DIFFERENTIAL FORMAL GROUPS OF J. F. RITT

By W. NicaoLs and B. WEISFEILER

This paper is an attempt to understand the last four papers of Joseph
Fels Ritt.

0.1. Ritt’s work on differential formal groups was inspired by a
paper of Solomon Bochner (Ann. Math. 47(1946)), in which the latter in-
troduced what are now called formal Lie groups. Ritt published four
papers on the subject in short succession—the first was submitted in
February of 1949, the last in August of 1950—and also reported on this
research at the International Congress of Mathematicians, 1950, in Cam-
bridge, Mass., see Proc. ICM 1950, vol. I, 207-208. Ritt died on January S,
1951.

From the speed with which the papers were published, and from the
variety of questions raised and settled in them, one can judge that Ritt was
very enthusiastic about the subject.

0.1.1. In the first paper, Ritt introduces his groups and classifies
the “one-dimensional” ones. There are two such groups, each of which
can be considered to be defined on the set F of “functions” of one vari-
able. The first group has as its operation the addition of functions, and
can be construed as a “spread out” additive group G,, or rather G, g
taken as a group over the ground field. The second group has substitution
of functions as its operation. It is called ‘“‘substitutional” by Ritt, and we
will denote it by G,. This group can be considered to be the formal group
associated with the group of diffeomorphisms of the line.

0.1.2. In the second paper, Ritt proves that his notion of group is
equivalent to that of a type of Lie algebra. This approach presents a diffi-
culty: the Lie algebra must be given a linearly compact topology. Ritt cir-
cumvents this problem by showing that his groups are described by struc-
ture constants—that is, by Lie coalgebras, cf. [Nich 2].

0.1.3. In the third paper, Ritt classifies the “two-dimensional” dif-
ferential formal groups. It follows from his explicit formulas that all two-
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dimensional groups are extensions of one-dimensional ones. The most in-
teresting of the two-dimensional groups have a one-dimensional commu-
tative normal subgroup (which must be G,), with G, being the quotient.
The modern approach to the problem of classifying such groups would be

(i) to study one-dimensional differential G,-modules, and
(ii) to study all possible extensions by G, of each one-dimensional
G,-module.

It follows from Ritt’s results that each one-dimensional G;-module is
described by an element /4 from the field k of constants of the differential
field. His formulas show (as was pointed out to us by D. Kazhdan) that
the action of G, on the one-dimensional module M}, indexed by £ € k is the
same as the action of the diffeomorphisms of the line on the set of differ-
entials of weight 2. The module M, can be considered to be a highest
weight module, with highest weight A.

Ritt’s computations imply as well that non-trivial extensions of G, by
M, exist only when & = 0, 1, 2, 5. It is strange that only these highest
weights occur: one would expect that non-trivial extensions exist for # € Z*
—i.e., for dominant integral highest weights.

Finally, Ritt computes the group Ext(G,, M ). The calculation yields
that this group is two-dimensional if # = 0, and 1-dimensional if » = 1,
2, or S.

0.1.4. The fourth paper studies the questions of subgroups and nor-
mal subgroups, and their relative positions. Here Ritt makes his groups
into “formal varieties” (following a suggestion of E. Kolchin, as footnoted
at the beginning of the second paper), and studies the relations of this no-
tion to the definition of a formal group via Hopf algebras.

0.1.5. As a final historical note, let us note that in 1956 J.
Dieudonné began the study of formal groups with a particular emphasis
on characteristic p.

0.1.6. In the present paper we study Lie algebras of formal groups.
In the special case considered by Ritt, the Lie algebras correspond biuni-
voquely to formal groups (see sections 3.4, 3.5 below). Our results classify
those Lie algebras of formal groups which are “simple” (see Theorems
4.6, 5.2, and 6.3.3 below). Some initial structural results in the ‘‘general”
case are obtained (see Proposition 4.4.5 and Theorem 4.7.1). Thus we
generalize the second paper of Ritt and a small part of his third paper.
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0.2. Our work began with the observation that the Lie algebra of
the group G; is the Witt algebra W . This indicates, as do our remarks at
the end of 0.1.1, the connection between Ritt’s groups and the Lie alge-
bras of Cartan type (or pseudo-groups of transformations). The theory of
these was initiated by Sophus Lie himself, further developed by E. Cartan,
and then brought into its modern form by V. Guillemin, V. Kac, D.
Quillen, I. Singer, and S. Sternberg (cf. [Gui 1, Gui 2, Gui 3, Gui 4, Gui
S, Kac, Sing]). However this theory, at least to our taste, did not feel com-
plete. It handled simple objects readily (cf. [Gui 2]), but was rather awk-
ward when dealing with the non-simple objects (cf. [Gui 1]). We felt that
the additional “differential” structure would make the object more tract-
able, and believe that this has turned out to be the case. However, our proof
of the classification theorem follows quite closely that of V. Guillemin
[Gui 1, Gui 2].

0.3. Our exposition is quite general, at least in the beginning. The
reader wishing to know the motivation behind the different notions pre-
sented should consult Appendix II. The basic object is the algebra K [P] of
differential operators, where K is a field and P is a Lie ring acting as deri-
vations of K. It turns out that K[P] has a twisted Hopf algebra structure—
it is a Hopf K/k-algebra, where k is a subfield of K on which P acts trivi-
ally. Our initial constructions involve only this Hopf structure. Given a
K/k-Hopf algebra B and B-modules M, N, one can define natural B-mod-
ule structures on M ®x N and Homg(M, N). Then one can define a
B-algebra to be a K-algebra A which is a B-module in such a way that the
multiplication A ®x A — A is a B-module map. The notions of B-co-
algebra and B-bialgebra are defined similarly. Thus one can define a for-
mal B-group of Ritt to be a complete topological B-bialgebra 4 which
both has a unique maximal ideal and is finitely generated as a topological
B-algebra. Under some additional finiteness conditions on B and A, the
Lie algebra of the formal group is linearly compact. This allows the ap-
plication of the methods and results of V. Guillemin [Gui 1] and R. Blatt-
ner [Bla 2]. We use these techniques to classify those K-algebras which
admit a simple linearly compact K[P]-algebra structure. We then study
the set of non-isomorphic K[P]-structures on each such K-algebra, as
follows. We fix one easily-constructed structure as a reference point. Each
additional structure is described by a kind of 1-cocycle—in our case, a flat
connection with values in the Lie algebra. As is explained in Appendix II,
when the algebra is finite-dimensional the connection represents the fixing
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of a direct product structure on a principal bundle whose fiber is the ad-
joint group of our Lie algebra.

0.4. We now give a more detailed account of the contents of each
section.

Section 1 introduces the basic objects: Hopf K /k-algebra B, B-algebra,
B-coalgebra, B-bialgebra. We describe different constructions involving
B-modules, and in 1.3.2 state an important result relating produced and
induced modules. In 1.4 we determine criteria for a K-algebra structure
on a B-module to give a B-algebra. We develop in 1.5, 1.6 a language for
describing B-module (B-algebra) structures on a K-module (K-algebra).
Section 1.7 contains a “‘comparison” statement for two B-structures on a
K-module. In 1.8 we introduce split B-structures—which are important
since they can often be explicitly constructed. We study in 1.9 the action
of the group of K-automorphisms of a B-algebra (B-module) on the set of
B-structures—clearly there is no reason to distinguish between structures
equal up to K-automorphism. Section 1.10 is technical, and develops no-
tions to be used in sections 4 and 6.

In section 2 we specialize from arbitrary Hopf K/k-algebras to the
case of the algebras of differential operators K[P]. These algebras re-
semble universal enveloping algebras, as is reflected, for example, in
2.1.4, 2.1.8. For K[P], the comparison of structures (cf. 1.7, 1.9 above)
takes a particularly nice form: the difference between two K[P]-algebra
structures on a K-algebra M is a flat connection with values in DergM (cf.
2.2.7, 2.2.8). In 2.3 we develop techniques for handling the split structure
which, as mentioned above, will be our reference point. (These techniques
will be used in sections 6 and 7.) As we will need certain finiteness condi-
tions on our K [P]-modules, we restrict our attention to the case in which P
has a linearly compact topology. We introduce a natural class of B-mod-
ules—the B-modules of finite kind. The dual of such a module is said to
be of cofinite kind. The cofinite kind property is easy to check (cf. 2.6).
Modules of finite kind satisfy a Noetherian condition (cf. 2.5.5), and
behave well under induction (cf. 2.5.6). Most of the results of 2.4, 2.5, 2.6
are quite simple if P is finite-dimensional; we consider the infinite case
because such algebras arise naturally, and to include them in our treat-
ment is not unduly taxing.

In section 3 we introduce Ritt’s formal groups, and relate his defi-
nition to ours. We also show that every linearly compact Lie K [P]-algebra
of cofinite kind is the Lie algebra of a formal group of Ritt.
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Section 4 contains the main results of the paper. Here we investigate
the Lie algebras of the formal groups of Ritt, primarily by adapting the
techniques of V. Guillemin [Gui 1] and R. Blattner [Bla 2]. The first con-
ceptual result of this section is Proposition 4.4.5, which says that our Lie
algebras have a well-defined radical. We then proceed to study those Lie
algebras which have trivial radical. The first step is to show that the mini-
mal closed K [P]-ideals of such algebras have no closed ideals of their own,
and are therefore “simple.” Then we study the simple K [P]-algebras. We
show that for each simple K'[P]-algebra G there exists an open Lie K/k-
subalgebra P of P and an algebraically simple linearly compact
K [P]-algebra S such that G is isomorphic to Homg (K [P], S) as a
K [P]-algebra (Theorem 4.6). In Theorem 4.7.1 we then describe the quo-
tient of our Lie algebra by its radical, and also describe its quotient by the
sum of the minimal ideals of the quotient by the radical.

To complete the picture given by the above-mentioned Theorem 4.6,
we must describe the K [P]-structures on a simple Lie algebra S. We ob-
tain such a description in section S for the case in which S is finite-
dimensional. Our result says that every such structure splits after an
appropriate field extension.

When S is of Cartan type, split structures are not of cofinite type. We
still use them as reference points, however, and describe in section 6 the
K [P]-structures on S in terms of flat connections. The main difficulty is to
express and prove the validity of a condition for a K [P]-structure to be of
cofinite kind. Each connection defines an open Lie K/k-subspace of P of
codimension n = I, o dim(Derg.S);. For the case S = W,, we exhibit a
bijection between such subspaces and the set of K [P]-structures on S. For
the cases S,,, H,, we classify the structures corresponding to a particular
such subspace by means of elements of K*/k* and GL(n, k)/Sp (n, K)k*
respectively; the case § = K, is somewhat more complicated (cf. Theorem
6.3.3).

In section 7 we briefly look at the question: Can formal groups of Ritt
be considered to be formalizations (completions of the local ring at iden-
tity) of some algebraic structures? The answer we get is: “Yes, if their Lie
algebras are finite-dimensional” and “No, if their Lie algebras are simple
of Cartan type.”

Finally, in section 8, we list some open problems; in Appendix I,
we present some of the Hopf algebra which are used in this
paper; and in Appendix II we describe some of the related differential
geometry.
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0.5. Some notations and conventions. Most of the Hopf algebra
notation is explained in Appendix I. The notions of K/k-space, K/k-
algebra, K/k-coalgebra etc. are defined in sections 1.1, 1.2. The notation
B is used primarily for a Hopf K/k-algebra, and P for a Lie K/k-algebra.
The Hopf K/k-algebra K[P] of differential operators is defined in section
2.1. The notions of B-module, B-algebra etc. are defined in section 1.4.
Split B-structures are defined in section 1.8. Topological (linearly com-
pact and discrete) objects are first dealt with in section 2.4; cl stands for
closure in the appropriate topology.

It would be handy to be acquainted with [Bla 1, Bla 2, Gui 1, Gui 2,
Nich 3].

0.6. The main results of this paper were announced in [Weis].

0.7. The authors express their deep gratitude to V. Guillemin,
V. Kac, D. Kazdhan, E. Kolchin, B. Kostant, J. O’Sullivan, M.
Takeuchi, S. Sternberg, and I. Tits for many useful conversations and ex-
planations, which had a great influence upon this paper.

1. Generalities. In this section, we will establish the basic proper-
ties of the structures we will be working with in as much generality as seem
worthwhile. We first recall some concepts (see [Nich 3] for more detail).
Some of the notions discussed below were already considered by other
authors. For example, our sections 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.2.1 are
close to material discussed by M. Sweedler on pp. 88, 104, 134, 108, 123
respectively of his paper (Groups of simple algebras, Publ. IHES, no. 44,
1975). Also M. Takeuchi considered in his papers K/k-algebras and K/k-
bialgebras where K may be non-commutative (see, for example, J. algebra
42(1976), p. 327, or J. Math. Soc. Japan 29(1977), p. 460).

1.1. K/k-structures. Let K/k be a field extension.

1.1.1. Definition. A K/k-spaceis a K ®; K-module.

When we refer to “the” K-structure of a K/k-space V we mean the
K-structure obtained from the action of K &, 1. The K-structure ob-
tained from 1 ®; K will be called the “right” K-structure. For v € V,
\ € K we will write A\v for (A ® 1)v, and v\ for (1 ®; N)v. A K/k-space is
a (K, K)-bimodule. A K-module is a K/k-space via the multiplication
K®.K - K.

When V, V' are K/k-spaces, V @ V'’ denotes their tensor product as
K-spaces; thus, forv € V, v’ € V', N € Kwehave \v @ v/ = v ® Av'. We
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write V ®, V' for the “bimodule” tensor product, in which vA ®, v’ =
v ®,Av’. We consider V ®, V' to be aK/k-spacevia (A @ N )y ®,v’) =
A ®, v\

When V is a K/k-space, V¥ = Homg(V, K) is also a K/k space,
with the action given by (N @ N)x|v) = {x|(A @ N )v) = (x| AvA') =
Nx|vN'y forx € V¥, v € V,\, \' € K.

1.1.2. Definition. A K/k-algebra is a K/k-space A which is also a
k-algebra, with (\a)b = N(ab), (aN)b = a(\b), (ab)\ = a(bN)fora,b €A,
NeK.

Note that the multiplication of a K/k-algebra A defines a map
A ®,A — A. A unit for a K/k-algebra A is a unit 1 for the k-algebra A
such that A1 = 1A for N\ € K. Thus a K/k-algebra with unit is equipped
with a map K — A of K/k-algebras.

(Note that a K/k-algebra is not a K @ K-algebra.)

1.1.3. Definition. A K/k-coalgebra is a K/k-space C which is also
a K-coalgebra with counit, with A(c\) = Z;c;A ® ¢ = L;cq; ® e\ for
ceC,\N€K.

We will often write A(c) = E¢; ® ¢, instead of A(c) = Z;cy; @ ¢y

1.1.4. PropositioN. Let C, D be K/k-coalgebras. Then C &, D is
a K/k-coalgebra. If c € C,d € D, A(c) = L;cq; @ ¢9;, Ald) = L;dyj ® dy;
then Ac ®,d) =L, ;(cy; ®,dyj) ® (c2; ®,dy;)and elc ®, d) = e(ce(d)).

Proof. We first show that our coproduct is well-defined. Given d,
d,€D, defineRdl,dZ: CXC-(CR®,D)R®(C®, D)bdel,dz(cl’ cy) =
(1 ®,dy) ® (c; ®, d,) for ¢y, ¢c; € C. Then for N € K, we have
Ry .a,(Nc1,¢2) = (N\e1 ®,d1) ® (2 ®, d3) = (€1 ®, d1) ® (e, ®,dy) =
Ry a,(c1, Ney). Thus Ry 4, passes to C @ C. Now define, for eachc € C,
amap L,:D X D - (C ®, D) ® (C ®, D) by: Ly,(d, dy) =
Ry, a,(A(c)). For N € K, we have Ly()(Ndy, d3) = Ryg, 4,(A(c)) =
Ryg ,a,(Licti ®cp) = Lile; ®, Ndy) ® (c2 ®, dy) = Li(e A ®,d1) ®
(c2i ®,dy) = Ry, 4,(A(cN) = Ry, 4,(Eicy; ® cN) = L; (cy; ®,d1) @
(c2N ®, dy) = L; (cy ®, dy) ® (e ®, Ndy) = Ry ya,(Alc)) =
Ly)(dy, Nd3). Thus L) passes to D @ D. ‘

We may now define A:C X D - (C®,D)® (C®,D)byA(c,d) =
Ly(A(d))forc € C,d € D. Thenfor A € K wehave A(c\, d) = L\ (A(d) =
L (ctih ®, dij) ® (e ®, dy;) = L;j (e ®, Ndyj) ® (e ®, dy) =
L) (A(Nd)) = A(c, Nd). Thus A passes to C &®, D, and our coproduct is
well-defined.
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Next we show that the counit is well-defined. We define e:C X D —
Kbyel(c,d) = e(ce(d)) forc € C,d € D. Then for A € K we have e(c\, d) =
e(cNe(d)) = e(ce(Ad)) = e(c, Nd). Thus e passes to C ®, D, as required.

