717 m

define a normal subcell & of 25. They form a group of order m. In

particular, m divides n,

Proof of the lemma, As in GI1, Byreeese  arE permutation matrices, Since e e,

™ i3’
i, j<m is also a permutation matrix, we see that e.e, = e with
y ] &Zom, P 2 1% k(i,3)
k(i,j) < m. Therefore, the e, i <m, form a group of order m. Put e = Zi<m e-

Then Ez =m g, whence it follows that e e, define a normal subcell,

O, seey

1.2. Proof of Proposition 1. It follows from the assumptionsof Proposition 1, and from

Lemma 1.1, that OU contains a nontrivial normal subcell, Since OC is primitive,
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this normal subcell coincides with OC, Therefore, oL ~ Z[G] for some group G.
Since normal subcells of Z[G] correspond to subgroups of ¢ (cf. H 8.2), it

follows that G contains no proper subgroups. Therefore, G ~ ZP, P a prime,

Q.E.D.

2, Proposition., 1If a cell oL is primitive and n, =2 for some i, then IGL[ = p,

p a prime, and all basic graphs e i > 0, are non-oriented cycles of length p.

1

Remark, It can be expressed in the form 0L ~ Z[CO + o 1, of - 1, 0 a permutation.

Proof., It follows from Lemma 1 and Proposition 1 that o, >2 for 14 0.

n, = 2. One has e.e' = 2e + e

i’ i i 0 k’
d(ek) = 2 (since 2 = min d(ej)), e = eé, By P, Hall's Theorem [Zy 1], e is

representable as the sum of two permutation matrices

Now consider a basic matrix e

e, =0 T
% +

Since e, = eé, one has T = U-l. Hence ey is the matrix of a non-oriented cycle,
The cell OL(ek) {(cf, Section C) has the property that d(fi) = 2 for any basic
graph fi of ét(ek). Since Ot(ek) is a subcell of Oy, and since q; = 2,

one has oL = ot(ek). If |ov| =m .+ r, m, r ¢ N, one of the basic graphs is the
disjoint union of m cycles of length r. Hence, if |op| is not prime, oL is

imprimitive, and our assertion is proved,

3. Lemma, If n, >1, a5 =n_, k40, then n, >n..
S— i ij i i N
k k
Proof., We have n, = &_a (by D 4 ¢ 4), whence n, >n_  =a,,, Let us show
= i s is i j ij
that n, = nj = aij contradicts the primitivity of OU, By a simultaneous

permutation of rows and columns, we can achieve that the first row of ei and e

take the form
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respectively., Consider now the first row of eiej. By definition of a cell, it has

the form
(% n, voom, * .., %)
J J
i
It follows that, if n, = nj, all n columns of ej with numbers 2, ..., (nk + 1)

have ones only in lower n, = nj positions, Therefore, they are equal, However,
if o > 1, it is impossible in an imprimitive cell (by H 13). The case n = 1
together with Proposition 1 contradicts our assumption (that 0 > 1), Therefore,

the assumption n, = nj is false, Q.E.D,

4, Let us order the numbers n,. Let Qpr eeer Qg be different values of n., i 4 0,
Suppose that q; < 4, < vee < 9 Set Ik =i n, = qk}.

Then 1-0 = Uklk. We have Ik £ 07 k.,

Lemma. For any two indices 1i,j there exists an s € I such that s # 3, ais # 0,

Proof. Since the graph e, is connected, all entries of the matrix e? are non-
zero (where p is the maximum length of paths in e, having no self-intersections,

p <n). Thus, in the expression

all coefficients at are non-zero,

Let d be the least exponent such that

d
e, = z b e, bj £0
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J . J . @
Hence, Zt ¢, aj, #0, that is, 3l £ 0 for some s,
Geometrically, our assertion has the following meaning. No path of length
d - 1 in the graph X consisting of edges of color 1 can be cut short by an edge

of color j. However, such paths of length d exist, Consider such a path and

consider the edge of some color s which cuts short the last d - 1 edges of this

path., Then the edge of color s satisfies our requirements.

5. Lemma, For any I and any 1 ¢ L, there exists j € I, and k ¢ I, such
that a?, £ 0.

1]
Proof. In the same manner as above, consider all possible paths consisting of edges
of color i, There exists the minimal length d such that some of those paths are
cut short by an edge of the color lying in It. Let an edge of color k, k ¢ It,
cut short one of those paths, and let an edge of color j be the edge which cuts
short the last d - 1 edges of this path; By the assumption of the minimality of d,

one has j ¢ It. Since a?j # 0, we are done,

1

6. Proposition, (qs, qm) Zq, q;-l > 1 for all s.

Proof, Put t =m, take 1i¢ IS, and use the preceding assertion, There exist

indices j and k such that nj < Qpa1r M T Do aij £ 0. From the inequality
D4 ¢ 8 one gets
I
0

and this is our assertion.

k-logpqm_1

7. Proposition, If q, = pk, p a prime, then p divides all q;-
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8. Proposition. If 4, = P, P @ prime, then m =1, that is, all n, are

pairwise equal,

Proof of Propositions 7 and 8 is directly obtained by the application of

Proposition 6,

i (dim X)-2
9. Q41 < 9 9 for all k; a, < 4
Proof. Consider powers of the graph f = Ziel ei. We have
1

ft:E‘ b. e,
i it i

Put I(t) = (i :Es<t (bis £ 0)}, q{t) = max _n, that is, q(t) is the great-

ieT(e) 1’
est of the valencies of those graphs whose edges shortcut some paths having length

d < t, and consisting of edges of colors from 1 Evidently, q(t + 1) < q(t)ql.

1
Since f is connected, one has either I(t) = I or I(t + 1) D I(t) and

I(t + 1) 4 I(t). Hence, q = q(ty), ty < (dim X) - |1, VO] £ @im X) - 2.



L. ALGEBRAIC PROPERTIES OF CELLULAR ALGEBRAS.

We have associated with each graph a matrix algebra, 0i{X), This gives rise to the
question whether this algebra structure can be used to get new combinatorial inform-
ation, 1In this Section we derive some information of this kind by purely algebraic
methods., The results of this Section are analogous to some results about pernmutation groups.
Most of them (and in a more general fom) were also obtained by D, G, Higman [Hi 5],[Hi 6],

We assume some basic facts about the structure and representations of semi-
simple associative algebras (cf., e.g.,[Al 1]). Uninterested readers can skip this
Section since its results are used in very few places.

If A 1is a matrix, we denote by A* the conjugate matrix A' of the matrix A,

If ot is a cellular algebra and R is a Z-ring, we denote the set of all

R-rational points of the algebra OL, by 0T

" i,e., 0t is the set of all those

R

matrices which can be obtained by substituting elements of the ring R in

place of variables in X = X(OL). (In algebraic geometry, X would be called
"the generic point of the matrix algebra ¢f," and the matrices mentioned above

would be called "the specializations of X,'") Let X}Lr denote the full matrix

algebra of dimension r2

-

1. Theorem. Let OUL be a cellular algebra with unity, and let {gl,...,gn} be the

standard basis of the underlying space V., Then
t
a) OLc: @mr (as an algebra);
i=1 i

b) There exist O, invariant and Ol -~irreducible subspaces V,, V,, «.., v

C [ m

of the space V, and bases 511’ ceey Ct i of v, (mi = dim Vi), such that

m i
vV = () Vi’ and the matrix transforming the basis {%i} into {gij} is unitary.
i=1

Proof of this theorem is standard and uses the following
Lemma. Let V be a vector space over €, 0L be a set of linear operators on V,

* —
which contains with every operator A its conjugate A , Let (u,v) =% U, vy be

the hermitian form on V, 1f W is an ({-~invariant subspace in V, then
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i
W ={vev: (v,w =0} is also an (f -invariant subspace,

i % 3
Proof of Lemma. Let we W Ag Ot, Then AWCW and 0 = (w,A)W) = (Aw,W),

2

4
that is Aw e W , Q.E.D.

Proof of Theorem, Let W be an irreducible m/c-invariant subspace in V, Let us

put W =1V It v V. have already been constructed, we take for V

1’ 17 0 Ta d+1

d
any irreducible Ovc-invariant subspace in (@ Vi). By the lemma above, this process
i=1

leads to the comstruction of pairwise orthogonal subspaces Vi <V and V is
clearly the direct (even orthogonal) sum of these subspaces, We can now choose a
basis [Cij}‘ ie [1, dim Vj], in Vj’ such that the vectors {gij} form an orthonormal
basis of V, Then the matrix transforming the orthonormal basis {ii} into the ortho-
normal basis {Qij} is a unitary matrix, This proves (b). Assertion (a) follows
from (b) since any irreducible associative matrix algebra over € is isomorphic to

some MHCT ,
¥

52

2. Corollary. dim 0t = 121 ro.

o
3. Proposition. Let O'UC = @ )Li, )'li ~ mr .+ Let us denote by ¢, an
i=1 i ’
*
isomorphism of )’Ci on )?’Zr', and by O the involution A—> A  of Obc. Then
i

the algebras }’Zi can be renumbered so that

G .
= tell, 5l
1
7’ - ieft, +1, 2t.]
i i-t, 1 ? 1 ’
o}
ﬂi:ﬂi 1€[2t1+1,t] .

Moreover, O induces

on ﬂi@ﬂ

S ie [1, tl], an involution of the second kind;
1

. N , -1 1ol .,
on )’ﬁi, ie [Ztl + 1, tz}, an involution A—> cpi (Si(cpi(A)) Si Y with a

symmetric matrix Si; and

on )’Li, ie [t2 + 1, t], an involution A—> Cp;]‘(Ti(cpi(A))'T'i'l) with a
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skew matrix T .
i
Proof., cf, [Well,

4, Corollary. Algebras JLi(D FeA ie [1, t1]’ and Jli, ie [2t + 1, t] are

itt)?

defined over R.

If ie [2¢, +1, t], r, = 2m + 1, then JZi > AL, over R,

1 i

1
If 1ieg [Ztl + 1, t], r.o= 2m, then over R either fli ~ )713m or

)zi‘:fgygn() M, where £ is the quaternion division algebra.

5. Corollary. If a is the number of symmetric basic elements e; and 1 = dim o,
£ 1
2 T (r+D)

£y
then r -a = 2b for some be Z and a + b = %1 oo+ - 7F 41 5
ri(ri-l)

i:t2+1 2

+

Proof. Let 2b be the number of e with e; # e;. Then the equality r = a + 2b
is evident, Let us consider the second equality., Its right side gives (by
Proposition 3) the dimension of the space of U-gymmetric elements in Ot. It is

evident that its left side equals the same number,

6. Let OL be a cellular algebra of rank r with unity, and X = X(g1) = (Xij)’ i,

je [1, x], be its matrix, Let oz be the cellular algebra with a matrix
Y = (Yij)’ i, j e [1, r]l, such that V(Yii) = V(Xii)’ Yij = const for all

i, e [1, r]. (In particular, dim 0U = rz.) Put Ni = Xii' Let us define the
projection ¥ : 0t —> 0 in the following manner: If e. = Xij’ then
E
d(em) ij
N,
J

block Xij and zeros otherwise.

¢<em) equals , where Eij is the matrix with all ones in the

~

Proposition. a) ot ~ Zﬂ% (over Q).

b) There exists a decomposition Ot ~ éE,(:);ﬁ; defined over @ where the

injection O : 6L —> 0L and the projection Y : oL —> 4L are defined as above,

c) éZ'Q acts as )TLE on some r-dimensional subspace W in V, and acts

1
trivially on W ,
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Proof., (a) is evident, Let us prove (b). First, © evidently is a ring-

homomorphism. The projection VY is also a ring-homomorphism since (cf. E4g)

m ij’? Tk Pq
s
d(em ek) = Z_, a . d(es) = .
d(em) d(ek) if e < X,,, e <X

It remains to check that @ § and ¥ @ are identities on ¢ . This is
evident,

, V., corresponds to X  , cf, EL.
i ii

Let us prove (c), Let V ::@Vi, dim Vi = Ni

Let 8105 vovs Bygyy
= = Z - X = = = .
v.=1lve V., v vy §ji, v, =0}, Put furcher V. -@V,, V-@V,. Then

3
- i ~ - 0 Q
it is clear that O‘lé VO SVO, V = (VO) 5 m,cv = 0, Since V=Vv@®V , dimV=r,

be the standard basis of V,. Put V(,) =C -+ (LE ),
i i i it

we are done,

7. Structure of an imprimitive cell

Let O be a cell with unity, let Jy be its normal subcell, let ey = Eheeisey
r

be a standard basis of o(f), and e = 120 e = Ed®1m. Put X = X(0U) and let

X = (Xij) be a partition of the X corresponding to aé) The cell ¢C contains

the subcell O with matrix (cf. H7) XC = (Yij)’ V(Yii) = V(Xii)’ Yij = const

3 = — Py r3 z bt 3 2 1 .
for all 1i,j, Yij Yst if and only if Xij Xst' Clearly ot 1is an ideal in

oL

.

Proposition. a) The subcell ot  is isomorphic as an algebra to the factor-cell

oL s {the quotient is taken in the class of cells but not of associative algebras);
1= .
b) £ =€ 1isan idempotent of OC;
) £-0L-f= oL

d) d characteristic numbers of f are equal to 1 and (m - 1)d are equal

to zero,

Proof., (a) coincides with H7., We have further, EZ =m E, whence (b). If
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ag £ «0Ls £, then fa = af = a. Hence in every block Xij the rows and columms of
of the matrix a are constant, i.e., a ¢ ae. It is clear, that for a ¢ 5{/ we
have af = fa =a, i.e., ace f 0L £, This proves (c). Property (d) follows

from equality e = Ed ® Im.

8. Lemma. Let OU be a cellular algebra with unity, let {ei} be its standard
basis. Let K be the field of quotients of a principal ideal domain R, cﬂ% =z Kei,

P
dt§ =z Rei. Let M be an GZk-module. Then M contains &%fmodule M with

*
= M. In other words, any K-representation of the algebra Cﬂk is K-

equivalent to some R-representation.

B dimor, dim M

w
Proof. Let Mo eees Ne be a K-basis of M, Put M = 5;& jg& R einj. Let
% % *
nl, <ees M be an R-basis of the R-module M (remember, R is a principal ideal

domain). The elements ei are written in this basis as matrices with entries

from R. Q.E.D.

9. Let 9C be a cell with unity, let ey = En, €15 eees By
t
= = di = = I~
n = |ot|, r = dim ot, n, =d(e). Put 0y, f%a n, T~ )7tri and let M, be
the multiplicity of the nontrivial irreducible (over €) representation of JLi in

e be its standard basis,

£ H
the natural representation of OL, in V. Let V=(P Cf v where V are
[+ d,m’ d,m
d=1 m=1 ? ’
oz,c-irreducible, )13 Vd,m - 5jd Vd’m and c%trmodules Vd,m and vd,q are iso-

morphic for wm,q e [1, Hd}.

Theorem (Frame [Fr 1], [Wi 1, 30,5}, [Hi 5]). In the above notations,

r=1
LE72 r_1 a
i=1 :qez
t 2
T,
ot
&
i=1 i

Moreover, q = a « a, where a 1is an algebraic integer.

Proof, By Proposition 1, there exists a unitary transformation U such that
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i L gl met d,m,i ’
where Md,m,i is (rd X rd)-matrix of a linear transformation of the space Vd,m ’
and all matrices Md,m,i’ me [1, pd] determine equivalent irreducible representa-
tions of the algebra ot, Note that
W e, vhy -3 e Tl w el vl ,
that is
) M(‘i,m,i' - ﬁd,m,i' :
Set
Nij = Sp(Mi, MJ) o

We have by (D 4.c 6):
= =d n o
Sp(ei, ej) (ei) i3 .

N, .
1]

On the other hand, using (*¥) and the decomposition of the matrix Mi’ we have

It

_ vl
N5 SICH Mj) = spQ) MJ,)

Sp(® @M, (O OM )
d m d

,m,1

T SpM, .M .
dm d,m,i “d,m,]j

Now by the equivalency of representations, it follows that
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Sp (ﬁ'

_ -'
4m,1 Md,m,j) = SP(Md .} for all m, pe [1, ud]

.M
sPsi d,p, ]

Hence, setting Md,i = Md,l,i we have

_ Sy

s = %M SpQy Mgy
Suppose M = (mB ), o, Be [1, r.]. Then
d w,d,i’” * ’
T,

t d o o

(F%) N, = 2o u 2 0w ., *m .
i3 d=1 d a,B=1 B,d,1 8}d33

t .
Let us number triads (o, B, d) where o, Be [1, r ], d e [1, t], 2 ri = t, with

numbers of the interval {1, r]. Then

B,d, i~

. O 3.
Let R = dlag(H1 Er%’ Hz Er%’ ceee )y, A= (ai), N = (Nij)' Then by (%%)

N=-A"RA
Let ay = det A, Then
. r~-1 r%
n r_w n, = det N = det R * a, * a, = e My y . a, 3

Let us show that a is an algebraic integer. By Lemma 8 in some basis

‘e of e - i e i matrices T, ,
Ny» 5 nrd Vd,l’ the -transformations e, are written as c d,i
-1 R
whose entries are algebraic integers. We have T, . =3, M, . S where S is an
d,i d "d,i "d d
appropriate matrix. Let us construct for matrices T, . in the same manner, as

d,1i

2

above, the matrix [ Since the linear transformation F-—> S F S—1 of the space
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of matrices has determinant one, we have det A = det K. On the other hand,by the
foregoing remark, det X is an algebraic integer. Hence a, is an algebraic
integer,

It remains to show that a; is a multiple of n. Consider the sum

r=-1
o)
QZ% ai for all rows of A, Let us assume that O = 1 corresponds to the (one-

dimensional and having multiplicity one) representation of OU, described in 6, Then

¢ *]
by (D4.c 4), §>ai =n 61. Hence it follows that a; =mn - a, where a is the
determinant of a (r - 1) X (r - 1)-minor in A, Thus a = a; * n_l is an

algebraic integer. The theorem is proved,

Remark. If 0L is commutative, then the entries of A are characteristic numbers of the
basic elements e, Thus it is possible to obtain information on A and det A in

this case.

10, Corollaries

a) 1If ov splits over @ into a direct sum of the full matrix algebras, then

b) If OL is commutative, and the characteristic numbers of all e, are rational,

then g = az, a € Z.

) If r_-= T, S £ t, implies Mg # M., and if (r, H) =1 for all i,

then

Proof. Under the conditions of (a), it follows from 3 that a, = det Y ez (in the
notations of the proof of 9). Hence a; = ;1, that is, g = a2, a € Z, The conditions
of (b) coincide with the conditions of (a) in the case of a commutative algebra OJU .
Therefore, (b) follows from (a). Because of the first condition of (c), the simple
summands of OU are defined over Q. It follows that they are matrix algebras

over simple division algebras, By the second condition of (c¢), those division
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algebras are fields whence we may use (a) again,

11, Let OU be a cell with unity. By 6, 0L ~ ml@uZJ. We shall show that o

cannot be simple.

Corollary. The case 0T is a cell, Ot~ ml@ mm (over €, m>1 is

impossible, In particular, if dim ¢t < 5, then (U is commutative.

Proof., Let W be the multiplicity of the irreducible representation of mm,

m > 1, in the natural representation of 0L, By 9

2 2
q = i . m n_ W e oz
i=1 *
By 1 and 6, we have m « 4 =n - 1, In particular, (4, n) = L, Thus
o _ m w? n -1 w?
r‘ n, " ¢z However, 2 n =n - 1, and therefore n, < (—)

. i i=1 "1 . i~ 2

i=1 i=1 m

(since the maximum of the product is achieved by equality of multiples), We have in our
- - 1. m?
case {(n - L)m 2 =Mdm 1, i.e., [_—]ni < Mm 1)m whence it follows that
:l -m2 -m2
ni) M7 )<m <1l if m>1, In particular, our ¢ is not an integer,

This contradiction proves our assertion,

12. Rank 2.

Let OU be a cellular algebra of rank 2 with unity

let oU', oL, 31,12 and 0'621 be the matrix algebras whose generic matrices are of the

form
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respectively. Let
o =@ xR, M~
1 1 ri
o :®ﬁ;{? %;: mru
oL =@, JU. ~ . .
1 L ri
Let #i (resp. H%, H;) be the multiplicity of the nontrivial irreducible

representations of JZi (resp. JZ{, JZ;)
(resp. o', oU").
For any given )Zi’ let us define I’

(i) = {3 :zc'j' c:fz:i}.

oL

in the natural representation of

(1 = {j: J‘Lé ca’zi} and

Since 0L D OL' @ oL and 3‘53, }Z’J’ are simple, it is

clear that every )‘L; and 2@3‘ are contained in some ﬂi’

Theorem.
t ., It t H _ L =
A gL ot =0, ol Oy, S 04y, 0L O =0, ot O, =0,
N A . = . ' . "
%y 2= %%y - TG =0 Oy s MG S8,y s
b) |I'(i)| <1, |I'"(i)| <1 for all i.
¢) If |1'(i)| = 0, then )z.l cott, 1f |1"(i)| = 0, then a@icoz,'.
) 1f 1@ =1, 1) = {3}, then n = M. If l1"(i)] = 1,
1(1) = {k}, then b = w.
e) If 1'(i) = {3}, 1"() = {k}, then r =)+ and /LJ.@IZ{;( <)

contains a maximal commutative semi-simple

Proof. Property (a) is verified directly,

idempotent of Jti (resp. of the algebras

subalgebra of )Zl'

Let fi (resp. f;, fg) be the central

JZ;, Jt; considered as the subalgebras

{ _ [ t t "o g 1]
in some fz,j). Then J’Zi = f, o £, ]‘Li = £; ov £, JU = £] oL £]. By the
definition of I'(i) and 1I'"(i), one has
LD e DT e
ot @ fi et BT
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Since )Li ~ %n?i’ one has for %; £ 0 : ?; Jli ?; :»J?Lt for some t.

It is clear by (a) that ?{ 111 ?i c o and E{ )Li T} is a direct summand of
oL'. This implies that ?} Jli ?} = 213 for an appropriate j. Therefore, if-
J1'¢i)] = 0, then |I'(i)} = 1, and (b) is proved. From this (c) and (e)
follow, Let us prove (d)., Since the multiplicity of the irreducible representation
of ?& diilFi (if # 0) in the irreducible representation of 211 is equal to
unity, we see that the multiplicity of the irreducible representation of ?1 /Zi Y}

in the Hi-fold irreducible representation of )Zi is Hi. This proves (d).
13, Corollaries. Let X = (Xij) be a stationary graph.
a) dim X <~l'(dim X,. + dim X))
ij =2 ii i3

by If X,. =8

ii o dim Xij = t + 1, then 0L(ij) contains, as a direct summand,
the subalgebra 951 G))ZE, where I ~ )711, ]Zg ~ )7Zt, and the natural representa-
tions of jz& and JZ; have multiplicities 1 and (m - 1), respectively. In

2

particular, dim ij >1 4t 1ij} >1+4 (m - 1)t. If t > 1, these inequalities

are strict.

) If X, =8, |X | =m dinX =2, then X, =5,
it~ Tw’ 175 ij ij m

Proof, We can assume that the rank of X is 2, i =1, j = 2., In notations of 12,

we have dim X, = 2o dim £' Ot f'. Let us consider some algebra JZ . One has
12 7 p,q P q L
i ' i ' 1 [ 1 n t PR Vs R T
;Li_fj VA fj+fk/ti fk+fjﬂi fk+fk/Lif, where j = I'(i), k = I"(i).

The summands of this decomposition have dimensions réz, r;z, ré rﬁ, ré rﬁ, respec-

t

tively, We assume that  some rj or rE can be equal to zero. Property (a)

now takes the form

which is known to be true,
To prove (b) and (c¢), let us first note that in these cases OU' = 377169 )711,

M = 1, W =m- 1, r! = r! = 1. There exists exactly one direct component of {U
1 r T2 771 2 ’
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say )LZ’ which contains the second summand of OU, By (124), H, =m - L.

Remembering that Jtl is the subalgebra of O, defined in 6, and since

' 'N ' 'N!
£y Sy =y 5 0 £ 2oy,
: [ "o
we have dim f1 )Zl f1 =1,

oL = [ 74 1 1 "
£ 7O N, £ .

Hence dim f, /LZ £, =, i.e.

2 72 - t

In particular, dim X >1 4+ tz. Since M, =m - 1, we have ug =m - 1

(by 12d) and therefore
X, 214 (m- D .

If t>1 then by 11 all inequalities are strict.

s
Let us now prove (c¢). In notatioms of (b), t = 1, i.e., by (b) 1X22] > m.

Since ]X = m, one has by foregoing considerations OU' ~ jyle) )721, i.e.,

22;

X =S .

dim X, = 2, i.e., X, =S

22

14, Corollary. Let X = (Xij) be a stationary graph. Suppose that the algebras

UL(Xii) and GL(ij) are commutative. Then
a) dim X,, < min(dim X_ , dim X, )
i ii i3
by If dim X, =dim X _,; then |X .| <X, , dim X < dim X, ..
ij ii ii' = 73] ii = jii

Proof, By the commutativity condition of OLU' = UL(Xii) and 01" = OZ(ij), we

have in notations of 12: ri =1 and r; = 1, Hence by (12e), r, < 2, Ifr, =

1
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then mz ~ ﬂi > ﬂ;@ A, where j = I'(i), k = I'"(i). The number of T,
for which r, =2 gives exactly the dimension of 6112 (since cﬁiz = £ o £,
where f£' and £ are unities of JdU', ™). This proves (a).

In case (b), we see that each )l} is contained in some )11 ~ )7Z2. Hence

by (a) and by (12c¢) (d), we have (b).

15, Let U be a cellular algebra of rank 2 with matrix

t

Let oL = (:) Jzi’ Jti ~ ‘nzy.: and let Hi be the multiplicity of the irreduc-
i=1 L

ible representation of )Zi in the natural representation of (U. Finally let

e M
1

V=@ @ v, . where V_, are defined as in 9.
izl j=1 7] H

Theorem (compare [Fr 2]), Let n = |X r = dim X €, ..., 8 CX For

11|’ 122 71 r 12°

each 1 ¢ [1, t] set correspondingly to 12:

if I'(L) = j§
p. =0 if I'(i) = 4
q =¥ if I'(3) =k

q. =0 if 1"(i) =&

Then
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Moreover, q =a . a, where a is an algebraic integer,

r
Proof of this theorem is analogous to the proof of Theorem 9. Let X _ = 2 X, ei

then
. = 6 M . s
Sp(ei ej,) ij n d(ei)’ ié [1, r]

Ue U-l

Further, we may assume that the matrices M = . s
d,m,1 i

ie [1, r] (see the

proof of Theorem 9) are of the form
*
0 } Py

0 0 } 94

o
Since X Pgdy =1 the matrix A = (ai), constructed as in 9, is a square matrix

and we have the equality

Taking the determinants we have

where a = det A,
It remains to show that a is an algebraic integer. Let us show this. Let
]Ld be a direct summand of OU; flé, /Lg be the intersections of 3[d with
gu' and (U" respectively.
One can assume that JL' £ 0,JC'" £ 0 since otherwise p_  q, = 0. Let V_ _
d d a da d,i
be a space of the irreducible representation of }ld. Then the matrices from ZLé

and Ztg can be brought into the form
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and

o
[aw)
Somed
o2
<
*

b,

respectively. When ﬂ(’i and /L::i are of this form, it is evident from (12a) that
matrices e!, i=1, 2,..., ¥, have the form shown on the preceding page. Let
1
- ] ol . . . >
Vd,i Vd,i ®Vd,i be the corresponding decomposition of Vd,i into the orthogonal
direct sum, Let us choose a basis of V('1 i such that all matrices e eSC Xll
3

are written as matrices whose entries are algebraic integers {Lemma 8), Let the

corresponding R-module be V'

) d,i”
7N - Z} 7 Tn _yn : :
Put Vd,i = & Rey Vd,i‘ Then by (12a) K Vd,i = Vd,i and if {gi} is an
R-basis of the R~module '\7:1 1@7‘& : then in this basis matrices e, e {1, rl,
2 s

have algebraic integral entries. From this, our Theorem follows.

