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Hence
[ esc(why/Ky) if k,is even
Rj(k)_dh_{csc(vrh,/k,)cos(vr/2k,) if hyisodd

which proves Property 6.
It follows from this property that

|S(n)| <k/@Qj+2) forj<(k—2)/2
In fact by (4)
|Si(n)| <Rj(k) <csc(wh/k)<k/2h=k/(2j+2),

which is an improvement on (3) when j >0.
In a second paper [2] we consider the sums
S(my= 3, geo

n=0

where
o0
e(n)= Y dd,,,
i=0

plays the role of b(n). These sums were considered by Brillhart and Morton [1] for £ =2. For
k> 2 they lead to infinite graphs [2] which are much more complex than those of this paper.
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DISCOVERING THEOREMS WITH A COMPUTER:
THE CASE OF y’ =sin(xy)

WENDELL MILLS, BORIS WEISFEILER, AND ALLAN M. KRALL

1. Introduction. The problem y’=sin(xy), y(0)= A, arose during an attempt to find suitable
numerical examples to present to a class in differential equations and proved to be quite
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fascinating. The equation was analyzed numerically using a computer. At first the behavior of
the solutions was quite baffling. They oscillated for a while (the longer the greater A) then
approached zero with x tending to infinity. The conjectures describing the behavior of solutions
were formulated only after the solutions for various values of 4 were calculated in detail.

Using geometric ideas we were then able to give a qualitative explanation of the numerical
results. The additional feature which appeared during the analysis is the existence of separatrices
which in the first quadrant tend to the hyperbolas xy =2n7 from below as x—oo0. All other
solutions tend to the hyperbolas xy =(2n+ 1)7 from above.

The methods of our analysis can easily be generalized to equations of the form y’=f( g(x,y)),
where f is a function which has an infinite number of zeros without accumulation point and
satisfies certain growth conditions. The function g(x,y) is such that the curves g(x,y)=c are
concave and approach the x-axis asymptotically. There are, of course, additional conditions,
connecting f and g. We chose to deal with our original y’=sin(xy) in order to leave our method
as transparent as possible.

2. Properties of y’ =sin(xy), y(0)=A. We note that the differential equation is such that the
set of solution curves is symmetric with respect to the x-axis, the y-axis, and the origin.
Consequently it is sufficient to consider the first quadrant. Further, Picard’s theorem holds, so a
unique solution passes through each point in the plane. Since y =0 is a solution (with y(0)=0),
no solution satisfying y(0)=A4 > 0 ever crosses the x-axis.

We refer the reader to Figure 1, which was determined numerically. We shall now attempt to
verify analytically that what the figure suggests is, in fact, always true.
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LemMMA 1. Let y(x) be a solution of y’ =sin(xy). Then
(a) If y(x) intersects xy = nm, it does so with slope 0.
(b) If y(x) intersects xy =(n+ ), it does so with slope (—1)".
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(© suply'(x)|=1.
(d) If y(x) intersects xy =2nm, then it also intersects xy =(2n+ ).

Proof. Only (d) is not completely clear. To prove (d), denote by (a,b) the intersection point
of y(x) and xy =2nw. Let L,, L, be straight lines through (a,b) with slopes 1 and 0, respectively.
Both L, and L, intersect xy =(2n+ 1) and because 0 < y’(x) <1 for (x,y) between the curves
xy =2nw and xy =(2n+ )7, we have that y(x) is below L, and above L,. Thus it must intersect
xy=Qn+ .

THEOREM 2. Let y(x) be a solution of y'=sin(xy). Then y(x) intersects the hyperbola xy = a
(a) at most once if 2nr <a<n+ )=,
(b) at most twice if 2n— )7 <a<2nmw.

Proof. (a) Suppose (x;,y;), (x5y,) are two intersection points. Then f(x)=y(x)—(a/x)
satisfies f(x;)=f(x,)=0. Furthermore, 2n7 <a <(2n+ 1)x gives y’(x,)=sinx, y,=sin a >0 and
Y'(xy)=sinx, y,=sina > 0. Thus f'(x;)>0, f'(x,)>0, and by the intermediate value theorem
there exists x;,x; <x3<x,, such that f(x;)=0. Inductively, there exists a bounded sequence
{x;}{° such that f(x;)=0. Hence, there exists an accumulation point, ¢, of {x;}{°, x; <c <x,.
Since f(x) is analytic about ¢, f(x)=0 in a neighborhood of ¢, a contradiction.

(b) Let 2n—1)7 <a <2nw and let x=c be the (unique) positive solution of sina= —a/x2
Let f(x)=y(x)—(a/x). Then any intersection point, x;, 0<x, <c, satisfies f'(x,)>0, and any
intersection point, xz,c <xz < o0, satisfies f’(xz) <0. An argument identical to that in (a) shows
there is at most one intersection point in each interval [0,c] and [c,0].

COROLLARY 3. If a hyperbola, xy = a, is tangent to a solution, y(x), then the point of tangency is
unique and is the only intersection point of y(x) and xy = a.