The properties of A are easy to verify. We show that e is a left counit.
Forc € C, d € D we have (E ® ld)A(C ®r d) = Ei,j G(Cli ®r dlj)cli ®rd2j =
LiLielcrie(dy))ey ®, dyy = L; L; e(cy)eye(dy;) @, dyj (since Alce(dy;)) =
L;cpeldyy) ® e = Licy @ cye(dyy)) = Lj elcr)ey @, eldyj)dy =
¢ ®, d. Similarly, € is a right counit, and we are done.

1.1.5. Definition. A K/k-bialgebra is a K/k-coalgebra B, which is
also a K/k-algebra with unit in such a way that the maps B ®, B — B and
K — B are K/k-coalgebra maps.

Remark. Since K — B is a K/k-coalgebra map, we have A(1) =
1 ® 1ande(1) = 1. Since B ®, B — B is a K/k-coalgebra map, we have
A(ab) = L a1b; ® a,b, and e(ab) = e(ae(b)) for a, b € B. These four
conditions can be used to define the K/k-bialgebra structure. In contrast to
the k-bialgebra case, we cannot require A: B — B ) B to be a K/k-algebra
map, as B @ B is not even a k-algebra.

1.2. Hopf K/k-algebras.

1.2.1. Definition. A Hopf K/k-algebra is a K/k-bialgebra B equipped
with an additive map E: B - B ®, B—the “antiproduct”—satisfying

(E0) E(Nb) = NE(b) = E(b)\for N €K, b €B

(E1) ZEMb)b,=b ®,1,forb€eB

(E2) (id ® E)A = (A ® id)E

(E 3) pE(b) = e(b)1, where b € B and u: B ®, B — B is the multi-
plication map.

Forb € B, we will write E(b) = Ei Elt(b) ®r Ezl(b) Here Eli andE2,~
are not actual functions of b; we simply mean that if E(b) = £, x; ®, y;
for some x;, y; € B, then we will write E;(b) for x;, and E;(b) for y;,. We
will write E(b) = L E;(b) ®, E,(b) when it seems to be possible to do so
without causing additional confusion. Our axioms for E imply [Nich 3]
that for all b € B we have

(E 4) ZE(b)e(E, (D)) = b.

1.2.2. Prorpos1TiON (cf. [Nich 3, Theorem 1, Proposition 6, Proposi-
tion 7]). Let B be a K/k-bialgebra. Suppose that B is pointed as a co-
algebra. Then B has an antiproduct iff the grouplike elements of B form a
group. In this case, the antiproduct is unique, and satisfies
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(E5) E(bc) = EE{(B)E1(c) ®, Eo(c)E,(b) for b, ¢ € B,
(E6) (E® id)A = (id @ F)E:B~> B ®, B ®, B,

where F is the antiproduct of B*°®—the K/k-bialgebra obtained from B
by reversing its coproduct.

1.2.3. Remark. We will always assume that our antiproducts sat-
isfy (E S) and (E 6). In particular, we assume that B is Hopf if B is.

1.3. B-modules M ® N and Hom(M, N). Let B be a K/k-
bialgebra, and let M, N be left B-modules. Then M ® N has a left
B-module structure, given by b(m ® n) = L bym ® b,n for b € B,
m € M, n € N. If Bis a Hopf K/k-algebra, then Homg (M, N) has a left
B-module structure, given by (b¢)(m) = £ E{(b)(¢p(E,(b)m)) forb € B €
Homg (M, N), and m € M.

1.3.1. The modules M @ N and Hom(M, N) have an associativity
property. Before giving it, we recall some notions from [Hig].

Let A C B be rings, and let M be a left A-module. Then B ® 4 M
and Homy (B, M) are left B-modules, via b(b’ ® m) = bb’ ® m and
bo)b') = ¢(b’b) for b, b’ € B, m € M, ¢ € Hom, (B, M). These mod-
ules are called (respectively) the B-modules induced and produced from
the A-module M, and have the following universal property.

ProrosiTION. Let A, B, M be as above. Let N be a left B-module.

(i) For each left A-module map ¢:M — N, there is a unique B-mod-
ule map 0:B ®,4 M — N satisfying 0(1 ® m) = ¢(m), m € M.
(ii) For each left A-module map ¢: N — M, there is a unique B-mod-
ule map 6: N — Homy (B, M) satisfying 0(n)(1) = ¢(n), n € N.

1.3.2. PropositioN (cf. [Nich 3, Theorem 2]). Suppose that
A C B are Hopf K/k-algebras. Let V be a left A-module, and let W be a
left B-module. Then Homg(B ® 4 V, W) = Hom, (B, Homg(V, W)) as
B-modules.

1.3.3. Suppose that W is linearly compact, and each b € B acts con-
tinuously on W. Then Homg (B ® 4 V, W) and Homg(V, W) are linearly
compact, dual to the discrete spaces (B ® 4 V) ® W*and V & W#* re-
spectively. It is easy to verify that when Hom, (B, Homg (V, W)) is given
the finite-open topology, the isomorphism of Proposition 1.3.2 is a homeo-
morphism.

1.4, B-algebras. We now move on to new concepts.
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1.4.1. Definition. Let B be a K/k-bialgebra. A B-algebra (respec-
tively, B-coalgebra, B-bialgebra, B-Hopf algebra) is a B-module M which
is also a K-algebra (respectively, K-coalgebra, K-bialgebra, K-Hopf alge-
bra) in such a way that all of its structures maps are B-module homo-
morphisms.

Note that any B-module can be considered to be a B-algebra with
trivial multiplication.

1.4.2. Warning. B is not a B-algebra. Indeed, the multiplication
map B X B — B is only k-bilinear, and so does not in general pass to
B ® B — B; and even when it does, the map B ® B — B is not generally
a B-module map.

1.4.3. Let B be a Hopf K/k-algebra, and let M be a B-module.
Recall from 1.3 that Endg M = Homg (M, M) is a B-module, via (bQ)(m) =
LE{(bXQ(E,(b)m)forb € B, Q € EndxM, and m € M.

ProposiTiON. EndgM is a B-algebra.

Proof. Forb € B, we will define b* € Endx M by b ™ (m) = bm for all
m € M. Thenforb € B, Q € EndgM, we have bQ = L, E1;(b) “ QF,;(b) ™.
Now let b € B, Q;, Q, € EndxM. We have

? (b1;Q1)(b7,Q5) = i,jz‘,:k Ej(b1))  Q1Eu(b15)  E1x (b))  QoE 5 (b))
= i’jE’kEli(Elj(b)lk)XQ1E2i(E1j(b)1k)XElj(b)2kX
- Q,E,;(b)* (by (E))
= ?Elj(b) *Q10,E;(b) (by (E 1))
= b(Q;0,), as required.
1.4.4. Let M be a K-algebra. For each x € M, define L, € Endx M

by L,(y) = xy for ally € M.

ProposITION. Let M be a K-algebra which is also a B-module.
Then M is a B-algebra iff bL, = Ly, forallb € B, x € M.

Proof. Note that our condition is that
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(bx)y = LE;(b)(x(Ey(b)y)) forall beB,x,y€eM.
First assume that M is a B-algebra. We have

?Eli(b)(x(EZi(b)y)) = iEj(Eli(b)ljx)(Eli(b)Zj(EZi(b)y))

(since M is a B-algebra)

= ? (b1;x)e(by; )y) (by (E3)

= (bx)y (since ¢ is a counit), as required.
Conversely, assume that
(bx)y = )E)Eli(b)(x(EZi(b)y)) for beB,x,y€eM.
Then

?(bux)(bziy) = gEu(bu )(x(EZj(bli)bli)bZiy)) = b(xy) (by (E1)).

Thus, M is a B-algebra.

1.4.5. CoroLLARY. A Lie K-algebra M which is also a B-module is
a B-algebra iff b(ad x) = ad(bx) for all b € B, x € M.

1.4.6. Remark. Suppose that a B-algebra M has a unit 1. Then for
b € B, we have b1 = (b1)1 = L; E;(b)(E,(b)1) (by 1.4.4) = €e(b)1
(by (E 3)).

1.4.7. ProposITION. Let M be a B-algebra. For g € AutyM, p € B
primitive, we have g~ '(pg) € DergxM.

(Here pg € Endg M is defined by the B-module structure on Endg M,
and g~ \(pg) is the product of g~ and pg in End; M. The map (dg)(p) =
g U(pg) is called the logarithmic derivative of g (in the direction p).)

Proof. Fora, b € M, we have (pg)ab) = p(g(ab)) — g(p(ab)) =
p(g(@)g®) — g(p(a)b + a(p®)) = (p(g(a))g(b) + gla)p(g(d)) —
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g(p(a)g®) — g(a)g(p (b)) — (pg)a)g(d) + g(a)pg)b). Thus g ~'(pg)
€ DergM, as required.

1.5. Universal K/k-algebras and K/k-coalgebras.

1.5.1. ProposiTioN (cf. [Nich 1]). Let V be a K/k-space. Then
there exists an associative K /k-algebra Tg/(V)and amap i: V = Tg (V)
of K/k-spaces such that: if A is an associative K/k-algebra with 1 and
f:V = Ais amap of K/k-spaces, then there exists a unique K/k-algebra
homomorphism F: Ty, (V) > Awith F o i = f.

Remark. Ty, (V) is analogous to the usual tensor algebra, but is
formed using ®,.

We now sketch the more complicated construction of the universal
K /k-coalgebra on a K/k-space.

1.5.2. ProposiTION. Let C be a K/k-coalgebra. Then C* =
Homg(C, K)is a K &), K-algebra with unit.

Proof. Let A\ €K,a,b € C¥ c € C. Then {(A ®; N)ab|c) =
(ab|NeNy = (a ® Bb|A(AcN)) = {a ® b|Z; NeyyN ® cy) =
(AN ® b|L; c;; ® cyy = {(NaN)b|cy. Thus, N ®; N)ab =
(N ® N)a)b. Similarly, N ®; Nab = a((A @y N)b).

1.5.3. In the next few subsections, we will use the symbol A° to
denote the “dual coalgebra” of an algebra 4, as in [Swe, Ch. 6]. The sym-
bol will have a different meaning later in the paper.

ProrosITION. Let A be a K ® K-algebra with unit. Then A° is a
K/k-coalgebra.

Proof. Since A is a K-algebra with unit, A° is a K-coalgebra with
counit. Recall [Swe, Proposition 6.0.3] that f € A* lies in A° iff there ex-
ists f1;, f2i € A* so that f(ab) = L; fy;(a) f2(b) for all a, b € A; in this
case, A(f) = L; f1i ® fo. f f € A° and \ € K then for a, b € A we have
(fN(@b) = f((@ab)N) = f((aNb) = L; f1:(aN) f2:(b) = L; (f1:M(a) f2(b).
ThusfA€A®, and A(fN) = L;f ;A ® f;. Similarly, A(f\) = Z; f1; ® fal.

1.5.4. PropositioN (cf. [Swe, Theorem 6.0.5]). The functor ( )°:

K ® K-algebras — K/k-coalgebras is an adjoint to the functor ( )*:K/k-
coalgebras —> K @ K-algebras.

1.5.5. ProposITION. Let V be a K Q) K-module. There exists an
associative K @y K-algebra Txg x(V) and a map i:V = Txg, k(V) of
K @y K-modules such that if A is an associative K ® K-algebra with 1
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and f:V = Ais a map of K @ K-modules, then there exists a unique
K ®y K-algebra map F:Tgg, (V) = A sothat F i = f.

Proof. This is standard.
Exactly as in [Swe, section 6.4] we now deduce the following.

1.5.6. ProposITION. Let V be a K/k-space. Then there exists a
K/k-coalgebra C and a map w:C — V of K/k-spaces so that for every
K/k-coalgebra D and every map f:D — V of K/k-spaces, there exists a
unique K/k-coalgebra map F:D — C with w - F = f.

The pair (C, w) is called a cofree K/k-coalgebra on V.

1.6. The universal K/k-bialgebra of a K-algebra. Recall [Swe, 7.0]
that a measuring of a K-coalgebra C on a K-algebra A4 is a K-linear map
¥:C — EndgA such that y(c)(ab) = I y(ci)@)y(cy)(b), ¥(c)(1) = e(c)1
forc € C,a, b € A.

1.6.1. Definition. Let C be a K/k-coalgebra, and A a K-algebra.
A K/k-measuring of C on A is a map y: C — End;A of K/k-spaces, such
that Y(c)(ab) = E; Y(cq; )N a)¥(cy Xb) forallc € C,a, b € B. When A hasa
unit, we require in addition that ¥(c)(1) = e(c)1 for all ¢ € C.

Note that for A € K, ¢ € C, a € A, we have Y (Ac)a) = (A\Y(c))(a) =
Ay (c)a)), and Y (cA)(a) = (Y(c)M(a) = ¥(c)(Na). In particular, when A
has a unit 1 we have Y (c)(\) = ¥(c)(A1) = Y(cN)1 = e(cN)1 for \ € K.

1.6.2. Remark. Let C be a K/k-coalgebra. Define ¢: C — End, K
by: Y¥(c)(a) = e(ca) forc € C,a € K. Thenfora, b € K we have Zy/(c;)(a) -
Y(cy)(b) = Eelcja)e(c,b) = e(Ze(cia)c,b) = e(cab), since A(cab) =
Ycia @ cyb. Thus C measures K.

1.6.3. ProposiTION. (cf. [Swe, Theorem 7.0.4]). Let A be a K-alge-
bra. There is a K/k-coalgebra A and a K/k-measuring 0:A — End,A
with the following universal property: if y: C — End, A is a K/k-measuring
on A, then there exists a unique K/k-coalgebra map F:C — A with y =
0 o F.

Proof. Let (E, ) be a cofree K/k-coalgebra on End;A. Let A be the
sum of all subcoalgebras of £ on which = is a K/k-measuring of A, and let 6
be the restriction of 7 to A. Then, as in [Swe, Theorem 7.0.4], (4, 6) has the
required property.

1.6.4. ProposITION. A has a unique K/k-algebra structure for
which A is a K/k-algebra and 0:A — End,Aisa K /k-algebra map.
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Proof. Define y:4 ®, A — EndA by Y(x ®, y)a) = 0(x)(0(y)(a))
forx, y € A, a € A. Y is a K/k-measuring of A on A, and thus gives rise to a
K /k-coalgebra map A ®, A = A. The K-module action of K on A4 is a
K /k-measuring and thus defines a K/k-coalgebra map K — A. 1t is easy to
use the universal property of A to show that these K/k-coalgebra maps have
the correct properties.

We will call A the universal K/k-bialgebra of the K-algebra A.

1.6.5. ProposITION. Let C be a K/k-coalgebra, A a K-algebra, and
¥:C — End,A a measure. For g € AutxA, define g~ 'yg:C — End;A
by: (g™ Weg)c)a) = g 1(Y(c)g(@) forc € C, a € A. Then g~ 'ygisa
measure.

Proof. 1t follows from the fact that g is k-linear that g Wgisa
map of K/k-spaces. For a, b € A, c € C we have(g ~'yg)(c)ab) =
gl (Y(eXewb) = g (W) g@g®) = g (T ¥lc)g@)¥(cr)(g®d))
= Lo (Wle)g@)g " (Wie)g®) = Z(g ™ vg)le1Na)g ™ ¥g)cr)(B).

Thus g ~!yg is a measure.

1.6.6. Let B be a K/k-bialgebra.

PropPOSITION. Let M be a K-algebra. Then a B-algebra structure
on M is a homomorphism F:B — M of K/k-bialgebras.

Proof. Suppose that M is a B-algebra. Define f:B — End M by:
f (b)) = bm. Then f measures M. Therefore there is a unique K/k-
coalgebra map F:B = M with 6 o F = f.