16. Corollary. Let U be a cellular algebra of rank 2 with the matrix

1 12
X =
X0 %22
Let N, = 1Xiii’ r, = dim X, + dim X,,, and let {ei}, i=1, «eu, 1) + 1, be

the standard basis of L, n, = d{e,)., Then
1

r,-2 r, -2 1 2
1 2
Nl ) N2 nl
i=1
=qe Z
t 2
T,
‘ i
i=1 Hl

Moreover, q = a + a, vwhere a 1is an algebraic integer.

Proof. This is the product of the expressios for X X22 given by Theorem 9 and for

11?
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X12’ X21 given by Theorem 15.

Remark. Conversely, the main part of Theorem 15 follows from this Corollary and

Theorem 9. The only point which is not evident is that ¢q = a - a in Theorem 15,

17. Corollary. Let X11 = Sn’ dim X12 =1, Then

n | - nT ez

Proof. By (13b) P, # 0 for only two values of i, say for i =1, 2. Then one

b4

can assume that

=l,q1:l,q2:r-1

Since (n, n - 1) 1

, our assertion follows from 15,

18. Remark., Let

X1 X12
X =
%21 22
If X11 = SH and e is an element of a standard basis of X, e, < XlZ’ then

evidently e, * e! = X E+p1, i,e,, e, is the matrix of some block-

i
design. On the other hand, any symmetric block-design with matrix e can be
considered as an element of a standard basis of some stationary graph X of rank 2,

vhere, in addition, =X, =35

17 % " o’
This shows that cellular algebras can be considered as generalization of some
popular combinatorial formations. It is plausible that the theory of block-designs

could be developed in this direction. In [Hi 3] and [Bo 6], this approach is adopted.

Let us note in this connection that Theorem 10.,2.2 from [Ha 3] coincides with
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our assertion (14b).

19. Example. Let X11 = X22 :_S7, e1 = E? < xll’ e2 = 17 < Xll, e3 = E? < XZZ’
e, =1, <X

Let eg be the incidence matrix of the projective plane of order 7,

P - —_ 1 s * i e -
e = 17 ey, €, = &g, €5 = €. Setting Xlz = Xg € + LAY le =%y 8 + Xg eg;
we see that
X1 Xlz
X =
%1 XZZ

is the matrix of a cellular algebra 0L of rank 2. Evidently, 0L = /Zl() f%,
Iy :<Z732’ where the multiplicity of the irreducible representation of one of
these summands (say of the first) is equal to unity,and that of the second is six,

Let us write the elements a of &t in the form

11 12 11 12
a—> ®

21 22 21 22

where the summands denote the projections of a onto XLl and }32, respectively,

in an appropriate basis, (That is, the matrices My have the above form,) We
bt
have
1 0 1 0 6 0 -1 0
el——-€> @ , & > ®
0 0 ¢ 0 0 0 0 0
0 0 0 0 0 0 0 0
. @ o, —> ®



e —>

e . —>

Let { be a primitive

[#%)

o

<

o

Since eg +eg € )Zl,

Let us construct

0
®

0

0
@

X

¥y = =X, in

the matrix 2

7-th root of unity.
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X 0
J e6

0 0

O 0
B 88'"“>

e+ c?a

addition x * x =

2.

4 0

0 0

0 0
®

0 y

Then we can assume

= <a‘i’) (ef. 9 and 15).

o, B, d 12 3 4 5 6 7 8
1, 1, 1 1 6
1, 1, 2 1 -1
2, 2, 1 1 6
2, 2, 2 1 -1
1, 2, 1 3 4
1, s 2 X X
2, 1, 1 3 4
2, 1, 2 ¥ X
4 — 4
We have det A = (=7) « (-7) « (~7%) « (-7X) =7 - x « X =7 » 2, det A1
det A2 = =7 (cf. 15).
According to the proofs of Theorem 15, we have
det A - det A 70 . 4 4
= = 7 - 4
- - 2
det A, - det Al « det A2 . det A2 7
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Thus (compare 15),

= = 7 «2¢ Z

20, Example, Let (U be a three-dimensional cell, e =E , e e, be its

standard basis, Suppose we have e! = e_, We can write
i i

This shows that €y i = 1,2 are strongly regular graphs (cf., Section T and
[Se 3]). Strongly regular graphs and, among other things, their spectral
properties were intensively studied, The most striking result in this direction
is contained in [Ca 2].

A geometric study of strongly regular graphs was strongly influenced by [Bo 2],
[Bo 5]. Strongly regular graphs were alsc used to construct several sporadic groups
fgi 71, [Ti 1].

Below we shall consider three-dimensional cells from the point of view of this
Section (¢f. also [Hi 1]). In Section U, one can find examples of such cells,

Let us write

e =0 fO + a fl + b f2

— 1 ]
e, = n, fO + a fl + b f2

where fi = fi’ fi fj = 0 for i # j, are orthogonal idempotents of 07, and
1,

Sp £, = Set

0
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Then we have pl + Uz =n - 1,

From eO + e1 + e2 = In we conclude that a' = - a -1, b' = - b - 1.
Note that a ¥ b since otherwise we would have e, = fO + a(fl + fz),
2 2 2 A . .
whence e = fo + a (f1 + fo) =y En + <, In’ a contradiction with the assumption
that dim gr= 3, We have

From this equality,and from U, +H, =n - 1, we deduce

oy + b{n ~ 1) 0y 4 af{n - 1)
a=->b=- = (%)
M1 Hy

We have next

On the other hand

2
e =1y eO + 2 e1 + aj; e, = nl(f0 + fl + f2)

1 2
+ all(n1 f +a f, +Db fz) + a

0 1 11(n2 fO - (a + l)f1 - (b + 1)f2) .

Combining the two preceding expressions for e%, we get the following equation for

a and b

2 1
x" = ny 4+ (a11 -

2

¥x - ay;

411

whence
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2 1 2 2 2
APt V4all Sy tAlp A
R = (‘k'&‘f)

This gives us (since a £ b):

2
ab = ~ oy + a11
1 2
a+b = all - all

Substituting this into the expression

2
n, + (& + b)n.(n - 1) + ab(n - 1)
(a - b)2 . 1 1

H1 HZ
obtained by the multiplication of the two right-hand parts of (%), we get

a -5« — ()

which should be compared with the expression of Theorem 9.

Let us note that a, b are algebraic integers, If a, b ¢ Z, we must have

1 2 2 2 2
(aj; —ayp +4lng-ap) =d,de

Otherwise, let a, b ¢ Z. Let ¢ be the nontrivial automorphism of @(a) over

c
Q. Since we have e, = e,, we must have
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Therefore, “1 = Uz - ; 1. Therefore, 2|(n - 1) and from (***), we conclude that
o, o,
c Z
n -1 2
2
fe 3 . n -1
But this implies that nyo=n, = — whence
(a-m2-n,
Hence
Vo - Va
a=m+ = b=m+ .

This, together with the expression for Sp ey gives us
L
)

that is,

aoly Voo 13 Vn
2= 2 7 T2 2
Now apply the expression
2

ab = - ny + a1

and get
i . 9 1 -n
R B b U
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which gives us

Summarizing, we have the following

Assertion., If Ot 1is a three-dimensional cell of degree n with the standard basis

; : 2
and if e; = e, then either n = 4q + 1, n, = m, = 2q, aj, = q, or
. 1 2.2 2 2
i) (all all) + 4(n1 - all) =d”, de Z,
(2), - a;) + 4
ii) The eigenvalues of a, are a, = m———p—e i =1, 2, and n, with

1
ny + ai(n - I.)
—|

2

the multiplicities and 1 respectively.



M. SOME MODIFICATIONS OF STABILIZATION,

1. This Section is the first where we are concerned with algorithmic questions, It
can be considered as a setting of a stage for the treatment of such questions, The
procedure of stabilization described in Section C is insufficient for a description
of algorithms (but more convenient for aims of Sections D-L). We describe here a
modification which makes use of the order of the elements of the adjacency matrix of
a graph. Some additional modifications are also given. The methods described below

are used in Sections N, 0, R,

2. Correspondence: geometrical graph-matrix whose entries are independent variables

2.1, Definition. Let A = (aij) be a (n X n)-matrix whose elements belong to a

partially ordered set M, The order in M is denoted by >, <., 1If, for a,be M,

2
the order is not defined, we write a >b, b > a, If af£b,a>b, b#a, we write
a > b, We assume that the partial order on M satisfies the following condition:

If a>b,b>c, ¢c>b, then a > c. (This is, in particular, a justification
of our notation a >b, b >a for a pair with undefined oxder.)

Since this condition is preserved throughout all our actioms on graphs, we
assume henceforth without mentioning that all partially ordered sets satisfy this

condition,

Let X(A) = (Xij) be a graph (in the sense of Cl) defined by

a) x,, =X if and only if a, = a

ii - Tk i kK’
b) Xy > Xk if and only if a s > a0
c) x4 > X 4 for all 1 and all k £ d;
d) Xij = X4 i#j, k#4d, if and only if aij = a4

e) X5 2% 1 # 3, k £#d, if and only if aij > EPH

f) The variables entering in X(A) are numbered from 1 to dim X(A), and this

numeration agrees as far as possible with the partial order of the variables, that is,
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if Xij =X Kq =X X > L then ¢ > s,
. . . .t
2,2, 1If Al’ Az, cesy Am are matrices with entries from M, we set X(At) = (xij)
and define
a0 ,..00 =
*, A = ()
in the following manner
a) x =X if and only if xt = xt for all t;
13~ Fkd ¥ 13~ “kd ;
By x,, > x if and only if (x1 x7 Yy > (X1 < )
ij © “kd ij? tttr iyl = Mgar vt Tkd”?

¢) The same as in (2.1f).
This construction is used for instance in N 3.3 and in 0 4.9, 4.11,

2.3. If M 1is a linearly ordered set, e.g. R, &, then the variables of the matrix
X(A) are linearly ordered.

If A is the adjacency matrix of a simple geometrical graph, then M = {O, 1}
and M 1is a linearly ordered set (1 > 0)., Thus, the variables of X(A) are
linearly ordered in this case,

Such an approach can turn helpful when one uses cellular algebras not only for
the study of graphs, but also for the study of orbits of Sym(n) on VQQVﬁ, where

V is a module over a ring (cf. AE 1,2).

3. Stabilization

3.1. Let X be a graph whose variables x, are partially ordered. Let us define a
partial order of monomials of degree 2 on X, in the following manner, {Recall that
independent variables do not commute, cf., C 1.) Set X, Xj > X xt if and only if

X, > X or X, <X X, > X
i="s i="s’ = T

Let us extend this partial order lexicographically to all homogeneous polynomials

of degree 2. Let us further choose two additional variables A and H, and assume

that ) >, and that both A and 4 are strictly greater than all variables X,
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3.2, Define the graph X ¢ X = (yij) as follows (compare C 4):
_ . . A = L b4
A Yy = Vg Pfandonly if B o ox g ha b H G =B Ry %

+ A x at M X4

k x

b) yij > ied if and only if Zr %, X .+ Ax,  4+MHx,,>I x

+ A x +uxd

kd K

c¢) the variables of X o X are numbered from 1 to dim X, and this numera-
tion agrees with the order of the variables of X ¢ X (in the sense of 2.1f).
0 i+l 1

o . ) ) .
set x0-x, &7 Cxtoxt. 1f dim X' < dim ' - dim XY, we call X

the stabilization of X and write Stab X = Xl.

3.3. Remarks, If the variables of X are linearly ordered, then the variables of
Stab X are also linearly ordered, The need to use this operation also for partially

ordered variables arises, for example, in the study of the kernel (cf. next Section),
-1 -1
3.4. Lemma. One has Stab{(0 X 0O 7) = O(Stab X)0 for © ¢ Sym V(X).
Proof. Evident,

4, Simultaneous stabilization

4.1. 1t is possible that the stabilizations Stab X and Stab Y of two graphs X
and Y contain the same variables which have the same order, For instance, if the

variables of X and Y are linearly ordered, our assumption implies only that

dim Stab X = dim Stab Y. 1In this case, the coincidence of variables of Stab X and
Stab Y does not imply that those variables have the same origin. In some cases,
however, it is convenient to secure that the "history" (or "genealogy') of equally

named variables would be the same. The corresponding definitions are given below.

4.2, Let {Al, «e., A1 be an ordered set of (n X n)-matrices whose entries lie in
m

a partially ordered set M, As = (aij). We shall denote by dim{Al, aery Am} the

number of different entries of these matrices., Define the set of graphs

s
X(Al,...,Am) = {Xl,...,Xm} where X_ = (xij) by
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a) xii = Xik if and only if aii = a;k’ s, te (1, m], i, ke [, n];
s t . . s t . .
b) Xy > Xk if and only if ay, > a0 S» EE {1, ml, i, k ¢ [1, n};
c) Xii > X;d for all s, t e [1, m], all i, k, de¢ [1, m], k £ d;
s
) %y = ng’ i 43, k#4d, if and only if aij = a;d, s, t e [1, m];
s £ ) ) s t L )
e) xij Z % 1 # 3, k £#d, if and only if aij Zag, S, te 1, m];

f) the variables of X<A1’ tees Am) are numbered from 1 to'dim X(Al, cees Am),

and this numeration agrees with the order of the variables (cf. 2.1f).

4.3, Let {Xl, sy Xm} be an ordered set of graphs of the same degree n, whose
variables are partially ordered.
0 . t :
set {X), ..., X} - {Xi} and if {xi}q - {Yi}, Y - (xij), then define

q+l t
x 3% - {z.3, Z, = (2,9, by

t s t t £ t s s
= 2 i if 2 A =%
a) zij 214 if and only if r Xir xrj + xij + U in . Xkr X
N s |
+ Xkd + M Xdk’
t s t t t t s s
i if Z A > %
b) zij > 2 if and only if e Xir er + Xij + M in BN Xkr x4
A 8 s |
A Xt xS

¢) the variables of {Xi}q+l are numbered from 1 to dim {Xi}q+l, etc, (see 2,1f).

1f dim{Xi}q-l < dim{Xi}q+1 = dim{Xi}q, we say that {Xi}q is the simultaneous

stabilization of Xi and write Stab{Xi} = {Xi}q.

4.4, Proposition. Let {Xi} be a set of graphs of the same degree and

e k
Stab{Xi} = {Xi}. If X and Xy have the same composition, Xk = Ziel X, e,
d
Xd = Zisl X, e, then the identity map of I into itself is a weak equivalency of
Xk and Xd.
Proof. Let eF g e? =z aF? eF. If a%? P aé? for some triple (s, i, j) then
T i 3 s ij s ij ij

by the definition of the simultaneous stabilization, Xk and Xd would have

different composition (cf. 4,3a).
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4.5, Lemma, Let {Xi} be a set of graphs of the same degree n, One has
-1 ~1
g =

stab{o, x; 07} = {o (stab X )0} for 0, 0,, ... ¢ Symnm.

Proof, Evident.



N. KERNELS AND STABILITY WITH RESPECT TO KERNELS.

The constructions of this Section are motivated by permutation group theory.
Explicitly, consider a permutation group G acting on the set X, Let Y be one
of the orbits of G, Let GY be the pointwise stabilizer of the points of Y in G.
In this situation, the construction of this Section aims at the description of éjcy,x)
in terms of 52(6, X) (cf. Section F). This shows the importance of taking kernels,

We do not use this operation in the algorithm of Section R. However, it can be

used, at least at heuristical level,

l. Let X be a stationary graph. It is convenient to assume in this Section that
the variables of X are linearly ordered, For instance, this order can be chosen arbit.
rary, Let us, however, not that the algorithm (cf, M 2) which constructs for a
geometrical graph ' the corresponding stationary graph Stab X(T), leads just to a

stationary graph with linearly ordered variables.

2. Defipitiop of the kernel of X on W

Let X = (Xij) = (xmn) =% x, e

linearl dered, t W=U X .
inearly order Le ieT V{( ii)

5 be a stationary graph, and let the X, be

Let X = (Eﬁq) be the graph obtained from X by substituting for all qu’

q e W, the new variables s where

a) X #% for all £ q e W,
) 2% qq P 4

b) Eér > Ets if and only if xqr >%x ., b 8,9, T € V(X).

Thus the variables of X are partially ordered, Let us note (and this is import~-
ant) that for the variables Eﬁp and ;ﬁq' p #«;eV(Xii)CLW, the order is mot defined.

Set

%w(X) = Stab X

This matrix is called the kernel of X on W.
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2,1, Proposition. Aut %w(X) = [g e Aut X : g|w = 1} (whence the name "kernel'),

Proof. The right-hand side evidently contains the left-hand side. The opposite

inclusion follows by C 8,2 and by the evident equality: Aut X = {ge Aut X 3 glw =

1.

2.2, Remark. %W(X) is equivalent to the stabilization of the intersection (in the

sense of M 2,2) of the graphs xi(X), i € W, cf, next Section,

2.3. Remark. Geometrically the construction of the kernel with respect to W means

that we assign to all vertices from W pairwise different colors (and different
from the colors already used in X). Clearly in this approach we cannot set any invar-
iant order on the vertices of W, 8o we are forced to assume that the new colors are

not ordered. After this repainting, we stabilize the new graph. The next undertaking
(cf, Subsection 3, below) consists in finding whether some of the vertices or edges
which were indistinguishable in the original graph behave differently in the kernel,

If they behave differently, we can invariantly introduce new colors im X itself.

3. Definition of the stabilization with respect to kernel

3.1, Let us write X ,6 > Xk if the greatest variable of X,, is greater than the
ij d ij

greatest variable of X .. )

Let %w(x) =Y = ( Zy, fi.

Y =
Pq'Pp,961 i
< Xii} and denote by I the partition I = Let

Let I, = {p : LA U I,

g (0 be the vectors defined i Set V_ = Y Y (¥ ).
Hi,m T, vectors defined in E 6. Set Yy = (1 (ppls Ha,m (agd» Mit¥pg

3.2, Let us define a partial order of the blocks Y q The conditions of the

ordering are written down in the order of priority,

c < i > ;

a) qu Xij’ Yst Xkd’ if Xij > Xkd then qu Yst’
by if v >V then Y >Y

Pq st P4 st;
¢y if Y >¥% then Y >Y for all 1, s;

PP qq Pr gs
d) if ¥ _>Y them Y >Y for all r, s.

PP q9 rp sq
If these conditions did and Yrs’ we shall

write Y =Y .
Pq — s

not determine an order among qu
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3.3, Let us define a partial order of fi's. The conditions are written in the

order of priority.

a) f, <e f, Ce

if x >x then £, > £ ;
K 2
1 ¥ j t T t i

J

b) £, <Y , f, =Y if Y >¥ then £, > f_;
j st pq st i j

¢) let X, = Stab X(f, N X) (ecf, L 2,2) if X, >X. then £ > f_.
i i i i i 3

If these conditions do not determine an order among fi and fj, we shall write

Remark, Clearly (c) is stronger than (a). (a) is included here to make references

more convenient,

3.4, Let T, =Z f.. Let K be a set of indices such that £, £ T, for any
i fi& fj i i i

AL ~e ~
i # je K, and such that for every f; there exists ] € K such that fi = fj' It is
evident that “fi n ’%’j £ 0 implies ’{i = ?j’ Hence ’Ei N ’Ej =0 for all 1 4 j e K.

set X = X ¥ X >%, i > i, je K.
et ZieK X, f, and X, xj if £ fj’ i, jeX Put

p(X) = Stab X

We shall call this matrix the stabilization of X with respect to the kernel on W.

By the remarks in the beginning of this section, pW(X) is the matrix with

linearly ordered variables,

3.5. Proposition. The graph p_(X) 1is defined invariantly, i.e., if g ¢ Sym V(X)
froposition grap W ) F]

then P (g X g™ = s(o (g™
Proof, Evident,

3.6. Proposition. Aut X = Aut pw(X).
Proof. Evident,

4, Definition and properties of stable graphs

4.1, We say that X is stable with respect to the kermel on W if
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dim X = dim DN(X), (that is, if X and QW{X} are equivalent)., If iX,,i =m=rt

11

and if for all Y _cX,. one has {Y l = r, then we say that X _ decomposes X_.
PP ii PP W ii

into t (equal) parts of degrees r, If t = m, we say that . splits Xii’ and

if t =1, we say that " does not decompose X5

4,2, Proposition. Let a statiomary graph X be stable with respect to the kernel

=K = = M = =
on W, ¥ =M (X) = (¥ ) =By £, X=X =Dx e.

t
a) If Y ,Y <X ., them Y &Y . 1In particulas, |Y | =Y |,
PP qq 11 PP — qq PP q9q

dim Y =dim ¥ 2 Y =M Y ;

PP aq’ M2,10%p) = H2,n(gq)

b) {V(Ypp)}Y cx. is ap imprimitivity system for Xii;

pp ii
c) 1If fs’ ft [an er then fS =~ ft and er = fs.

In particular d(fs) = d(ft)’ and natural weak equivalency of cu(fs N %) and

Ob(ft N X) is well-defined.

Proof, (a) and (c) follow directly from the condition of the stability of X and
from 3.2, 3.3.
. < c . W2 if ., ~ £, th
Let us prove (b)., Let Ypp Xii’ fi Ypp By 3.2a,b, i fJ = i en

f,CY , Y =Y . Hence, E} < diag (Ypp) In particular, ?; is dis-

] qq” 494 PP

connected, The set of vertices of the connected components of 2 T
fiCYpp i

Yppcxii‘
coincideswith sets V(YPP}, whence (b).

4,3, Corollary. Let X be as in 4,2, 1If the cell Xii is primitive,

then either % splits X,., or % does not decompose X...
W ii W ii

Proof. Since in a primitive cell all normal subcells are trivial omes, it follows

from 4.2b that |Y | =1 or [Y |=|X | forany Y <X .. Q.E.D.
PP pp it pp i1

. in 4. = . L = U 1, where #

4,4, Lemma. Let X be as in 4.2, X (Xij)i,jel et I =1, 9 W
i i [ i & .

splits Xii’ ieg Il’ and W does not decompose Xii’ ie 12 Then

X = x1() X, where X = (X )

X
1374,3e1,
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90 We may

1 V(Xii)’ W= [1, r]. Set Y= (qu). Clearly, qu is a
length ! . = .

row of leng ]qu for any p e [1, r] Let gq>r, V(Xii) V(qu) 1f

i

Proof., We must show that Xij =const, i e I,, jel

assume that W = U,
i€

pe V(ij), je Il’ then it follows by the previous remarks that in contains a

constant row, namely qu. This means that X‘i = const. Q.E.D.

4,5, Corollary, Let X be as in 4.2, X = (X, )

. s X, .
i1, e1 Suppose that cells L.

11

iel

, are primitive and set J =1 - I , W = U, V(.. Then either #
1 ieJ ii

1’ W

splits X or X = Xl(D X, for appropriate X, and X,.

Proocf is obtained by successive application of 4.3 and 4.4,

5. Variants

5.1. Many of the constructions given in this Section can be strengthened. Such
constructions were not introduced above because we know of no assertion which uses
their full power, Actually, Proposition 4,2 (which also does not use all given

constructions) is completely sufficient for our purposes,

5.2, %ﬁ(x). It is possible to consider instead of KW(X) the matrix ﬂ%(x)

which is defined in the following manner:

Let W = fie V(RW(X)) : & p, V(Ypp) =ik, In the matrix X, replace the
submatrix (Xij)i,jeV(X)-ﬁ
matrix of KW(X). Call the obtained matrix i} and put %ﬁ(x) = Stab ¥X. The

by the corresponding sub-

constructions of Subsection 3 are easily carried over to this case. In
general, %V(X) gives more information than Kw(X) since the restriction of %ﬁ(x)

on W may be non-split.

5.3. Strengthening of 3.2 and 3.3. The methods can be strengthened by repetition up

to stabilization. It is possible, moreover, to consider stronger invariants (cf.,

e.g., E 6.3) in place of Mz’n(qu) and Hl(qu),

5.4, Strengthening of PW(X). Instead of stabilization with respect to KW(X), it

is possible to stabilize with respect to all matrices which arise from X (cf. 2) in
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the process of its stabilization c¢f. M 2). This method may lead to stromger

conditions.

6. Examples

6.1. 1 do not have examples where pw(X) £ X,

6.2. Consider the graph

X zZ u u VvV vV W W
z X vV vV W W u u
y z w W u u v
a b ¢c p g r s mn

X = a b c g p s r nm
b ¢ a m n p g r s
b ¢ n m q p S r
c a r s m n q
c a s r nom ¢

Take W = {1, 2, 3}. Then

KW(X) = z zZ z b a v u. v u

There is no order relation inside the following groups of the variables (xl, X5 xg),
(Xz: Xgo X7): (X3J X XS) (yl’ Vg2 y8) (}'2, Y4 Y9): (y3: MY Y7): (V]_: V4o VS):
(s vgr Vg)s (ups Uy, g,y (U, U, ug), (3, 8y, 23), By, By, by, (2, 255 29),

(ZZ’ Zg s z7), (23, 2,5 28).
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We have

Py X)) = X

6.3. In this example we use the constructions of G 4 and J 4.3, Let Y., ..., Y be

1? n

naturally weakly isomorphic cells of degree m, and let Z be a cell of degree n.

Set

X11 = (Yl’ ooy Yn)wr Z

Then by G 4.4, X has a normal subcell &’ such that XllAJ; ~ Z., Using J 4.3

we can construct

where X,  ~ Z and Xy ~ % E ®Im,l +y In® Im’,l' Set W = V(Xy,).

Then KW(X) = Kw(xoo)(] C)?zl Yi’ where the ?;'s have disjoint composition but

~~. % . it.
Yi Yi Of course, w(XOO) is split We have

DW(X) = X



0. DEEP STABILIZATEON.

1. Examples (cf., e.g., Section U) show that Stab X is a good, but insufficient in-
variant of X, To make this invariant more powerful we apply deep stabilization,
There are several ways to introduce deep stabilization. We discuss here in more-or-
less detail one approach (others are briefly discussed at the end of this Section,
cf. also Section AD),

The construction described below is modeled on permutation groups. Let G be
a group of permutations of a set V, and x a point of V. How can one describe
}, (Gx’ V) in terms of ;(G, V)?  Our graphs )»X(X) are analogues of X(} (Gx’ )
in the case X = X(; G, V).