Proof. The tangency point occurs at the point, ¢, in the proof of Theorem 2 (b).

THEOREM 4. For all initial values y(0)=A the solution y(x) to y’ =sin(xy) intersects the line
y=x.

Proof. Let L be the broken line obtained as follows (Fig. 2):

1. From (0,A4) it has slope 1 until it intersects xy = .

2. Between xy =(2n—1)7 and xy =2nx it has slope 0.

3. Between xy =2nw and xy =(2n+ 1)7 it has slope 1.

4. L is continuous.

Let (a,,b,) be the point of intersection of L with xy =nx. Then for » odd,

a(n+1) n+1
1= b =an( n )

All that is necessary is to show L intersects y = x, since the solution satisfying y(0)= A lies below
L. This follows, since for the horizontal components of L

2 (an+l_an)= 2 an(l/n)>al 2 (l/n)=°°
nodd d n

nod odd

So while the diagonal components parallel y = x, the horizontal components push it relatively
ever farther to the right and ultimately beyond.

Until the solution intersects y = x, it crosses the regions between the hyperbolas xy = nm. The
slopes of y within these regions are alternately positive and negative giving

THEOREM 5. Until a solution y(x) crosses y = x, it is alternately increasing and decreasing. The
solution oscillates.
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THEOREM 6. Let a solution y(x) intersect y=x at x=xo. Let xqy(xo)<(2n+32)w. Then the
solution y(x) does not intersect xy =(2n+ 3)m.

Proof. First note that once the solution lies below y = x, it remains below by Lemma 1(c).
Assume the conclusion is false. Let (a,b) be the first point of intersection with xy =Q2n+ )7
below y = x. Such a first point exists by Theorem 2. The slope y’(x) at a is — 1, while the slope of
the hyperbola is greater than — 1. This implies that to the left of a the solution is above the
hyperbola. This further implies that either the solution and the hyperbola intersect to the left of
a and below y = x or xoy(xo)>(2n+ 2)7. Both are impossible.

Likewise, if the solution intersects xy =(2n+ 2)7 above y =x, then in order to pass through
(%0.¥(xo)) it would have to intersect xy =(2n+ 2)7 again above y = x. Again slope considerations
make this impossible.

COROLLARY 7. For each solution y(x), there exists a maximum n such that the solution
intersects xy=(2n+1)w. The solution lies between xy=Q2n+1)w and xy=Q2n+2)w for all
sufficiently large x.

Proof. In the open region bounded by the x-axis, the y-axis, and xy =, 0<y’ < 1. So y(x) is
increasing and is bounded above by y = 4 + x, below by y = 4. Since both intersect xy = 7, y(x)
does so as well.

The existence of such an n is now guaranteed by Theorem 6.

Once y(x) intersects xy =(2n+ 1), it cannot do so again according to Theorem 2. By Lemma
1(d) it cannot intersect xy =(2n+2)7. Therefore it remains between xy =(2n+1)7 and xy=
Q2n+2).

3. The Asymptotic Nature of Solutions. In order to adequately describe the asymptotic
nature of the solutions as x—o00, let us consider the following regions (see Fig. 3): Let
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Ry={(5): (2n—P)m <o <20m),
R,= {(x,y) 2nm <xp < (2n+%)w},
Ry={(x.y):(2n+3)7 <xy <(2n+ D7},
Ry={(x,y):@n+)m <xy <(2n+3)7},
R'y={(x):(2n+3)7 <xy <@n+2)7}.
Let

I,=R,N {line y =x},

L=R,N {liney =x},

I;=R;N {line y=x},

I,=R,N{liney=x},

Ii=R{N {line y =x}.

We shall examine in succession the solutions y(x) which pass through 1,,1,,15,1,,I{.

I,: The solution passing through the point (\/(Zn—%)w , \/(2n—%)7r ), the left end of I,
must drop below xy =(2n— 3)m, since its slope at that point is —1. By Corollary 3 any other
passage through xy =(2n — })7 is impossible. Likewise, solutions intersecting I, near the left end
of I, must intersect xy =(2n— 3)7 below y = x, leaving R, to remain in the region below, by
Theorem 2. We shall show that these solutions become asymptotic to xy =(2n—1)7 when we

consider the regions /] and R;.
Similarly the solution passing through the point (V2n7 , V2n7 ), the right end of I,, must
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pass into R, and never return to R,. Likewise, solutions intersecting I, near the right end of I,
must intersect xy =2nw below y = x, leaving R,, and remaining above.
Thus there exist three sets contained in 7,

A={(x,x): the solution passing through (x,x) intersects xy =(2n— 3)7
below y = x and remains below xy =(2n — )7},

B={(x,x): the solution passing through (x,x) does not intersect xy =
(2n — )7 or xy=2n7 below y =x},
C={(x,x): the solution passing through (x,x) intersects xy =2nw below

y=x and remains above xy =2nw},

A moment’s reflection establishes that 4 and C are nonempty intervals

(Ven—m \@n—1)7 Yed, (Vanr , VImmyec

with B in between. The boundary points between A and B, B and C are neither in 4 nor in C,
since if the boundary p between A and B were in 4, then points above p would be in 4. If the
boundary p between B and C were in C, then points below p would be in C. B is nonempty
since there cannot be a last point of 4 or a first point of C.