For a, b € B, we have 8 (F(a)F(b)) = 0(F(a))0(F(b)) = f(a)f(b) =
f(ab) = 6(F(ab)). The universal property of M (applied using B ®, B)
then gives that F is a K/k-algebra map. Thus F is a K/k-bialgebra map.
The converse is clear.

1.6.7. COROLLARY. Let M be a K-algebra. Then a B-algebra struc-
ture on M is a homomorphism f:B — EndM of K/k-algebras which
measures M.

Proof. We take f = 0 o F in the above.

1.6.8 ProrosiTiON. Let B be a K/k-bialgebra, M a K-algebra,
and y: B — End; M a B-algebra structure on M. Then for each g € Autg M,
g g is a B-algebra structure on M.

Proof. By 1.6.5 and 1.6.7 it suffices to check that g Wg:B —
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End; M satisfies (g'I\//g)(ab) = (g_ltpg)(a)(g—lx//g)(b) for all a, b € B,
and this is immediate.

1.7. Note that a B-module structure on a K-space M is given by a
homomorphism ¢:B — End;M of K/k-algebras. When B is a Hopf
K/k-algebra, we can compare two B-module structures as follows.

ProposITION. Let B be a Hopf K /k-algebra. If ¢, ¢,: B = End; M
are B-module structures, then ¥; ¢{(E;(b))p,(E,; (b)) € EndgM, b € B.

Proof. Let N € K, b € B. By (E 0), we have E\E(b) ®, E,(b) =
E(\b) = LE (b)) ®, E5(b)\. Thus for m € M we have I ¢(E;(b))
(92(EL(B))(Am)) = L ¢1(E1(5)d2(EL(B)N(m)) = L d1(NE1(b))N2(E4(b))
(m) = NI ¢1(E1(D))(¢2(EL(b))(m)).

1.8. Split B-structures. We first show how to construct a B-algebra
from a k-algebra.

1.8.1. ProrosITION. Let M be a B-algebra, and let N be a k-algebra.
Then M ® N is a B-algebra, via b(m ®; n) = bm @y n for b € B,
meM,n €N.

Proof. 1t is clear that M ®; N is a B-module, isomorphic to a direct
sum of dim;N copies of M. We must verify that the given action is a
measuring. We have b((m ®; n)m’ @ n’)) = b(mm’ @ nn') =
b(mm ') ®k nn’' = Z,(bhm)(bz,m ’) ®k nn’ = Ei(bl,«m ®k n)(bZim’ ®k n’),
as required.

1.8.2. CorOLLARY. Let M° be a k-algebra. Then K ®; M’ is a
B-algebra, via b((A @ m) = e(bN\) Q@ mforb € B,AN€ K, m € M.

1.8.3. Definition. We say that M = K ®; M" is a split B-algebra
(or a split B-module if M°M° = 0). A representation of a B-algebra M in
the form M = K ®; M° with the above action of B is called a splitting.
When M = K ®; M" is a splitting of M, the image of b € B under the
module structure map B — End; M will be denoted b°.

1.8.4. PROPOSITION. Suppose that K is algebraically closed of
characteristic zero. Let L be a Lie K-algebra which is either finite-dimen-
sional and simple or else linearly compact and of Cartan type. Then L can
be given a split B-algebra structure.

Proof. Since K is algebraically closed, L is split, and thus defined
over Q. That is, L = K ® L° for some Q-algebra L°.



958 W. NICHOLS AND B. WEISFEILER

1.9. Higher logarithmic derivatives.

1.9.1. ProrosiTiON. Let B be a K/k-bialgebra. Assume that B is
irreducible and cocommutative as a coalgebra. Then E:B > B ®, Bisa
coalgebra map.

Proof. By induction, using the coradical filtration (Appendix I).
Clearly E is a coalgebra map on By, = K1. Assume that F is a coalgebra
map on B,_, and take b € P,(B) = B, N kere. Write A()) = b ® 1 +
1® b + L;b; ® b/, where b;, b; € P,_;(B). Then by (E 1), E(b) =
b ® 1 —1Q®,b — I E(b;)b;. Thus, A(E()) = A(b ®, 1) —
A1 ®,b) — L;AEDd))ADL) = A0 ®, 1) — A1 ®, b) — L(E ® E)
A(b/))A(b/) by induction. Now L, b, ® b, = Ab) b R®1—1Q b =
Lhy ® b — b ® 1 — 1 ® b. Thus, L;(E ® E)AMDB;)ADB,) =
LEQENL; ® by)b3 ® by) — (E® E)AMB)AQ) — (E ® E)A1)A(D)
=LE(b)b; ® E(by)by — (E® E)AD) — A1 ®, b) = LE(b;)b, ®
EMb3)b, — (E ® E)A(B) — A(1 ®, b) (since B is cocommutative) =
Lb; ®, D) ® (b, ® 1) — (E® E)A(D) — Al ®,b) by (E1) =
AL ®,1) — (E® E)A(D) — A(1 ®,b). Thus A(E(D)) = (E ® E)A(D),
as required.

1.9.2. Definition. Let M be a K-algebra. Define inductively sub-
spaces Dery M of Endx M by: Dery M = 0, Derk M = Derx M, Dery M =
{f € End;M: there exist f; € Derg¥M, f; € Derk "M such that for all
m,m’' € M, f(mm’) = f(m)m’ + mf (m’) + L, f;(m)f{ (m")}.

1.9.3. ProrosITiON. Let B be an irreducible cocommutative K/k-
bialgebra. Let M be a B-algebra, and let g € Autg M. Define dg:B —
Endy M by: (dg)(b) = g~ !(bg) for b € B. (The product of g~ with bg is
taken within the B-algebra EndxM.) Then

(i) dg is a K-measure on M.
(i) (dg)(P,(B)) S Derg.

Proof. LetB € B, m, m’ € M. Then
(dg)b)(mm') = (g " (bg))mm ")

= g_l@E 11 (D) (Ei(b)mm "))

= g—l(izj E;(b)(g(E»(b)1j(m)Ey;(b)y;(m )]
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= g—l(?j E;(b)(g(Ey(b)1;(m))g(E(b)y;(m")))
= g‘l(i Jz:k E; (D) 11 (g(E2(b)1;(m)))E; (b)

(8(Eq(B)5;(m "))

= g—l(i},_;k E;(by;)(g(E4j(b1;)m))E 1, (by;)

(g(Ex (b)m"))) by 1.9.2

= ijzk g T HE ;(b1:)(g(Ey; (b )(m))))

g M E by )gExy by )(m "))

= 213 (dg)(b1;)(m)(dg)(by;)m”),

as required. If M has a unit, then (dg)(b)(1) = g {(T E;(b)(g(E,(b)(1))) =
g {CE(b)g(e(EL (b)) = g THZE (b)e(E,(B)1) = g~ '(b1) by (E 4) =
g (e(b)1) = e(b)1. Thus, dg is a K-measure.

It b€ P,(b),then Ab) =b ® 1+ 1® b + L,;b; ® b, where
b; € P,,i(B), b/ E-P,,_,,i(B). Thus (ii) follows immediately from (i) by in-
duction.

1.9.4. CoroLLARY. Let B be a K/k-algebra, M a K-algebra, g €
AutgM. Define dg:P(B) — EndgM by: (dg)p) = g '(pg). Then
(dg)(P(B)) < Derx M.

Proof. Drop down to the subbialgebra generated by K and P(B),
and apply 1.9.3. (Or simply repeat the calculation for this easy case.)

The function (dg)(p) is called the logarithmic derivative of g (in the
direction p.)

1.9.5. The following related result will be used later.

ProposITION. Let B be an irreducible commutative K/k-bialgebra.
Let M be a B-algebra. Then Derg M is a B-algebra.

Proof. Recall (1.4.3) that Endg M is a B-algebra. It is easy to see
that if a map (x, y) = xp defines a B-algebra structure on a B-module,
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then so does (x, y) = xy — yx. Thus, it suffices to show that Derg M is a
B-submodule of Endg M.
Accordingly, let b € B, g € Derg M, x, y € M. We have

(b)) = T 1 (b)g (Exi (b))

= L E1(b)g (Ex (5)y;NEz () ()
= LE ()@ Ex ()1, (D Ex(B)y ()

+ 123 E i (D)E(b)1j(x)g(Ey(b)2(y)
= I E ()8 Exn (b)) Es (B)uEx (0)»)

+ I Eu®)uEx(®)y ) Es (b (@ Ex (Bl ()
= T Eyj51)(@Es (b1 Eri(b2)Eaibai)y)

+ I By 010E (b1 By b2 ) Eab2)()) by 1.9.1
= L Ey(b1)g By (b1)Nebr)y

+ B Eybi)xEuba)(eExnb))) by (E3)
= LBy (b)gEy (0)))y + ExEu b)gExB)))

= (bg)x)y + x(bg)(y).

Thus, bg € Derg M, as required.

1.10. Convolution algebras.

1.10.1. Definition. Let C be a K-coalgebra, and A a K-algebra.
The convolution algebra structure on Homg (C, A) is given by (fg)(c) =
L f(ci)glcy), f, g € Homg(C, A), c € C.
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1.10.2. Remark. We will always assume that C is associative. Then
Homg (C, A) is associative (Lie) (abelian) if A4 is.

1.10.3. Remark. 1If Cis a (K, T)-bimodule, then Homg(C, A) is a
left T-module via (¢ )(c) = f(ct), f € Homg(C, A),t € T, c € C.

1.10.4. ProrosiTiON. Let B be a K/k-bialgebra, and let R be a
K-algebra. Then Homg (B, R) is a B-algebra.

Proof. We have that Homg (B, R) is a B-module by 1.10.3. For
f, g € Homg(B, R), b, b’ € B we have

(b(f2)b") = (fe)b'b)
= i’Ejf(blliblj)g(bZ,inj)
= 1213 (b1, f)b{;)byig)by;)
= (?(bljf)(szg))(b ).
Thus b(fg) = Z(b1f)(b,g), and Homg(B, R) is a B-algebra.

1.10.5. ProposiTioN. Let A C B be K/k-bialgebras, and let R be
an A-algebra. Then Hom4 (B, R) is a B-subalgebra of Homg (B, R).

Proof. We first check that Hom, (B, R) is closed under products.
Let f, g € Hom (B, R),a € A, b € B. Then

(fg)ab) = izjf(aliblj)g(aZinj)
= iEj(auf(b 1/)a2:8(by;))
= a(Z £(by;)g(by;)) (since R is an A-algebra)
j

= a((f2)(b)).

Since Hom,4 (B, R) is clearly a B-submodule of Homg (B, R), the proof
is complete.
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1.10.6. ProrosIiTiON. Let B, A, R be as in 1.10.5. Let G be a
B-algebra, and let ¢:G — R be an A-algebra map. Then the map 0:G —
Hom, (B, R) given by 0(x)(y) = ¢(yx),x € G,y € Bisa B-algebra map.

Proof. We know from 1.3.1 that 6 is a B-module map. We check
that 6 is preserves products. Let x, x’ € G, y € B. Then BNy =
L0100 ) pux") = L;¢p(yix)p(yux) = S(C(yx)yux)) =
¢(y(xx")) (since G is a B-algebra) = 6(xx’)(y). This completes the proof.

1.10.7. ProPosITION. Let B be an irreducible cocommutative K /k-
bialgebra. Let C be a B-coalgebra, and let A be a B-algebra. Then the
convolution algebra Hom; (C, A) is, with the B-module structure of 1.3,
a B-algebra.

Proof. Leth € B, f, g € Homg(C, A), ¢ € C. Then
(b(f2))(c) = LE(B)(fg)E,(b)(c))
= LE (b)(f(Ey(b)1(c1)g(E(b)y(c2))
= LE(B)1(f (E(B)1(c1))E (5)2(g(E(b),(c3)))
=L E(b)(fELb))c))E (by)(g(E(by)cy) by 1.9.1
= E(b1(f)e1)b2(g)cy)
= E(b1(f)b2(g))c)

Thus b(gf) = L b{(f)b,(g), as required.

2. Thé algebra of differential operators. We now take a more re-
stricted viewpoint.

2.1. Differential operators. A Lie K/k-algebra is a K-vector space
P which is also a Lie k-algebra, equipped with a map 9:P — Der, K of
K-vector spaces and Lie k-algebras such that

[x, \y] = d(x)(N)y + Nx, y] for NeK,x,y€P.

Note that a Lie K/k-algebra is not a K/k-algebra, nor even a K/k-
space.
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2.1.2. Definition. Let P be a Lie K/k-algebra. We define K[P] to
be the associative k-algebra generated by K and P, subject to the relations
(forN€ K, p, p1, P2 € P)A\p = v(\, p), where y: K X P — P is the vector
space structure map, p; = A\p + d(p)(M1, p1p2 — pap1 = [Py, P2l

2.1.3. Note that K[P] is a K/k-algebra. The natural map i: P —
K [P] has a universal property, as follows.

ProposITION. Let A be an associative K/k-algebra with unit. Then
for each K-linear map ¢:P — A satisfying

d(lx, y]) = [¢(x), o(»)], d(X)N =Np(x) + d(x)N1  for x,y€P,

N\ € K, there is a unique K/k-algebra map ®:K|[P] — A with ® - i = ¢.
This follows immediately from the definition.

2.1.4. ProrosiTioN (Poincaré-Birkhoff-Witt). Let P be a Lie K/k-
algebra. Let {p;}ic; be a K-basis of P. Totally order the index set 1. Then
{pii-----pi"iy= - <i,,0=<ey, ..., e,}is a K-basis of K[P).

The proof is the same as the usual proof of the Poincaré-Birkhoff-
Witt theorem.

2.1.5. CoroLLARY. Let A be a K/k-algebra. There is a1l — 1 cor-
respondence between K /k-algebra maps K[P] — A and K-linear maps
¢:P — A with ¢(Ix, y]) = [¢(x), ¢(¥)] and ¢(x)N = Np(x) + (x)N1 for
x,y € P, \€K.

Proof. This follows from 2.1.3 and the fact that i:P — KJ[P] is
injective.

2.1.6. ProrositioN (cf. [Nich 3, Example 2, Theorem 1, Proposi-
tion 6, Proposition 7]). K [P]is a Hopf K /k-algebra, with A, E given on the
generators p € Pby: A(p) =p R®1+ 1R p, E(p)=p ®,1 —1®, p.

2.1.7. If B is any K/k-bialgebra, the set of primitive elements P =
{pe€B:A(p) =p ® 1+ 1® p} isclosed under commutation and under
left multiplication by elements of K; thus, P is a K-vector space and a Lie
k-algebra. By 1.6.2, the map 9: P — End; K, 3(p)(\) = e(p\) for p € P,
\ € K, takes values in Der; K. Since pA = Le(pN)p, = N\p + e(pM)1, it
follows easily that P is a Lie K/k-algebra.

Note that the subalgebra of B generated by K and P is a K/k-bialgebra.
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2.1.8. When characteristic £ = 0, we have the following character-
ization of the algebra of differential operators.

ProrosrtioN (cf. [Nich 3, Theorem 4], [Wint, B.3]). Let B be a
K /k-bialgebra which is cocommutative and irreducible as a coalgebra.
Assume that characteristic k = 0. Then B is a Hopf K/k-algebra, and is
isomorphic as a Hopf K /k-algebra to the algebra of differential operators
defined by its Lie K/k-algebra of primitives P.

2.2. Comparison of structures. We will now assume that character-
istic k = 0, and that B = K[P], where P is the Lie K/k-algebra of primi-
tives of B. We wish to compare the possible B-algebra structures on a
K-algebra M.

2.2.1. ProrosITION. Let ¢, ¢5:B — End M be two B-algebra
structures on M. Then (¢ — ¢,)(P) € DergM.

Proof. Combine 1.6.6 with 1.7.
2.2.2. PROPOSITION.

(i) B-module structures on M are given by K-linear maps ¢:P —
End M satisfying ¢([x, y)] = [¢(), ¢(»)], d(X)N = Np(x) +
e(xN)I forx, y € P, \ € K.

(ii) Such a ¢ defines a B-algebra structure on M iff ¢(P) € Der, M.

Proof. As End;M is a K/k-algebra, (i) follows from 2.1.5. Since P
generates B, (ii) now follows from 1.6.6.

2.2.3. Definition. Let L be a Lie B-algebra. A differential m-form
with values in L is a K-m-linear map w:P™ — L (where P" = P X
P™~ 1) such that, for each permutation o on m symbols, w(p1, ..., pm) =
(det 0)w(Py1ys + - > Poemy) forall py, ..., p,, € P.