The constructi’.on of this Section is used in the description of the algorithm of
Section R, This latter algorithm uses stabilization not only with respect to
{Xm(X)}, but also with respect to more refined daughter systems (e.g., with respect
to {Xm(X)} stabilized up to depth k). This forces us to consider general

daughter systems (¢f, 3.1 below).

2. Invariant algorithms

2.1, Let ¥ be the set of graphs and A be an algorithm on graphs, i.e., a
(computable) function from X into ¥ .
An algorithm { is called ipvariant if for every substitution O of the set

of vertices of X ¢ ¥ one has

A@©xah - o /@)

1

& is called correct on X if O X0 =~ = TX p-t implies

A@xaly - AT X Ly,

Lemma, An algorithm AR is correct on X if and only if it is invariant with

respect to all O ¢ Aut X, i.e., if

f((oxc'l) = .ﬁ’(x) for O e Aut X.
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Proof.  Evident,
2.2, The algorithm X-> Stab X is invariant, cf. C 8.2, M 3,4,

2.3. It is possible also to define invariant algorithms from ¥ into
X x X x ... )?. Below, such an algorithm is considered, and it is shown how
to use it to comnstruct an invariant algorithm from a§ into X, which is stronger

than Stab,

3. Daughter systems. Systems {ki(x>}

3.1. Let X = (Xij) be a stationary graph, W = V(Xtt)' A system of stationary
graphs {Xi}icw is called a daughter system of X with respect to W. We write
x1-p,m.

Let A be an algorithm which constructs for the pair consisting of the station-
ary graph X = (Xij) and the set W = V(Xtt), a daughter system DW(X) = {Xi}iew o

-1 -1
. . . . _ 5 ¥ -

N is called invariant if SO X0 ) = { X5 l(i) c }G(i)eﬁ(w) for all

0 e Sym V(X).

The corresponding daughter system Dw(X) ig then said to be defined

invariantly.

3.2. The principal example of a daughter system which is used below is the system
A .
{ m(X)}mEW

Let X = (Xij) and take m € W, Let Xm = (xmij) be the graph defined in
the following manner, Let y be a new variable, y > Xij for all i,j. Set
Baij © Fi if i4m or j#m, X = y.

Now set (cf. M 4.2, 4.3) {km(X)} = Stab{im}mew (simultaneous stabilization).

We say that Xm(X) is obtained from X by deleting the m-th row (column).

1f A is an invariant algorithm on graphs, then {J?(xm(x))}mew also is an

example of an invariantly defined daughter system.

3.2.1 Let us note that if the variables of X are linearly ordered, then the vari-

ables of all graphs Ki(X) are linearly ordered.

3.2.2., Geometrically, Xi(X) is the graph obtained from X 1in the following way.
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Choose a new color (which is not used in X), paint the i-th vertex of X in this

color, and then stabilize,

3.3. Lemma, Aut Xm(X) = (Aut X)m ( = the stationary group in Aut X of the point

m).
Proof. The inclusion (Aut X)m 2 Aut Km(X) follows from the definition of xm(X).

The reverse inclusion follows by C 10 from the obvious equality

(Aut X) = Aut X
m m

where §m is as in 3,2,

3.4 Theorem. a) Let 7 ¢ Sym V(X) be an isomorphism of Xt(X) on XS(X). Then

Te Aut X and Tt = s.

b) If Te Aut X, t

A ).

,SE€W, Tt=s, then T 1is an isomorphism of Kt(X) on

Proof, (b) is evident. Let us prove (a), We must show that T_l XT=X. Let

= = A = . i
X (Xij)’ Xt(X) (yij)’ s(X) (zij) Note that by the properties of the

simultaneous stabilization, the equalit L. =2 implies equality x, .= X ..
’ J le k1l P ij Tkl

Since T-l Xt(X) T = XS(X), we have for all i,j. By the above

Zei,75 " Vi

remark, it follows that = X, ,. Q.E.D.

*ri,73 T Fi

3.5. Theorem. Suppose that a partition W = U wi is such that p, q ¢ Wi if and
only if XP(X) and Xq(X) have equal composition., If KP(X) =R for all peVW,
then wm is an orbit of the group Aut X and Aut X acts on wm faithfully and

fixed-point-free.

Proof. By 3.4b, Aut X preserves Wm. By 3.4a and E 5.6, Aut X 1is tramsitive on
Wm. The last assertion follows from 3.3 by the condition XP(X) = R for all

W .
peW

3.6. Remark. In the case when X = &X(G, ¥), G a permutation group of V, I do
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not know whether A, (X) = x(;Z(ei, V)) (although one has 3.3).

. . . )\
4, Stabilization with respect to the system { m(X)}msw
4.1, Define X = (Eij) in the following manner:

a) Xij :Xij for i # i;

b)Y %, =%, for id W;
11 11

c) .. >x for all (k, d) 4 (§, ), i e W;

ii kd
a) Eii = ijj for i, j € W if and only if ki(X) and Xj(X) have equal
composition;
e) Eii > ijj for i, j € W 4if and only if Xi(X) > Xj(X) (comparison in the

sense of composition of matrices};
f) Cf. M 2.1f,
Set

G - X
1’w(x) Stab X

Remark, Even if dim 01 w(X) = dim X, it is possible that Gl w(X) # X, However,
s bl

o] X) ~ i i .
1’w( ) X in this case

4.2, Lemma, a) The algorithm X—> 0

-1 -1 .
o, w(T X770y = T(Gl’w(X))T for T e Sym V(X);

s

i w(X) is invariant, i.e.,

2

b) Aut X = Aut GI,W(X)'

Proof, (a) is evident; (b) follows from (a).

.3. . ~C = (1) - :
4.3. Lemma If X 1,W(X) and Xi(X) jEIi Yj fj , then Ii Ij for all

i, j € W and the identity map Ii———> I. is a natural weak equivalency.
1

Proof. The first assertion follows directly from 4,1d,e, The second one follows from

the first and from the fact that the xi(X) are obtained by simultaneous stabiliza-
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tion (cf. M 4.4),

4,4, Suppose that the entries of the graph X belong to a linearly ordered set of

s
. _ ()
variables, Assume Ul’w(X) X. Let Xk(X) = ;z& vy fi . Put

m.
1

T - L
Let fi =1 aij gij’ where aij € Z, aij >0, aij > aij+1 and where 8ij are
disjoint (0, 1)-matrices, (That is, gij has ones at those positions where El

has aij and gij has zeroes otherwise.) Set (c¢f. M 2.2)

OQ’W(X) = Stab X(g11 n...n glml n...n g1 n...nN gnmn)

4.5. Lemma, Suppose that the entries of X are linearly ordered and X ~0, w(X).
?
a) The algorithm X—> 02 W(X) is invariant;
2

= o)
b) Aut X = Aut Z,W(X)'

Proof, See 4,2,

4,6, Remark, The stability with respect to is usually sufficient

Gl,w’ Gz,w
te prove theorems, Actually we use only Theorem 4,7 below, We give, however, in
4.9, 4,10, some additional operations, Geometrically, all these operations of
stabilization can be described as follows. Each set V(Xii) and each graph e,
fall into pieces in each Ame). If there is a difference in the coloration of these
pieces for different m, then it gives rise to a difference of the corresponding
vertices, They should, therefore, be repainted in different colors (this is Ol,w)'

If different pieces of ej behave differently with respect to the family {lm(X)},

we can repaint edges of ej (this is 02 w). And so forth.

2

4.7, Theorem. Let X = (Xij) be a stationary graph with linearly ordered entries,
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= ~ ~C
e V), Xm0 () 2 0 ®
= A = = =
Let X = 5 x e, A(X) -Y = 2y £ = (Y?j). Then

(m) (m) _ }
a) If fi Al e, £ 0, then n%% £ =2, e where a, is the product of
|W| by the number of ones in fgm) (for any m) divided by the number of ones in

e .
r

c =
b) Let e Xpt’ d d(ei), and let rl,m, ey rd’m be the numbers of those
positions of the m-th row of e, where ones stand., Then there exists j such that
for all m ¢ W one has V(Y?j) = {rl,m’ coes rd,m}' In particular, }Y?ji = d.

m
=2 di
¢y rg ¥ T im Xit'

Proof. By the definition of the simultaneous stabilization, fim) N e, £ 0 implies

(q) 1 . o~
O = -
fi c e, for all q e W. By stability with respect to 2w fi a; e,

The equality between a, and the number asserted in Part (a) of the theorem
is easily verified,
, A m {m)
Let us prove (b). Define s by the condition Yoo = (ymm). Take fq cy
and assume f(m) Ne £ 0, Then 24 f(m) -—a e,.
q i meW g q i

However, every non-zero entry of every matrix

£(m)
q

£(m

is contained in the m-th

row. By the condition [= ei (which follows from fém) N ei # 0) one has

d(fém)) < d(ei) =d., Now (a) implies that aq < 1, hence aq = 1.  But then
(m) _ ; m
d(fq ) =d(e)), that is ]ijl

Let us now deduce (c) from (b)., By (b) for any e, < g th, there exists

(m)
= A(E™) = dep.

j = j(i) satisfying the conditions of (b)., In particular, the equality j(i) = j(r)

. . : . m
implies i = r. Since Z!ij! = efgﬂﬁ th d(er) = [Xl, (c) follows.

4.8, Corollary. Under the conditions of 4.7, the blocks Y?i of the graph xm(x)

can be numbered by the numbers of those e; which lie in g th .
Proof follows directly from (b) and (c¢), cf. also the end of the proof of Theorem 4.7.

4.9. Suppose that the variables of a stationary graph X are linearly ordered and
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X ~ Ol,w(X) ~ GZ,W(X)' Let
{xij(x)} = Stab{xi(x) N xj )1}

(simultaneous stabilization). Define the graph X = (;ij) in the following manner,

a) xij = xij for (i, j) 4 W x W,

by %, =x__ for all i;
ii ii

c) xij > X, if (i, 3) e WX W, (k, t) ¢ WX W;

d) %ij = §£t for i, j, k, te W, i £ j, k £ t, if and only if the pair (xij

composition of Kij(X)) coincides with the pair (th’ composition of Kkt(X)).

e) i3 > E?t’ for i, j, k, teW, i# 3, k#¢t, if and only if the pair

(Xij’ composition of Xij(X)) > the pair ( composition of th(X)).

X
kt’

o = X
Set B,W(X) Stab X.

4.10, Lemma., Suppose that X mzcl,w(x) ~102’W(X). Then

a) The algorithm X-—> 03 w(X) is invariant.
s

b) Aut X = Aut © (X).

3,W

Proof, Evident,

4.11. Suppose that the variables of a stationary graph X are linearly ordered and

~ ~ ~ _ (p,q)
that X Ul,w(x) cz,w(x) . (X). Let A (X) =2 z; fi . Take e <X

3,W Pq tt

(recall W = V(Xtt)). Set

- ) (,9)
i, r = (p,q) agzédge of e fi

Let



5T j=1 irj girj

where a >0, Birj " (0, 1)-matrix. Set

>
iry ~ Pirj+l? Firj

0, & = Stab X(g;;; 0 ...

n... .
4,0 gllm(l,l) gn,d,m(n,d)

d = i -
where dim Xtt

~ T ~ O ~ O
4,12, Lemma., Let X I,W(X) Z,W(X) xX).

3,W

a) The algorithm X—> O

4 w(X) is defined invariantly.
2

b) Aut X = Aut T, _(X).

4, W
Proof, Evident,

4,13, Definitions. Let X be a stationary graph whose variables are linearly

ordered. We say that X is stable of depth 1 <{(or gimply, X has depth 1) with

W = i
respect to V(Xtt)’ if
-~ ~ O ~ g ~ T
Km0y (00 ~ 0, () ~ Oy () ~ 0 ()

We say that X has depth 1 with respect to W = EE% V(Xtt) if X has depth 1

with respect to every V(Xtt)’ teJ. We say that X has depth 1 if it has depth

1 with respect to V(X).

5, Comments on the definition of stabilization

5.1. For an arbitrary daughter system DW(X) = {Yl, cees Ym}, let us set

ﬁ§ = Stab{Yl} = {?;}. Then the operations ci can be easily defined {one should
b4

W

substitute Xi(X) by ¥ in the corresponding definitions), The Lemmas 4,2, 4.5,

4,10, 4,12 hold if the system DW(X) is defined invariantly.,

5.2. The operations O, can be complemented by an operation which is a hybrid of

i,w
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stabilization with respect to the kernel, and of the operation o Namely, for

LW
(3, (0))) (et

every i € W, one can consider the numerical invariants Mg n(nw
* 3
i

E 6,2)., Analogously one can consider
HB,H(Kwi n wj(xij(x)))

etc, Here wi are invariantly defined subsets of V(Xi(x)).

6. Depth > 1 and variants of definition of depth

In this subsection we give only definitions or sketches of definitioms,

6.1, Let us say that X has depth (m+ 1) if ki(x) has depth m for all

i e v(X),

6.2. The depth m can be defined via the consideration of the system of graphs
Xi(kj( cee MO L00)), where {4, 3, ..., €} = m, i, j, ..., € lie in
invariantly defined subsets and where stabilization is simultaneous for all sets of

those graphs.

6.3, One can say that X has depth m if the number of graphs belonging to any
given isomorphism class of graphs of degree < m and containing a given edge Xij’
depends only on the isomorphism class and the 'color" of xij'

In this sense a stationary graph has depth 3. A wvariant of this definition

and arising properties are discussed in Section AD.

= zjl i i mn " 2 3
6.4. Let X &1 % e be a stationary graph. Define the "dual" graph X in the

following manner.

y 8- &
2 = ( ij)i,jez’

A
b) V(Xii) is the set of the edges of the graph e
c) If a is an edge of e, and b is an edge of ej, then the "color' of

A
the edge (a,b) of X is the "color" of the triangle constructed on the vertices of a

and b if a and b have a common vertex and the set of the "colors" of the quad-
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rangle constructed on the vertices of a and b if they have no common vertex,
These conditions permit one to fill the entire matrix % by variables depending
on the type of relation of the edges.,
Now consider Stab % and say that X has depth <(or height?) 1 if blocks
Qii do not decompose in the graph Stab Q, 1f, however, they decompose, the dif-
ferences among the edges of graphs e, are revealed, and the dimension of X can
be invariantly increased (as in 4.1).

~
The graph X 1is perhaps an interesting object, However, no results are known

to us about this graph, and we, therefore, proceed without stopping.

7. Examples, It is difficult to give detailed examples, where the procedures de-
scribed above really work. Indeed, such examples would be first encountered among
graphs with 25 vertices and, therefore, would be very complex,

We shall give partial examples using the graph from 26-family, Partial means that

we shall not compute ¢,

LW but we shall only show that the result of O can be
’

1w
different from the result of Stab and that it can give a partition into orbits of

the automorphism group even when X is a cell,

7.1, A common assumption in the examples given below is that for the meighbor graphs
Pi of the 26-family (given by the pictures in Section U), the stationary graphs
Stab X(ri) are different (have different structure constants aﬁj). We shall not

check this here,

7.2. Our approach is as follows, Let e be the matrix #i from the 26-family

(cf, Section U). Consider the graph

X =x E26 +y e+ 2(126 - e)

Instead of the graphs Kj(X), j=1, ..., 26, we shall consider only the neighbor
graph in e of the vertex j, The isomorphism class of this neighbor graph is given
in the column "IYPE" on the same table as e itself, By the assumption stated im 7.1,

this information is sufficient to give (with the help of o, w) the partition of
’
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V(X). We shall refine this partition using some special properties of neighbor
graphs. Our aim is to achieve partition into orbits of Aut e (this partition is

given on the same page as e itself),

7.3 Let us take i = 3 (the 26-family, #3). the vertices according to the

type of their neighbor graphs fall into the following groups:

(1,2,3), (4,7,13,18), (5,6,12), (8,9,14,15,21,22,23,24,25), (10,11,16,17,19,20),

(26).

In particular, we infer that in Gl,w(X) = (Yij) we have {26} = V(Yii) for
some 1. Now consider the neighbor graph of the 26~th vertex, It is of type 2.
In this graph only vertex 5 (in canonical numeration) is not contained in any
triangle, Therefore, the fifth vertex of the neighbor graph of the 26-th vertex is
separated., So we have separated 4-th vertex (that is, V(ij) = {4} for some J).

In the neighbor graph of the 4-th vertex (which is of type 3) only the vertices
(1,2,3,23,24,25) are contained in triangles. This partition together with the
partition given above (corresponding to the types of the neighbor graphs) gives us

(as the intersection) the partition into the orbits of Aut e,

7.4, Let us now take i = 9 (the 26-family, #9)., This case is somewhat more

difficult because there are only 4 types of neighbors, and because the result we want
to achieve is the split graph., Only vertex 1 has the neighbor graph of type 7. Hence
in ¢

1 W(X) = (Yij) we have {7} = V(ij) for some j., Therefore, in addition to the
’

partition of the vertices according to the neighbor types, we get the partition
{1}, [2,111, [12,26]
The intersection of this partition with the partition according to neighbor

types gives us the partition

(1, (2,6,7,11), (3,4,5,8,9,10), (12,18,25), (13,15,17,20,22,24,26)
)
(14,16,19,21,23)
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Consider the vertices 12, 18, 25, Their neighbor graphs contain the vertices
2211 with the following multiplicity
(7,10) ~-- with multiplicity O
(2,4,8,11) -- with multiplicity 1 (%)
(3,5,6,9) -~ with muleiplicity 2
Since {1} = V(ij) for some j, it follows that the three sets above are unions

of some V(YSS).

Intersecting the sets of (%) and (i), we get the following partition

(1), (2,11), (3,5,9), (4,8), (6), (7), (10), (12,18,25)

(13,15,17,20,22,24,26), (14,16,19,21,23)

This shows that the intersection of this partition with the neighbor sets of vertices

6, 7, 10 is invariantly defined. These sets are respectively
(1,3,4,10,16,18,19,24,25,26)
(1,3,4,11,17,20,21,22,23,26)

(1,6,8, 9,13,14,17,21,24,26)
The intersection of these sets with (%¥%) gives us the partition

(1, (2), 3y, W, G), B), (D, B, 9, (10, (11), (12), (13), (14), (15,

(16,19), (17,20), (18,25), (21), (22), (23), (2, (26)
To split the remaining three pairs
(16,19), (17,20), (18,25)

note that the neighbor graph of the vertex 2 contains vertices 16 and 17 but does not
contain vertices 19, 20. It splits the first two pairs. The neighbor graph of the

vertex 4 contains vertex 25 but does not contain vertex 18. This concludes the split-

ting.



P. EXAMPLES OF RESULTS USING THE STABILITY OF DEPTH 1.

1, Statements and proofs of theorems given below make use of the notions imtroduced
in the preceding Sections., The theorems themselves are analogues of some simple results

of permutation group theory., This implies that possibly deeper results of that

theory can also be restated and reproved in the setting of cellular algebras,

2. Theorem 2,1,below,is used in the algorithm of Section R. In fact, this theorem
is a justification of the approach taken in that algorithm,
In this Section, X stands for a stationary graph with linearly ordered

variables,

2,1, Theorem, Let X = (Xij) be a stationary graph of depth 1 with respect to

W= V(X |W| = n. If M =R for ieW, then

11)’

a) OL(Xll) ~ Z[G], where G 1is a group of order n;
b) Aut X ~ G;
c) the orbits of G are the sets V(X,,).

Proof., Since Xi(X) = R, one has by Theorem 04,7b, d(em) =1 for any e © Xll'

Hence (a) follows from G 1.

Let us now use Theorem 03,5, Note that one has (in the notations of that theorem)
Wl = W, since X has depth 1 with respect to W. Hence Theorem O 3.5 and (a)
above yield (b).

Let us prove (e¢)., Again,by condition Xi(X) = R, and by Theorem O 4.7b, one has

d{e ) =1 for e <X Fix m so that e ¢ X Then e defines {c¢f, I 3)
m m m m

1t° 1t*

X as the factorgraph of X

ct Let V veny Vr be the imprimitivity system for

1t° 1’

X defined by e The action of G on V(X

11 induces the transitive action of

11)
G on the sets v, and, consequently, on V(Xtt)‘ By (b), G acts as an automorphism
group, hence (c¢) is proved,

Remark. Actually, the fact that Xtt is a factor of X11 permits one to identify
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V(Xtt) with G/H for some subgroup H of G, and the action of G on both sets

coincides,

2,2, Proposition. Let X be a primitive cell of depth 1, Y- Xq(X) = (ng)'

Then either ]Y?_t > 1 if V(Ygi) £1{q} or @® = Z[Zp}, p a prime number,
ii

Proof, If }Y?.I =1, let e be the corresponding basic graph, according to
— ii

0 4,7, 4.8, Then d(ei) = 1, Our assertion now follows from K 1,

3. Theorem. Let X = (Xij) be a stationary graph of depth 1 with respect to

W= V(Xll). Assume that there exists a basic graph em < X12 such that d(em) = 2.
Then there exists a non-oriented (i.e., simple) graph e, < X22 and a normal
subcell & in Xll’ such that XIILZL contains the basic graphs ej, j € J, whose
sum j%% ej is isomorphic to the edge graph of graph e . In particular,

[%,,| * d(e)

22 t
i -
i i
= A = i : .

Proof. Put Y i(X) (Ykl)’ ie W. Since em [t XlZ’ X has depth 1 with

, it can be assumed (cf. O 4.7, 4.8) that ‘Y;ml =2,

respect to W, and d(em) =2
Y oex and V(Y1 ) is defined by e, in the manner described in O 4.7, 4.8,
mm 22 mm' i

i ~ . :
We have Ymm =X E2 +y IZ' Then there evidently exists e < X22 such that
i = . ] ; v .
e, n Yom = I+ Tt is also clear that e is unique and that el = e, Since
e n Y;m = Té, i defines an edge of the graph e Let D be the set of the edges of

the graph et. We defined the map V : V(X11)-~> D. Let us show that it is sur-
. . i (i) (i) 1)y =

jective, Let Ymm'_ X f1 +y f2 , where f2 = Iz. Since X has depth 1,
we have §>f§l) =ae which is equivalent to surjectivity.

Now let > be the normal subcell of X,, defined by equality of the rows of the

11
matrix e, {(cf. J 2). Note that the corresponding imprimitivity system coincides

with (471} cagey - 27h

Thus we have the equality ]X11[ZLI = |p] = {XZZI

deD”
Consider the factor-graph X = (iij) of X by the system of normal subcells

(& ax,,

Hence we can assume that X - X, Lo =1, and Em =e . We have

1 c Xii’ i>1}, 1f e is the image of e in %55 then d(em) = 2.

k : .
< e C c el = ty of the cell
e e Xll’ e, e Ze1 + éé& a s where e, is the unity o ce

oU (X

k
11), Since A - 1, no pair of the rows of e coincides, Hence a = 0 or



1 for all k # 1,

edge graph of

then the rows of matrix

This means that the edge

e
t

.

Put J = {k :

Take

p, 9 €
e with
m

(p, Q)

assertion is proved identically,

4, (Compare
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wmn

We If ¥(p) and y(q)

ak , = 11. Let us show that ¢ = 2 ej is the

jeJ

have a common vertex,

numbers p and ¢q have ones in the same column,

is an edge of the graph

[Wi 1, 17.7}, [Qu 1], [Ca 1)

4,1, Let X be a primitive cell of

- ak,
i ] ij

ek,

YJ are numbered

- i
off, Let Y11

]
4,2, Let Y11

has depth 1

~
e. The converse

depth 1, X = Z X e, my = d(ei),

v - Kj(X) = (Ygt) =5 Yy fi. Suppose that the diagonal blocks of

according to O 4,7,

5, m>2,
m

% Em +vy Tg and take q(j) so that e

(and is, in particular, stable under

all 3, k € V(X).

n i
has eq Y11

4.3, Theorem,

Proof, Since

T

m

T
m

Hence there exists a unique ¢

4.8 by numbers of those

q(d
G1,w>’

e, which split them

n Yil = Tﬁ. Since X

one has q(j) = q{k) for

such that for all j ¢ W one

S

=m=- 1, ad > m
a4

divides m(m - 1)

, i.e.,

t
q

-2

g =9q'.

From the Figure in 4.2,
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one has al =m -~ 1, ad >m - 2, Since {c¢f. D 4 ¢ 8)
1q qq

1
m(m - 1) = ny alq = nq aln

we see that nq divides wm{m ~1)., If nq <m-1, then ad m, that is

11 =
ai,l =m. By K3 this implies imprimitivity of X, which contradicts
our assumptions. Hence nq > m. Suppose nq = m.

i o
Let Ti be a complete subgraph of e , defined by the condition Ti n Y;l =1 .

q m
Then every edge of eq is contained in a = m(m - l)n;1 graphs Ti, and every
vertex is contained in the m graphs Ti. Let v, = V(fi). Let Vi, wues Vm
m
contain t € V(X). Since a > 1, one has f{_} ViI = nq 4+ 1 (= the neighbors of t

It

i=1
and t itself), If n =m, then f LJ V,] =m+ 1. Since V, £V, for 1i#j
q 1 1 J

(primitivity), it follows that e is a complete graph with (m + 1)~

ql

m

i=ml

vertices, that is, it is a connected component of e . A contradictiom with H 12,
q

5. Theorem (cf. [Wi 1, 10.4]). Let X be a cell of depth 1 and suppose that for

all ie V(X), the stationary graph Xi(X) also has depth 1, Let
d

X = 27 X, e
1

i e = En’ d(ei) =m for all i ¢ [1, d]. Then either Xi(Xj(X)) is

i’ 0
split for all i, j ¢ V(X), or X is primitive.

Proof is given in a series of steps. Suppose that X is imprimitive. Let L be

a normal subcell in X, and Vl’ ceey Vb be the corresponding imprimitivity system,
Set |Vi| =r, X = (xij), VX ) =V.,. Let s bethe t-th row of X. Let e,

i e J, define our normal subcell, that is, e, e [y if and only if i€ J, Put
|3] =a+ 1. GEvidently, Oc¢ J.

We shall show that our assumption leads us into the first case of the alterpative,
5.1. (m, r) =1,

Proof, r = |V by d(ei) =1+ am,

1' = i€
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5.2, Je,Ns NX | <1 if k4

Proof. If q ¢ Vk’ then the intersection is empty. Hence, it may be assumed

that q€ V. Set Sq,t sqﬂxkt. Let

q,t i 495

Let T be the set of neighbors of the vertex gq in the graph I. We have

T = L_)V(X_,), where the sum is taken over those j for which I L =1
ii 953 q,t

(by similarity of rows, cf. I 1.1), |THence, r divides T. On the other hand,

it] = J1_ _|. By 5.1 it follows that r divides |[I

. Since |I

<
q,t q,t Q;t{ =5

have |I = r, whence our assertionm.