THEOREM 8. (a) Solutions passing through A in I, intersect xy =(2n— 3)m and remain below,
becoming asymptotic to xy =(2n—1)m.

(b) The set B consists of exactly one point p,. The solution passing through p, remains in I,. This
solution y(x) becomes asymptotic to xy =2nm, and xy(x)—2nw.

(c) Solutions passing through C in I, intersect xy=2nm,xy=Q2n+ 3)7 and xy=2n+ ),
passing through R,, through R, into R,, where they become asymptotic to xy =(2n+1)m.

Proof. (a) We shall establish the asymptotic nature of the solutions when R, is examined in
detail.

(b) Let y(x) be a solution passing through B.

If xy(x) does not approach 2aw, then by Theorem 2 it must ultimately be bounded away from
2n7. In that case there is an ¢ >0 such that sin(xy) < —e<0. This implies that y’ < —e, and
forces y(x) to intersect xy =(2n— 1), which is contrary to assumption.

It is apparent that B is closed. Let y(x) represent the solution passing through the left end of
B, and let Y(x) be any other solution passing through B. Then Y(x)>y(x), and xY(x) and xy(x)
both approach 2a#w. Thus

Y'—y'=sin(xY)—sin(xy)= fxycostdt.
Xy

Since xY and xy are eventually close to 2aw, there is a 8 >0 such that cost>1—48 >0, for
xy <t<xY, x sufficiently large. Hence,

Y —y'> f"y(l —8)dr,
xy

=x(1-8)(Y—).
This implies for some C >0,
Y—y>Cexp[(1-8)x?/2]

and Y—o0 as x—o0. This is impossible, so B contains only one point.
(c) We shall establish the asymptotic nature of the solutions when R, is examined in detail.
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I,: Solutions passing through I, have positive slope at that point. According to Corollary 7,
they must intersect xy =(2n+ 1)« and enter R,. By Theorems 2 and 6 they must remain in R,.

THEOREM 9. Solutions passing through I, intersect xy=(2n+ 3)m and xy =2n+ 1)m, passing
through R, into R,, where they remain in R, and become asymptotic to xy =(2n+ 1)a.

Proof. The asymptotic nature of the solutions will be established when R, is examined in
detail.

I;: Solutions passing through /3 also have positive slope and must intersect xy =(2n+ 1) and
enter R, by Corollary 7. They must remain in R, by Theorems 2 and 6.

THEOREM 10. Solutions passing through I, intersect xy = (2n+ 1)« passing into and remaining in
R,, where they become asymptotic to xy =(2n+ ).

I,: According to Theorem 2 solutions passing through /, must remain above xy =(2n+ 1)7.
According to Theorem 6 they must remain below xy =(2n+ 3)7. Thus they remain in R,.

THEOREM 11. Solutions passing through I, remain in R, and become asymptotic to xy=
Q2n+1)7.

I{: Solutions passing through I; divide themselves into three classes, just as those passing
through I,. Those which are of interest to us intersect xy =(2n+ 3)7 below y = x and remain in
R4-

THEOREM 12. Solutions passing through I{ within the interval A of that region intersect
xy=Q2n+ 3)m, remain in R, and become asymptotic to xy=2n+ ).

The behavior in R,;: We have established that only the solution passing through p,, which
becomes asymptotic to xy =2nm, fails to enter R, (or its counterpart, associated with the integer
n—1).

THEOREM 13. All solutions passing through a point in R, below y = x remain in R, and become
asymptotic to xy =(2n+ ). For such solutions xy(x)—Q2n+ 1) as x—o0.

Proof. If, for a solution y(x), xy(x) did not approach (2n+ 1)7, then by Theorem 2 there
exists an €>0 such that sin xy < —e<0. This immediately forces an intersection of such a
solution with xy =(2n+ 1), which is impossible.

MAIN THEOREM. Let y(x) be a solution of y'=sin(xy), y(0)= A, A >0, in the first quadrant.

(a) y(x) intersects the line x =y at some point (a,a). It oscillates until it intersects this line.

(b) If (a,a)=p, of Theorem 8, then y(x) approaches the hyperbola xy =2nw asymptotically from
below and x-y(x)—2nw as x—00.

(¢) If (a,a) lies between p,_, and p,, then y(x) approaches the hyperbola xy =(2n—1)7 from
above, and xy(x)—(2n—1)m as x—o0. Moreover y(x) intersects the hyperbola xy=(2n—jm

exactly once if (a,a)=(\/(2n—§)w ,\/(Zn—%)w) and exactly twice if (a,a) is between

(\/(Zn—é)ﬂ ,\/(2n—§)7r ) and p,,.
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