2.2.4. We denote by Q™(P, L) the space of m-forms with values in L.
We define d: Q™(P, L) —» Q" T1(P, L) by

(dw)(p05 . -’pm)= m _1_|_ 1 igo(—l)ipi(w(pOy . wﬁi, . 'ypm))

1 m "
+ —1)it
m+1 Osi<EjSm( )

‘w([Pi’Pj],Poy '-'yﬁio "-9131'9 '-'ypm))-
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For m = 1, we have

(do)(p.q) =5 [p(o(@) — g(w(p) — a(p,aD]

2.2.5. ProposITION. Let ¢:P — Der, M define a B-algebra struc-
ture on the K-algebra M.

G) If ¢ is another B-algebra structure on M, then
w=¢ — ¢peQ!(P, Derxy M)

(i) Ifwe QY(P, Dergy M) then ¢ + w:P — Dery M is a B-algebra struc-
ture on M iff dw = — V2w, w] (where [w, wl(p, ) = [0(p), w(g)]
forp,q €P).

Proof. Part (i) follows from 2.2.1.

We now consider ¢ = ¢ + wforw € Ql(P, DerxgM). Then ¢ is K-linear.
For p € P, m € M, \ € K we have ((p)N(m) = ¢(p)Am) = ¢(p)Am) +
w(p)Am) = Ao(p)m) + e(pN(m) + No(p)m) = Né(p)m) + e(pN)(m).
Thus ¢(p)N = Ad(p) + e(pN) L. Thus by 2.2.2 ¢ is a B-algebra structure
itf $([p, g]) = [8(p), (g)] for p, g € P. Now &([p, q]) = ¢([p, q]) +
o(lp, q]) = [6(p), #(9)] + w([p, g). We have [6(p), $(¢)] = [¢(p) +
w(p), ¢(q) + «(@] = [¢(p), d(@] + [6(p), w(g)] + [w(p), ¢(9)] +
[w(p), w(g)]. Thus we require w([p, g]) — [¢(p), w(g)] — [w(p), ¢(@)] =
[w(p), w(g)]. Now for any T € EndxM, p € P we have [¢(p), T1 = p(T),
by definition of the B-module action that EndxM inherits from M. Thus
our condition is w([p, q]) — p(w(@)) + qw(p)) = [w(p), w(g)], or
—2dw = [w, w], as required.

2.2.6. ProrosITION. Let M be a K-algebra. The action of g €
AutgM on a B-algebra structure ¢:P — DeryM is given by g log =
¢ + dg, where dg € QU(P, DergM) is given by (dg)(p) = g—l(pg) (cf.
1.4.7).

Proof. For p € P, m € M we have (dg)(p)(m) = (¢ '(pg))m) =
g ¢(p)gm) — g(¢(p)m)) = g ($(p)(g(m)) — $(p)m) = (g™ bg
— ¢)(p)(m). Thus g "1¢g — ¢ = dg, as required.

2.2.7. Remark. Let us fix a B-algebra structure ¢:P — Der; M. By
2.2.5, all other B-algebra structures on M are of the form ¢ + w, where
w € Q1(P, DergM) and dw = — 2w, w]. Now g "H(¢ + w)g = g " '¢g +
g lwg = ¢ + g 'wg + dg. Thus, g acts on w by g Ww) =g lwg + dg.
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Thus the orbit of w under AutxM is a connection with values in DergM;
the condition dw = —Y2[w, w] means that this connection is flat. There-
fore 2.2.6 can be restated as follows.

2.2.8. Let one B-algebra structure on M be given. Then the set of
all B-algebra structures on M can be identified with the set of flat connec-
tions with values in DergM.

2.2.9. Remark. The K[P]-module structures on M were classified
in [Jac] for the case dimgP = 1, M finite-dimensional.

2.3. Split B-structures.

2.3.1. LemMA. Let M be a B-module. Let h:K[[X]] = EndgM be
a K-algebra homomorphism. Write x = h(X), exp x = h(exp X). If char-
acteristick = p > 0 assume that x* = 0.) Set g = expx € AutgM. Then

i—1
del@)=— L, (- 1)’M(qx> for qeP.

Proof. We will use the notation of Proposition 1.4.3: for b € B, we
define b € End;M by b*(m) = bm, m € M.

Note that in the algebra of formal power series in two non-commuting
indeterminates X and Y we have (exp X )1 Y(exp X) = exp(ad(—X))Y).
Thus for g = exp x, g € P we have

(— )

g7'q¢%g = exp(ad(—x))g ™) = E (ad x)(g ™).

Now (ad x)(¢ ™) = [x, ¢*] = —gx. Thus

g—-qugqu (_ ) (adx)’ l(qx)
So
de)g) =g 'qe) =g (¢ e —2a") =g '¢"g—q*
=-5 (—ﬂl)l (adx) " !(gx),

as required.

2.3.2. ProPOSITION. Let M = K ®, M° be a split B-module.
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(i) Let y be an element of End;, M° < Endg M which is the value at
Y of a K-algebra homomorphism K|[[Y]] — Endx M. (If charac-
teristick = p > 0, assume y? = 0.) Let x = \y € Endg M. Then
d(exp x) = (dN\)x € Q' (P, Endg M) where for N € K*, d\ ¢
QU(P, K) is defined by (dN)(g) = N"1(g(\).
(i) If my, m,, ... is ak-basis of M° and gm; = \;m;for g € Endg M,
N; € K*, then (dg)(q)(m;) = (dN;)q)(m;) for q € P.

Proof. The second assertion follows directly from the definition.
For the first assertion, we use the lemma. Note that for g € P, we have
gx = q(\y) = q(N)y; thus, (ad x)(gx) = 0, and the lemma gives

(dexpx)g) = gy = AN 'g(N)x = (dN)x)(q),

as required.
2.4. Linearly compact Lie K/k-algebras.

2.4.1. Definition (cf. [Guil, Definition 2.1]). A linearly compact
Lie K/k-algebra is a Lie K/k-algebra P whose underlying K-vector space
structure is linearly compact, and for which the structure maps|[ , ]:P X
P — Pand 3:P — Der; K are continuous. (Here K and Der; K are dis-
crete. A topological vector space is linearly compact iff it is isomorphic as
a topological vector space to a product of copies of K.)

2.4.2. Remark. Note that d~1(0) is an open ideal of P which acts
trivially on K. Thus, every open subspace (subalgebra) (ideal) P of P con-
tains an open subspace (subalgebra) (ideal) which acts trivially on K—
namely, PN 3 Y0).

2.4.3. Definition. Let P be a Lie K/k-algebra which is either lin-
early compact or discrete. Let M be a K [P]-algebra. We say that M is a
linearly compact (discrete) K|[P]-algebra if M is a linearly compact
(discrete) topological vector space, in such a way that the module action
P X M — M is continuous.

2.4.4. Remark. If M is a linearly compact (discrete) K [P]-algebra,
then each b € B = K|[P] acts continuously on M. If P is discrete and each
p € P acts continuously on M, then M is a linearly compact (discrete)
K [P]-algebra.

2.4.5. PROPOSITION. Let P be a linearly compact Lie K/k-algebra,
and let M be a K|[P]-algebra which is linearly compact as a topological
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vector space. Then M is a linearly compact K [Pl-algebra iff the following
conditions hold.

(i) For each p € P, the map M — M sending m to pm for m € M is
continuous.

(ii) For each open subspace U of M, the set Py = {p € P:pM < U}
is open in P.

Proof. We must show that the structure map y:P X M — M is con-
tinuous iff (i) and (ii) hold.

First assume that ¥ is continuous. Then (i) holds. Let U be an open
subspace of M. Then there are open subspaces Py of P, M, of M with
V(Py, My) < U. Write M = My + Km; + -+ + Km,. There are open
subspaces Py, ..., P, of P with y(P;, m;) € U. ThenP, N Py N --- N
P, N 3'(0) is an open subspace contained in Py, so Py is open.

Conversely, assume that (i) and (ii) hold. We will show that ¢ is con-
tinuous at each (p, m) € P X M. Let U be an open subspace of M. Let M|,
be an open subspace of M with ¥(p, My) € U. Then y/(p + Py, m + M)
S ¥(p, m) + ¥(p, My) + Y(Py, M) < ¥(p, m) + U. Thus ¢ is
continuous.

2.4.6. CorROLLARY. Let M be a linearly compact K [Pl-algebra. Let
N be an open subspace of M. Then the stabilizer of N in P is open.

Proof. The stabilizer of N contains Py.

2.4.7. CoroLLARY. Let ¢:P — DeryM define a linearly compact
B-algebra structure on the linearly compact K-algebra M. Let db=0¢+ w
be another B-algebra structure on M, where w:P — Der M satisfies
dw = —¥2lw, w] (cf. 2.2.5). Then é is a linearly compact B-algebra struc-
ture iff the following conditions hold.

(i) For each p € P, w(p):M — M is continuous.
(ii) For each open subspace U of M, the subspace Py = {p €
P:w(p)(M) < U} is open.

Proof. First, let us note that @ is a linearly compact B-algebra struc-
ture on M iff the K-bilinear map ¢: P X M — M given by ¥(p, m) =
w(p)(m) for p € P, m € M is continuous. It is clear that if ¥ is continuous,
then conditions (i) and (ii) hold.

Next, assume that (i) and (ii) hold. Let U be an open subspace of M.
Let p € P, m € M. Since w(p) is continuous, we can find an open subspace
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M, of M with y(p, My) < U. Thusy(p + Py, m + M) € ¥(p, m) +
v(p, My) + ¥(Py, M) € Y (p, m) + U. This shows that y is continuous.

2.4.8. PROPOSITION. Let P be a linearly compact Lie K/k-algebra.
Let M be a K[P]-module. Then M is a discrete K[Pl-module iff M* is a
linearly compact K [P]-module.

Proof. Let us first assume that M is a discrete K[P]-module. We
will verify (i) and (ii) of 2.4.5 for M*.

Fix p € P, m € M. If x € M* vanishes on m and on pm, then px
vanishes on m. Thus the map x — px is continuous.

Let U be an open subspace of M*. Say U = annp(Km, + --- + Km,),
m; € M. Then annp(m;) N --- N annp(m,) N 3~1(0) is open and con-
tained in Py. So (ii) holds.

Next, assume that M* is a linearly compact K [P]-module. To show
that M is a discrete K[P]-module, we must show that for each m € M,
annpm is open in P. Now U = anny*(m) is open in M*. If p € Py,
x € M*, then px € U, so 0 = (px)(m) = px(m)) — x(pm). Thus
Py N 3710) < annpm, so annpm is open.

2.5. Modules of finite kind. Let P be a linearly compact Lie K/k-
algebra.

2.5.1. Definition. A B-module M is of finite kind if there exist
X1, ..., X, € M and an open Lie K/k-subalgebra P of P, such that M =
Bx; + --- + Bx, and 0 = Px;, all . We say that M is of cofinite kind if
M is a linearly compact B-module, and the continuous dual M* of M is a
B-module of finite kind.

2.5.2. Note that for each x € M, annpx = {p € P:px = 0} is a Lie
K/k-subalgebra of P.

ProPOSITION. Let x € M. If annpx is open, then annppx and
annp\x are open for all p € P, \ € K.

Proof. Write P = annpx. Then annppx and annphx contain the
open subspaces (ad p) "!(P) N P and 371(0) N P, respectively.

2.5.3. CorOLLARY. Let M be a B-module of finite kind. Then every
finite subset of M is annihilated by some open Lie K/k-subalgebra of P.

Proof. Note that if P, annihilates y; and P, annihilates y,, then P,
N P, annihilates y;, y, and thus y; + y,. Since B is generated by P
and K, our result thus follows by repeated application of 2.5.2.
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2.5.4. Remark. The above corollary shows that a finitely-generated
B-module M is of finite kind iff M is a discrete B-module (2.4.3).

2.5.5. THEOREM. Let M be a B-module of finite kind. Then every
submodule and every quotient module of M is of finite kind.

Proof. The assertion for quotient modules is clear. Then by 2.5.4, it
suffices to show that every submodule N of M is finitely generated.

We have M = Bx; + --- + Bx,, Px; = 0. Now the coradical fil-
tration {B,} of B is given by B_; = 0, By =K, B, = K + P + P?
+ .-+ Pl Let X = Kx; + --- + Kx,. Define M, = B,X. Then
B:M; < M;y;. Thus grM = @®;.¢ M;/M;_, is a module over grB =
@i20B;/B;—;. Replacing Pby d~1(0) N P, we may assume that P(K) = 0.
Since the actions of p;, p, € P on grM commute, it follows that P annihi-
lates grM. Note also that the action of p € P on grM commutes with the
action of \ € K. It follows that the grB-action factors through the Noethe-
rian symmetric algebra S(P/P). Thus, every grB-submodule of grM is
finitely generated.

We apply this result to grN, where N is graded via N, = N N M,,.
Let yy, ..., y; be elements of N whose images y, ..., y, in grN generate.
We will show by induction on »n that N, € By, + --- + By,. This is clear
forn = 0. Suppose that N,, C By; + -+ + By,forn < t,and let y € N,.
Theny = by, + -+ + b,y,, some by, ..., b, € B. But this means that
y — by, — -+ — byy, € N;,_, and we are done by induction.

2.5.6. ProposiTiON. Let P be an open Lie K/k-subalgebra of P,
and let M be a K [P]-module. Then M is a K[P]-module of finite kind iff
K[P] @51 M is a K[P]-module of finite kind.

Proof. One direction is clear. Suppose that M’ = K[P] @k M is
a K[P]-module of finite kind. We may take K[P]-module generators of
M’ of the form 1 @ m,, ..., 1 ® m,, where m; € M. Since 1 is a member
of a basis of K[P] as a free right K [P]-module (by 2.1.4), we have M =
K[Plm; + --- + K[P]m,. Again by 2.1.4, if W is an open Lie K/k-
subalgebra of p with W(1 ® m;) = 0 all {, then (W N P)m; = 0 all i.
Thus M is a K [P]-module of finite kind, and the proof is complete.

2.6. We will work mainly with B-modules which are duals of mod-
ules of finite kind.

PrOPOSITION. Let M be a B-module of finite kind. Then there ex-
ists an open subspace N of M*, such that for all 0 # f € M*, Bf is not con-
tained in N.
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Proof. Take a finite dimensional K-subspace X of M with BX = M.
Let N = X+ C M#*. Suppose f € M*, and Bf < N. Then for x € X, we
have f(x) = 0. For p € P, we have f(px) = p(f(x)) — (pf)x) = 0. Since
P generates B, it follows that f vanishes on BX = M, i.e. f = 0.

2.6.1. We establish a dual version of Proposition 2.6.

PrROPOSITION. Let M be a discrete B-module. Assume that M* has
an open subspace N, such that Bf is not contained in N for any 0 # f € M*.
Then M is a B-module of finite kind.

Proof. We have that the stabilizer P of N in P is an open Lie K/k-
subalgebra of P. Let V be the annihilator of N in M. Since N is open, V is
finite-dimensional. By 2.5.4, it suffices to show that M = K[P]V.

Let f € M*. By assumption, there exists b € B such that bf is not con-
tained in N. Since N is open, this means that bf does not vanish on V.
Thus f does not vanish on K[P]V. Thus K[P]V = M.

3. The formal groups of Ritt. In this section, we assume that B is a
cocommutative Hopf K/k-algebra.

3.1. Definition. Let A be a commutative associative B-algebra with
unique maximal ideal J. Assume that A has a complete linear topology.
We say that 4 is a formal B-group if it is equipped with continuous
B-algebra homomorphisms

AA-ARA (comultiplication)

e: A — K (counity)

such that (A ® id)A = (id ® A)A, and (id ® A id = (e ® id)A.

3.1.1. Remark. Since € is surjective and J is the unique maximal
ideal of A, we have J = ker e. Since ¢ is a B-module map, we have in par-
ticular that J is B-stable.

3.2. We define the Lie coalgebra of the formal group (4, A).

Forx € J,wehave A(x) =x ® 1+ 1 ® x mod J & J. Thus for x,
yeJ,wehave Ay) =xp ® 1 +x® y + y ® x + 1 ® xy mod
JRJIF+J*Q J. Nowlet 7:A ® A > A ® A be the map which inter-
changes the factors. Since B is cocommutative, 7 is a B-module map. We
have (id — 1)A(J) € J ® J, and (id — NAUJ?) € J® J* + J* ® J. By
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continuity, (id — DA?) S cdJ ® 2+ 1P Q® J) =J ® clI* +
clJ? ® J. Thus (id — 7)A induces a B-module map v:J/cll? = J/cll* ®
J/clJ?. We will write M = J/clJ>.