Q,CI

5.3. If peV,, qeV,, i £ j, then
(X)) *’“V. Wj( (A (X))

Proof, Set Y = Xp(lq(x)), 7 = Xq(XP(X)). Since X is imprimitive, it follows
that the blocks with the numbers from 1 to a of the central decomposition of the
stationary graph Xq(X) all lie in ij (we suppose here that they are numbered
according to O 4.7, 4.8)., The above remark and 5.2 imply that deletion of

pe Vi’ i 43, splits Y| that is, Y NJKV (Y¥). Analogously, Z~ KV,(Z)'
i

3

Since evidently Y ~ Z, our assertion follows,

v,’
3

5.4, Xp(kq(X)) =R for all p, q e V{X).

Proof. Let qe V. Set Y% - A &) = (Y?.) =Ly, f?q). We have
_ i q ij i i
a

vV, =ql LJ vyl ). By O 4.7, we have ]Yq [ =m for all s £0., Let peV,,

i bt ss ss j
j#4i., Them A A  splits V,,

P q 1
Let pe V(Y ). Since Y! has depth 1, then by 0 4.7, d(£) =1 for all

q . q : N
£, SY, 1<s<a, Since §Y3ti = ‘Yss‘ = m, it follows that d(fy) = 1. Consider
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= - q : _ q
now YtS Yst < Ytt' It follows from above that d(fk) =1 for all fk [ Ytt’
i.e., Yit = 2[G]. Now 5.2 and the condition d(f,) = d(f}) =1 for all £ Vi,
s <a, imply that Ygs = Z[G] for all s < a, Since t was taken arbitrary

from numbers greater than

. q _ q  _
a {(to satisfy V(Ytt) n v, = 4), we have Y., = Z{G]
94 ~ 4 g = 'y -
for all t £ 0 and Ytt = Y11 for all t £ 0. Therefore, d(fk) = d(fk) = 1 for

all k.

Thus our assertion, and the theorem, are proved.



Q. SOME DEFINITIONS AND EXPLANATIONS ABOUT EXHAUSTIVE
SEARCH,

1. Below we give some definitions related to exhaustive search,
Wedothisinorder to construct a frame of reference for subsequent Sections.

Descriptions of algorithms are usually omitted; if these algorithms are suf-
ficiently complicated, use very ambiguous or, on the contrary, very formal (e.g.,
ALGOL) language. We tried to take the middle road. So we stopped at some
distance from complete strictness (and senselessness).

It seems that the formalism proposed below is suitable forthe description of
some exhaustive methods. It was used, in particular, by G. M. Adelson-Velsky,
V. L. Arlazarov and M. V. Donskoy to prove optimality of the branch-and-bound
method and to describe in a more exact language new developments in their chess
program (which, it should be reminded, won world chess programs' competition
in 1975).

2. Let us first give a very approximate and down-to-earthdescription of the
notions involved.

First of all exhaustive search is a method used to solve problems of the fol-

lowing kind, We are given a finite set V and we are required to find one or several

elements of V satisfying certain conditions.

2.1, If elements of V are given explicitly, then one checks every one of them
in turn for the required property.
2,2, But usually the situation is more complicated. Namely, usually we are

given rules for the construction of some subsets, say Vl’ oo Vrn of V, and for the

subset V., we are given rules for the constructionofits subsets V R v
i Iues

1

so forth. The elements of V will appear as one-point subsets somewhere far down

the line.
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The rules which are used to construct subsets may depend and, as a matter
of fact, sometimes do depend on the set to which they are applied.
2.3. It is customary to associate with the above sequence of subsets an oriented
graph. The set of vertices of this graph is the set of all subsets of V, which
were constructed by the application of the rules, Sothe sets V, Vi’ Vij’ etc, ,are vertices.
Vertex a is joined to vertex b, if the subset corresponding to b is obtained
from the subset corresponding to a by the application of the givenrules. V repre-
sents the root of this graph.

If every subset is constructed at most once, the resulting graph is a tree.
This happens for example inthe case when the application of the rules soany subset
generates disjoint subsets.

2.4. An exhaustive search isdescribed by the order inwhichwe consider the vertices

of the graph described above. If our search brings us to some vertex of this
graph, the length of the path from the root to the vertex under consideration is
called the depth (or the level) of our search at this moment. This dgfinition
depends on the path which leads from the root to the given vertex, If there

is only one such path ({that is, if the graph is a tree), the depth of the search
depends only on the vertex,

2.5. Theusual order of the searchis called "depth-first search'. In this search one

goes down to the end point, say 2 of some path say CRRNNE If this end point

x

is a solution of our problem, the search is finished. If it is not, the search takes

in turn all successors of a,, then a new successor of a3, say a!, and considers

in turn its successors, Et cetera until a solution is met or its absence is established,
In this way the required storage space is of the order of the maximal

length of a path in our graph. (We have to remember the whole sequence of sub-~

sets as well as the information about the next successor for every one of these

subsets.)
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An antipode to the depth-first search is "breadth-first search'. In this

search one first constructs all vertices of the first level, then all vertices of the
second level and so forth. In this case, generally speaking, we have to use
storage space of the order of the number of vertices of the given level. However
it is possible that, having that much information,one would be able to establish
that some of the subsets of the givenleveldo not contain the searched-for points of
V and therefore can be rejected (cf. 2.7, 3.5). If this does not happen, the
breadth~first search would fail,owing to the lack of storage {which is even more
scarce than time).

The algorithm of R8.1 is a breadth-first search (it is not meant to be
programmed} and the algorithms of Sections S, T are depth-first searches,
2.6. A rough estimate of the ""time" to be consumed by an exhaustive search can
be obtained in the assurnption that the application of the rules to every subset uses
the same amount of timme. Then the general amount of time is a multiple of the
number of vertices we searched through.
2.7. In many cases there exist (and sometimes they indeed are known) means to
establish the absence of elements with required properties, The applica-

tion of the corresponding criteria 1is called variant rejection or cut off.

2.8. Frequently {cf., 6.2) there are several ways to associate an exhaustive
search to a given problem. In this case the choice of an exhaustive searchaffects the
possibilities for variant rejections. It is natural to organize an exhaustive search
in such a way, that the number of vertices searched through would be as small as
possible.

In other problems rules are given explicitly {cf. 6.1).
2.9. The time required for a search can also be saved by a clever choice of the
order in which vertices are searched,

2.10. The sequence of vertices of a search graph is called a forced variant, if the
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application of the rules tothe corresponding sets gives rise to subsets of which at
most one is not subject to variant rejection. This means thatduring the searchwe
have to move only in one direction from the vertices of the forced variant.
Examples of forced variants are in T2.4, T3. 4.

2.11. Speaking about variant rejections and the choice of an order of a search,we
have to keep in mind that it costs {computer) time and {storage) space to implement
sophisticated procedures. The price of each verification for a possibility of a
variant rejection can be high (for example, it can involve some exhaustive search
in itself),but the number of rejected sets can be small. In this case the use of
such a variant rejection would be wasteful. Similarly a complicated choice of an
order of a search ("What will be my next step? ') can be improper.

Often we do not know the price of an application of the corresponding deci-
sion procedures. In this case the success of their use depends on the ability to do
a rough experiment, and on good luck. Such procedures, which will hopefully lead
to a speedup (but one does not know for certain whether they will have this or the

opposite effect) we call heuristics (examples are T2.5, S3.4).

Sometimes considerations leading to powerful variant rejections, but
possibly to a wrong result (if a child was thrown away along with a bath),are also
called heuristics, We do not use this word in this latter sense in this volume.

3. A formalization.

3.1. A description of a problem.

For a finite set V let P{V) denote the set of all subsets of V (in
particular, |P(V)]| = z]VI). We identify V with the subset of P{V) consisting
of all one-element subsets of V.

Suppose we are given a computable function F : P(V) —IN. It will be

called an estimate function.
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Problem: Find a subset U QV such that F is defined on U and attains
its maximurm value on U.
3.2. Exhaustion.

Define a function of an exhaustion as a computable map

f: P(V) ~P(P(V))

satisfying the following conditions
a) If f(U) is defined for U e P(V), then F(U) is defined;
b) If f(U) is defined for U e P(V), then {(U) ¢ P(P(U));
¢) At least one subset U, which is a solution of our problem,belongs to the

image of fl(V) for an appropriate i.

3.3. The graph of an exhaustion.

The graph T of the mapping { is called the graph of exhaustion f.

More explicitly
a) the vertices of T are elements of P{V) where f is defined and
which belong to \ ).
i>1
b) There is an edge from a e V(T) to be V(T) if and only if a e f(b).
(Here and below we identify vertices of T with elements of P(V)).
Then {V} e P(V) is the root of T. Let T(m) bethesetoftheverticesof T

which are at a distance m from the root of T. If Ue V{(T) let

be the set of all successors of U, and

Py = {Me P(V)|U e £(M)}

the set of all predecessors of U. Let T(U) be the graph of exhaustion

f|P(U) (it is the subgraph hanging at Ue V(T)).

Finally, let End T = End{ be the set of all terminal points of T, that
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is, the set of all U e P{V) such that f{U} is not defined, and Solv T = Solv {
the set of all U e P(V) which are solutions of our problem,

3.4, Search on the graph of an exhaustion. A computable function

@ IN->V(T)

is called a search if
a) U @(n) contains a point from Solv T;
ne IN

b} Pin+l) € }ﬁ/n O{n)

An exhaustive search is therefore a triple (T,9,F), where T is the tree

of a search, ¢ is a searchover T, and F 1is an estimate function.

3.5. Variant rejections.

Let (T,¢,F) be an exhaustive search. A computable function
p= pl¢): N~{0,1}

is called a variant rejection or cut off if

[V(T) V(T(@(n)))]() Solv T % ¢

" p(n)=1
{which means that we preserve solutions}. Here T(¢gn)) is T(U) from 3.3 b) for U= ¢fn).
Given a variant rejection p for a search (T,¢,F), one can constructa new

search (T,a, F) in the following manner. Set

Q) = @) i o) § &/, VIT@aN)

i<n
@'{n) is not defined otherwise.
Now construct a monotonic numeration y: IN -~ IN of the points n ¢ IN, for
which @'(n) is defined,and suppose moreover that if n is in the image of u

then all i<n are in the image of u. Then set

@(n) = ¢'(uin)
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4. Mass problems.

The above notions become somewhat more interesting if one considers them
in the case of mass problems.
Suppose we are given a tree T and a family of exhaustions 8 = {{T,¢, F)}.
It is usual to subject the elements of &£ to conditions of coherence. Namely, we
require the existence of a computable function
r:Nx ESv(T)
such that the restriction of 7 to the fiber of IN X E over (T,¢, F)e g:

T INX(T,0,F) - V(T)

coincides with ¢ {(and is therefore subject to conditions a), b) of 3.4). Moreover,

we have to assume that our exhaustive search does not depend on the future, thatis,

i (T,0,F), (T,¢,F) e & and \J o) = \Jo() and 7)o = F I\ 90
then 7{n+l, (T, ¢, F})) = 7{ntl, (T,(P,Fl)}.

Now we can also define the variant rejection as a computable function

p:NX€+{O,l}

such that its restriction to every (T,®,F) is a variant rejection in the sense of
3.5 and which satisfies the additional conditions stated below,
One is the following. If (T,®,F) el , (T,¢,F)e & and
gq)(i) =\ 96 and Flig) 90 = F I}/ 9,) then platl, (T,9,F)) =
p(nt+l, (T, @, Fl)).
The second one is the requirement that the new family of searches construct-
ed from 5 with the help of the family p of variant rejections {as in 3,5) forms
a family of searches, subject to the condition of independence from the future.

Then one can use variant rejections to construct new searches.
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5. Some examples of variant rejections.
5.1. Suppose that F 1is monotonic in the following sense

F(U) > F(U,) implies F(W

1 2 ) > F(WZ) for all W1 € f(Ul) and all

1

In this case one can set p(n) = 1, if there exists m < n such that
F(@(m)) > F(@(n)),

and set p(n) = 0 otherwise.

5.2. Suppose a finite group G acts on T in such a way that
F(ga) = F(a) for ae V(T)

(Here we consider F as a function on T). Suppose we have an algorithm of
canonization,which ascribes to every element te V(T) a point Canon t on the
same orbit G-t of G as t, and such that Canont = Canon s for se G-t.

Set
p(n) = 1 if @(n) TJ: Canon @(n)

This approach is used in Section R below.

It is useful to find some algorithm Canon,or to construct a search ¢
such that if @(n) = Canon ¢(m) then n < m. Otherwise,the use of the above
variant rejection may make the search less effective.

6. Examples of some searches.

6.1. Checkers.
Let a position A on a board be given. Consider the problem of finding
a move for black which leads to the best position for white (in some fixed sense)
among all positions which are at a distance of 3 successive moves from A.
In this case, V is the set of all positions on the board which can be
obtained from the given one in 3 steps with the first step made by black. V is

not given explicitly (cf. 2.2) and the rules to construct subsets (checkers moves)
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are fixed (cf. 2.8). So the tree is constructed uniquely. However, we are free to
chose the order in which vertices should be searched {(i.e., function ¢).

6.2. Strongly regular graphs.

Problem: find all (up to isomorphism) non-empty and non-complete
graphs on n vertices,such that every vertex has m neighbors,and two vertices
which are (resp. are not) neighbors have the same number dl (resp. dz) of
common neighbors.

The set V is the set of all graphs on n vertices. The rules for
constructing subsets are rather arbitrary. Let us describe two possible
choices.

6.2.1. Let V(i) be the set ofthe graphson n vertices, such that every one of the
first i vertices is incident to m edges, and thereare no edges between the vertices
n-itl,...,n, and any two vertices which are (resp., are not) neighbors have < d1

{resp., <d common neighbors, For a graph I ¢ V{i}, the associated subset

)
of V consists of all elements of V which coincide with I' on all edges from the
first i vertices. The set Qr: f{I) (cf. 3.3) consists of all graphs from V(itl)
whose first i vertices have the same connections as I,

6.2.2. Let V'(i) be the set of all graphs I' on n vertices,such that there are
no edges from the first i vertices to the remaining n-i, and at most m

edges from any one of the first i vertices,and two vertices which are {resp.,
are not) neighbors have f_dl {resp., < dZ) common neighbors., For a graph
T"e V'(i) the associated subset of V consists of all elements of V which
coincide with I" on the first i vertices. The set QF = {(I) (cf. 3.3) consists
of all graphs from V'(i+l) which have the same connections between the first

i vertices as I\



R. AN ALGORITHM OF GRAPH CANONIZATION.

I, Below we show how the notions and approaches introduced in this
volume can be used to describe an algorithm of graph identification. The
algorithm of this section is not aimed to be programmed and therefore it may
use ''breadth first search' {cf. 8.1). The use of this type of search permits
one to apply stabilization of depth 1 or more. The decisive point is the use
of Theorem 0O3.5 to find some orbits of the automorphism group of the graph
under consideration.

Another essential feature is the procedure designed to deal with correct
graphs {cf. 5,4.2 and 6.2) and direct sums {cf., 5.4.1 and 6.1). Below in sub-
section 9 it is explained why this case requires special treatment,

As was mentioned in the introduction, the algorithm of this section is a
development of the algorithm of [We 3].
2. Definitions.

2.1. Canonical algorithm

An algorithm A, mapping the set X of graphs into itself, and defined
everywhere on 96, is called canonical if

a) for all X e x and for all ge Sym V(X)

Alexg™ = A

A canonical algorithm /2, is called a canonization algorithm if

b) for any X there exists ge Sym V(X) such that

AUx) = gxg™

2.1.1. Remark. If one has an algorithm A of graph canonization, then it gives
rise to an algorithm of graph identification, say B. Namely B consists of the

application of A to both graphs,and then in the comparison of the results,

2.2. Semi-~-invariant algorithm
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An algorithm (/Q, mapping x into itself is called semi-invariant if for any
Xe X and for any ge Sym V(X) there exists h ¢ Aut X such that

Algxg™ = ghﬂ(xm'lg‘l

(Recall: Aut X = {he Sym V(X) : hXh = x}.)
The semi-invariant algorithms lie somewhere between invariant algorithms

and canonization algorithms. If h is always unity, then A is invariant.

3. Below we describe how one can construct canonization algorithms if
some special kind of semi-invariant algorithms is given.
3.1. Let c/q- be a semi-invariant algorithm which places a split graph A(X),
whose variables are linearly ordered into correspondence with a graph X. Let
m = m(X) be the permutation such that the diagonal entries of mJQ(X)m—l are
positioned in decreasing order, that is if m.ﬂ.(X)m-l = (Yij) then

v Put

> .
i Yi-1, -1

Canon (X)) = me'l

A

3.2, Assertion. The map X »Canonﬂ‘(X) is a canonization algorithm.
Proof. The validity of 2.1b} is ensured by construction. Now, if
-1 -1 -1 ; A .
Y = gXg then A(Y) = gh.-/Q(X)h g for some he Aut X, since is semi~
invariant. Further, since both ./Q(X) and gh.-/[l(X)h_lg-1 are split, the substitu~
tions m = m(X) and m, = m(ng-l) are uniquely defined. Hence thediagonals of
1

nl.ﬂ_(X)m-l and mlghﬁ(x)-h-lg_m-I

1 coincide. Therefore m = mlgh. Now we

have

-1 -1 - - - - -1 ~1
Canon ,{gXg "} = mh lg l(ng l)ghn'l l= mh thrn = mXm = Canonﬁ (X3

A

as desired. Note that the third equality used the condition h e AutX.
4. Our canonization algorithm consists of several parts.
The following two parts are most important:

4.1. S8plitting algorithm.
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It is an exhaustive algorithm. Thevertices ofthe associatedtree (cf, Q3. 3)
correspond tothe stationary graphs. The set QX (cf. ©3.3) is either the set

{Km(X)}m or the disassemblage of a correct graph X (cf.J6.7). Inaddition,

€ V(Xii)

at a vertex of our tree the disassemblage of direct sums is possible. End
points of our tree correspond to split graphs with linearly ordered entries.

4.2, Elevation algorithm.

This part works on the results of the job done by the preceding algorithm.

Using either the stabilization of depth 1 or 03.5, the elevation algorithm
gradually, step by step, decreases the depth of the tree of 4.1. At every moment,
however, endpoints correspond to split graphs. At the end of its work the
elevation algorithm delivers a split graph. Then a canonical form is constructed
according to 3.1. Note, that the elevation algorithm is invariant only in the case
Aut X = 1; in the general case it is semi-invariant (c¢f. 6.1, 6.2, 6.4 below).

5. Splitting algorithm (denoted Split).

5.1. Let T be a directed tree, T(k) be its k~th level. If v e T(k) thenlet QV
denote those vertices of T(k+l) which are connected with v; let PV ‘dénote the
vertex from T(k-1}) such that (Pv,v) is an edge of T, Further, let TV denote the
tree hanging at wv.

5.2. In our case T is the tree of the exhaustive algorithm Split. To every
vertex v e T there corresponds a stationary graph denoted by X(v).

5.2, I ve T then X{v) is checked for validity of the following conditions:
5.3.1. X{v) decomposes into a direct sum {cf. G2);

5.3.2. X{v) is correct (cf. Jb6.6).

5.4. QV, v e T, is defined in the following manner:

5.4.1. If X{v) decomposes into a direct sum, X{v)} = Yi(v),

&
t{v)>i>1

Y () > Y (v), then Q = {Yl(v), cel Y, v)(v}}.

{
5.4.2. If 5.4.1 is not applicable but X(v) is correct, then QV = F{X{v)),

cf. %.7.
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5.4.3. If 5.4.1 and 5.4.2 are not applicable, X = (Xij} and {composition of

Y= max (composition of X..)} then Q = {A (X}
ii v m

X, [>1 me V(X))
1l

X
tt
tt

5.5. Remarks,
5.5.1. Note that for ve T the tree T(v) corresponds to the algorithm Split,
applied to X{(v).
5.5.2. Also note that in the case 5.4.1 there is no branching of the exhaustive

search at the point under consideration since X = X ® XZ implies (as we shall

1

see below) that Canon X = Canon Xl @ Canon XZ'

6. Elevation algorithm {denoted Lift).

6.1. Assemblage of a direct sum.

o~
Let uQ be an algorithm on graphs. Let X = m?ﬁ>l Xi' Renumber the

variables of the graphs ﬂ(}(i) according to the lexicographical order

of (Xi’ xj) for Xj € ﬂ(Xi). Denote the result by A (Xi)'
Denote by Assembly (X) the graph, obtained in the following manner:
In the matrix X, replace any entry of Xi by the corresponding

entry of J(Xi). Then Assembly‘rjl (X) is the stabilization of this latter graph.
Note that if J?’(Xi) is split for all i, then Assemblyﬂ(X) is also split.

If ‘ﬂ, is semi~invariant then Assembly is also semi-invariant, If L/‘?- is semi~

invariant and ﬂ(Xi) = R for all i, then

Cano (X) = Assemblycanon (X).

nAssembly‘er

6.2. Assemblage of correct cellular algebras.

Liet X be a correct stationary graph which can not be decomposed into a
direct sum. Let F(X) = {Xl} be its disassemblage. For any algorithm on graphs

one can define their assemblage in the same manner as in 6.1, However we shall

define it only for semi-invariant algorithms </Q, which bring a split graph A(X) in
correspondence with X, In this case let us order the graphs X, according to the
i

(lexicographical) order of the graphs Canon (X)., By J6.8 isomorphic graphs (that
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is those for whom Canon (Xi) = Canon (Xj)) define some subgroup in Aut X

A A
which permutes isomorphic graphs as an appropriate group Sym. Therefore,if
we define an arbitrary order within the isomorphism class we obtain a semi-
invariant algorithm.
Explicitly, for ‘A(Xi) = (x;q} construct —}—(i = (;Ii)q) in the following manner:

;4_1 >;1 if x1 > %
P4 rt P4 rt

xl >x) if Canon (Xi) > Cano

pa  Trt A A

Canon {X.} = Canon ,{X.) but i>j.
Jl( ;) (/Q( ; J

(X.) orif
)

Again let us note that in the latter case the definition is semi-invariant by J6.8.
If Aut X = 1, then the latter case does not occur and the definition is invariant.
Now denote by X the matrix obtained by substitution in X of the entries

of X for the corresponding entries of Xi' Set

Assembly . (X) = Stab X.

A

It is a semi~invariant algorithm.

6.3. Elevation in the case Qv = {)\i(X)}.

Let A be a semi-invariant algorithm which maps every graph into a split
graph with linearly ordered entries. Let I be the set of all i such that for all
j one has Canon ()\i(X)) > Canon ()\j(X)). In particular, all graphs )\i(X),

A A

ie I, are isomorphic. Set

m = max i and Change

X} = A (X)),
na; - (X) = A0 ()

This operation is semi-invariant by 03.5. If Aut X = 1 then |I| =1,
and our operation is invariant.

6.4. Define inductively the elevation algorithm L.ift.

Let T be a subtree of T and denote the graph corresponding to the vertex v
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of T by S“C(v). Suppose that ;((v) = X(v), and QV(’f) = QV(T) if vk End'f .
X(v) is splitif ve End T .

The tree T constructed for algorithm Split satisfies these conditions.

Let us constructfrom T a new tree % in the following manner. Let
vel End %’, but Qv(%)c End T . Then substitute for ’Z;“((v) a matrix }z((v)
obtained from )?(v) by the rules 6,1,6,2, 6.3, if Qv was obtained from v by the
rules 5.4.1, 5.4.2, 5.4.3 respectively. If v {E End T and QV(C End T, put
§(V) = ;i(v). Also set V(%) = V(E") - End E" Let us denote the pair: the tree %
and the map v —+§(v) by Lift (%,E(v)). Algorithm Lift is evidently semi-invariant
(cf. 6.1, 6.2, 6.3). Since Lift ('f,’;((v)) satisfiesthe conditions on %,we canapply
Lift recursively.

7. Canonization
7.1, Let A be an arbitrary matrix. Construct {cf. M2.1} X(A).
7.2. Let X = Stab X({A). Construct for X the splitting algorithm (cf. 5}, its
tree T, and the correspondence v - X(v).
7.3. Let N be the maximal length of the pathsin T, Then |V((Lift)N(T))| =1,
Let Vg = V((Lift)N(T)), }A( = (Lift)N(X(vo)). The correspondence X —>}A( is a

semi-invariant algorithm. Denote it by A.

7.4, Construct Canon (A} {cf. 3.1).
A
8. Variants

8.1, Simultaneous descent (Breadth-first search).

It is possible to construct for the tree T of the splitting algorithm the
entire following level T(k+l). Then one can perform the simultaneous stabilization
of all graphsat that level and compare the results. Moreover one can in this
case performthe stabilization ofdepth (k+l) (cf. O6,2), Insuchanapproacha

picture would be more homogeneous and natural (but quite impractical, cf.Q.2.5).
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8.2. Successive descent (depth first search).

It is possible to first descend up to the end of the most left branch of the
tree T, and then move to the right. Suchanapproachallows one to save memory
{cf, Q2.5). Besides, with luck, one can find rather early automorphisms,and
then use them in the same manner as in S3. 3.

9. Some explanations.

When one is trying to handle the graph isomorphism problem, he
first uses the ideas introduced in the stabilization algorithm, Then he applies
the same ideas for graphs with one, two and so forth fixed vertices (i.e., an
analogue of 5. 4.3 above). Clearly this leads to a solution of the problem, but
sometimes it can take too long to get to this solution. The first evident obstacles
are direct sums and correct graphs.
9.1, ¥ X=Y ?é 7, then fixation of the vertices of Y does not affect Z, and vice
versa. So the depth of the corresponding tree of exhaustion is the sum of depth
of the trees for Y and Z. Then the ''time" required for such an approach is
the product of the '"times' required for Y and Z.

However in the approach we used, we are dealing with Y and Z separately,
and so the "time!' is only the sum of the ''times' for Y and Z.

9.2. Analogously, if X is a correct graph and {Xi} its disassemblage, then
our approach again requires only the sum of the ""times'' for each Xi’ but a ""straight-
forward' approach requires a product of "times'. The simplest case is when X
is a simplex, Sm. Then the straightforward approach requires m! steps. Our
approach requires one step.

However inthe case of a simplex one can use automorphisms (as described
in $3,5)and get the resultinless than m! steps, However, some correct graphs
have no automorphisms permuting their parts and then once again one gets a factorial,
9.3. Remark. Since some )\.i(X) could be direct sums,or correct graphs, even if

X is neither, 5.4.1 and 5.4.3 could be used repeatedly by our algorithm,.



S. A PRACTICAL ALGORITHM OF GRAPH CANONIZATION,

The algorithm for the construction of strongly regular graphs, which is described
in the next Section,constructs many (thousands of) graphs. Therefbre a program
was written which canonized graphs constructed by the algorithm of the next
Section. We describe below the ideas on which this program was based (we
follow the exposition given in [Ar 1]). Note that strongly regular graphs are
rather difficult to handle, because they haveahighdegree of symmetry. On the
other hand the algorithm of the preceeding Section is too bulky for practical
purposes. An interesting feature of the algorithm of this Section is the procedure
designed to construct and to use automorphisms of the graph, cf. 3 below.