ThemapA“:4 - A ®AgivenbyA’(a) =Al@)—1Ra—a®1
is coassociative, and sends J into J & J. Clearly (id — 7)A = (id — 1A’
Write v’ = (id — 1)A’:J = J ® J, and let g:J — M be the quotient map.
Then vg = (@ ® q)v’.

It is clear that (id + 7)» = 0 (coanticommutativity). Now let
IR IRI-ITRIRJ permute the factors cyclicly. Writing

(A’ ®id)A'(x) = (d ® A)A(x) = Exy; @ xp; @ x5 for xe€lJ.

we have

(d & v)w'(x) =Lx; ®xy @ x3 — Lxy; ® x3 Q x
- Ex3i®xli®x2i+ E,x3i®x2i®x1i-

Thus (id + ¢ + o®)id ® »’)»’ = 0 (co-Jacobi identity). Since rqg =
(g ® q)v’, v also satisfies the co-Jacobi identity.

Definition. (M, v) is the Lie B-coalgebra of the formal B-group
A, A).

3.2.1. Definition. The topological dual M* of M, equipped with
the map v*: M* ® M* — M*, is called the Lie B-algebra of the formal
B-group (A, A).

3.2.2. Remark. The Lie algebra of a formal B-group may be zero.

3.2.3. Remark. In contrast to the situation of [Nich 2], the Lie co-
algebra of a formal B-group need not be the union of its finite-dimen-
sional sub coalgebras.

3.3. Let P be alinearly compact Lie K/k-algebra, and let B = K[P].

3.3.1. Definition. A formal B-group (A, A) is called a Ritt group if
A is generated as a topological algebra by a B-module of finite kind.

3.3.2. Remark. The Lie coalgebra of a Ritt group is a B-module of
finite kind.
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3.4. Every linearly compact Lie K[P]-algebra G of cofinite kind is
the Lie algebra of a formal group of Ritt. Indeed, let M be the continuous
dual of G. Let A be the completion of the symmetric algebra S(M) with
respect to the M - S (M)-adic topology. The elements of A can be repre-
sented in the form a = L2 a;, with a; € S(M);; A has unique maximal
ideal J = {a € A:ay = 0}. Note that clJ? = {a € A:ay = a; = 0}. We
will use the Lie structure of G to define the coproduct.

Since the Lie bracket [ , ]:G X G — G is continuous, it defines a
linearmap [ ]: G ® G — G. The continuous dual »: M = M ® Mof|[ ]
is a Lie coalgebra structure map for M. Then A:M — A ® A is defined
from v using the Campbell-Hausdorff formula as in [Nich 2, section 5]; if
x €M,

v(x) =Xx; ®x/, (d @ vv(x) = Lx; ® x;; @ x7,
i LJ

then
A(x)=x®1+1®x+—§—2x,-®x,~'

1 A N
+ (L xx) @ xff+ Lxff ® x:x;)
12 ij

=+ terms of higher degree.

We extend A to all of 4 by continuity. The counit e:A — K is defined by
e(1) = 1, e(M) = 0, e continuous. Since A is generated as a topological
algebra by M, we see that (4, A) is a formal group of Ritt whose Lie alge-
bra is G.

3.5. Let us discuss the relationship between our definition and that
of Ritt.

Ritt considered the case in which P is one-dimensional over K, B =
K[P], M is a free B-module, and A is the completed symmetric algebra
over M as in 3.4 above. Our generalization permits more general P and
more general M. By including arbitrary B-modules of finite kind, we can
allow M to be finite-dimensional. When P is finite dimensional, the con-
dition that the Lie coalgebra of a Ritt group be free as a B-module ex-
cludes the Lie algebras of Cartan type H,,, S,,, K,,. Thus our assumptions
include additional important examples.

Instead of Lie coalgebras, Ritt considered their structure constants.
They appear in his construction as follows. Since M is free and P = Kp is
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one-dimensional, we can take elements m!. ..., m? of M so that { p'm’ }
is a K-basis of M. The formal group structure is given by p'm/ = p'm’ ®
1 + 1 ® p ‘mI + Titrs al,s p* m &® p'm® + terms of higher degree. Set
cilys = ailys — aw- Then the ci,, are the structure constants for v: M —
M ® M—that is, v(p'm’) = Iy, clyp*m! ® p’m’. The relation (52)
from [Ritt 2]:
cg[;i;l - a(p)(c;‘t,lrs) + c}cll—lrs + Cglrs—l

means simply that » is a B-homomorphism.

The construction of the Lie algebra with basis {e;;} via [egs, e] =
L cirse;; leads to some difficulties. In the first place, the action of P is
difficult to describe. Second, the expression L; ; cipse;; may be infinite—as
happens, for example, for some two-dimensional groups from [Ritt 3].
This reflects the fact that the Lie algebra in question is topological.

4, Guillemin’s structure results. Let P be a linearly compact Lie
K /k-algebra (2.4.1), and write B = K [P]. We wish to study the structure
of linearly compact Lie B-algebras G (2.4.3). It will be convenient to ex-
tend some of the results of [Gui 1, section 6] to B-algebras. We will change
notation from P to L to avoid confusion later on.

4.1. Let L be a linearly compact Lie K/k-algebra. Let G be a lin-
early compact Lie K[L]-algebra.

4.1.1. LemMaA (cf. [Gui 1, Lemma 6.2]). Let S be an open subspace
of G. Then N;(S) = {x € L:xS < S} is open in L.

Proof. Since the action L X G — G is continuous, we can find open
subspaces Uy of L, Vof G with UyV € S. WriteG = V + Kx; + --- +
Kx,. Again by continuity, there are open subspaces U; of L with U;x; < §.
LetU=U, N U N --- N U, N 3 10). Then U is an open subspace
of L, and UG < S. Thus US < S, and so N;(S) 2 U is open.

4.1.2. LEmMA (cf. [Gui 1, Proposition 6.2]). Let A be a subalgebra
of G. Then Ny (A) S N (DgA), where DA = {x € A:[x, G] < A}.

Proof. Letp € Ny(A),x € DgA. Sincex € A, we have px € A. Fory
€ G, we have plx, y] = [px, y] + [x, py] since G is a K[L]-algebra. We
deduce [px, G] € A, as required.

4.1.3. ProrosITION (cf. [Gui 1, Proposition 6.2]). Let H be a closed
maximal ideal of G. Then N; H is open.
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Proof. Follow [Gui 1].

4.2. We summarize some straightforward extensions of [Gui 1, sec-
tion 6] to the situation of 4.1.

4.2.1. Let I be a closed K[L]-ideal of G. Let J be a closed maximal
ideal of I [Gui 1, Proposition 6.1]. Filter I as in [Gui 1, section 6.3]: I 0=,
I' = J, I*' = D, (I*) = {x e I*:[L, x] < I*}. By induction, each I* is
an ideal of I. The normalizer N of J in L is open, by 4.1.3. Form gr(I) =
@Lp—o I¥/I* 1, a graded Lie algebra. Since [N, I*] < I*[Gui 1, 6.3], the
bracket map L X I — [ induces a map L/N X gr(I) — gr(I); in fact,
W = L/N acts as commuting derivations of gr(I) of degree —1. Thus we can
define an algebra map «:gr(I) & Homg(S(W), gr(I)) via a(a)(y) = ya
for y € S(W), a € gr(I). (Here ya = (ady)(a) is the extension to the sym-
metric algebra S(W) of the action of W on gr(I). Homg (S(W), gr(I)) is a
convolution algebra (1.10), with the coalgebra structure on S(W) being
defined by the algebra map A: S(W) = S(W) Q@ S(W), Aw) =w ® 1 +
1 ® w for w € W.) The projection onto degree zero w:gr(I) = I/J is an
algebra map, and thus induces an algebra map y: gr(I) = Homg (S(W),
I/)), given for a € gr(I),, b € S(W), by ¥(a)(b) = w(a(a)b) = d,ba.

4.2.2. ProposSITION. The map of graded algebras Y:gr(I) —
Homg(S(W), I/J) is injective. When characteristic K = 0, we have
Homg(S(W), I/J) = S(W*) ® I/J as algebras, and thus an injective
algebra map ¥:grI) - S(W*) ® 1/J.

Proof. To show that y is injective, follow [Gui 1, Lemma 6.3].

There is a natural inclusion W* = Homg (W, K) - Homg(S(W), K),
giving rise to an algebra map from S(W#*) to the convolution algebra
Homg (S(W), K). When characteristic K = 0, this algebra map is an iso-
morphism of graded algebras; thus, Homg (S(W), I/J) = Homg (S(W), K )
R I/J =SW* Q I/J.

4.3. We will apply 4.2 with L being the cross product of P and G.

4.3.1. Definition. The cross product of P and G is the linearly com-
pact Lie K/k-algebra L with underlying linearly compact K-vector space
P @ G, with Lie k-algebra structure [(p;, g1), (p2, &2)] = ([p1, p2l,
P18, — p28&1 + [g1, g2]), and with action on K given by d((p, g)(\) =
a(p)(N).

4.3.2. Remark. Note that a K[L]-ideal of G is the same thing as an
ideal of L which is contained in G, or as a B-ideal of G.
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4.3.3. Note that G is a linearly compact Lie K[L]-algebra. As in
4.2, let I be a closed K[P]-ideal of G, and let J be a closed maximal
ideal of L

4.3.4. We write I* = N, D}(J) for the largest K [P]-ideal of I con-
tained in J (cf. [Gui 1, Proposition 2.4]). As in [Gui 1, section 6.4] we have
the following.

PrROPOSITION. Assume that I/J is non-abelian. Let A be a proper
closed ideal of I. If I” € A, then A < J.

4.3.5. CoROLLARY. Assume that I/J is non-abelian. Then there
are no closed K [P]-ideals strictly contained between I and I*.

4.3.6. CorROLLARY. If the closure of [I, I]is I, then I” is a maximal
proper closed B-ideal of G in L
Proof. Since [I, I] C J is ruled out, 4.3.5 applies.

4.4. From now on, we will assume that K is algebraically closed of
characteristic 0, and that G is a B-module of cofinite kind (2.5.1).

4.4.1. Observe that for any subspaces X, Y of G, we have cl[X, Y] =
cllclX, clY] where cl denotes the closure operator.

4.4.2. Definition. The derived series of G is given by D°G = G,
DG) = cl[DG, DG].

4.4.3. PROPOSITION.

(i) Every strictly decreasing sequence of closed K [P]-subspaces of G
is finite.
(i) Each D'G is a closed K [P)-ideal.
Proof. The first assertion follows from the fact that G* is of finite
kind. For (ii), we need check only that [D'G, D'G] is K [P]-invariant, and
this follows readily by induction.

4.4.4. Definition. A B-subalgebra M of G is solvable if M is closed,
and D"M = 0 for some n.

4.4.5. ProPoSITION. The Lie B-algebra G has a largest solvable
B-ideal.

Proof. LetR;, R, be solvable B-ideals of G. The B-ideal R; + R, is
closed [Gui 1, Proposition 1.2, Corollary 2], and is solvable since its image
in (R; + R;)/R, = R;/R; N R, is solvable. To complete the proof, we
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will show that if 0 = I, C I; C ... is an increasing sequence of solvable
B-ideals, then cl/(U, I,)) is solvable.

Write R = U, I,, S = cIR. Set R! = [R, R], R""! = [R, R'].
Then D'S = c¢IR* by induction. Suppose that for some ¢ we have D (S) =
DH(S) # 0. Let J be a maximal proper closed B-ideal of G in D(S)
(4.3.6).

If1, N D'S < Jforalln, thenR N D'S S J. But this givesR’ < J,
and thus D’S = cIR* < J, which is impossible.

Thus we can find n so that I,_; N D'S < J, but I, N D'S ¢ J.
Since (I, N DS) + Jis a closed B-ideal of D'S, we have (I, N D'S) + J
= D'S by the maximality of J. Thus there is a B-algebra surjection

I, N DS DS
- .
I,_,ND'S J

Thus (I, N D'S)/I,—; N D'S) is not solvable. But there is an injection

I, N DS I, g
g 9
L, nos  I,, ™ 1.,

is solvable. This contradiction establishes that DS = DTS # 0 is im-
possible. Thus (4.4.3) S is solvable.

4.4.6. Definition. The largest solvable B-ideal of G is called the
radical of G.

4.5. We now assume that G has zero radical.

4.5.1. PropPoSITION. Let I be a minimal closed B-ideal of G. Then
I has no proper closed B-ideals of itself.

Proof. Let A # I be a closed B-ideal of I. Then cl[A4, A] is another.
IfA =cl[A, A], then the inclusion [G, [4,A]] € [[G,A], Al S [I[,A]c A
shows that A is an ideal of G, and thus (by the minimality of I) that A =
0. Soif A # 0, cl[A, A] is properly contained in A. By 4.4.3, we can then
find a non-zero A with [4, A] = 0.

We now invoke the machinery of 4.2. Filtering A via A N I", we ob-
tain in gr(I) an ideal H = gr(A), with [H, H] = 0. Now gr(I) « S(W%*)
® 1/J. ¥ H, # 0, then by [Gui 1, Proposition 5.1 H, = U & 1/J for
some subspace U of S(W¥*),. But then [H, H] 2 U? ® I/J # 0. Thus the
case A # 0 is impossible, and we are done.
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4.6. We wish to determine thz structure of the minimal closed
B-ideals of G. By Proposition 4.5.1, we may assume that G itself has no
proper closed B-ideals.

THEOREM. Let K be algebraically closed of characteristic 0. Let G
be a linearly compact Lie K [P]-algebra of cofinite kind. Assume that G
has no proper closed K [P]-ideals.

(i) If G has no proper closed ideals, then G is simple, and G is K-iso-
morphic to one of the complete Lie algebras of Cartan type W,,
S,,H,,K,, orto afinite-dimensional simple Lie algebra.

(ii) If G is not simple, then there exists an open Lie K /k-subalgebra
P of P and a K-simple Lie K|[Pl-algebra S of cofinite kind
such that G = Homgp(K[P], S) as a K[P]-algebra. (Here
Homg 5 (K [P], S) has the algebra structure defined in 1.10.5).
In particular, G is isomorphic as a Lie K-algebra to S(P/P) ® S,
where S(P/P) is the completed symmetric algebra over the
K-space P/P,and[a ® s,a’ ® s'] =aa’ ® [s,s'] fors,s' €S, a,
a’ € S(P/P).

(iii) The Lie K[P]-algebra structure on G is completely determined by
the Lie K [P)-algebra structure on the simple Lie algebra S of (ii).
In particular, there is a one-to-one correspondence between Lie
K [P]-structures on G and pairs (P, ¢), where P is an open Lie
K/k-subalgebra of P and ¢:P — End,S is a Lie K|[P]-
algebra structure of cofinite kind on a simple K-Lie algebra S.

The proof of assertion (i) is given in [Gui 1, Proposition 4.3]. Asser-
tion (iii) follows directly from (ii). We give the proof of (ii) below, in a
number of steps.

4.6.1. Let H be a proper closed maximal ideal of G [Gui 1, Propo-
sition 6.1].

ProposITION. The Lie algebra G/H is non-abelian.

Proof. If [G, G] € H, then c/[G, G] would be a proper closed
K [P]-ideal of G, and thus zero. But G is not solvable, hence G/H is non-
abelian.

4.6.2. We now invoke 4.2 with L replaced by P, I = G, and J
replaced by H. We write P for N, the normalizer of J in L. By Proposition
4.2.2, there is an injective map of graded algebras y: gr(G) = Homg (S(W),
G/H)), where W = P/P.
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PrROPOSITION. The map  is an isomorphism of graded K-algebras.

Proof. Note first that y(gr(G)y) = Homg (K, G/H) = G/H. Thus
VY (gr(G),) is a G/H-submodule of Homg (W, G/H).

Since G/H is simple non-abelian (4.5.1) and K is algebraically closed,
we have by [Gui 1, Proposition 5.1] (applied to Homg (W, K) ® G/H =
Homg (W, G/H)) that any proper G/H-submodule of Homyg (W, G/H)
annihilates some 0 # w € W. Butifw =1,/ € L, and ¢ (H)(w) = 0, then
[[,H] < H,sol €N, I=0. Thus y(gr(G);) = Homg(W, G/H).

We have [G/H, G/H] = G/H. To show that y is surjective, and thus
complete the proof of the proposition, we will prove the following: if R is
an algebra over a field of characteristic zero, and RR = R, then for every
vector-space W the graded algebra T = Homg (S (W), R) is generated by
its components in degrees 0 and 1. We assume inductively that the sub-
algebra A generated by T, and T contains L=¢ T;. Let {w;} be a basis
of W, and let {e;} be non-negative integers with Ze; = n. To show that
T, C A, it suffices to show that 4, contains an element z with A (ITw;’) = r,
h vanishing on the other basis elements of S(W),,, where r € R is arbitrary.
Without loss of generality we may assume e; = 1. Now » = L%, r;r/ for
some r;, r; € R by assumption.

By assumption, there exist h; € Ay, h/ € A,_; with h;(w;) = ris
h j'(w‘i‘_1 I;5 1 wi’) = r/, and h;, ; vanishing on the other basis elements.
Then h = 1/e; L k;h; has the required property, and our proof is complete.

4.6.3. Now we will use the map ¢ to establish that G = Homgp
(K[P], G/H). The quotient map ¢:G — G/H of K[P]-algebras gives rise
(1.10.6) to a map 6:G — Homgp(K[P], G/H) of K[P]-algebras, given
by 0(x)(y) = ¢(yx) for x € G, y € K[P]. The major part of Theorem 4.6(ii)
is contained in the following.

THEOREM. The map 0:G — Homgp|(K[P], G/H) is an isomor-
phism of K[P]-algebras, and a homeomorphism.

Proof. We give M = Homgp|(K[P], G/H) the finite-open topol-
ogy. For fixed y € K[P], the map G — G/H sending x to 6(x)}(y) = ¢(yx)
is continuous, since P acts continuously on G. Thus 6 is continuous. Thus
kerf is a closed K [P]-ideal of G. Now ker 6 # G, since 0(x)(1) = o(x) #
0 for x € G, x ¢ H. Since G has no proper closed K [P]-ideals, we must
have kerf = 0. Thus 0 is injective.

We will pass to filtered modules to show that 0 is surjective.

Let us first observe that ifx € G, py, ..., p, € Pand 0(x)(py, - .., p,)
# 0, then x € G"1, Since 0 is injective, we have N, G" = 0. Since each
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G’ is closed, this means that G is complete with respect to the filtration
{G"}—that is, given {x,}, x, € G", there existsx € G, x — L/—, x, € G'*!
all 7 (see [Gui 1, section 2]).

Now define a filtration on M by: M® = M, M"*! = {T ¢ M: T(K[P],)
= 0}, where K[P], = K + P + P2 + ... + P’ is the rth term of the co-
radical filtration on K[P]. It is easy to see that each M” is closed, that
NM"™ = 0, and that : G — M is filtration-preserving.

Define a map n: gr(M) = Homg (S (W), G/H) as follows. For T € M",
Wi, oo w, € Wow, =p;, p; € P, set W(T)(Wl ew,)=T(py - p,) It
is easy to check that 7 is well-defined and injective, and that n o gr(6) = y.
Since y is an isomorphism, gr(6) must be surjective. Since G is complete,
this gives that 0 is surjective, and thus that  is an isomorphism.

By 1.3.3 M = Homg(K[P] ®kp (G/H)*, K) is linearly compact.
Since 6 is a continuous bijection between linearly compact spaces, it is a
homeomorphism. This completes the proof of the Theorem above.

4.6.4. To complete the proof of Theorem 4.6(ii), we must show that
S = G/H is K[P]-module of cofinite kind. Since the continuous dual G*
is (as above) the K[P]-module K [P] ®p; $*, this follows from 2.5.6.

4.7. Let us derive some consequences of Theorem 4.6. We assume
that G is a linearly compact Lie B-algebra of cofinite kind, and that G has
zero radical.

4.7.1. THEOREM.

(i) The sum H of the minimal closed B-ideals of G is direct. Each
minimal closed B-ideal H; is isomorphic to G; ® S(V;), for some
simple Lie K-algebra G; and finite-dimensional K-space V;.

(ii) The adjoint action of G on H determines imbeddings of B-algebras
G - DerH = @ ((DerG;) ® S$(V;) + Idg, ® DerS(V;))

and
G/H — Der H/InnH = @ (DerG;/InnG;) ® S(V;) + Idg, ® Der S(V;))

Remark. Recall that DerG; = InnG,; if G; is finite-dimensional or
of Cartan type W,,, K,,, and dimg(DerG;/InnG;) = 1 if G; is of Cartan
type S, , H, (with exterior derivation acting as scalar multiplication on the
natural homogeneous components of these algebras).

Proof. We first show that the sum of the minimal closed B-ideals is
direct. Suppose that I, I, I,, ..., I, are minimal closed B-ideals, and
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that 7 < I + I, + .-+ + I,. Since G has zero radical, [I, I] # 0; thus,
[1, I;] # O for some i. But then ¢/[I, I;] is a non zero closed B -ideal con-
tained in both I and I;, forcing I = I;. This shows that the sum of any
finite number of minimal closed B-ideals is direct. If {I;},; is an infinite
family of distinct minimal closed B-ideals, then define J, = L, I;. Since
[I._y, J,] = 0, we have I,_; N clJ, = 0. Then {clJ,} is an infinite de-
creasing sequence of closed B-ideals. Since G is of cofinite type, this can-
not happen. Thus, H=I1; ® --- @ I,, where I, ..., I, are the minimal
closed B-ideals. The remaining part of assertion (i) follows directly from
Theorem 4.6.

The adjoint action of G on H gives us a map G — DerH of Lie alge-
bras, which is verified to be a B-algebra map. The kernel of this map is a
closed B-ideal of G if it were non-zero, it would contain a minimal closed
B-ideal I of G. But I  H, so this would give [I, I] € [I, H] = 0,1 <
radG = 0. Thus the map is injective. Clearly the composite G = DerH —
DerH/Inn H has kernel H.

Let S be a simple linearly compact Lie K-algebra, and let V be a
finite-dimensional K-space. The decomposition Der(S &® S(V) =
(DerS) ® S(V) + Idg ® Der S(V) is explained in [Gui 1, section 5.3].
Here DerS ® S(V) is identified with the set of maps a: S = § ® S(V)
satisfying a[x, y] = [x, a(y)] + [a(x), y], x, y € S. If we choose a basis
{v;} for V and write a(x) = I a,(x)v°, we find that « € DerS ® S(V) iff
a, € DerS, all e. We have that Inn(S ® S(V)) € DerS ® S(V), with
a € Inn(S ® S(V)) iff o, € InnS, all e. Thus the remaining assertions of
Theorem 4.7.1(ii) are readily verified.

4.8. Remark. R. Block [Blo] has another, more conceptual proof
of V. Guillemin’s result from [Gui 1]. We decided that it would be easier
to extend Guillemin’s method to our setting, but it may well be that
Block’s approach will also extend.

5. K[P]-structures on Lie algebras of the form S @ K|[[x1, ..., x,]],
S simple finite-dimensional. Let P, k, K, 9 be as in section 2. Let K be
algebraically closed of characteristic zero.

5.1. In this and the next sections we will study Lie K[P]-algebra
structures on the linearly compact Lie K-algebraG = § ® Klxg, ...,x,11,
with S simple linearly compact. Since K is algebraically closed, every such
Lie K-algebra can be given a split K [P]-structure (1.8)—that is, there is a
linearly compact k-algebra S° such that G = K ®; G°, where G° =



982 W. NICHOLS AND B. WEISFEILER

S° ® kllxq, ..., x,]]. Then by 2.2.5, every K [P] structure % on G is ob-
tained from the split structure ¢ via p = ¢ + w, where w:P = Der;G is a
differential 1-form satisfying

5.1.1) dw= ——;—[w, w]

We are interested in the equivalence class of K[P]-structures under
the group AutxG. By 2.2.7, we have

(5.1.2) g Hw)p) = g (pg) + (g 'wg)p)

Remark. P. J. Cassidy in [Cas] calls the action given by 5.1.2 the
Loewy action.

Recall (Theorem 4.6(ii)) that G = § ® K[[x;, ..., x,]] is given as
G = Homy (K [P], S), where P is an appropriate Lie K/k-subalgebra of
P of codimension #, and S is a linearly compact Lie K [ﬁ]-algebra. There-
fore (cf. 4.6(iii)) to describe the K [P]-structures on G, it suffices to de-
scribe the K [P]-structures on S.

Thus we can assume that P = P and G = S.

5.2. Let G € GL(n) be a connected linear algebraic k-group. Let
G° = (Lie G)(k) be the set of points of its Lie algebra over k. We set
G =K ®,G° = (Lie §)(K), and we give G the split K [P]-structure.

Let A be the coordinate ring of G. Then A is a bialgebra. For any
k-algebra R, G(R) consists of the k-algebra maps from A to R, and
(Lie G)(R) consists of the k-linear maps X:A — R satisfying X(ab) =
X(a)e(b) + e(@)X(b), a, b € A, where € is the counit of A. The split action
of K[P] on (Lie G)(K) is given by (pX)(a) = p(X(a)), p € P, X € (Lie §)(K).

THEOREM. Let w € QU(P, G) define a K [P]-algebra structure on G.
Let K ®; A be given a K[P]-Hopf algebra structure which agrees with
that structure on G. There is a field L, which is a K [P]-algebra extension
of K, and for which there exists g € G(L) with w(p) = g '(pg), p € P.
(The product g ~'(pg) is taken in the K [P)-algebra Homg(K ®; A, L) =
Homg (A, L), cf. 1.10.7).

Proof. Forp e P, \€ K, a € A, define
PA®a)=pN) ®a+ NEw(p)a,) ® a; — NEw(p)ay) @ a,.
Then for A’ € K we have
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PNA®a)=p(NN® a)
=p(\N) ®a+ N w(p)ay) ® a;
— MAEw(p)a)) ® a,
=ANp(A®a)+ p(N)A® a)

= (PN ® a).
For p, g € P, we have

ri@l ® a) — q(p(1 @ a))
= p(Zwlg)az) ® a; — Lwlg)ar) ® az)
— q(Zw(p)az) ® a; — Lw(p)ay) ® a;)
=X p(w(g)ay)) ® a; + L w(g)az)w(p)a,) ® a;
— Lwl(g)az)w(p)ay) @ ay — L p(w(g)ar) @ a,
— L w(g)ay)w(p)az) ® a; + L wlg)a)w(p)as) ® a;
— L g(w(p)az)) ® a; — Ew(p)az)w(gla) ® a;
+ L w(p)asz)wlgiar) ® a; + Eqw(p)ay) @ a,
+ L w(p)awlga;) ® a; — L w(p)ar)w(g)ar) @ a;
= E(p(w(q)) — q(w(p)) + [w(p), w(@)az) @ a;
— E(p(w(g) — q(w(p)) + [0(p), o(@)ar) ® az

=Y w(p, g)a;) ® a; — Lw(lp, g])a;) ® a,

since dw = —V2[w, w] we finally have = [p, g] (1 ® a). Thus, K ® Aisa
K[P]-module.
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For a, b € A we have
r(1®a)1® b)) =p(l R ab)
= L w(p)azby) ® a;by — L(w(p)aihy) ® azb,)
= L(w(p)az)e(by) + e(az)w(p)by)) ® a1by
— L(w(pXay)edy) + ela)w(p)by)) @ azb;
=L w(p)az) ® a1b + Lw(p)(by) ® bia
— Lw(p)ay) ® azb — Lw(p)by) @ bra
=(p0 ®a)1 ®b)+ (1 ®a)p(l & b)).

Thus, K ® A is a K[P]-algebra. We omit the (easier) verification that
A, ¢, and S are K[P]-module maps, and thus that A is a K[P]-Hopf
algebra.

The induced action of K[P] on (Lie G}(K) is given, for p € P, X €
(Lie GX(K), by (pX)A ® @) = p(X(N ® a)) = X(p(A® a)),N€K,a €A
Thus (pX)A ® a) = p(AX(@)) — X(p(N) ® a + AL w(p)a,) ® a; —
N E wp)a) @ a) = pMNX@ + WwX@) — pMNX@ —
AL w(p)azx)X(a;) + N w(p)a)X(ay) = A\p(X(a)) + Nw(p), X1(a).
Thus, pX = p°X + (ad w(p))(X), where p° denotes the split action. This
says that the induced structure is indeed the one defined by w.

Since G is connected, it is irreducible, and thus K ®; A is a domain.
Let L be its quotient field. Define g:4A — L by: g(a) = 1 ® a, a € A,
1€ K. Then g € G(L); its inverse is given by g_l(a) =1® S(a), where S
is the antipode of A. For p € P, a € A we have g '(pg)a) =
L g7 '@)pgiaz) = L w(p)az) ® S@)a; = 1 @ w(p)a). Thus
w(p) = g~ (pg), as required.

5.2.1. Let us put the above theorem in the context of 5.1. Given
w:P = G = LieG(K), the adjoint representation ad: LieG(K) — Derg
(LieG(K)) gives us ad w: P — Derg LieG(K) € Der; LieG(L). Given g €
G(L) we have Ad g € Aut; LieG(L). Then Theorem 5.2 asserts that
(ad w)(p) = (Ad g )(p(Ad g)). Under the action (5.1.2), we then have
(Ad g)(ad w) = 0. The case of 5.1 is case in which G is a split simple Lie
algebra, and G = Ad G.
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5.3.  Our proof is similar in spirit to a proof of a similar result by
Kovacic [Kov, Proposition 6] and Cassidy [Cas, Proposition 38]. We were
led to it by a suggestion of J. Tits.

6. K[P]-structures on Lie algebras of the form S ® K[[xy, ..., x,]],
S simple of Cartan type. Let P, k, K, 3 be as in section 2. Let K be alge-
braically closed of characteristic zero.

6.1. We wish to determine all linearly compact K [P]-algebra struc-
tureson G = § ® Kl[x;, ..., x,]]. According to Theorem 4.6(iii), we
must determine all open Lie K/k-subalgebras P of P of codimension 7,
and all Lie K [P]-structures of cofinite kind on S.

Let us describe this more explicitly. Denote by I',, the set of all open
Lie K/k-subalgebras of P of codimension n. Then T, is a subset of the
Grassmanian of all subspaces of codimension »; we will not describe it any
further. Let II(G, P) be the set of all Lie K[P]-algebra structures of co-
finite kind on G. Then by Theorem 4.6(iii) there is a map =:II(G, P) —
T,, with 7~ 1(P) = II(S, P) for P €T,.

Thus we may (and will) assume for our classification that G = §, P
=P

6.2. Since K is algebraically closed, there exists a linearly compact
Lie Q-algebra G° with G = K ® o G°. We give G the split K [P]-structure
(1.8); then G is a linearly compact K [P]-algebra (2.4.3). As in 1.8.3, we
denote the split action of p € P by p°. By 2.2.5, any other Lie K[P]-
algebra structure on G is given by a differential 1-form w:P — DergG
such that dw = —12[w, w]. The conditions for the structure defined by w
to be linearly compact are given in 2.4.7.

The algebra G can be considered in a natural way to be the comple-
tion of a graded Lie algebra (cf. [Gui 2]); we write G = L;» _, G;. Then
we can express DeriG, the space of continuous derivations of G, as
Derk G = L;(Derg G);. We know that Derk G is the semidirect product of
ad G and T, where T = 0if S is of type W, or K,,, and dim T = 1, with
t € T acting as a scalar on each G, if G is of type H, or S,,. In particular,
T < (DerkG)y, DerkG = L, _, (DerkG);, and L; o (DergG); =
Lico(ad G); = L, G;.

Let us write w(p) = L;» —; X; ,, with x; , € (DergG);. Set ¥,(p) =
x_5,+tx_y,.Theny,maps PtoG_, + G_;. Also we may write xq , =
xg,, tt,, wherexg , € (ad G), t, € T. Recallthatz, # 0 implies that G is of
type H,orS,.
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6.2.1. LEmMA. Let G beof type H, orS,,. Foreach p € P, let \, € K
be the scalar by which t,, € T acts on G —;. Suppose that the system of equa-
tions {—N\, = plp (W)} pep is solvable in K for u (cf. 5.2). Then there exists
g € Autiy G (the continuous K-automorphisms) such that g Nw)p) =
¢ 'pg + g 'w(p)g€ad G.