1. Forthe nXn (0,1l)~matrices A = (aij) and B = (bij) with zero diagonal let us

write

A>H
if the n~ -dimensional vector (au, Bypre e ann) is greater (in lexicographical
order} than (bll’blz’ i bnn)' Let us then say that
~ -1
A = max gAg
geSym (n)

is the maximal form of A.
We shall construct an algorithm A {mapping the set of symmetric (0,1}~

matrices with zero diagonal into itself) such that
Ala) = &

Such an A will be a canonization algorithm (in the sense of the preceeding
Section).

2. For an ordered subset V(k) = (il, v, i of distinct elements of [l,n] and

K
for a matrix A of the same type as in 1 above, put (Min stands for '"Minor')

Min (A) = (a

Vi{k) st)(s,t)e V{kXV(k)"
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Let us say also that V(n) = (‘11, N in) is a monotonic sequence for A if for
every ?f(k) = (il, e ik) one has
Min {A) = max Min (A)
. — 1
Vi(k+) Vi) [ Vt)ovie) ) D

The relation of the notions of a monotonic sequence and a maximal form
is explained by
2.1. Proposition. Let A be a symmetric (nXn) (0,1)-matrix with zero
diagonal. If A is a maximal form,then the sequence (l,...,n) is monotonic
for A.

Proof. Suppose that the assertion is false, let ke [1,n] be the smallest
number such that for :\?(kﬂ) = {l, e ,k+1} one can find s > k+l such that for
Vik+l) = (1,...,k,s} one has

Min_ {A) < Min
Vi{k+1)

Vi)t

Let m be the first number s with these properties. Then we have for some

t <k (recall, that A has zero diagonal) that

aim: ai,k+1 for i=1,2,...,t (1)

but

> 2
Bil,m . Pl ket (2)

Let ge Sym (n) be the transposition of m and k+l. Then the first t rows of
gAg-1 coincide with the first t rows of A (it follows from (1)) but the (t+l)-th
row of gAg-1 is greater than the (t+l)-th row of A (this follows from (2)). There-
fore A is not a maximal form., This is a contradiction.

2,2. Proposition 2.1 shows that to find a substitution g e Sym (n) such that gAg-l
is the maximalformof A, oneneed not consider all g ¢ Sym(n}, but only

those for which the subset V{n) = g(,...,n) is monotonic for A.
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This can be done rather easily since we have to consider only those V(k}

which are monotonic for MinV(k)(A)'

More precisely, let A bea nXn symmetric (0,l)-matrix with zero

diagonal and suppose that V(k) is monotonic for Minv(k) {A). Letus call
Vik+l) = (11, ey lk+l) an extension of Vi(k) if

a) V(k) = (11, e 1k)

b} V{(k+l) is monotonic for MmV(k+l)(A)'

Therefore we have to take all extensions of V(0) = ¢, then all

extensions of these extensions,and so forth,until we will get the end points, which

are monotonic sets for A consisting of n elements., Every such set (il, e in)

12 N
.. n } and {4, 2,...,n) is a monotonic
i d,eeed

1 n

determines the substitution g = (
sequence for gAg,l. Using Proposition 2.2 one has only to chose the greatest
matrix among the matrices gAg.l described above.

The algorithm for the construction of extensions of a given set will be
described in 2. 4.
2.3, Letus now show how the description of this exhaustive search is interpreted
in terms of Section Q.

Let T{(k) be the set of V{(k} such that V(k) is monotonic for MinV(k)(A)'
Set T =\_/T(k). There is an edge from te T(k) to se T(k) if s = V(k+l) is

an extension of t = V(k). Since for monoctonic V(k+l) = (il’ PR ), the

S el
sequence V(k) = (il, s ik) is also monotonic, and the tree T is connected. It

is clear that every monotonic sequence V(k) ({(for Min (A)) has at least one

V(k)
extension. Therefore every monotonic sequence for A is represented by an
end point of T, and every end point represents a monotonic sequence for A,
2.4. Letus now describe the exhaustion function of our search, that is the

algorithm for constructing extensions of sets. This part is repeated many

times and therefore has to be as effective as possible.
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} be a monotonic sequence for Min (A). If

Let Vik) = (il, ey ik V (k)

Vik+l) = (i,...,1 ,r) is an extension of V{k), then it follows from the definition

1 k

of the monotonic sequence that

{a, yesesd ) = max (ai t""’ai }
1’ k te [1, n]-Vi{k) 1’

L.et R = R{V(k)} be the set of all r which satisfy this condition {then (V(k},r)},
re R, are all extensions of V{(k}).
To describe R we use the sets Wi = {j ¢ [1,n] - V(k)iaij = 1}, Put

R, = {1,2,...,n} - V(x) and

Proposition. Rs is the set of je [l,n] - V(k) such that

A, yeeesd, = max (a ...,a }

L i L ’ .>’t
SiE ' teLnl-vi vt 's

The proof is straightforward (cf. also [Arl]).

Using this proposition one can find R by only taking intersections of
computer words.,

3. For some graphs the above procedure is ineffective. The graphs
whose automorphism groupsarelargewill havevery large tree T, Another case
is the case of correct graphs., We shall show below how to deal with a large
automorphism group {cf., T5.2).

Here we have two problems. The first one is how to find automorphisms,
and the second one is how to use them, The following two assertions answer
these questions. They are evident.

3.1. Proposition. Suppose that Min (A) = Min_ (A), V(n) = (il, . ,in)

Vin)
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'\Vf(n) = {jl, PN jn} . Then the permutation

is an automorphism of A,

3.2. Proposition., Let ge Aut A and V(k) = (il,. ..,ik) be such that V(k) is

monotonic for Minv(k)(A) and gij = ij for j=1,...,k. Let T(U), UC[L,n],

be the subtree of the tree T from 2.3, consisting of ’T:IC [1,n] such that
T = {U’jl’ . ,jt}. Then for every je [1,n] - V(k}) and every V{n)e T({v{k), j})

one has MinV(n)(A) = MingV(n)(A) and gV(n) ¢ T({V(k),gj}).

3.3. To use the preceeding assertions, we use the ''depth first search' over

the tree T described in 2.3, Allsequences V(n)= {il, s in), which are monotonic

1 n
V(n)(A),Where g:(i cee ).

1 n

for A, arestoredtogether with the matrices gAg_l = Min

When a new monotonic sequence V(n) is constructed we compare the corresponding
matrix gAg_.l with the already stored matrices. I it coincides with one of them,
then we get (by Proposition 3.1) an automorphism.

For every V(k) belonging to a sequence V(0) = ¢C V(1) ... of extensions,
and for every ge Aut A found by the above method and such that
glV(k) = 1, letus store the orbits of g in the set of extensions of V(k), Whena
new such g is found, the intersecting orbits are joined.

Now Proposition 3.2 says that in the search we can take only one represen-
tative of the extensions of V(k) (compare T5,2),
3.4. The method described in 3.3 is heuristic {cf. Q2.11). It is useful when
the group Aut A is large, If it is small (e.g., Aut A = {1}) then all our efforts
(and storage space) will be useless.
3.5. An example of a situation where 3,3 essentially reduces our search,
is the case A= Tn (the complete graph). In this case the heuristic of 3.3

requires the construction of only n end points of T (but the method of 2.3
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requires the construction of n! end points of T since every sequence
gd,...,n), ge Sym (n) is momotonic for A).
3.6. However in the case of correct graphs (cf., J6) the heuristic of 3.3 may
fail for reasons described in 3. 4, and the size of the search would be of order
(2)1, which is still very large for graphs of G4.7, for example.
4. The algorithm described in this Section {with heuristic 3.3) was
used to canonize the graphs constructed by the algorithm of the next Section.
It also found the orbits of the automorphism group,
For the graph #: 7 from the 26-family, the programbasedonthis algorithm
constructed 40 end points of T andfor # 9 fromthe26-familyitconstructed 756

end points of T. Note that Aut A is trivial in the second case.



T. AN ALGORITHM OF CONSTRUCTION OF STRONGLY REGULAR GRAPHS.

A strongly regular graph with parameters n, ;. aZlL1

, a is a graph with

11

n vertices, such that

a) any vertex is incident to s 0 < nl < n-l, wvertices,

b) any pair of incident vertices is simultaneously incident to a different vertices,

11
¢} any pair of non-incident vertices is simultaneously incident to a, different
vertices.
Clearly the adjacency matrix A = (aij) of a strongly regular graph is a

basic element of a three-dimensional cell (cf. K20). So it is a symmetric n X n-
matrix with zero diagonal and with elements 0 and 1, and it satisfies the following
condition:

If s; = (a.i

e ain) is the i~th row of A and if Isl denotes the number of

ones in (0, l)-vector s, then

lsi§ =0 for all i
1
a, if aij =1
s.Ns.| = (*)
ls;ns ,
if =0
n Moy

Below we describe the algorithm which constructs for a given set n, ),
1 2 .
a2y of parameters a set of strongly regular graphs with these parameters
such that any strongly regular graph with these parameters is isomorphic to at
least one constructed graph. Interesting features of our algorithm are the use of
partial canonization, cf. 2.3, 2.5, 2.6, 2.8, and two forced variants {cf. 2.4,
3.4).

1. To describe this algorithm we have to introduce some notions. Let us

fix n. Let B = (bij) bea nXn (0,1)-matrix with zero diagonal. Let D =

{il, e it} be a subset of [1,n].

Two numbers r,q ¢ [1,n]\D are said to be D-equivalent if
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b, =b, forall ie¢ D
iq ir
(clearly this is an equivalence relation).

1.1. Definition, Set D0 = D andlet D, i=1,2,...,m, be classes of D~
_— i

equivalence numbered such that (here inf stands for infimum)
i>j®infDi>inij

The Di’s are called D-sets,

1.2. Let B, D, Di be as above. Let sq = sq(B) be the gq-th row of B. For

qgf D and je [I,m] set

(This is the number of ones in Sq which occupy the positions (q,s), s e Dj')

1.3. Proposition. lL.et p = inf Di'

a) For every q¢€ Di there exists g ¢ Sym {Di) such that

-1
X, Bg) = x_ {B) for all j e [Im].
i Be g j e [1m]

b) There exists an he I Sym(Di-p) such that for h-lBh = (¢ p) the following
a
i>1

: = i 1 = ] < i j
holds: Cps 1, s ¢ D, implies ij 1 forall j< s, j#p, je D,.

k!
These assertions are evident, and show that, when t rows ('11, e it) of

B are fixed, we still have some freedom to move the remaining rows., They also show
how to use this freedom. These assertions, and also their corollary, are used in
2.3, 2.5, 2.6,

An easy corollary of 1. 3a) is
1.4, Corollary. Under assumptions and notations of 1.3 there exists g ¢ Sym(Di)
such that the vector

-1 -1
(xpl(ng Yoooosx_(gBg )
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is lexicographically greater than or equal to any vector

-1 -1
(Xq,l(ng Yoo "Xq,t(ng N, ae D

1.5. Now note that the number b , re D, j¢ Di , depends only on r and i.
r)
Liet us denote it by bi(r).

Secondly, if we set s = (b ), (recallthat D= (il,.. .,1.)), then

i t
k, lt

the number

|Sr,Dﬂ Sj,Dl’ r e D,

does not depend on j € Di. . Let us denote it by ¢ (r).
i
Also let ¢, Dbe the common value of lsj Dl s, j€ D
i s i
1.6. Proposition. If B is an adjacency matrix of a strongly regular graph,then the

numbers qu,(B), q € Di’ satisfy the following equations

Z x .=n -c

o Wb
L ooc(x) i b (r) =1
Tt
Y b.r)x .=
>0 3
2 (r) if b.(r)=0
app T et B =

(These relations are direct consequences of (*}).

2. Now we are able to describe the work of our algorithm at a fixed vertex
(i.e., to describe its function of an exhaustion).

There are two somewhat different procedures depending on the situation. In
all cases at the level t, the data inherited from the level (t-1} contain a subset
D(t) = {il’ e it} of [I,n], a nXn (0,l)-matrix Bt and also some additional
information to be described later (Sd, t,a list of positions fixed (cf. 2.4) at the
level t-1).

2.1. For this pair D(t), Bt construct D{t)-sets Dl’ e Dm numbered as in 1.1, If
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|Di| =1 forall i=1,...,m, the second procedure is applied. It is described
in 3.
2.2. Forevery i=1,2,...,m, find all solutions of the system

Ex. = nl - cl
=7
at (r) if b.(r) =1
- ¢ AR
Zb(r)x. =
2

It
<

2 .
an - ci(r) if bi(r)

The solutions are vectors of length m, Let us denote the set of these solutions by
Si' The elements of S.1 are ordered with respect to dictionary order.

The search for solutions of the above systems is done by the evident exhaus-
tive search. If the procedure 'Fixation'" (cf. 2.4) has already determined (that
is on preceeding levels) the values of some Xj’ those values are not computed
anew but substituted in the above systems. ("Fixation' reduces our search,
but does not involve an exhaustive search. Therefore, "Fixation' is a forced
variant).

If for at least one 1 the above system has no solutions, return to the level
t -1 and apply 2.6.

2.3. Now fix in turn all s <t andall i€ [I,m]. Let Di, ey Dz'i be Di{s)-sets

s 1

constructed for B, Clearly Di is contained in some D.‘i. If none of is+1’ SERTEN

s 1

belongs to D_'j’ pass to 2.4. Otherwise take the largest among is+l’ ceead

which belongs to D&, and callit r. For this r, computethe solution of the system

of 2.2 which is realized by r-th row of Bt' Let it be the vector u (of length a).
For each solution v ¢ Si’ compute the solution of the system 2.2 {(considered

for s) to which it corresponds. Denote it by v {the computation is easily perform-

ed for a given matrix B).

Delete from Si’ those v for which v >u. If the resulting Si is empty,
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return to the level t -1 (i.e., put t: = t -1 and apply 2.6).

2.4, "Fixation' {This is an example of a forced variant, cf.,Q2.10). If for some

i, je [l, m] the j-th component of all solutions from Si is 0, then we

can fill all positions (p,q) € Di X Dj of B by zeros,and we do this.
Analogously, if for some i,je¢ [l,m], i# j (resp., for some je [1, m]) the

j-th component of all vectors from Si (resp., Sj) is lDi{ {resp., lel-l), we

can fill all positions of {p,q) ¢ Dj X D, (resp., (p,q)e Dj X Dj’ p £ q) by ones,

and we do this.

2.4.1. Note, that the group Sym Dl X... XSym Dm commutes with these fixed

pieces,

2.5, Now take the smallest de [l, m] such that {Sdf < ‘Sii for all ie {1, m]

and put it+l: = inf Dd’ sd,t: = Sd.

2.6. Take thelargest vector, say v, from S and put S S

d,t d, t’

t%l}' Place the elements in the it+1-th row of Bt {they will lie cutside

Va

d,t

Dit+l) = {il, A

D} in the following manner. Let Di = {j_ } (listed in increasing

i, D]
i
order), v = (vl,...,vt). If 1¢ 4, put

1 for j= _]i,l,. ,Jl,v‘
i
i)
O for j=1J; , 4y y b))
i i
If i=d put(recall Jd’l = 1t+1)
bofor j=y o a,v 4
bi .=
4177
0 for j=

1, v g2t Y4, D |

Theninsert the corresponding it-l—l"th column (sc that B is symmetric).

Alsoinsertthe entries in all positions which were determined in 2. 4 and store the
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information about these positions. Call the resulting matrix Bt+1'

2,7, If t+1=n, print Bt+ (which is the matrix of a strongly regular graph),

1
set t: =t -1 andapply 2.3, If t+1<n, gotothelevel t+1, i.e., set
t:=t+1 andapply 2.1.

2.8. Remark. We have used several search reductions (in 2.3, 2.5, 2.6). Using
them we construct a smaller number of graphs, However, at least one

graph in each isomorphism class will be constructed. This is guaranteed by 1,4
(for 2.3), 1.3a) (for 2.5), 1.3b) (for 2.6). (cf. also Q5.2 where this situation

is described in a more detached way).

3. "Break-down'. Now suppose that in the situation of 2,1 one has ]Di,l =1
for i=1,...,m (then m = n - |D|). Let t, Dbe the first level at which it
occurred. In this case the solutions of 2.2 are {0.1)~vectors,and the set of the
solutions for level t + 1 is easily obtained from the set of the solutions for level t,
Indeed, the number of variables decreases and the number of equations increases,
Therefore it is worth to store the set of solutions. The list of solutions is

organized as follows:

All solutions {at level to)

adrissible forbidden forbidden forbidden

at the level t at the level t at the level t-1 at the level t-2 e
| ! ! ] |

t 1 [ i !

3.1, If t= tO, do the same as in 2.2 and 2.3. If t> to, move all solutions

which were admissible at the level t - 1 but contradict the it—th row, to the
list: forbidden at the level t.

3.2. If the list of admissible solutions at the level t is empty, return to the
level t - 1.

3.3. The same as 2.4,

3.4. For each solution from the list (if t> tO use the list: admissible at the

level t-1) check whether it contradicts the fixations made in 3. 3 (i.e., we check
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to some extent the list of solutions for compatibility), If there are no contradictions
pass to 3.5,

If there are contradictions move contradicting solutions to the list of
solutions forbidden at the level t and apply again 3.2. (In this way one again

gets a '"forced variant'.)

3.5. If the list of admissible solutions at the level t is empty and t > tO’ set
t:=1t-1 and pass to 3.6.

if the list of admissible solutions at the level t is empty and t = tO, set
t: =1t -1 and return to 2.6.

3.6. If the list of admissible solutions at the level t is not empty, take for the

it+l the least number it+1 ¢ D such that the number of solutions for the

corresponding row is minimal; take from the list of admissible at the level t

solutions the largest one corresponding to i_ ., -th row; move it to the list of

t+l

forbidden at level t + 1, and insert the corresponding column and row in Bt.

Call the resulting matrix B set t: = t+ 1 and returnto 3.1.

t+1’
4. Letus now describe the tree of our exhaustive search. The vertices of

level t are pairs (D(t),Bt) consisting (cf. 2) of a subset D(t) = {il, ey it} of

[1,n] and a (nXn) (0.1)-matrix with zero diagonal whose rows with numbers

il’ vy it satisfy relations (*). ({(But matrix Bt can contain ones outside the rows

and columns with the numbers i .,1.) There is an edge from (D(t}, Bt) to

1 t

{D(t+1), B, .} if the latter pair is constructed from the former one with the help

t+1
of the rules described in 2,5, 2.6 and 3,6,

The search is the 'depth first search'.

5. Forced variantsare 'Fixation" (cf., 2.4) and "Fixation-Deletion"
(cf.,3.4). They are helpful for constructing part of the matrix B without branching,

6. The choice of it+l {cf. 2.5) is heuristic . We do not know and did not

know whether it reduces the search or not.

However, some experiments were done which suggest that it reduces the
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search.

In these experiments the choice of i according to 2.5 (heuristic) and

t+l

the choice it+l : = t+1 {(natural) were compared.

In one case the coefficients of branching were

level 3 4 5 6 7 8
heuristical 3 5 20 25 1 1 e
natural 3 20 25 5 1 1 .

In ancther case the sizes of the trees hanging at some (not too far} advanced
vertex of the exhaustion tree were compared. This vertex was fixed and then the
remaining numbers were exhausted in the natural and heuristic order. In all
these cases the heuristic approach generated trees which were several times
smaller than those generated by the natural approach.

7. Possible modifications.

7.1. It is possible to use the results of "Fixation" {cf., 2.4} also before "Break-

down'' in the same manner as they were used in 3.4. We did not experiment

with this possibility.

7.2. It is also possible to use the canonization algorithm not only at the end points

of our tree, but at every vertex, However, it is not clear whether it will make

the algorithm work faster, Indeed, the canonization algorithm is quite bulky

and we already have at least partial canonization (cf., 2.3, 2.5, 2.6, 2.8)., There
1 2

u=7,a = 6.

were experiments with this approach in the case n = 29, n I

1 = 14, a
But the tree in this case still was too large to be handled by computer (cf. [Ar2]).
On the other hand sometimes (when one has a lot of computer time) only the

storage space matters.

8. About realizations. Several programs, based on different modifications

of the above algorithm were written. One of them was written for a computer

M-20 and all othersfor acomputer ICL, System 4-70. The results coincided.



U. TABLES OF STRONGLY REGULAR GRAPHS WITH n VERTICES, 10 < n < 28

All strongly regular graphs constructed by the algorithm described in Section T
are given in the tables below. Alsoc some information on these graphs is given.
The information about the graphs is arranged as follows, The upper

line is

which shows the number of vertices of the graph ('"n"), its degree (”nl”) and its
number among the graphs with the same =n and 0.
Below this line the connection table of the corresponding graph is given. The
column
"VER"
gives the numeration of the vertices of the graph,
The column
YTYPEY
indicates the number of the canonical form of the neighbour graph of the corresponding
vertex.
Under the title
'""NEIGHBOURS'"
the canonical numeration of the vertices of the neighbour graph of the corresponding
vertex is given,
Below the connection table and after the word
“ORBITS"

the nontrivial orbits of the automorphism group of the corresponding graph are given.

In the case when this group acts transitively, it is written:
"ORBITS : TRANSITIVE"
In the case when this group is trivial, it is writtens
ORBITS : n POINTS"
(where n is the number of vertices of the given graph).
The next line is
"NUMBER OF DIFFERENT NEIGHBOUR TYPES = b"

and this means that our graph has b non-isomorphic neighbour graphs.
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In the cases when the pictures of the neighbour graphs are not too complicated,

they are given under the heading
""NEIGHBOUR GRAPH"

The 15 graphs with n = 25, n, = 12 are called the 25-family, and the 10 graphs

with n = 26, n; = 10 are called the 26-family, For these families there are tables
YMULTIPLICITY OF THE NEIGHBOUR TYPES IN n-FAMILY"

The (i,j)-entry of these tables is the multiplicity of the i-th type of the
neighbour graphs in the j-th strongly regular graph.

More heuristical information on the 25~ and 26-families is discussed in the
next Section,

All graphs with n = 28, n o= 12 are known (cf. [Ch. 2]). All graphs of the
25- and 26-families were independently constructed by A, J. L. Paulus [Pa 1]
under the guidance of J, J, Seidel (cf.[Se5]), However, his algorithm does not guaran-
tee that the constructed families exhaust all strongly regular graphs with given para~
meters, Qur algorithm as it was already indicated constructs complete families. Our

results were announced in [Ro 1], [Ro 2}, [Ar 2].

All other graphs in our tables have transitive automorphism groups.



161

-HH

1
HAVED YNOIHOTAN ¢

HAVID ¥NOgHDIAN
SHIAL ¥OOgHDIAN INZUIIATG A0 WEEWNN

HAATILISNVYL :SLIGH0

T = SHAL YNOUHOIAN INHYHIATA J0 YITWON

S 11 6 ki 1 €1 HATIISNVYL ¢ SLITIO
6 11 g € 1 A

€1 Z1 8 € 1 11

L 6 8 4 1 01 L 9 Y T 01
€1 (1) 4 1 6 8 G ¥ 1 6
T ot ¢ [4 1 8 6 9 € 1 8
€1 9 g 1 1 L or S € 1 L
11 L K 1 1 9 01 8 4 T 92
A L € 1 1 S 6 L [4 T G
6 9 4 1 1 Y 01 6 1 T V4
8 S 4 1 1 £ 8 L 1 1 €
8 Y £ 1 1 [4 9 S 1 1 4
S 7 € 4 T ! K € Z 1 T
SUNOEHDTAN HdAL ¥aa SYNOIHOTEN FdAL qEA

H*«@Mﬂznmﬁnc H*NMHHQnOHHE



162

3

S ¥ ¢ 7 1

HAVYD YN0gHOTAN
HAVYD ¥NOIHOIHAN

T = SUdAL dNOTHOTIAN INHYHJITA A0 YHIWAN

FATLISNYNL :SIIQHO 1 = SHAL ¥AOYHOIAN INAYEAIIQ 0 WITHON

FAILISNVIL :SLIQY¥0

11 8 L g S 1 91
A 6 L 9 ¥ 1 ST 6 9 0t S T € 1 a1
€1 o1 L S % 1 ! 8 9 T s €1 € 1 71
1 6 8 9 £ 1 eT 0T L 6 Vi 71 € 1 €1
ST 01 8 S £ 1 Z1 Tt L 8 Y ST € 1 21
91 0T 6 v £ 1 11 [4 S 4 4! S 6 Z 1 11
Y1 ¢ 11 9 4 1 01 €T L ST ¢ 8 [4 1 01
ST £1 T s 4 1 6 ST 9 £ ¥ it T 1 6
91 €1 4 S 4 1 8 1 9 T % [6) S/ 1 8
91 &1 7€ C 1 L 41 T €1 01T 9 1 T L
91 ST €T 01 1 1 9 ST 6 71 8 L 1 T 9
91 WY ¢l 6 1 T S 14! 11 ST o1 % 1 1 S
ST Y71 1T 8 T 1 kK4 €T 6 <1 8 g 1 ! 14
€1 T L 1 1 € T €T ST A z T 1 €
0T 6 8 L 1 1 C 11 6 0T 8 € 1 1 4
9 S 4 £ 4 1 ! L 9 S Y € 14 T 1

SYNOIHOT AN q4AL qIA SYNOFHOTAN HdAL A

3 — d 3 — 1 — H (3 -
4 ‘6= u ‘o1 =0 # "9 = u gl =u



163

G OV WD N 0 0 O

g Y
*N
¢ z
£ 4
1 44 1 #
SHAVED ¥NOYHOT AN

1 = STIAL YNOGHOIEN INTNEIAIQ A0 YALHON 1 = SEJAL ¥NOFHOIAN INTEEIAIA IO ADWAN
AALIISNVIL : SIITIC JATTISNVEL ° SIISHO

T o1 It L 9 z 91 €1 o1 ¢ ST %1 % 1 91
%1 01 €1 L g z <1 Z1 6 9 91 %1 ¥ 1 1
ST ¢1 £1 9 % z 51 1T 8 S 91 ST ¥ 1 1
ST 1T YT 6 % z €1 91 01 ¢ 1 11 € 1 €1
91 %1 11 8 € z 1 ST 6 9 €1 1T € 1 z1
9T €1 21 § € z 11 Y1 8 & €1 1 € 1 11
9T ST 6 8 z z 01 o1 €1 ¢ 6 g8z 1 ot
91 €1 01 % ¢ z 6 ST z1 9 o1 8 ¥ 1 6
ST 1 01 € T z 8 %1 11 ¢ o1 6 2 1 8
91 ST 9 ¢ 1 z L 9T €1 o1 9 § 1 1 L
91 %1 L % 1 z 9 ST 71 6 L S | 1 9
ST 11 ¢ € 1 z S ¥1 11 8 L 9 1 1 g
Y1 6 9 z 1 z ¥ 91 ST %1 € 7z 1 1 s
Im 8 s 2 1 Z £ €1 ezt 11 % 7z 1 1 €
6 8 ¥ € 1 z Z 61 6 8 % € 1 1 z
9 ¢ % £ T z 1 L 9 S ¥ £ T 1 1
SYNOGHOTAN FdAL  ¥FA SUNOFHOT AN AIAL  ¥FA