Proof. Define 7€ AutiGby: 7(x) = (—p)ixforx € G;.Forx € G;, we
have (7 p7)(x) = (—pu) “p(—p)x by 2.3.2(iii). Since (—p) "ip(—p) =
(—w 7 i(—p p(—w) = ip"'ppu = i\,, we have 77 pr = —t,. Then
(v lw)p) = —t, + ad T_I(xp ), and our result follows.

6.2.2. Using 6.2.1 and the fact that G = ad G, we have that every
linearly compact K [P]-algebra on G is given by a form w:P = G.

PrOPOSITION. Let w:P — G be a form with dw = —2[w, w]. Then
the K|[Pl-algebra structure on G given by w is linearly compact iff w is
continuous.

Proof. Suppose that w is continuous. We must establish (i) and (ii)
of Proposition 2.4.7. Condition (i) is automatic. Let U be an open sub-
space of G. By [Gui 1, Proposition 2.2], there is an open subspace V of G
with [V, G] € U. Since w~}(V) € Py, Py is open.

Conversely, assume that (i) and (ii) of 2.4.7 hold. Let U be an open
subspace of G. Then U contains an open subspace V of the form V =
L;». G;, some n. Note that if [x, G] € V,thenx € ;> ,+1 G; € V& U.
Thus Py S w IU), s0o 0 (U) is open. Thus w is continuous.

6.2.3. COROLLARY. Let w:P — G determine a linearly compact
K [P]-algebra structure on G. Then ker y, is open.

Proof. Note that ker ¥, = &~ !(Z;»¢ G;), and apply 6.2.2.

6.2.4. Let w:P — G determine a linearly compact K[P]-algebra
structure on G. Let us re-formulate the action on w of g € AutyG.

Let x, y € G. With our identification of G with Ad G, we have
(e %)) = g Ulx, g = [g7'®), y] = g~ &x)(»). Thus, g "'xg =
g7k, .

Thus we have: g~ {(w)(p) = g " 'pg + g w(p)).

Suppose that g = exp ad y, y € G. Then by 2.3.1 we have

_11' d d i—1
¢™'pg = (pip) = — T 0 D" (p(ady)).
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Now p(ad y) = ad p°y, and for any z € G we have (ad(ad y))(ad z) =
[ad y, ad z] = ad[y, z] = ad((ad y)(z)). Thus upon identifying G with
ad G, we have

i—1
g lpg=— L (1) X (ady)

i>0

(p°y).

6.3. Since the proofs of the results of this section are cumbersome
and computational, we will state some of them here and prove them later.

By 6.2.2, the linearly compact Lie K[P]-algebra structures on G are
given by the continuous forms w:P — G satisfying dw = —12[w, w].

6.3.1. THEOREM. Suppose that P has a commuting basis. Then the
K [P)-module G is of cofinite kind iff ., is surjective: i.e., Y ,(P) = L; . G;.
The proof will be given in 6.5-6.7.

6.3.2. Let w and w’ be continuous 1-forms with values in G. Sup-
pose that w and w’ determine Lie K [P]-structures on G, and that y,(P) =

Lico G = ¢, (P).

THEOREM. If Y, (p) = Y. (p) for all p € P, then there exists g €
Aut% G such that g(w) = w’.
The proof will be given in 6.8.

6.3.3. For G of type W,,, the above results lead to a description of
the “moduli” spaces for the Lie K[P]-algebra structures on G such that
V,(P) = G_;. For the types H,,, S,,, K,,, we obtain much weaker results.

For a Lie algebra G of Cartan type, let II(G, P) be the set of Lie K [P]-
algebra structures on G for which ¢, (P) = E;.o G; (where w is as in 6.2.2),
considered up to continuous isomorphism. This II(G, P) consists of fibers of
that of 6.1. By 6.2.1 and 5.1, the elements of II(G, P) can be considered as
G-connections.

For each 1-form w, set P, = {p € P:y,(p) = 0}, P, = {p € P: w(p) —»
= 0}. By [Rud, Theorem 1], each continuous K-automorphism g of G pre-
serves the filtration. Thus, g " !pg preserves the filtration, and so must lie in
Li»0 (DergG);. Since g Y w)(p) = g 'pg + g (w(p)), it follows that
P, = P,, Py, = P,. Therefore the correspondence » — P, determines a
map 7:II(G,P) > T,,n = dim X, G;, forcases W,, S, , H, . For the case
K, , the correspondence w — (P, P,) determines a map =:II(K,, P) —
Ty, where I'; ,, is the subset of the set of incomplete flags consisting of a
K-subspace of P of codimension 1, containing an open Lie K/k-subalgebra
of codimension n.
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THEOREM.

() I(w,,P)=T,.
(i) If Gisof type S, or H,, then w~'(\), \ € T',,, is a subset of K*/k*,
or of GL(n, K)/Sp (n, K) - k* respectively, where k = {\ € K:p\
= 0 all p € P}.
(i) If G is of type K,, then T '(\), \ € T'y,, is a subset of
GL(n — 1, K)/Sp(n — 1, K).
This theorem will be proved in 6.9.

6.4. In this section we will prove an existence theorem for solutions
of certain equations in Lie algebras of Cartan type. Let G be a simple Lie
algebra of Cartan type. Let R be a subspace of G_{, and letc € G_,. If G
is of type K,, assume ¢ # 0; otherwise we must have ¢ = 0. Now set
[r1, 2] = ®(ry, ry)c forry, v, € R.

Let g = 0. Suppose that we are given f, ;. € G,_{, and also a linear
map R — G,, withr = f, forr € R.

THEOREM. Suppose that
[rs ford = Ir', fo,1 = &, r)fy—1,c for r,r'€R.

[r’fq—l,c] = [c9fq,r]'
Then there exists fy+1 € Ggiy such that f,, = [r, f,41] for r € R, and
fq—l,c = [c9 fq+1]~

6.4.1. We will first reduce this to the case R = G ;. Letry, ..., 7,
be a basis for R, and 7y, ..., r, a basis for G_;. We assume that we are
given f, .., ..., fg.r, satisfying the hypotheses of the theorem, and we
would like to extend this list to £, , . ..., fg,, . It suffices to find £, , .

Let z = [rpt1, fy—1.c) Let z; = [rpy, for ] + @i, 1) fg—1

for1 <i < m. Thenfor1 < i, j < m we have
[rj’ Zi] e [rj9 [rm+1’fq,ri]] + q)(ri9rm+l)[rjafq—1,c]
= [rm+19 [rj’fq,ri]] + d)(rj’rm+1)[c’fq,r,-]

+ <I>(r,~, rm+1)[rj’fq~l,c]

= [rm+15 [rhfq,rj]] + q’(rj, ri)[rm+17fq—1,c]
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+ ®(rj, rrle, for,] + @@ 1t Dy, fr—1,c]

= [r;, [rm+1,fq,,j]] + ®(p+1, r,-)[c,fq,,j] + &, 7))z
+ @@, rr e, for ] T @i, 1t Dlry, fr—1.c]

=lri,z;] = Iris @@y frur 1) fg—1,e] + 2,7z
+ @@, rmt1le, £,

= [r;, z;] + ®@;, 7))z

Also,
[rj, 2l = Irj, [Pt 15 fg—1.c]]

=@, 1) fa—1,e] T P15 75, fg—1.cl]
=le, @@y, rm+1)fg—1,e] T [Fmtrs e, for]]
= le, @, rm+1)fg—1,e] T 65 [Pmt1s for, 1]
= [e, z;].

Thus, by induction we can find f,, . with[r;, f;, 1= z; = [rpt1,
fard T @iy s ) g1 for 1 < i < m, and [e, fo,, ] = [Fm+1
fa—1.], as required.

6.4.2. We now prove the theorem for the cases G = W, §,, H,.
By 6.4.1, we may assume R = G_;. Letry, ..., r,, be abasisof G_;. Let
Y1 -5 Y be elements of G, with [r;, y;] = [r;, y;]1forl =i, j <= m.
Let ¢:G_; = G, be the linear map given by ¢(r;) = y;, for1 =i < m.
Since [r;, ;)] = [r;, yi1 = [ri, y;1 = [ris @(r;)], it follows by [Rud,
p. 711] that ¢ = ad y for some y € G4

6.4.3. Our proof for the case K, is a direct computation using the
realization of K, and the following well-known result.

LemMma. Let fy, ..., f,, be homogeneous polynomials of degree t in
X1s + vy Xy, 0 = m, such that 3f;/3x; = 3f;/0x; then there exists a homo-
geneous polynomial f of degree t + 1 with f; = df/dx;, i =1, ..., m.
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We shall write 0; in place of 3/0x; .

The type K, is realized [cf. Rud] by K[[x{, ..., x,]], » = 2m + 1,
with the bracket given by [f, g] = 2¢ — L;<,—1 x;0;2)0,.f + 2f —
Li<n—1%0;f)0,8 — Li<m (0:if0i+m& — 0:80i+mf). The space G; is
spanned by the homogeneous polynomials of the form X P x;,, where P,, is
a homogeneous polynomial of degree i — 2o + 2 in the variables xy, ...,
x,—1. In particular, G_, is spanned by 1 (and consists of constants), and
G_{ = L;<,—1 Kx;. For any polynomial P not involving x,, we have
[x;, Px2] = ax;Px2 ' — 8,4, PxSif i < m, [x;, Px%] = ax;Px¢"! +
0;_mPx%if m < i < n,and[1, Px%] = 2aPx2" 1.

By 6.4.1, we may assume R = G _;. We will take ¢ = 1; then [x;, x;]
=®;, x;)fori,j =n— 1.

Suppose that y; = LP; ,x; € G,, 1 <i<n —1,andy = LP,x; €
G,-1, satisfy the equations of our theorem. Let us first observe that for
any Q € G 41, the elementsj;, = y; — [x;, Ql, 1 =i<=n—1Lj=y —
[1, Q] will also satisfy the equations of the theorem, and that the conclu-
sion holds for y;, y iff it holds for ;, j.

Let 8 be the largest power of x,, which effectively enters in at least one
y;orin y. There are two cases to consider.

(i) x5 enters effectively in y.

Comparing coefficients of x in the equation [x;, y] = [1, y;], we find
—8i4mPs=0,1<i<m,and9d;_,Pg=0,m +1=<i=<n— 1 Thus
Py is a constant. This shows that ¢ = 28 — 1, and thus that 8 > 0 in this
case. We can find a constant Qg so that [1, Qﬁxﬁ““] = Pﬁxﬁ . Note that
[x;, Qexf*11 = (B + 1)x;Qpx5. The elements 5, = y; — [x;, Qﬁx,‘f“],
l<i=<n—1,5=y— [1, Qpx*"] also satisfy our equations. Since xP
does not occur in ¥, and x, occurs in j;, j only to powers less than or
equal to 8, we are reduced to the second case.

(ii) xﬁ does not enter in y.

Comparing coefficients of x5 in the equation [x;, y;] — [x;, y;] =
[x;, x;]y, we find that 0;+,,P; 3 = 0j+mPigfori,j = m, 0;—,P;g =
8j_mP,-,ﬁ form <i,j <n— 1, and 43,-+ij,3 = —Bj_mP,-,B fori < m,
m<j=<n—1 SettingQ; =Py, gfori <m,Q;= —P;_, gform <i =<
n — 1, wehave 3,Q; = 3;,Q; for 1 < i, j < n — 1. By the lemma, we can
find a homogeneous polynomial Q in xy, ..., x,_; of degreeg + 1 — 28
with —9;4+,Q = —Qi4,, = P;gfori < m, and 9,_,,0 = Q;—,, = P
form<i<n—1Nowsetj;=y, —[x,Oxfl,1<i<=n—15=
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y — [1, Ox8]. Then the 7;, j satisfy the equations of the theorem, but do
not involve x2. We are done by induction on 8.

6.5. The following is needed to simplify treatment of the case K,.

LemMA. Let G be of type K,,. Write w(p) = Lx; ,. Suppose that
X_yp, # 0 for some p € P. Then there exists g € AutikG such that
g Nw)(p) = X3, p (for that particular p).

Proof. We construct g inductively. Suppose that we have found
gm € AutiG so that g, Y(w)(p) = X5, mod L., G;. Say e\ p) =
X_3, +zmod Lz, +1 G;, withz € G,,. Since [x _, ,, G, 2] = G,,, we
canfindy € G, 1y such that [x_, ,, y] = —z. Leth = exp ady € AutiG.
Now 2 Ng, {(w)p) = B ph + k™Y g, (w)p)) by 6.2.3. We have
h7lph € L2 pnis G;, and b~ (g, Y(w)(p)) = X_gp tz+ [—y,x )]
mod L;.,,+1 G;. Thus with g,+; = gnh, we have g,i (o)(p) =
r Hgm (@)(p) = x_p, mod L;5,,+; G;. Since G is complete, the g,,’s
converge to an automorphism g with the required property.

6.6. We take another step towards the proof of Theorem 6.3.1.

Let {b;} be a commutative basis for P. Changing notation if neces-
sary, we may assume that b, ..., b, forms a basis for a complement P’ to
P, = {p € P:y,(p) = 0}. Since P’ is a Lie K/k-subalgebra, we can con-
sider G to be a K[P’]-module. Suppose that ¥ ,(P’) # L;.o G;. We shall
show in 6.7 that in this case for any g = 0 there exists 0 # y € L;», G;
with p’y = O for all p’ € P’. Let Y, be the subspace of G spanned by all
such y’s. Note that if b; is a basis element and P’y = 0, then for 1 <
J = rwe have b;(b;y) = b;(b;y) = 0; thus, P'(b;y) = 0. This shows that
it Py =0,y €Lz, G;, then Py S Y, . Since Y, is the span of such y’s,
we have PY, € Y,.

For every open subspace N of G, we have L., G; S N for some g.
Since K[P]Y, € Y, S N, the fact that Y, # 0 shows by 2.6 that G can-
not be of cofinite kind.

Conversely, if ¢,(P) = XL,.( G;, then N = L,. G; satisfies the con-
ditions of Proposition 6.2.1, so G is of cofinite kind.

6.7. Let us proceed with the proof of 6.3.1.

By 6.6, we may assume that P = P’—that is, that ¢, is injective. As
in 6.5, we write w(p) = Lx; ,, x; , € G;. By 6.5, we may also assume that
ifx_,, # 0 for some p € P, then there exists e € P withx;, = 0 fori =
—1,x_5, = c(withc asin 6.4). We write T = {t € P:x_,, = 0}. Clearly
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P =T @® Ke. For py, p, € P, write [p1, p2] = t(p1, p2) + Np1, p2)e,
where t(py, p2) € T, N(p1, p2) € K.

6.7.1. LEMMA. Forty,tr€ T,wehavel[x_y, ,x—1,] =X 2,0, =
Ay, ta)e.

Proof. By 2.2.5, we have [w(t), w(t)] = w((t;, t2]) — trw(ty) —
t5w(t1). The result follows.

Note that this gives N(z1, £5) = ®(x—y, ,x—1,,) forz;, ¢, € T, with &
as in 6.4.

6.7.2. LEMMA. Suppose that i ,(P) is a proper subspace of L; .o G; .
Then for each q = 0, there exists 0 # y, € G, with [{,(P), y,] = 0.

Proof. We give a case by case proof, using the realizations.

The type W, is realized as the Lie algebra of derivations of K [[x4, ...,
x,1]. The derivations from G are those of the form £ P;d;, where each P;is a
homogeneous polynomial in x;, ..., x, of degree i + 1. After a linear
change of variables, we may assume ¥,(P) € Kd; + --- + K3,—;. Then
we may take y, = xitla,.

The type S, is realized as the subalgebra of W, consisting of those
g = LP;0; satistying £3,P; = 0. With y,(P) € K0, + --- + K3, as
above, take y, = xit1g, ..