24 ‘9= 'u ‘g1 = u 4 ‘9="Ta‘r=u



1

= SHJAL ¥NOEHODIEN INYYZIAIQ JO ¥IDNON
JATLISNYYL *SLITI0

Pe I~ 00 OV O N O 3 N D N G VYO T N0 N OO
o
i

SENOFHOT AN

14 ‘ot

G F NN oYY 0w

O NN N OO PP s e S e 000000 OO

—

Cdrd et A o o e NN N MMM N

e B B B B e B B B B R e A B A e e

=3
&
[

L B g SRS R TR JRT o b S o e Y

[as
£
=

1

8

1

HAVID YNOGHOT AN

4

= SHAAL YNOFHOTAN INFYZAAIJ A0 YATWAN
JALLTSNVYEL :SLITIO0

L

WF O ON N TSN GO MO e OO0

—
—
WY PO O OO 00 T

SYNOFGHIT AN

T4 ‘g =

A
01
L
9
S
7

ool —

o~
rod

MO0 N I M
—

N e o o o N NN NN N S T

ool od o o o e e et et e el ped e i

£
&
=

L1
91
ST
Y1
el
<1
11
01

e N D) S N WO S 00O

o
e



165

n=25,n1:8,#1

VER  TYPE NEIGHBOURS
1 i 2 3 4 5 6
2 1 1 3 4 5 10
3 1 1 2 4 5 14
4 1 1 2 3 5 18
5 1 1 2 3 4 22
6 1 r 7 8 9 10
7 1 1 6 8 9 11
8 1 1 6 7 9 12
g 1 1 6 7 8 13

10 1 2 11 12 13 6

11 1 2 10 1z 13 7

12 1 2 10 11 13 8

13 1 2 10 11 12 9

14 1 3 15 16 17 6

15 1 3 14 16 17 7

16 1 3 14 15 17 8

17 1 3 14 15 16 9

18 1 4 19 20 21 6

19 1 4 18 20 21 7

20 1 4 18 19 21 8

21 1 4 18 19 20 9

22 1 5 23 24 25 6

23 1 5 22 24 25 7

24 1 5 22 23 25 8

25 1 5 22 23 24 9

ORBITS: TRANSITIVE

NUMBER OF DIFFERENT NEIGHBOUR TYPES

NEIGHBOUR GRAPH
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n =27, 0 =10, 1
VER  TYPE NE IGHBOURS
1 1 2 3 4 5 6 7 8
2 1 1 3 12 19 13 18 14
3 1 1 2 20 27 21 26 22
4 1 1 5 12 23 13 22 14
5 1 1 4 16 27 17 26 18
6 1 1 7 12 25 13 24 16
7 1 1 6 14 27 15 26 18
8 1 1 9 12 26 14 24 16
9 1 1 8 13 27 15 25 17
10 1 1 11 12 27 15 24 17
11 1 1 10 13 26 14 25 16
12 1 2 19 & 23 6 25 8
13 1 2 18 4 22 6 24 9
14 1 2 17 4 21 7 27 8
15 1 2 16 4 20 7 26 9
16 1 2 15 5 27 6 21 8
17 1 2 % 5 2 6 20 9
18 1 2 13 5 25 7 23 8
19 1 2 12 5 2% 7 22 9
20 1 3 27 4 15 6 17 8
21 1 326 4 1% 6 16 9
22 1 3 25 4 13 7 19 8
23 1 3 26 4 12 7 18 9
2% 1 3 23 5 19 6 13 8
25 1 3 22 5 18 6 12 9
26 1 3 210 5 17 7 15 8
27 1 3 20 5 16 7 & 9

ORBITS: TRANSITIVE

NUMBER OF DIFFERENT NEIGHBOUR TYPES = 1

NEIGHBOUR GRAPH
1 2 3 4 5 6 7 8 9
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V. SOME PROPERTIES OF 25~ AND 26- FAMILIES,
Below we expose some results of the computer-aided analysis of the graphs of
the 25- and 26-families. The numeration is that of the preceeding Section.
Results of this Section partially overlap with results of [Sh 4], [Sh 3],
[Sh 5], [Pa 1], [Se 5]. Our results were announced in [Ro 1], [Ar 2].

1. 26-family and Steiner triple systems on 13 points.

There exist {¢f., [Ha 3]) 2 non-isomorphic Steiner triple systems on 13
points. The corresponding graphs {(whose vertices are triples) are # 7 {corres-
ponding to the cyclic Steiner triple system) and # 3 in 26 -family.

In [Sh 4] the authors took two non-coinciding répresentations of the cyclic
Steiner triple system and derived from them 5 graphs (# 1, # 2, # 6, # 7, # 8)
of the 26 -family a’nd 7 graphs (by descent, cf., 3 below) of the 25-family. The table
in subsection 3 below shows that if the authors of the cited paper had not been
so unlucky, they could have found using descent-ascent all the graphs of the 25-
and Zﬁ-faﬁlilies, However,it is not clear how they would be able to establish

that they found all graphs with these parameters.

2. Complement in the 25-family.

If A is the adjacency matrix of a strongly regular graph belonging to the

25-family then

A= 1. -A
Ios

is also one, Below the number of the class of isomorphism of A is

given as a function of the number of A

feof A 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

#of A 13 7 4 3 8 9 2 5 6 12 14 10 1 1 15

3. Descent from the 26 -family to the 25-family,

Let I'" be a strongly regular graph with 26 vertices, xe V(I). Let V1
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{resp. VZ) be the set of vertices of T' which are incident (resp. non-incident)
to x. Let TX be the graph obtained in the following manner:

a) V(L) = VID) - x;

b) thevertices of Vl {resp. ,of VZ) are incident in I"X if and only if they
are incident in I';

c) the vertices of V1 areincidentin fX to vertices of V_ if and only if they

2
were not incident in I

It is easily checked that l"x is strongly regular and belongs to the 25-family
(cf., e.g., [Sh 4]).

In the table below in the position (m,n) stands the multiplicity of the m-th

graph of the 25-family as a graph I  of the n-th graph of the 26-family.
x

1 2 3 4 5 6 7 8 9 10

1 3 3 3 3 3
Z 3 3 3 3 3
3 6 6 6 6 6
4 6 6 6 6 6
5 13 13

6 1 1 1 1 1
7 3 3 3
8 13 13

2 1 1 1 1 1
10 12 i2

11 1 1
12 12 12
13 3 3 3 3 3
14 1 1
15 26

3.1. Remark., The graphs of the 26 -family split into 4 groups: {l, 2},
{3, 4,5, 9,10}, {6,7}, {8} andthe columns of the above table are the same within
one group. The 25-family splits accordingly into groups: {10,11,12, 14},

{1,2,3,4,6,7,9,13}, {5,8}, {i5}.
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It is interesting to compare this partition with the tables of the multiplicity
of the neighbor types in the corresponding families and also with tables 4.2.1,
4.3.1.

4, Coinciding rows,

4.1. The matrices A constructed by the algorithm of Section T may be very
close to each other, The i-th column of the table below contains the number of the
matrices A, constructed by the algorithm of Section T, such that A and the
matrix B constructed next to A have i coinciding rows {(i.e., for i values

of q one has sq(A) = sq(B), where sq(C) is g-th row of C). The first row of

the table shows i, the rows marked 25, 26 correspond to the 25- and 26~family,

NUMBER OF CONSECUTIVE GRAPHS WITH i COINCIDING ROWS

i 0 i 2 3 4 5 6 7 8 9 10 11
25 0 G 3 20 300 900 900 150606 756 700 900 500
26 0 0 1 5 25 1060 350 280 450 260 300 400

i 12 13 14 15 16 17 18 19 20
25 250 0 0 1750 0 1550 0 0 0
26 70 120 0 0 800 0 68 0 0

4.2. The 26-family.

In 4.1 we pointed out thatthe matrices successively constructed by the algorithm
may have many common rows. The two tables below point outwhich isomorphism
classes are close in that sense. The number ''1'" which stands at the intersection
of the i-th column and the j-th row of Table 4.2.1 (resp. 4.2,2) indicates
thatamongthe matrices constructed by the algorithmthere is a pair of successive
ones which has 18 (resp. 16) common rows and such that the first matrix of the

pair belongs to the i~th isomorphism class and the second one to the j-th one.
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4.2.1., Table {18 common rows in the 26-{amily).

12345678 910

1

21

3

4 1 1
5 111 11
6 1 1
7

8

9 11 11
10 11 1

This induces the partition {1,2}, {3}, {4,5,6,9,10}, {7}, {8} of the graphs of
the 26-~family. Compare with Remark 3.1 above and with the remark after Table
4.3.1 below.

4.2.2. Table (16 common rows in the 26-family).

12345678910

111

21

3 11

4 11 1
5 1111 1 1
6 1 1
7

8

9 11 1 1
10 i1 1

4.2.3, Ifthe nXa-matrices A and B have m common rows, let us denote by

AB and BA the {(n-m) X (n-m)-matrices obtained from A and B by deleting

m common rows and columns, Forthe2é-familyandfor m =18 or 16, it turns

out that AB and BA are (adjacency) matrices of isomorphic graphs.
Therefore the operation of transition from A to B can be described in

the following manner:

Remove from I'(A) some subgraph I', spanned by (n-m) vertices, and replace

1
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it by an isomorphic one. Call this operation surgery.

It turns out that for m = 18 graphs AB and BA always belong to the

class of isomorphism of the graph given below:
1 4

O QO = = = = O
O O = O O — O
QO = O QO QO put p
— = - O O O O
im0 OO O -
O O O = == =0
OO+~ ~QC OO0
O = O =~ QO OO0
[y¥]

8

A program was written which found all (up to isomorphism) strongly regular
completions of this graph to strongly regular graphs with 26 vertices. All com-
pletions belong to the isomorphism classes 1,2,4,5,6,9,10. This gives rise to the
hypothesis that only these isomorphism classes have representatives which have
18 common rows. This hypothesis was then checked,and it turned out that it is
true.

When m = 16 by random search four isomorphism classes of matrices A
were found, We do not give them here.

4.3. The 25-family.

The Tables 4.3.1 and 4. 3.2, given below have the same significance and are
arranged analogously to Tables 4.2.1, 4.2.2.

4.3.1. Table (17 common rows in the 25-family).

123456 78 9101 12 13 14 15

1 1 1

2 1 11 1

3 1 1 1 1
41 1111111 1 1

5 1 1 1
6 1 1

7 1 1 1

81 11 1

9 1
10 1 1
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(Table continued) 12 3 456 78 910112 13 14 15
11
12 1 1
13 1 1
14
15

This table induces the partition {1, 2, 3, 4, 5,6, 7, 8, 9,10,12,13}, {11}, {14}, {15}.

Compare with Remark 3.1 and with the remark after the Table 4.2.1,

4.3.2. Table {15 common rows in the 25-family).

123 4546 7 8 9 1011 12 13 14 15

11 1 1

2 11111

3 1 1 11 1
411111111 1 11
5 111 1
6 1 1 11

7 111 11

8§ 1 11 1

9 1 111

10 1 1 1
11

12 1 1
13 111

14

15

4.3.3. Note that table 4.3.2 is not symmetric; this means thatour material is
insufficiently representative,
In all cases when {for m = 15 or 17) the matrices AB and BA were

constructed,they proved to be isomorphic.

The matrices A_, constructed for m = 17, are isomorphic to the matrix

B
given in 4.2,3. Possibly this phenomenon is connected with the operation of

descent.

5. Coinciding minors

Among the matrices constructed by the algorithm there were pairs A
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and B which had large common minors.

Systematic research has

ever, some matrices ofthe 25-family have common minors of order 19,

not yet been performed in that direction. How-

Such pairs

are also contained among canonical forms given in the preceding Section. Below

for matrices with numbers n,m from the preceding Section, those 19 vertices

are pointed out which span coinciding minors.

# n:# m
2 3
4 5
6 7
6 8
6 9
7 8
7 9
8 9

17,
17,
17,
17,

18,
18,
18,
18,

24,
22,
22,
20,

25
23
23
21

6. More informationonthe 25- and 26-families can be found in [Pal, Se 5,

Sh 4]. For example, the clique structure of these graphs and the classes of

Seidel equivalence (switching) are found there.

Also note that the tables of the preceding Section are, in principle,

sufficient to answer some questions, such as, what is the automorphism group of

the graphs, etc.



AA., A GRAPHICAL REGULAR REPRESENTATION OF Sym(n).

The next three sections can be considered as examples of application of the
stabilization procedures of Sectionms C and M. On the other hand, the questions
discussed in Sections AA, AB, AC have attracted the attention of several authors

(e.g., [Sa 1], [Wa 2], [Wa 3], [Im 1], [Im 2}).

1. Let G be a finite group. A graph T is said to be a graphical regular
representation of G, if G acts simply transitively on vertices of T and

G:Aut T,

Proposition. If [ is a graph and 02(T) ~ Z[G] (isomorphism of cellular algebras)

then [’ is a graphical regular representation of G.

Proof. By C 8.2 we have Aut T = Aut oe@). Since V()| = |G], the only thing

to prove is that Aut [ ~ G, But it is well-known that Aut Z[G] ~ G (cf., [Ha 21).

2, Let oL = Z[G] be the group algebra of G (cf., G 1). The operators Rg’ of
the right multiplication by g ¢ G, form a standard basis of Ot We shall

identify g and Rg'

3. Below we use the stabilization procedure of Sections C and M to check that
ouT) ~ z[Sym(n)] for an explicitly given graph T. Then the above proposition will

give us the following

Theorem. There exists a simple graph [ (without loops, multiple or directed edges)
which has n!, n >3, vertices, and whose automorphism group is isomorphic

to Sym(n) and acts transitively on its vertices,

Proof. Set py= (1,2,3,4), Py = (1,2,3), P3= (1,4), pi:(i,i+1), iz 4,
-1 -1 -1
T -
=p,+tp fp,tpy +Z 5 p

i=3 i

According to our convention (Rg <—> g), this is an n! ¥ ni-matrix, Since
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the coefficients of the elements of ¢ in T are 0 or 1, it is a (0,1)-matrix,
Since I" contains g-l together with g, it is symmetric. So it remains (by

Proposition 1) to show that

oLy = Z[6]

Consider T'2.  One has
T2 o (m-2) - T+2 - (1,3,2,8) + (1,2,3,8) + 2 - (1,4,2,3) + (1,4,3,2) + (1,2,4,3)

+ (1,3,4,2) + 2 « (1,2,3) + 2+ (1,3,2) + (2,3,4) + (2,4,3) + 2 . (1,3)(2,4)

+ 2+ (3,4) + 2+ (1,4) + (terms, containing 5,6, ..., n).

The summands of [' which appear in T are p=p,+ p;l +p, (with
coefficient 2) and b = Pyt pil (with coefficient 1). By definition of the
product (Xe X, cf., C 4.2), we have p, b, v = 22;1 p; € al).

Now consider pz. One has
P2 =3 - 1+ (1,2,3) + (1,3,2) + (1,2,3,6) + (1,4,3,2) + (1,3,2,4) + (1,4,2,3).

Since p, + 9;1 and Pq enter in p2 with different coefficients and since
P2 e (), we have P, + pél, Py € o(T).

Now p3(p2 + pél) = (1,4,2,3) + (1,4,3,2). Since of these two substitutions
only (1,4,3,2) = pil enters in [, we have pil ¢ ou(l'), whence P, ¢ o (D).

It is easy to verify that Py, Py senerate Sym(n) acting on [1,2,3,4], Therefore,

d = (3,4) e ot(l). Consider
d(zn-l Yy d = (3,5 +Z/n-1
i=4 Py a ’ i=5 pi

It follows that (3,5) ¢ ou(l'). Therefore, (4,5) ¢ ot(D).

Suppose now that a = {(q,q+ 1) e oa(l) and v = Zﬁ;i P, ® 6L(T). Then

-1
avas=(q,q+2) 4-22;+2 Py

This is the inductive step which concludes our proof, Namely, it shows that

Sym(n) < oLl).



AB. A GRAPHICAL REGULAR REPRESENTATION OF SLn(FA).

1. Let Eé be the finite field with g elements, q = pm, p a prime. Let H
be the group of unimodular {(n + 1) X {(n + 1l)-matrices with entries in EQ,

= SLn+1(Fq) .

Theorem. Suppose that p > 5. Then there exists a simple graph T such that

Auc T ~H, |T| = |H]|.

Remark. This assertion and its proof can be generalized to rational
0

points over Fq of semi~simple algebraic groups defined and split over Fq (cf

[Bo 11).

2. To prove the theorem we shall construct, as in the preceding section a graph I
such that ot(T) = Z[HB]. Also,as in the preceding section, we shall write the
elements of the group ring instead of the operators of right multiplication. Let

us introduce some notations,

3. For
a b
A - (C d) e SL(E)
set
i k|
1
1 |
’ | |
1 |
a b
1
cpij(A) = . if j>i
1
c d

—
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-1
with zeros in all other places, and wij(A) = @ji(At ) if 3 < i

Set

<!
]
ot
4
rr
+
jah
+
Qs
)
4
=3
+
=]
+

Take ¢ £ + 2, a generator of the multiplicative group of Ea, (there exists

such c since p > 5) and set

-1 -1 ; = v + u

Next set for n = 1

and for n > 2

WoE Pyg(t) @ (8) wen @ g (6)

|
|

-1 -1
= CPIZ(HI) W w @lz(ﬂ_l) + Qplz(n4) W + oW @12(“_4)

Now set m=v if p=q and m = v if p <q. Also put n = oy + 0,

n' = n_l + n_a. Next set

T =g, + W

4. As in the preceding section, let us consider Tz. We have (for n > 1)

r2

2
=P, @7+ 4 L@, (n) w,m) vt 9,m) v () Wt @p,(n_g)
-1 -1 -1 -1 -1
A PACS DA PAC R DA P A A PAC R DI PRI
-1
TP W Ppp(a) A @) 4@, (my) W) Wb v T @y(n g) v

-1 -1 -1 -1
tw QL ) v P(n_) +w Pp(n ) w " 9,(n ) + @ ,m ©,m) w
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. -1 -1
TR W R ) ) @) v R, m)w @, ,)
-1
+®,0) v o, +wh oM ) B +@p,m,) v o, m
-1
T ) @) =
= mZ 44 . 1+ ) ) W+ ) ) WP @ (ny)
= Byplm ) Q) @5 ) W+ P, (ny) P40 ) Wt 9,0y
-2 -2
P (1) P () VT R ) () () W
2 2
+ 00y 050 ) W+ 0, (ng) +9,(0) Bpa(0 ) W F R0 )
) -2
TP (1) P () W R () @y (n) W @y () W
-1 -1
() Py ) W TP (my) Wk () By (e ) v
. -1 -1
R P Wb @y (gm0 () @@ Wy, (0w v -
(here W is defined by w wlz(m) w-1 = @13(55)

2 2
=4 . 14 wlz(m + n_g + n3) + cplm_l(n3 + n_3) wlz(nli-n4) m13(n_1-+n_4) w

-2 ~
+ Cpln+1(n_l + n~4) wln(nl + n&) w o+ [@12(m(n1 + n4)) + mlz(nl+-n4) @13{m)} W

Ly () + 0 + @@ @y (o +a )] v

For n = 1 we have TZ = mlz(mz).

We want to choose from this sum the terms which have coefficient > 2.

it follows from the unicity properties of the Bruhat decomposition (cf., [Bo 11)
that only the following cases can occur:

a) n =1, only summands of mlz(mz) can have coefficient > 2;

3 + n3)

+ 2[(@12(111 + n4) cplB(n_1 + n-a)] w23(-1) can have coefficient > 2 (since

b) n=2 only summands of @ (m2 + n
2 12 -

w o o=w = ®23(—1) and wlz(na) wlB(nb) = mlB(nb) mlz(na)) in this case;

¢} n >3, only summands of cplz(m2 +n_, + n3) can have coefficients > 2,

3

Thus the following holds.

4.1, Assertion. The terms with coefficients > 2 are contained in

mlz(mz) if n = 1;
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2 3 .
Qplz(m + n_, + n3) + 2[(@12(1—11 + né‘) me(n_1 + n‘a)} 2923(-1) if n = 2;

2 .
Ppp(m™ +n 5+ my) if n > 2.
2
To compute cplz(m ), put a =1+ n; o+ o, b=1l+mn,c=n +n,,
[ LI
a _1+n_1+n~c, b =1l+mn
-1 .
v = bt + th' + ¢
— -1 ,
v = at + ta' + ¢
2 - - - - - 2
v = bt lbt 1+bb' + bt 1c+ tb'bt 1+ tb'tbh' 4+ tb'c + cbt 1+<:tb' +c .
;2 = at:‘lat:”1 + aa' + at-lc + t:a‘at_l + ta'ta' + ta'c + cat_l + cta' + cz.

. 2
Note first that n does not enter in v or v since ¢ # + 2.

43

b

We are going next to use the uniqueness of the Bruhat decomposition in

To this end note that for d # 0, one has

It follows from this equality that we have

SL(2).

4.2 Assertion. The terms with coefficient 2 in mz +n, +n_ are all contained

3 3

. 2
in v .

(Indeed if d above is not + 1, then we get nontrivial diagonal element,

which cannot be obtained in any other way.)

2
Let us now compute v . We have

2 2 -2 -1 -1 -1 2
v =61+t +t"  +n.t nlt +tn_1tn_1+n2+nn2+tnlt +tn_1+

1 -2 1 -
+tn_1+t nlt +n_1+t n1+t n_1+n1+nlt +n1t n1+n1t

t-1+t+tn_ +nt+nt—1+nt—1+n tn ., +n_.t+n

+ tn_,t 4+ tn_ P 1 1 2 1

-1 1

-1
+t 5 +an gt .

Using the relations
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which we already used above, and also the equality (_? é) = - <1 0) , Wwhich

conpects t and t 7, we get

2 - -
v =6+ 1+ (t2 + 2) + n t ln

2 1 +n_tn +n, +n_, + o tn, + tzn‘ + tn. + tn_

17-2 2 2 171 1 1 1

+ n + t-I + t_ln + +n t:"2 + n t-l
-1 ™ S TS | PRt

+n t-l

1 nl + n +n ,tn

-1
AL S

-1 -1 -1 -1
+ t + tn_z + nlt + nlt + n2t + nltn_1 + n_lt + n‘lt + €

-1
It is seen from this expression that the coefficient 2 has only the following

expression:

d = t2 +n t-lnl + n_ltn_

1 1

Therefore, it follows from 4,1 and from the computations above that the assertion

below holds:

4.3. Assertion. i) If n £ 2, then £ = mlz(d) ¢ 6 (D).

i1) If n=2, then f =0, (d) +® (n+n,) g (0 +0 ) 9,5(-1) € o).

We have
@ ltntn, +n t o, +ntn +nt it n 41+ 4+ 140 . tn tn
= b5 B L L | T B e R | ot Ry -1t
-1 -1
B -1 [0 2 0 -2
=3 .1+ 2[n1tnl + n_;t n_l] + n_, &2 0 ) n_, + n, (2 0 ) n,
Further

0, (@0, (@) + @, (a) +n) @, +n) 8,,(-D]

= 9, + 9 ,(dn) + dn) Y (n_ | +n,) 9,(-1) and

[212(8) + @pp(ny + 1) @p3(ny 0 )] 50D 91, (D)

= 9@ F @, e” F 0 th) @ (n) +n) Py (D) + 9, () @ 4() Byy(a) where
2B+ 1,240,

Next

Pra(ny * 0y Py + ) 950D @y +ny) Rya(n g 40 ) @31

= @,y + m) (g +n_)) @,((n_) +1n_) () + n,))

= @12(2 - 1+ n_g + n3) m13(2 -1+ n_g + n3)
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=2+« 1+ 2@12(n3 + n_3) + 2@13(n3 + n_3) + @12(“3 + n_3) @13(n3 + n_3).
It follows that

4.4, Assertion, The coefficient 2 im fz has

-1 .
g = wlz(nltnl + 0t n_l) if n £ 2
_1 A
g = Cplz(nltn1 + n~1t n_; + n, + n_3) + 6913(113 + n_3) if n= 2.

Therefore g e ol).

Now, if n = 2, then compare g with
2 .
wlz(m + n, + n_3) + Z[mlz(n1 + n4) Cpl3(n_1 + n_4)] @23(-1) (which belongs to

oL () by &4.1)., It follows that

g = cplz(nltn1 + nnlt n_; + n, + n_3) e or(D).

Now for n # 2 consider
s =fgNfe o),
and for n = 2
s = fg' N fe oL,

We see that in both cases

which implies the following:

N

4,5, Assertion. s = wlz(nlt oy + n_,tn_pJ € ot () and
2
9,(t) = 9, - s e oL@,

2
Now consider t - m + m. The coefficient 2 in this expression has only

t+ t

whence



201

4.6, Assertion. @12(t + t-l) e oM.

Note that wlz(t + tﬁl) « s and FZ
@12(n_1tn_2) (cf., expression for v).
4.7. Assertion. wlz(n_ltn_z) e o (D).

Next we have

(nltn1 +n

Since this latter expression has only one

t2n we have
-1’ ve %

4.8, Assertion. (n_l) e or(T).

P12

From 4.7 and 4.8 it follows that mlz(t) ¢ Ju(T). Since t and n

SL(Z,F%), we have

4.9, Assertion. @12(SL(2,1;)) < (D).

Now note that T - wlz(t) and

the following part in common:

%10

Since 1, mlz(nl) e o), we have mlz(nc) e o),

1

(SL(Z,EA) is generated by (1

%12

have only one common term, namely

Therefore,

common term with Tz, namely

(tzn_l), and by 4.4 also wlz(n_l) belongs to oL (1).

1 generate

(nl)[r . mlz(t)] wlz(n_l) have only

(1 + n, + nl).

By Dixon's theorem

0> and n ) and we have
1 c

4.10, Proposition. mlz(SL(Z,Ea)) o o).

Therefore
we o)
Note that w is the only term common to @12(n_1) w  and wlz(n~4) ;; whence
4,11, Assertion., we ou(l).
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To get our theorem, note that

i -i . -
w mlz(SLz(Fq)) w (SLZ(Fq)) for 1 =0,1, 2, ..., n -1, and that these

= ®ro4i

F .

groups wlj(SLZ(Eh))’ j=2, ..., n+ 1, generate SL 11 q



AC., ONE MORE EXAMPLE OF A CELL WITH ONE GENERATOR.

The two preceding sections were, in fact, dedicated to a proof that in some
cases a cellular algebra (it was Z[G]) has one generator (as a cellular algebra) and
that one can take a simple graph as such a generator. In this section, we consider

one more example of this kind,

1. Again let Pa be the finite field with ¢q elements, G an absolutely almost
simple connected and simply connected algebraic group, defined and split over Fq
(cf., e.g., [Bo 1]). Let T be a maximal torus of G, defined and split over !a,

B a Borel subgroup of G containing T. Further let G(Fq) be the set of the Fq-

rational points of G, NG(FA)(T(EA)) the normalizer of T(Fa) in G(Fa),
W= NG(F )T(Ea))/T(la) the Weyl group of G with respect to T.
q
A = . = i
s an example, one can take G SLn+1 Then G(Fq) SLn+1(Fé) is the group

of the preceding section, T 1is the set of diagonal matrices in G, NG(F )(T(Fa))
q

is the set of monomial matrices with entries in Fq. Then W is isomorphic to the
symmetric group Sym(n + 1).

We want to show that the centralizer ring
= G(F G(¥ )/B(F
oL }((q), (E)/B(E )

has one generator T which is a simple graph: ot = ot (D).

Remark. If it were known that Aut dt = G(Fq), we would have the stronger
assertion, that there exists a simple graph I such that Aut T ~ G(Fq)’

T = |G<Fq>/B(Fq>|, oL@ = ot.

2. It is known that Ot is isomorphic as an algebra to Z[W] where W is the

b
Weyl group of G (see [Bo 1], [Iw 1], [Yo 1}).
It is also known that double cosets Sw = B(Fh) wB(Fa), w e W, form a standard

basis of o6t and for fundamental reflections w one has the following

10 e WL,

relations (see [Iw 1], [Yo 11):
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Sw,Sw = Sw,w if l(wiw) > A(w)
1 1
§.8, =S, if  Aw) > L)
1 1
Swa. = qu'w + (q - 1) Sw if Z(wwi) < A(w)
1 i
swisw = qsWwi +(q -1 s if z(wiw) < A(w)

Here 4(w) 1is the length of a shortest expression of w through W

Remark. The following considerations are easily extendable to the case of quasi-

split groups and Ree groups of type F Such generalization influences only the

4"
structure constants in the expressions of SWSW in the basic elements,
i
3. Theorem. Let & = é; (G(E&), (G/BY)(F)), q>2 and rg G > 2. Then there
q
exists a simple graph
T e 0, such that o {I) = oL
Proof, Let A be a system of simple roots of G, To begin with, let us consider

the case |A] > 3. Let us choose two roots &, o € A such that @&  and o

m
generate a subsystem of type A2 in the root system of G. Let A = {ai} and
suppose that v, is the reflection in Oy Put Si = Sw and
i
F'=s_+38 + 8 + 2, S.. One has
T W W W ifr,m i
rm mr

2
Si =q -+« 1+ (q-1) Si

$$ =S _ ,88 =8
i'r wow 2Tr i W W,
ir ri

$.8, w = SW'w w if i 4 r,m,
rm irm

slsw w = Sw,w w if i#1,m,
mr irm

Se w si =Sy ww if i 4 r,m,
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Sy wSi =Sy ww f iérm
T m T m i
S Spw -9 * (-1 s o
T m r m
S S -3
YT ww W W W
mr Trm¢&¢y
S S =8
W W T W W W
Y m rmy
S, @S, =aS_+(a-Ds
mr mr
2
S = (§88)S = = - ;
( mer) (sm r m) r Srsmsrsr qsrsm + (q 1) Srsmsr

(here we used the relation S § 8 =S S S which follows from the corresponding
rmr mrm

relation in W).

2
s = =
( w W ) (SrSer) Sm (SerSm) Sm
rm
=qs 8 +(q-1)SSS =
= quSr +(q-1 Srsmsr
S =S$S58SS
W W wWw T mmy
rm myY
~qs?+(@-1DssS - -l+qq-15 +(qg-1) 555
=y 4 w4 a4 r E r’mr
s =q% .1+ -1)S +(g-1) 555
ww Sy w S 9 ¢ q(q ) s+ (g £S5y
m ¥ rm

Therefore we have

2 2 2 2
T"=(q+2g") 1+ (g -1 Sr+(q + g) Sm+(2q-1) Ser

+ (4q - 2) SrSer+(q'l) Zi S.+ (...).

from i
All summands in the parentheses have coefficient 1 or 2 (namely, if
, them S ., i, ] # m, r, has coefficient 2).
1 2 2
Since q > 2, we see that ¢~ -1, q +4q, 29 - 1, 4g -2, g - 1 are all

WW, = W,W,
i3 i i

2
distinct. Also q - 1, q2 +q, 2q - 1, 4q - 2 are greater than 2 (if q > 2).

Therefore, Sr’ Sm’ Smr, Sr Sm Sr e o). But then Srm e ot (), whence

idr.m Si e o). Next we can apply the same reasoning as in the case of
J

Z[Sym(n)]. Namely, we can take one of the Sr or Sm such that (denote our

choice by 8):
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S $)8=585,S+%

5
ifr,m Ti 3 ifr,m,i i

whence Sj e (') and so forth.

Let us now consider the case [b] = 2, A = {al,az}. If G hastype 4,, then

all preceding computations without any alteration or new comment lead us to our

assertion. When G 1is not of type A2 (that is, it is of type B2 or GZ)’ we put

S8ince G 1is not of type AZ’ one has
(5,8.)(58.8,)) = 8§
172 172 wlwzwlw2
(8,5,)(8,8,) =
271 271 W W W Wy
Therefore
2
I =q -+« 14+ (q~-1) §, *as, + (g ~ D 5,5,

+ 8.8,8, + 55,5, +qS, + (q - 1) 5,8,

2
+5,5,8/5, + 5,5/5,5 +q"1 +q(q - 1) 8

2
+ (g - 1) 81328 +q 1+ q(q -~ 1) S2 + (g - 1) SZS S

1 172

This again implies that Sl’ 82 € 0L (since these summands have the greatest

and unequal coefficients), Thus in the case 1A| = 2, our assertion also follows.



AD, DEEP CONSTANTS

1., We consider here formations which arise in one of the possible definitions of depth
compare, O 6.3, The discussions of this section are rather fragmentary and their
aim is to point out relations which one obtains with the strengthening of a
definition of a stationmary graph. Analogous relations are considered in [He 1],

We examine here only the case of a cell; the extension to general stationary
graphs can be obtained without difficulty but leads to a much more complex

exposition, compare Section D with E 4,

2. Let X = (xij) be a stationary graph, X = Xiel x,e,. We say that the edge

¥ I8 of type k 1if b = %

Let (V(X))m be the set of all ordered m-tuples of vertices. Let
w2 : :
(a, b, Cps sees cm) ¢ (V(X)) . We say that this set is of type
(k; il’ vess im; jl’ very jm; A), where k, ip’ jP €I, A= (qu) is (mxm)-matrix,
Spq eI, s_=s" , |if Kb = % Fa o X %o o =X o We shall write 1
Pq qp N “p P P’ q pq
in place of (il, veey im) and j in place of (jl’ R jm). Let us note that it

> -
would be more convenient to consider i as a row-vector and j as a column vector.

: -
in this section we use the following notation: If 1= (il, ves sy im), then
it

c*
it = (li, ces, 1&), i " is the column-vector with the same coordinates. If A is

: € L
a matrix, then A~ is its transpose.

3, Let us consider the class of stationary graphs such that for any edge (a,b) of

type k and for any me [l,n] the number of all sets (a,b; ¢,, ..., cm) of any

1

-
given type (k; i; j; A) is the same (and does not depend on the choice of the edge

(a,b) of type k). (Note that these are ordered sets, possibly with repetitions.)

We denote this number by ai‘? .
j‘)j)A

If G 1is a permutation group on V(X) and X = ng_(G,V(X))), then G acts
transitively on edges of a given type (cf., F 4.1). Therefore, such graphs X

satisfy the above condition.

x

4, Let us state some relations for the numbers a 5 in the case of a cell, Let

aij

"

s
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Put A = (qu). We shall sometimes write A 1in the form

ol

Q@

wy

where B is (r X r)-matrix, € is (m - r X m - r)-matrix, s; 1s a vector of
length m - r, r <m.

Furthermore, we write:

gr for the matrix obtained from A by deleting the r-th row and r-th column,

A
(i vew, 1 .+e, 1 ) for the vector with deleted r-th component,
1) 2 5 m

r?

Y >
il’ iz for the vector whose components are components of il followed by those
5 =2
of 1,.

If g e Sym(m), then

. - . )
gi = (lg(l)’lg(Z)’ ooy lg(m)

Theorem. The following relations hold,

k k!
4.1, %?-9 = q? > .
i,j,A j',i’ LA
k k
4,2, a_? > -1 =a,, ,8¢€ Sym(m) .
gi,gi,g Ag i,j,A
4.3 0
3. a
> >
i,3,A
o i
= ( L oaa) mLoal » ~ LN for
k=l Tk Tp o oo Ao oeees S g rees Spp ere rm’ Ar
all r € [1,m].
k 0
T T T
i i,j,A jsi',A



i
k k 1
4.5, Z_? > __ga‘?_?‘?__?-Aza_? > Ba_?. >, C.
Jgs8pseeey r 1112’3132: 11;31; 155845
s
k k 12
4.6, 2? > - > 35 EEIN =a, . Ba’ -,
tprdzaBy oty Mty dydy) Tpodys® 810820
k k k
4.7 > 2 a = a - a
e B2 08 Toa S | b S
1’ 2’ ’ r 1}J;A 11;]1)3 127J2)C

Proofs. They are elementary and analogous to the geometrical proofs of properties

of the numbers compare D 4 ¢ 1l - ¢ 8,

a, .,
1]
Let (a,b) be an edge of type k and (a,b; Sl wnes cm) a set of type
22
(ks 1,5,A).

3, >
Then the set (b,a; Cls eees cm) is of type (k'; i',j',A). This proves 4.1.

If g e Sym(m) then ({(a,b; o1yttt Cg(m)) is a set of type
(k; g?, g?, g-lAg) whence 4.2,
To prove 4,3, consider the case a = b, Then (since a = b) the number

0
a is zero unless 1, = j' for all k., Suppose that 1
1,3 ko ok

rd

= j! for all k.
kT
~
~ . : . 5 i .
Then (a,cr; Cls vees Sl vney cm) is a set of type (i Lys sees 2, weny L

A A
s weesy S, wvey 8, A )., On the other hand, let d_, ..., d be vertices
r n

rl’ rr rm 1’ i
T
of X such that (a,di) is of type i Then by the assumption stated in the

beginning of 3, there exists the same number

i
a’ A . A
ioyuee,l_seee,i s s N
1’ r’ 7Tm’Trl’ Trr’ rm’r
£ £ i S ) h of
of sets of type i3 i cee, 1 seey, 1308 ves, S cevy, S on each o
ype r’ T 7 Ty? >w” Trl,t T Trr? ? T’ Tx
" the 0 edges (a,d.). Each such set can be considered as a set of type
. i
7, 13 i i
(0; i,1",A) on (a,a) and each set of type (0;i,i’,A) gives rise to a set of new

type in the manner described above. Therefore, 4.3 is proved.
The summation in 4.4 means that we have to consider all sets
(a,b; Cps eens cm) such that the types of edges (a,cr) are arbitrary., It is the

same as to consider all sets (a,b;cl,...,cm) for which only the types of the edges
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(b,cr) and (cs,c } are fixed. This is the same as to consider the sets

t
(b,b; € 5 suey C ). Since the number of these sets is ao 4.4 is proved.
b 1 m -?'J?x A,
J? k)

The summation in 4.5 means that we have to consider all sets (a,b; Cps ey cm)

such that the types of edges (b ) (b,cm); (Cs’ct)’ s € [é,r], t>r+ 1,

*Crtl
are arbitrary; (a,cs), s e [1,r], are of type is; (b,cs), s ¢ [1,r], are of type

i, (Cq’ct)’ qd¢ [2,r] or t<r, are of type ot This means that we have to

s ,t
consider all configurations {(there are a& 5 of them) (a,b; Cys ey Cr) of
il}jl)B

-
type (k; ?1,j1,B) and on the edge (a,cl) of each of them all configurations of

. i
type (ll; 12,si,C) (there are a,
12,sl,C

of them). So the entire number is the

product of these numbers, which proves 4.5,

The summation in 4.6 means that we have to consider all sets (a,b; Cps ey cm)

such that only types of (a,ci), i<r; (b,ci), i< r;(cs,ct), sd [3,r] or t<r,

are fixed, This means that we have to consider all configurations of type

of them) (a,b; ¢ Cr) on the edge (a,b)

i
1}317B

3 k
(k; il,Jl,B) (there are 3, e
i

and on the edge (cl,cz) of them all configurations of type (slz;gl;Zé,C) (there

3312
> »
81,82,

are of them). So the entire number is the product of these numbers,

C

which proves 4.6,

The summation in 4.7 means that we have to consider all sets (a,b; Cpaeess cm)

such that only types of (a,ci), ie [1,m]; (b,ci), ie [1,m); (Cq’ct)’ qg<r,

t'>r + 1, are fixed. This means that we have to consider all configurations of

E
type (k; il’jl’B) on the edge (a,b) (there are g& > of them) and all
i‘l’jl}B
configurations of type (k; iz,jz,C) on the edge (a,b) (there are q& - of
15d,,C

them). So the entire number is the product of these numbers, which proves 4.7,

k
5. If m = 1, the constants of this section are the structure constants aij of the

k
algebra aL(X). It is interesting to note that all relations D4 c 1l - ¢ 6 on aij

are corollaries of the relations 4.1 - 4.6 for m = 1 and/or m = 2,

. 1
E.g., n.a, = njaii‘ follows from 4.3 and 4.1:
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0 i i i
0 = =
ERIARE ( k} 5 T TP T Ttk
k' O
One more example:
28 ak B k as
s ij s s Tis j4

follows from 4.5 and 4.2:

6. (Compare D4 c 9, c 10). Let

‘.)
0 ]
B = - .
i' A
0 k
6.1. Lemma. a = na
== 2 Y
ik, 3 <13
Proof follows directly from 4.3,
k ir
6.2, Corollary. n a =n, a . ~ . A A
2 i cre 5 3! e e ;
k-l),j,A i k,ll, cees 1oy s 1 Jr’sr,l’ s Sops P Srm’B
Proof follows from 6.1 and 4.3.
6.3. Theprem. Let N, > be the least common multiple of all numbers
i,',A
k
n, ,n, ,n . Then N divides n a .
i 8 2 k3
p p pq 1,3,A 1,3,A
Proof. By 6.2, nka_l:_, is a multiple of all o, . By 6.2 and 6.1 it is also a
i,j,A r

multiple of all nj . Applying the same reasoning to the right side of 6.2, we see
r

that our number is a multiple of all o, , as required,
Pa

6.4, Remark. It follows from 6.3 that q_l:_* is a multiple of all numbers

i,1,4

r
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-1
nk(nk,Na_ﬁ } . Applying this consideration to the right side of 6.2, one can
i3,
strengthen Theorem 6.3. Specifically, one can define N, recursively as the
i,j,A

least common multiple of all numbers

2 -1

n, {(n, , N . 2 . ) A a) .
i i kyigseee,i ,o0a,i s s vee, S +s4,8 3B is strengthening of
r r L N Ty’ ? m’jr’ rl’ > Tyr? rm’Cr Thi gt g

6,3 also is not final since one can iterate this consideration.



AE. ALGEBRAIC INVARIANTS OF FINITE GRAPHS

1, Many mathematicians, myself included, who have an algebraic background, say, when
told about the problem of graph isomorphism: '"What is the question? Invariant

polynomials surely distinguish graphs up to isomorphism,’

1.1. They allude to the following result from the algebraic geometry (cf,, [Se 4]):
Let M be an affine algebraic manifold over a field k, k[M] be the ring of
regular functions on M, Suppose that a finite group G acts on M (and preserves
the algebraic structure), Let R = k[M]G be the ring of invariants under G regular
functions. Then R distinguishes orbits of G on M and M/G is the affine
manifold whose ring of regular functions is R.
This means that two points of M 1lie on the same orbit of G if and only if

the values of any function from R are the same at those two points,

1.2, 1In our case, M 1is the space of all matrices of order n (or of all symmetric
matrices, or of all symmetric matrices with zero diagonal) and G = Sym n acts on M
in the following manner:

A—> g A g"1

According to the Hilbert's Theorem, the ring of invariants has a finite

generator set. Hence the approach stated above is not infinite,

1.3. However, if fl’ ceey fN are the generators of the ring of invariants, one
should compute all functions fi to establish the isomorphism or non-isomorphism.

But fi can be rather complicated and the number N can be large.

1.4, The aim of the present section is to exhibit and to interpret some of the
complications which were encountered during an atvempt to use the invariants, It

seems that these complications are of the same nature as those of Sections M, AD.

2. We shall show below how the values of the invariants of simple graphs (that is,

of its adjacency matrix) are interpreted in geometrical terms.,
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2.1, To every monomial m of the form
n=Tla,

in the matrix entries we associate a graph I'(m) in the following manner:

T(m) has the edge (i,j) if and only if aij enters in m,

Then the number of edges of I'(m) is the degree of m; the number of vertices
of T'(m) 1is the number of distinct indices of a5 entering in m,

If T 1is a simple graph, then the value of m on A() is 1 if T(m) (with

r, and is 0 if T(m)&£ T

the given numeration of vertices) is a subgraph of

2.2, Now let £ be an invariant polynomial for the group Sym n on the space of the
symmetric n X n-matrices with zero diagonal, It is easy to see that f is a linear

combination of invariants of the form
fm) = T b

where g runs over a set of coset representatives of Sym n by a subgroup, fixing m,
Therefore, it can be assumed that £ has the above form, i,e,, £ = f£(m).
Then the value of f on A(I") 1is evidently equal to the number of

embeddings of (the abstract graph) TI(m) in T considered up to isomorphism,

2.3. Remark. If can be seen from the above argument that the Theorem 1.1 is
evident in our case, since to the whole graph T there corresponds some monomial of
degree equal to the number of edges of I', and to this monomial there corresponds the

invariant which itself completely determines the isomorphism class of T.

2.4, By 2.3 to distinguish graphs with n vertices,it is sufficient to consider
only invariants of degrees < nz. However, all those imvariants should not be

considered, It is sufficient to construct a basis of invariants, But this basis
contains perhaps too many invariants and many of them have (also perhaps) a high
degree (e.g., degree n). Computation of an invariant of degree t requires, a

2
priori, ¢t . (2 ) actions. This shows that the possibility to use algebraic
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invariants requires further research.

2.5. Remark, Note that the values of some invariants of high degree on A(I) can
be determined from values of simpler ones without use of algebraic relatioms. Define
for every monomial m another monomial m in the following manner:
m is the product of the matrix entries entering in m and taken in the first
m, . - t(m, )
power, that is, if m(A) = r]ai;J’ then w(A) = [la_, ™4 where
13
t(m,.,) =1 4if m,, >0 and t(m,6,) =0 if m,, = 0.
ij ij ij ij
If A = A(T), then evidently m(A) = m(A), If f = f(m), f = £(m), then
£f{(A)Y = d -« E(A), where d is the index of the group fixing m in the group
fixing m.
This shows that in order to study isomorphisms of simple graphs (or more gener-

ally of graphs without multiple edges) it is sufficient to consider the invariants 1.

3. Remarks of the preceding subsection are easily extended to the general case,
Indeed, suppose that we have to establish whether two n X n-matrices A and B
belong to the same orbit of Sym n. Replace the pair {A,B} by x({a,B}) = {X,¥}
(simultaneous stabilization, cf. M 4).

Let us now indicate some analogues of the considerations of the preceding

subsection.

3.1. To every monomial in the variables entering in X and Y, let us associate a
graph (in the sense of Section C) in the same manner as in 2,1. Then the monomial
m in the matrix entries determines an equivalence class of graphs (cf., C 2).

The value of f(m) on X determines the number of embeddings (up to isomorphism)
of every representative (up to isomorphism) of that equivalency class into X (an

analogue of 2.2).

3.2. As an analogue of 2.5, the following schema is proposed.

In place of the invariants of degree r we shall consider elements of the tensor
product of d distinct copies of the space of matrices (recall that invariants of
degree r are elements of the r-th symmetric power of the dual space of the space

of matrices). It frees us from the necessity to substitute m by m but leads to
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difficulties, one of which is the fact that our new object is not a ring.

4, Let us finally give a few examples,

Let A = (aij) be a matrix,

4.1. A basis of invariants of degree 1,

2) 2i£j 814
b) Zi a

ii

4.2. A basis of invariants of degree 2.

D Risg Ay
b) I, a?.
1 11
©) Ly 2 213
@ ziéj,jék,iﬁk %11 %5k
2
& Ty Ay
B i %y %

8) Zi£j,j£k,i£k 235 %5k
DRy sk, i Py Yik

D B, 5k, ik, 141, 341 245 kL



AG. CONJECTURES,

Below we state some conjectures and indicate directions of research which are

now of interest for us.

1. Conjecture. (Arlazarov). Let T be a graph, n = IFI. The algorithm of Section

R finishes its work in nC log n

steps.

It is interesting to note that usually when an algorithm is given, the estimates
of its speed are obtained relatively easily. In the case under comsideration for
many examples the algorithm finishes its work "momentarily;" however, no good estim=-
ate is obtained, Hypothesis 1 is close and, possibly, equivalent to the assumption:

If X = (Xij) is a stationary graph of depth (log |X]) 1in some sense
(cf., O 6), then the sets V(Xii) are orbits of Aut X.

One of the obstructions to the proof of the estimate is the necessity to pay

special attention to correct graphs.

2. Question., Construct a lower bound on the number of steps required to establish
isomorphism or non-isomorphism of graphs.

Perhaps, in order to find such bounds one should be able to compute the number of
stationary graphs of the given depth k which have the same "structure constants"
for every depth < k.

It is interesting to note that all algorithms for establishing isomorphism
known to us are algorithms of canonizationj that is, they reorder vertices of the first
graph and of the second graph,and then compare results. The use of algebraic
invariants (cf., Section AE) just solves the isomorphism problem (without canenizing).

Difficulties arising in that direction were indicated in Section AE,

3. Question., Find an algorithm of construction of cells (or of strongly regular
graphs) which will construct exactly one representative of each isomorphism class.
Such an algorithm, if it exists, has to use deep structural properties of cells.
Seidel equivalence, descent-ascent (cf.,, Section V) are examples of the existence of
large common parts of strongly regular graphs., Some other cases of closeness are

pointed out in Section V.
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4, Question. Does the center {(as algebra) of a cell form a cell?

If it were true, more information on atj and on the existence would be obtained,
Besides, such an assertion would have an independent interest. For some centralizer
rings it was proved in [Ta 3]. Possibly by the method of [Ta 3] at least a proper sub-
cell of a cell can be constructed. If such a process would stop, the cells where it

does not give proper subalgebra are of special interest,

5. Question. Extend the results of R. E, Block [Bl 11, [B1 23 to cellular algebras,
Those results have formulations which also make sense for cellular algebras,

Their proof would give ample information about the structure of cellular algebras.

6. Question, Extend the Chowla-Bruck-Ryser theorem [Ha 3] to cellular algebras,
A Hermitian form may be associated to every basic element (it is quadratic if that
element is symmetric), Therefore, results of Hasse-Minkowski are applicable, in
principle, The question is how to express the invariants of our forms in terms
of the structure constants, In particular, the question arises whether they are
expressible or not. Note, however, that if they are not expressible, a new

invariant of a cellular algebra would be obtained.



[Ad

(Al

[Ar

[Be

[B1

[Bo

[Bo

{Bo

1}

2]

1]

1]

2]

1]

1]

1]

2]

1]

2]

2]

3]

BIBLIOGRAPHY

Adelson-Velsky, G.M., Arlazarov, V.L., Bitman, A.R,, Zhivotovsky, A.A.,
Uskov, A.V., On programming chess for computers (in Russian), Uspehi Math.
Nauk 25 (1970), 222-260,

Adelson-Velsky, G.M,, Weisfeiler, B., Lehman, A.A,, Faragev, I.A,, On an
example of a graph having no transitive automorphism group (in Russian),
Doklady AN SSSR, 185 (1969).

Ahrens, R.W., Szekeres, G., On a combinatorial generalization of 27 lines
associated with a cubic surface, J. Austr, Math. Soc., 10 (1969), 485-492,

Aigner, M., On characterization problem in graph theory, J. Comb, Theory,
6 (1969), 45-55.

Albert, A.A., Structure of algebras, Amer. Math. Soc. Coll. Publ., v. 24,
N.Y., 1939.

Aliev, J.S$.0., Seiden, E., Steiner triple systems and strongly regular graphs,
J. Comb. Theory, 6 (1969), 33-39.

Arlazarov, V,L., Zuev, I.I., Uskov, A.V., Faragev, I.A., (in Russian),
Zhurnal Vychisl. Math. y Math, Physicy, 14 (1974), 737-743.

Arlazarov, V,L,, Lehman, A.A., Rosenfeld, M.Z., Computer-aided construction
and analysis of graphs with 25, 26, and 29 vertices (in Russian), Preprint,
Institute of Control Problems, Moscow, 1975, (58 pages).

Aschbacher, M., The non-existence of rank 3 permutation groups of degree
3250 and subdegree 57, J. algebra, 19 (1971), 538-540.

Bauman, H., Computer program for LINCO System, J. Chem. Docum., 5 (1965),
14-23.

Bauersfeld, G,, Essmann, Ch.,, LBhle, H., Algorithmus zur Feststellung der
Isomorphie von endlicher, zusammenhYngenden Graphen, Computing 11 (1973},
159-168.

Benson, C.T., Losey, N,E
Theory, 11B (1971).

On a graph of Hoffman and Singleton, J. Comb.

.

Berztiss, A.T., A backtrack procedure for isomorphism of directed graphs, J.
of ACM, 20 (1973), 365-377.

Block, R.E., On the orbits of collineation groups, Math. Z., 96 (1967), 33-49.

Block, R.E., On automorphism groups of block designs, J. Comb. Theory, 5
(1968), 293-301.

Borel, A., Tits, J., Groupes reductifs, Publ. Math, IHES, no, 27, 1965,
55-152.

Bose, R,C., Strongly regular graphs, partial geometries and partially
balanced designs, Pacific J. Math., 13 (1963), 389-419.

Bose, R.C., Clatworthy, W.H., Some classes of partially balanced designs,
Ann, Math. Stat., 26 (1955), 212-232,



220

[Bo 4] Bose, R.C., Dowlin T.A., A generalization of Moore graphs of diameter 2, J.
s ) 2, » g grap )
Comb. Theory, 11 (1971), 213-226.

[Bo 5] Bose, R.C., Laskar, R,, A characterization of tetrahedral graphs, J. Comb.
Theory, 3 (1967), 366-385.

[Bo 6] Bose, R,C., Mesner, D,M., On linear associative algebras corresponding to
association schemes of partially balanced designs, Ann. Math., Sat,, 30 (1959),
21-38,

[Bo 7] Bose, R.C., Shimamoto, T., Classification and analysis of partially balanced
incomplete block designs with two associate classes, J. Amer., Stat. Assn.,
47 (1952), 151-184,

[Bo 8] Bose, R.C., Shrikhande, S.S., Graphs in which each pair of vertices is
adjacent to the same number of other vertices, Studia Sci. Math. Hung., 5

(1970), 181-196,

[Bo 9] Bose, R.C., Shrikhande, S.S., Some further constructions for  G(d) graphs,
Studia Sci, Math., Hung., 6 (1971), 127-132,

[Br 1] Bruck, R.,H., Finite nets II, Uniqueness and imbedding, Pacific J. Math., 13
(1963), 421-457,

[Br 2] Brudno, A.,L., Branches and boundaries for search reduction, (in Russian),
Problemy kybernetiki, 10 (1963), 141-150.

[Ca 1] Cameron, P.J., Permutation groups with multiply transitive suborbits, Proc.
London Math, Soc,, III-Ser., 25 (1972), 427-440.

[Ca 2] Cameron, P.J., Goethals, J.M., Seidel, J.J., Shult, E.E., Line graphs, root
systems and elliptic geometry, Preprint, 1975, to appear J, of Algebra,

[Ch 1] Chang Li-chien, The uniqueness and nonuniqueness of the triangular association
schemae, Sci, Record, New Ser., 3 (1959), 604-613.

[Ch 2] Chang Li-chien, Association schemes of partially balanced designs with para-
meters v = 28, n, = 12, n_ = 15, and p2 = 4, Sci. Record, New Ser., 4

1 2 > 11 2 b ’
(1960), 12-18.

[Ch 3] Chao Chang-Yun, On a theorem of Sabidussi, Proc. AMS., 15 (1964), 291-292.
[Ch 4] Chao Chang-Yun, On groups and graphs, Trans. AMS, 118 (1965), 488-497,

{Co 1] Connor, W.S., The uniqueness of the triangular association schemes, Ann.
Math. Stat., 29 (1938), 262-266,

[Co 2] Connor, W.S., Clatworthy, W.H., Some theorems for partially balanced designs,
Ann, Math. Stat., 25 (1954), 100-112.

[Co 3] Corneil, D.G., Gotlieb, C.C.
J. of ACM, 17 (1970), 51-64.

, An efficient algorithm for graph isomorphism,

[Da 1] Davydov, E.G., On finite graphs and their automorphisms, (in Russian),
Problemy kibermetiki, 17 (1966), 27-39.

[Da 2] Davydov, E,G., Om automorphisms of unions of finite products of graphs, (in
Russian), Kibernetika, 1968, no. 6.

[De 1] Delsarte, P., An algebraic approach to the association schemes of coding
theory, Philips Res. Repts.,, Suppl. no. 10 (1973)



221

[De 2] Delsarte, P., The association schemes of coding theory, Combinatorics, Math,
Centre Tract, 55, (Amsterdam 1974), 139-157.

[De 3] Dembowski, P., Finite geometries, Berlin-Heidelberg-N.Y., Springer, 1968,

[Dj 1] Djokovic, D.Z,, Isomorphism problem for a special class of graphs, Acta,
Math., Hung., 21 (1970), 267-270.

[Do 1] Doob, M., Graphs with 2 small number of distinct eigenvalues, Ann. N.Y. Acad.
Sci., 175 (1970), no. 1, 104-110.

3

[Do 2] Doob, M., On characterizing certain graphs with four eigenvalues by their
spectra, Linear algebra and appl., 3 (1970), 461-482,

[Fr 1} Frame, J.S., The double cosets of a finite group, Bull. AMS, 47 (1941),
458-467.

[Fr 2] Frame, J.S., Double cosets matrices and group characters, Bull., AMS, 49
(1943), 81-92.

[Fr 3] Frucht, R,, Herstellung von Graphen mit vorgegebenen abstrakten Gruppe,
Comp, Math., & (1938), 239-250,

[Ge 1] Gewirtz, A., Graphs with maximal even girth, Canadian J. Math., 21 (1969),
915-934.

[Go 1] Goethals, J.M., Seidel, J.J., Orthogonal matrices with zero diagonal,
Canadian J. Math., 19 (1967), 1001-1010,

[Go 2] Goethals, J.,M., Seidel, J.J., Strongly regular graphs derived from
combinatorial designs, Canadian J. Math,, 22 (1970), 449-471.

[Ha 1] Halin, R., Jung, H.A., Note on isomorphism of graphs, J. London Math. Soc.,
42 (1967), 254-256.

[Ha 2] Hall, M., Jr., The theory of groups, N.Y., 1959,
[Ha 3] Hall, M., Jr., Combinatorial theory, Waltham-Toronto-London, 1967.

[He 1] Hemminger, R.L., On the group of a directed graph, Canadian J. Math., 18
(1966), 211-220,

[He 2] Hestenes, M.D,, Higman, D.G., Rank 3 groups and strongly regular graphs,
SIAM-AMS Proceedings, vol. 4, Providence, 1971, 141-160.

[Hi 1] Higman, D.G., Finite permutation groups of rank 3, Math, Z., 86 (1964),
145-156.

[Hi 2] Higman, D.G., Intersection matrices for finite permutation groups, J.
algebra, 6 (1967), 22-42.

[Hi 3] Higman, D.G., Coherent configurations I, Rend. Sem., Padova, 44 (1970), 1-25.
[Hi 4] Higwman, D.G., Characterization of families of rank 3 permutation groups by
the subdegrees I, II, Arch. Math., 21 (1970), 151-156, 353-361.

[Hi 5} Higman, D.G., Schur relations for weighted adjacency algebras, Symp. iMath,
(Roma), vol, 13, London-N.Y,, 1974, 467-477,

[Hi 6] Higman, D.G., Coherent configurations, Part I: Ordinary representation theory,
Geom, Dedicata, 4 (1975), 1-32,

[Hi 7] Higman, D,G., Stms, C.C., A simple group of order 44, 353,000, Math, Z.
105 (1968}, 110-114. ="’ pre erotp T ’



222

[Ho 1] Hoffman, A.J., On the exceptional case in a characterization of the arcs of
a complete graph, IBM J. Res, Dev,, 4 (1960), 487-496,

{Ho 2] Hoffman, A.J,, On the uniqueness of the triangular association scheme, Ann.
Math, Stat., 31 (1960), 492-497.

[Ho 3] Hoffman, A.J., On the polynomial of a graph, Amer. Math. Monthly, 70 (1963),
30-36,

[Ho 4] Hoffman, A.J., On the line graph of a complete bipartite graph, Ann. Math.
Stat., 35 (1964), 883-885,

[Ho 5] Hoffman, A.J., On the line graph of a projective plane, Proc. AMS, 16 (1965),
292~302,

[Ho 6] Hoffman, A.J., Newman, M., Straus, E.G., Taussky, O., On the number of
absolute points of a correlation, Pacific J. Math., 6 (1965), 83-96,

[Ho 7] Hoffman, A.J., Chaudhuri, D.K. Ray, On the lipne graph of a symmetric
incomplete block design, Trans., AMS, 116 (19653), 238-252.

[Ho 8] Hoffman, A.J., Singleton, R,R., On Moore graphs with diameter 2 and 3, IBM
J. Res. Dev., 4 (1960), 492-504.

[Ho 9] Hoperoft, J.E,, Tarjan, R.E,, A V log V algorithm for isomorphism of tri-
connected planar graphs, J. of Computer and Syst. Sci., 7 (1973), 321-323,

[Ho 10] Hoperoft, J.E., Wong, J.K., Linear time algorithm for isomorphism between
planar graphs, 6th Annual ACM Symp. on Theory of Computing, Seattle (1974},

[Im 1] TImrich, W,, Graphen mit transitiver Automorphismengruppe, Monatsh. Math.,
73 (1969), 341-347, '

fIm 2] Imrich, W., Watkins, M.E., On graphical regular representations of cyclic
extensions of groups, Pacific J, Math., 55 (1974), 461-477.

[Iw 1] Iwahori, N., Generalized Tits systems (Bruhat decomposition) on P-adic
semi-simple groups, Proc. Symp. Pure Math., AMS, vol, 9, Providence, 1966,
71-83,

{Jo 1] Jordan, C., Théortmes sur les groupes primitifs, J. Math. (2), 16 (1871),
383-408,

[Ka 1] Kagno, J.N., Linear graphs of degree < 6 and their groups, Amer, J. Math.,
68 (1946), 505-520,

{Ra 2] Kaluzhnin, L.A,, Klin, M,H., On some maximal subgroups of symmetric and
alternating groups, (in Russian), Mat, Sbornik, 87 (1972), 91-121.

[Ka 3] Karp, R.M,, Reducibility among combinatorial problems, Complexity of
Computer Computations, (ed. by R.E. Miller and J.W, Thatcher), Plenum Press,
New York, 1972, 85-103.

[Ke 1] Xelmans, A.K., Graphs with equal number of paths of length 2 between incident
and non-incident pairs of vertices, (in Russian), Trudy Seminara po combina-
tornoy Mat,, MGU, January 1967, in "Voprosy kibernetiky," Moscow, 1972,

[Kn 1] KnbBdel, W,, Ein Verfahren zur Feststellung der Isomorphie von endlichen
zusamenhangenden Graphen, Computing, 8 (1971), 329-334,

[Ku 1] Kuhn, H.W
45-102,

On imprimitive substitution groups, Amer, J. Math., 26 (1904),

‘s



[Le

[Le

[Li

[Li

[Mo

[Mo

[Na

[Pa
[Qu

[Re
[Ro

[Sa

[Sa

[Sa

[S¢

[Se

[Se

[Se

1]

2]

1]

2]

P 3]

1]

2]

1]

1]

1]

1]

1]

2}

3]

1]

1}

2]

3}

4]

223

Lehman, A.A., On automorphisms of some classes of graphs, (in Russian),
Avtomatica y Telemecanica, 1970, no. 2, 75-82,

Levi, G., Graph isomorphism: A heuristic edge-partitioning-oriented
algorithm, Computing, 12 (1974), 291-313.

Lichtenbaum, L.M., Eigenvalues of a simple graph, (in Russian), Trudy 3-vo
Vsesoyuznovo Mat. Syezda, vol. 1, Leningrad, 1956, 135.

Lichtenbaum, L.M., A duality theorem for simple graphs, (in Russian}, Uspehi
Mat, Nauk, 13 (1958), no. 8, 185.

Lichtenbaum, L.M,, Traces of powers of the adjacency matrix of a simple
graph, Izvestiya VUZov, 1959, no. 5, 154-163.

Moon, J.W., On the line graph of a complete bigraph, Ann. Math. Stat., 34
(1963), 664-667,

Morgan, H.L.,, The generation of a unique machine description for chemical
structures, J, Chem. Docum., 5 (1965), 107-112.

Nagle, J.F., On ordering and identifying undirected linear graphs, J. Math.
Phys., 7 (1966), 1588-1592,

Ore, 0., Theory of graphs, AMS Coll, Publ., vol. 38, Providence, 1962,

Paulus, A.J.L., Conference matrices and graphs of order 26, Report Techn.
Univ. Eindhoven, 73~WSK-06 (1973).

Quirin, W., Extension of some results of Manning and Wielandt on primitive
permutation groups, Math., Z., 123 (1971), 223-230,

Read,R.C., Corneil,D.CG., The graph isomorphism disease, J,Graph Th., to appear.
Rosenfeld, M.Z., Note on construction and properties of some classes of
strongly regular graphs, (in Russian), Uspehi Mat. Nauk, 28 (1973), no. 3,
197-198.

Rudvalis, A., (v,k,\)-graphs and polarities of (v,k,A)-designs, Math. Z.,
120 (1971), 224-230,

Sabidussi, G., On a class of fixed-point-free graphs, Proc. AMS, 9 (1958),
800-804,

Sabidussi, G., Vertex-transitive graphs, Monatsch. Math,, 68 (1964), 426-437.

Saucier, G., Un algorithme efficace recherchant l'isomorphism de deux
graphes, Rev. Franms. Inform. Rech. Oper., 5 (1971), R3, 39-51.

Schur, I., Zur Theorie der einfach transitiven Permutations-gruppen,
Sitzungber, Preuss, Akad. Wiss. (1933), 598-623.

Seidel, J.J., Strongly regular graphs of Lz-type and of triangular type,
Indag. Math., 29 (1967), 188-196.

Seidel, J.J., Strongly regular graphs with (-1,1,0)-adjacency matrix having
eigenvalue 3, Linear Algebra Appl., 1 (1968), 281-298.

Seidel, J.J., Strongly regular graphs, Recent Progress in Combinatorics, ed.
by W.T. Tutte, N.Y,-London, 1969.

Seidel, J.J., A survey of two-graphs, Proc. Intern., Coll., Theorie Combinatorie,
Acc, Naz, Lincei, Roma, 1973, to appear.



[Se

[Se

[Sh

[Sh

[Sh

[sh

[Sh

{81

[8i

[Sk

[Ta

{Ti

[Tu

[Un

[Wa

[Wa

5]

6]

1]

3]

4]

5]

1]

2]

1]

1]

2]

3}

1]

1]

1}

1]

2]

224

Seidel, J.J.,, Graphs and two-graphs, Proc. Fifth Southeastern Conf. on
Combinatorics, Graph Theory and Computing, Florida Atlantic Univ., Boca
Raton, 1974.

Serre, J.-P., Groupes algebriques et corps de classes, Paris, 1959,

Shrikhande, $.S., On a characterization of the triangular association scheme,
Ann, Math, Stat., 30 (1959), 39-47.

Shrikhande, S5.S8.,, The uniqueness of the Lz-association scheme, Ann, Math.
Stat., 30 (1959), 781-798.

Shrikhande, S.5., Bhat, Vasanti N,, Nonisomorphic solutions of pseudo-
(3,5,2) and pseudo-(3,6,3) graphs, Ann. N.Y. Acad. Sci., 175 (1970), no. 1,
331-350.

Shrikhande, 8.S., Bhat, Vasanti N,, Graphs derived from L3(5) graphs,
Sankhya, Series A, 33 (1971), 315-350,

Shirkhande, S$.S., Bhat, Vasanti N., Seidel-equivalence in LB3(6) graphs,
Aequat. Math., 7 (1971), N z/3.

Sims, C.C., Graphs and finite permutation groups I, Math. Z., 95 (1967),
76-86.

Sirovich, F., Isomorphismo fra graphi: un algorithmo efficiente per trovare
tutti gli isomorphismi, Calcolo, 8 (1971), 301-337.

Skorobogatov, V.A.,, On determination of isomorphisms of non-oriented graphs,
(in Russian), "Vychislityelnyye Systemy,” no. 33, Novosibirsk, 1969,

Steen, J.-P., Principle d'un algorithme de recherche d'un isomorphisme entre
deux graphes, Rev. Franc. Inform. Rech, Oper., 3 (1969), 51-69.

Swift, J.D., Isomorph rejection in exhaustive search techniques, AMS Proc.
Symp. Appl. Math., vol. 10, Providence, 1960, 195-200.

Tamaschke, O., On permutation groups, Ann, Mat. Pura Appl., Ser. IV, 80
(1968), 235-279.

Tamaschke, O., On the theory of Schur-rings, Ann. Mat. Pura Appl., Ser. IV,
81 (1969), 1-44.

Tamaschke, 0., On Schur-rings which define a proper character theory of
finite groups, Math. Z., 117 (1970), 340-360.

Tits, J., Groupes finis simplex sporadiques, Sem. Bourbaki, 1969 (1970),exp.
375, Lecture Notes in Math., no. 180, 1971, 187-211.

Turner, J., Generalized matrix functions and the graph isomorphism problem,
SIAM J. Appl. Math., 16 (1968), 520-526.

Unger, S.H., GIT-a heuristic program for testing pairs of directed line
graphs for isomorphism, Comm. ACM, (1964), 26-34.

Wallis, W.D., A non-existence theorem for (v,k,A)-graphs, J. Austr. Math,
Soc., 11 (1970), 381-383.

Watkins, M.E., On the action of non-abelian groups on graphs, J. Comb.
Theory, 11 (1971), 95-104.



[Wa

[We

[We

[Wh

[Wi

(Wi

[Yo

3]

1]

2]

3]

1]

1}
2)

3]

1]

1}

225
Watkins, M.E., Graphical representations of Altn, Sym,n et al,, Aequat,
Math., 11 (1974),

Weil, A., Algebras with involutions and the classical groups, J. Indian Math.
Soc., 24 (1960), 589-623.

Weinberg, L., A simple and efficient algorithm for determining isomorphism
of planar triply connected graphs, Trans, IEEE, CT 13 (1966), 142-148,

Weisfeiler, B,, Lehman, A.A,, A reduction of a graph to a canonical form and
an algebra arising during this reduction, (in Russian), Nauchno-Technicheskaya

Informatsia, Seriya 2, 1968, no. 9, 12-16.

Whitney, H., Congruent graphs and comnectivity of graphs, Amer. J. Math.,
54 (1932), 150-168,

Wielandt, H.,, Permutation groups, Pasadena, 1965.

Wielandt, H.,, Permutation groups through invariant relations and invariant
functions, Ohio Univ., 1969,

Wielandt, H., Permutation representation, I1l, J. Math., 13 (1969), 91-9%.

Yokonuma, T., Sur la structure des anneaux de Hecke d'un groupe de
Chevalley fini, C.R, Acad. Sci., A 264 (1967), 344-347,

Zykov, A.A., Theory of finite graphs, (in Russian), vol. 1, "Nauka,"
Novosibirsk, 1969.



DISTRIBUTION OF THE BIBLIOGRAPHY PER TOPICS

1. TIsomorphism problem
Ba 1, Ba 2, Be 2, Co 3, Dj L

2

Sa 3,812, k1,81, Tul, Unl, We

B4

2. Strongly regular graphs
Ad 2, Ah 1) Ai 1, ALl 2, Ar 2

Co 2, Dol, Do 2, Ge 1, Go 1, Go

2

Mo 1, Pa 1, Ro 1, Rul, Se 1 -Se

3, Cellular algebras and related formations
Bo 6, Ca 1, Fr 1, Fr 2, He 2, Hi 2, Hi

Wil -Wi3

4, Graphs with a given automorphism group
Ch 3, Ch 4, Da 1, Da 2, Fr 3, He 1, Im

Wa 2, Wa 3

He

Sh

Im

10, Kn 1, Le 2, Li 3, Mo 2, Na 1

3, Wh 1, Re 1

Ka

5. Algorithmic questions (except isomorphism problem)

Ad 1, Ar 2, Br 2, Ka 3, Pa 1, Sw 1

Ca

2, Ch 1, Ch 2,

Hi 5, Ho 1 -Ho 8,

Wa 1
Ta 1 - Ta 3,
Sa 1, Sa 2, Ti 1,

b



INDEX OF NOTATIONS
(Con. i refers to subsection i in "Conventions, Assumptions, Notations')

General (all from Section ""Conventions, Assumptions, Notations")

< E
Z, Q, B C, K

(m,n) = GCD{(m,n)

N "
dim A hi
Sp A diag(...)
So 5, ., 8

ij i
A = const

Sym n, Sym(n)
A=R
V(a) Sym V, Sym(V)
A R
AQV,W) da(cy

CELLULAR ALGEBRAS

c c 2.2 Stab X M 3.2
~ ¢ 2.3 XvX C 4,1
~ ¢ 2.1 XoX C 4,2, ¥ 3.2
~ E 5.1 e, C11.2, D 1.1
:'L,ZJ,C Con, 2 d(ei) bD1,1, E 3
IX],loc| €1, DLl E3 n, = d(e) D 1.1, E3
dim X, dim or C1l,E3 i C11.2.1, D4, E 3
rg X, rg 0L E 3 T(i, ) E1
oL(X) D 1.1 aJi,k C11.2.2, D4, E 4
X(L) D11, I1 X = (xij) E 2
X(a) M 2.1 X =T xe, € 1l.2, D 1.1
X(AlﬂAzﬂ...ﬂAt) M 2.2 <io-g>y C 10



b2

o (X)
ey

g (0

o, (%)

>

D, (X)

Z[G]

; G,M)

A, L qn
ou /L, Xl
B}, 112}
Conab(ZQ,[f)
)\ xijAzbj

~
powrs

228

8 1,1
4.3 Aut X
k
3.4 ay .
i)jJA
2
A (X
4.1, 0 4.4 *
4.9, 0 4.11 X=R, o=R
3.1 s
n
SPECIAL CLASSES
3.5, E 3 @Y
3.6, E 3 By
Con, 3
F(X)
1
1 (Yl, cens Yn)wrZ
NORMAL SUBCELLS AND FACTOR CELLS
1.1 X, ., ZN\X, .
1] 3 1 1]
7 PAY
5 Xg
4.1 ga
6 e, ¢ B
1
4, T 1.1, I 1.2 X = (X))

¢ 2.1

AD

0 3.2

Con. 3, C 3.6, E 3

Con., 3, € 3.5, E 3



3.3

3.3

3.3

O o L Lo Lo
o>
w

3.3

229

ALGORITHMS

Split
Assembly
Change
Lift
bt(i)

b

£,
ct(x)

R 5
R 6.1, R 6.2

R 6.3



(Con. i refers to subsection i of "Conventions, Assumptions, Notations")

algorithm
canonical
correct
elevation
invariant
semi-invariant

splitting

algorithm of
canonization

exhaustive search
annex

assemblage of
correct graphs

direct sums

automorphism

basic element

graph
block-design
block-diagonal form
block-triangular form

break-down

canonical algorithm
canonical embedding
canonization algorithm

cell
imprimitive
primitive

three-dimensional

SUBJECT INDEX

R 2.1
0 2.1
R 4.2, R 6
0 2.1
R 2.2
R 4.1, R 5

R 2.1, R3.,1, R7,S 1
Q3

J 4.3

¢ 11.2, D 1.1
¢ 11.2, D 1.1

L 18
H1.l, H?2
¥ 1.1, H?2

T3

R 2.1

C 2.4

=]

2.1, R3.1, R 7, S1

1.2
1.1
1.1
20

[al - B s -



cellular algebra
central decomposition of
decomposition of
degree of
dimension of
generic point of (matrix of)
homomorphism of
isomorphism of
matrix of
rank of
standard basis of
considered as algebra
correct
fully correct

split
central decomposition
centralizer ring
complement of a strongly regular graph

composition of matrices or graphs
equal
disjoint

connection block

connection block of normal subcells

constant block

correct cellular algebras
assemblage of
disassemblage of

fully

cutoff = reduction of exhaustiwve search

daughter system

invariantly defined

decomposition

central
deep constants

deep stabilization

231

D 1.1

E 2, F 4.2
E 2, F 4.2
D1.1, E 3
D 1.1, E 3
D 1.1

E 5.1, J 3
E 5.1, E 5.2
D 1.1

E 3

D 1.1

L

J6.1

J 6.l

Con., 3, C 3.6, E 3

, F 4.2

Con, 2
Con. 2
Con, 2

a
W
-
[
w

6.1
6.2
6.7, R 5.4.2
6.1

o G

o

2.7, Q 2.8, Q 3.5

(@]
[o
—



degree of
cellular algebra
graph

normal subcell
deletion
deletion of a row

depth of
exhaustive search

stabilization
depth 1
depth > 1
descendant
descent

dimension of
cellular algebra
graph

matrix

direct sum
assemblage of

disassemblage of

disassemblage of
correct algebras

direct sums

disjoint composition

edge graph
elevation algorithm

equivalency
natural

weak

exhaustion = exhaustive search

232

¢1,D1l.1, E3
Con, 3, C 1, E3
G 1.1

T5

0 3.2

Q 2.4, Q 3.4
04,13, 06
0 4.13

06, AD
v 3

v 3

€1, E3
C1l,E3
Con. 3

G 2

R 6.1

R 5.4.1

J 6.7, R 5.4.2
R 5.4.1

Con, 2

0 6.4, P 2.2
R 4.2, R 6.3

C2b
E 5.1
E 5.1

Q



exhaustive search = exhaustion
cutoff of
depth of
forced variant in
graph of
level of
tree of

variant rejection in
extension

extension of graph

factor
cell
graph

families of strongly regular graphs
fixation

forced variant

Frame's theorem

fully correct

generic point of
cellular algebra

normal subcell

graph
correct
fully correct
split
stable with respect to kernel
stationary
stationary of depth 1

strongly regular

233

2.7, Q 2.8, Q 3.5

2.3, Q 3.3

L0000 L0
I~
O

2.3, Q 3.3
Q 2.7, Q 2.8, Q 3.5

D 1.1
H 1.1

Con. 2, C 1

J 6.1

J 6.1

C 3.6, E 3

N 4.1

C 4.4

0 4.13

L 20, T, U, V



234

graph
central decomposition of E2, P 4.2
decomposition of E 2, P 4,2
degree of Con. 3, C 1, E3
dimension of Con, 3, C1, E3
equivalency of C 2.3
factor of 14
homomorphism of E 5.1, J3
imbedding of C 2,2
isomorphism of ¢ 2.1, E 5.1
weak isomorphism of E 5.1
natural equivalency of E 5.1
product of C 4,2, M 3.2
stabilization of C 8, M 3.2
superimposition of C4.1
graph of exhaustive search Q 2.3, Q 3.3
group algebra = group ring G 1
group ring G1
heuristic Q 2.10
homomorphism E 5.1, J3
idempotents E1l
imbedding c 2.2
canonical C 2.4
imprimitive H 1.1
cell H 1.1
group H
imprimitivity H 1.1
set of H1.1
system of H 1.1
invariant
algebraic AE
algorithms 0 2.1
numerical E 6

polynomials AE



235

isomorphism

weak

kernel
decomposes
splits
stability with respect to

stabilization with respect to

level of exhaustive search

Manning's theorem
matrix of a cellular algebra

matrix
composition of
disjoint from
equal composition with

maximal form of matrix (graph)

monotonic form of matrix (graph)

normal subcell
degree of
generic point of
matrix of

standard basis of

partially ordered set
primitive

cell

group

product

quotient

E 5.1, E 5.2
E 5.1

4.1
4.1
3.4

Z 2 =2 =2 =

Con. 2
Con. 2
Con. 2

=== i = < = < i = o}
—
—



236

rank of
cellular algebra E 3
stationary graph E 3
reduction of exhaustive search Q 2.7, Q 2.8, Q 3.5
regular action of a group AA, AB
representation, natural of cellular algebra L
Seidel equivalence Vb6
semi-invariant algorithm R 2.2
set of imprimitivity H 1.1
set of D-equivalence T1
similar
rows I1.1
blocks H4, I 1.2
simple graph Con. 2
simplex Con. 3, ¢ 3.5, E 3
simultaneous stabilization N 4.3
split graph, matrix, cellular algebra Con., 3, C 3.6, E 3
splitting algorithm R 4.1, R5
stable with respect to kernel N 4.1
stabilization c 8, M 3.2
of depth 1 04,1, 04,4, 04,9, C 4,11
of depth > 1 06
with respect to kernel N 3.4
simultaneous M 4.3
standard basis of
cellular algebra D 1.1
normal subcell HI.1
underlying space D 1.1
stationary graph C 4.4, M 3.2
of depth 1 0 4.13
of depth > 1 06
Steiner triples Vi1
strongly regular graph L 20, T, U, V

structure constants D4, E 4



subcell

normal
superimposition

surgery

tensor product

theorem of
Frame
Kuhn
Manning
Wielandt

tree of exhaustive search

variant rejection

weak equivalency
weak isomorphism
Wielandt's theorem

wreath product

237

fa -2 - -V v

2.3, Q 3.3

2.7, Q 2.8, Q 3.5