The type H,, is realized (cf. [Rud]) as K [[xy, ...,x,]]l/K,n = 2m, with
the Hamiltonian bracket as its operation: [P, Q] = X;<,, 0;P0;1,,Q —
9;Q0;4,,P mod K. The space G; consists of the polynomials of degree i +
2 > 0. After a linear symplectic change of variables, we can assume ¥,(P) S
Li<, Kx;, and take y, = x4,*2,

Finally, suppose that G is of type K, . We will use the notation from the
beginning of 6.7. If ,(T) = G _{, then by 6.7.1 §,(P) = E;<(G;. Thus we
may assume that ¥,(T) & G _;. The realization of K, was given in 6.4.3;
arguing as for the case of H,, we may assume that ¢,(T) € L,.,—» Kx;.
Then we may take y, = xf,f_zl) /-

6.7.3. We now establish the needed extension result.

As above, for p € P write w(p) = Lx; ,, where x; , € G;. Recall that
x_p, =c. Forany y € G, write y = Ly;, where y; € G;, and by = Ly,
where b € K[P], y; , € G;. Thus, yi p = b°yi + Ziyj=k [xi 5, y;]-

PropPOSITION. Lety = L/X_,y;,wherey;€ G;,i=—2, ..., m. Sup-
pose thaty;, = Ofori < m,t €T, and y;, = 0 fori < m—1. Then there
exists Ymi1 € Gt1 S0 that, with y' =y + y,+1, we have y;, = 0 for
i<m+1,teT,andy;, = 0fori < m.
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Proof. For ty, t, € T we have [x_1,, Ymi,] = Ym—1,41,- Thus,
[x—l,t,9ym,z2] - [x—-l,tz’ym,tl] = Ym—Llt1,t] = Ym—1,8(,15) +ym—1,>\(t1,t2)e
= N1, )Y m—1,e = (X —1,0,5 X—1,1,)Ym—1,e- We also have e, ymi:l —
(X165 Ym—te] = Ym—2,0t = Ym—2¢ = Ym—2,e,q = 0. By Theorem 6.4,
there exists y,,+1 € Gp+1 With [x_1;, Yy,n+1] = —ym, for allz € T, and
[C, ym+1] = " Vm—1le-

Now set y' = y + y,,4+1. Fori < m we have y;/, = y;, = 0; we have
Vot = Yms T =10y Yms1] = Y = 0. Also, for i < m — 1 we have
yi/,e = Vie = 0, and yr:l—l,e = Ym—1,e T [x-2.e, Ym+1] = 0.

6.7.4. Itis now easy to complete the proof of 6.3.1. Given g = 0, take
y = y, exhibited in 6.7.2. By applying 6.7.3 inductively, we construct
Y = Lis4 ¥, Withpy = 0, all p € P. By 6.6, the proof is complete.

6.8. Let us now prove 6.3.2.

Write w(p) =x, = Ex; ,, 0 (p) =X, = Lx;,, p €P, X, p, x;, € Gj.
We are assuming that ¢ ,(P) = G_, + G_; = ¥,(P), and thatx _, , =
X1y, %1, =Xy, all p € P. We will write H = P, = P, = {p € P:
X_3, =0 =1x_1,}, T = {t € Pix_y, = 0}, e € P defined (in the
case K,)byx_y, = 0,x_5, = c, c from 6.4.5. Let T be a complement of
HinT.

We will construct inductively an element g € Autk with g 7' (w") = .
We may assume that there exists g,, € Aut’,xG such that (g, Yw)@); =
w(®); fori < m, t € T, and (g,, (w')(e)); = w(e); for i < m — 1. These
assumptions hold for m = 0 with g, = Id.

In constructing g,,+, we may replace w’ by g, Y(w’). Then we have
x;, =x;,fori <m,t€T,andx;, =x;, fori <m— 1.

Let us consider G to be a K[P]-module via w; that is, for p € P,
y € G, we will write py = p°y + [x,, yl. Since y = w’ — w defines
another structure, we have by 2.2.5 that dy = —Y2[y, y]. Writing
v(p) = £x/p, X, € G;, we havex;, = Ofori < m,t €T, and x;”, = 0 for
i<m-—1

In particular, forf,, 7, € Twe have y([7}, £2]) = #1v(f) — Ly (f;) +
[v(£1), v(#,)]. Let us write [}, £,] = Ae mod T. Comparing terms of
degree m — 1, we have )\x,’,:_lf =[x,y %m 5] = 1,850 Xz, -

We also have, for all7 € T, y([e, £]) = ey(£) — fy(e) + [y(?), v(e)].
Comparing terms of degree m — 2 yields 0 = [x_3., Xzl — [x—1,7s
xr:,t—l,e]-

It now follows by 6.4 that there exists y,,+1 € Gp+1 With [x _1 7, ¥, +1]
=xmpt €T, and [x_,, Ymt1] = Xpm—1,.. We would like to show that
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[x_1,:» Ym+1] = x,,,, for all ¢ € T. It suffices to show that X, , = 0 for all
h € H. Now since w([h, t]) = E°w() — t°w(h) + [w(h), w(@)] for h € H,
t € T, we clearly have [H, T] € T. Comparing terms of degree m — 1in the
equation

v([h, T]) = hy(£) — Ey(h) + [y (R), v (D)],

where h € H,7 € T, yields0 = —[x_y 7, %, ,]. Since G_; = {x_; :F € T},
the result x,, , = 0 follows.

Now let f = exp ad(—y,,+1). By 6.2.3, we have f_l(w’)(p) =
f 1(w’(p)) mod X;.,,+1 G;. Then for ¢ € T, we have f— 1(w’)(t) = w'(t) +
[ym+1’ x—1,] mod Lz 11 G;. Since [ypi1, X—1,] = —Xpmy = Xy —
xm’t, we have (f~ 1(w’)(t)) = x;, for i < m. Similarly, f_l(w’)(e) =
w’(e) + [Ym+1,%—2,.] mod E,>m G, yields (f ~1(w')e)); —x,efori <=m-—1.

In terms of our original w’, we thus have (f~ g Ha)N®); = w(@);,
i< mteT, and (f gy @M@ = wle), i < m — 1. We set
2n+1 = &nf Since G is complete, g = lim,,,, g,, is a well-defined con-
tinuous automorphism, and g_l(w ') = w, as required.

6.9. Proof of 6.3.3.

6.9.1. We first consider the case W, . We wish to show that = in-
duces a bijection from the set of Lie K[P]-algebra structures of cofinite
kind on G = W,, to the set of open Lie K/k-subalgebra of P of co-
dimension 7.

(i) We first show that if 7(w) = w(w’), then w and w’ define isomor-
phic Lie K[P]-algebra structures on G. Let py, ..., p, be a basis of a
complement to P, = P in P. Then by 6.3.1, w(p{)—y, ..., w(p,)—; and
o (p)_1, -.., @ (p,)—; are both bases of G_;. By [Rud, Theorem 2]
there is a continuous automorphism of G taking one of these bases into
the other. Then w, w’ define the same structure by 6.3.2.

(ii) Next, we wish to show that for every open Lie K/k-subalgebra P’
of P of codimension r, there exists « € II(W,,, P) with 7 () = P’. Given such
aP’, let A = Homgp (K [P], K), with the associative K [P]-algebra struc-
ture of 1.10.5. As a K-algebra, A is isomorphic to K[[x{, ..., x,]]. Thus,
DergA represents W,,. When Derg A is endowed with the Lie K [P]-algebra
structure of 1.9.5, it has the required properties.

6.9.2. We now consider the cases S, and H,,.
Fix an open Lie K/k-subalgebra P’ of P. We wish to describe the set
7 1(P’) of equivalence classes of 1-forms w:P — G which determine lin-
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early compact Lie K[P]-algebra structures of cofinite kind on G, for
which P, = P’.

Fix a basis p;, ..., p, of a complement to P’ in P. By 6.3.1,
w(py), ..., w(p,) is a basis of G_;. By 6.3.2, the assignment w = w(p;),
..., w(p,) sends non-equivalent forms to different bases. Thus it suffices
to describe equivalence classes of bases.

In the cases S, and H,,, the group of continuous automorphisms is
the semidirect product of the inner automorphisms and the multiplicative
group G,, (cf. 6.2). It follows from 6.2 that only the subgroup G,,(k) of
G,,(K), where k = {\ € K:p\ = 0 all p € P} preserves the property that
w(P) € ad G. Thus, two bases will represent the same element of II(G, P)
only if one can be moved to the other by an element of the group SL(m,
K)E* (in the case S,), or Sp(n, K)E* (in the case H,). Since GL(n, K)
acts simply transitively on the set of all bases, we can represent the
equivalence classes as elements of the quotient GL(n, K)/SL(n, K VE* =
K*/E* (in the case S,) or GL(n, K)/Sp (n, K)E* (in the case H,).

6.9.3. We now consider the case K.

We fix an open Lie K/k-subalgebra P of P of codimension n, and
K-subspace P’ of codimension 1 containing P. We wish to describe the set
of equivalence classes of 1-forms w as above, with P, = P, P, = P’
Select a basis py, ..., p, of a complement of P in P, in such a way that
P15 - - -» Dn— forms a basis of a complement of P in P’. Then each 1-form w
is assigned to the basis w(p;), ..., w(p,)of G_;.

The group of all linear transformations of G_, + G_; which
preserve G _ is the semidirect product K"~ ! X GL(n — 1, K) -K*. The
group induced by Autiy G on G_, + G_ is the group of transformations
which preserve G_;, which preserve a skew-symmetric form on G_; up to
a scalar, and which act as the same scalar on the one-dimensional quo-
tient (G_, + G_{)/G_. This group is K" ™! X GSp(n — 1, K). This
establishes 6.3.3(iii).

6.10. We owe to J. Hrabowski the observation that if P is finite-
dimensional and contained in Der,K, then it will have a commutative
basis. Indeed, Homg (P, K) is spanned by the maps & defined for o € K,
pE€Pby &(p) = p(e). f &;, ..., &, is a basis of Homg (P, K), then the
dual basis of P is commutative.

7. Algebraization. We wish to consider the question of whether the
formal groups of Ritt of section 3 can be considered to be the completions
at the identity of some sort of ‘“‘algebraic groups.”
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7.1. Definition. Let B be a cocommutative K/k-bialgebra. Let A
be a commutative B-algebra. Then we say that Spec A is an algebraic
B-scheme. When A is a commutative B-Hopf-algebra, we say that Spec A
is an algebraic B-group.

When B is an algebra of differential operators, we will say that Spec A
is affine if A is generated by a B-module of cofinite kind.

7.1.1. Remark. The above definitions differ from those of differen-
tial algebraic varieties and groups given by Ritt, Kolchin, and Cassidy.
The difference is that they consider only the points of varieties with coeffi-
cients in K. We consider all of their “derivatives” as well. Thus, the object
that they consider is the projection of our object onto the “real” (as opposed
to the “differentiated”) space. To restore the balance, they are forced to
make certain adjustments.

7.1.2. Consider the case B = K[P]. We assert that a Lie B-algebra
of Cartan type cannot be the Lie algebra of an algebraic B-group. Indeed,
since any commutative Hopf algebra is the union of its finitely-generated
sub-Hopf-algebras, its Lie algebra will be the projective limit of finite-
dimensional Lie algebras; thus, no infinite-dimensional simple Lie
algebras can occur. This suggests that our definition of algebraic B-group
might have to be extended.

7.2. Let G be an affine algebraic k-group, and Lie G its Lie algebra.
We showed in 5.2 that if (Lie G)(K) is simple (so that (Lie G)(K) = Derg
(Lie G)(K)), then every Lie K[P]-algebra structure on (Lie G)(K) comes
from a corresponding K[P]-Hopf algebra structure on K ® A. Thus,
Spec (K ® A) is an algebraic K [P]-group whose Lie K [P]-algebra is (Lie G)
(K). We would like to show that if a Lie K [ﬁ]-algebra (Lie §)(K) comes
from an (affine) algebraic K[P]-group, then so does Homgs)(K[P],
(Lie §)(K)), where P and P are related as in section 4. This follows from
rather general considerations, which we outline in the next subsection.

7.3. Produced schemes.

7.3.1. Definition. Let B C B be cocommutative K/k-bialgebras.
Let G = Spec A be an affine algebraic B-scheme. Then a pair (F, ¢) con-
sisting of a B-scheme ¥ and a map ¢:F — G of B-schemes is said to be
produced from G if for every pair (3C, 7) as above, there exists a unique
map §:3C = F of B-schemes with 7 = ¢ o 0.

7.3.2. Free commutative B-algebras. Let M be a B-module. The
symmetric algebra S(M) has a B-algebra structure, with (1) = e(b)1,



DIFFERENTIAL FORMAL GROUPS 997

b(m, ooy m,) = E,-(bliml) e (b,im,), for b € B, my, ..., m,€ M. For
every commutative B-algebra D and every B-module map f:M — D,
there is a unique B-algebra map f :S(M) — D which extends f.

7.3.3. Construction of the produced scheme. let M be a
B-submodule of A which generates 4 as a B-algebra. Then we have a sur-
jective map A:S(M) — A of E-algebras; write J for its kernel. The map
i:M—> B ®3M,i(m) =1 ® m, extends to an algebra map i:S(M) —
SB ®z M). Write (BJ) for the B-ideal of S(B ®3 M) generated by
i(J). Then C = S(B ® 5 M)/(BJ) is a B-algebra, and we have a natural
map ¢*:A — C of B-algebras. We claim that § = Spec C is produced
from G.

Indeed, let D be a commutative B-algebra, and 7#:4 — D a map of
B-algebras. Since A = S(M)/J, 7* extends uniquely to a B-algebra map
from S(M) to D. This map extends uniquely to a B-algebra map from
S(B ®jz M) to D, which clearly vanishes on (BJ) and thus passes to a
B-algebra map 6*:C — D. Then 6* is the unique B-algebra map with
0% o p* = 7%, as required.

7.3.4. Produced group schemes. Suppose that G is a B-group
scheme, with multiplication u: G X G — G and inverse «: G — G. Then
the B-scheme maps u » (¢ X ¢) and ¢ o ¢ lift, by the produced scheme
property, to B-scheme maps u:F X § - F, «:F — F, which make F
into a B-group scheme. The corresponding B-algebra homomorphisms
A:C—> CQ® C, S5:C — C satisty A(bp*(a)) = Lbhio*a;) @ byp*ay),
S(bo*(a)) = be*(S(a)),a € A, b € B.

7.3.5. Tangent spaces. We now assume that B and B are Hopf
K/k-algebras. Let x:C — K be a B-algebra map. Then its kernel I, is a
B-ideal. The map ¢(x) = x o ¢*:A — K is a B-algebra map, whose kernel
I, is a B-ideal. We have a B-module map f : B @3 (,0)/Iow)) = I /17
given by f(b ® a) = bo*(a) forb € B, a € I .

Write N = B ®jp I, /I%y. The B-module D = K @ N has a
K-algebra structure given by (A, n)(\’, n) = (AN’, An’ + \'n) for
N, N €K, n,n’ € N, making D into a B-algebra. The function g:4 — D,
ga) = (p(x)a), 1 ® (@ — px)a)l)) is a B-algebra map. Thus there
is a B-algebramap h:C — D with h o o* = g.

It is easy to check that C is generated as a K-algebra by Be*(A4), and
thus that I, is generated by B¢*(I,)). This means that A(I,) C N, and
that & induces a B-module map f’:I,/I*> — N. Then f'(bg*(a)) =
h(be*(a)) = bh(¢*(a)) = bg(a) =b @ aforb € B,a €1y, sof = f '
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The tangent space to F at x is the B-module T'(F), = Homg (I, /12, K)
= Homg (B ® I /I3, K) = Homz(B, Homg (I /Iy, K)). That
is, T(F), = Homz(B, T(G) ) as B-modules.

When § is a group scheme, ¥ is also a group scheme, and we have Lie
algebras (Lie G)(K) = T(G)., (Lie F)K) = T(F),. From the above,
there is a B-module isomorphism 4 :(Lie F)K) — Homgz(B, (Lie $)(K))
given by (2 (X)(B))a) = (bX)(¢*(a)), for X € (Lie F)(K), b € B, a € A. Let
us verify that 4 is a Lie algebra map. For X, Y € (Lie §)(K), b € B,a € A,
we have

(h([X, YI)(b))a) = (b(XY — YX))¢*(a))
= Z((b1X)(B, ))¢*(@) — L((b; Y)(b2X))¢*a))
= L((b 1 X)(¢*(a))N(b,Y)¢*(a2))
— L((b, Y)(¢*(a)))(b2X)¢*(a2))
= X&) b )Na)(h(Y)b))Nay)
— (R (Y)b ) a)(h(X)b2)ay))
= Y[h(X)by), h(Y)(b,)](@) since B is cocommutative
= ([r(X), h(Y)](D))(a).

Thus 2([X, Y]) = [h(X), k(Y)], as asserted, and (Lie F)(K) = Homp
(B, (Lie G)(K)) as Lie B-algebras.

8. Open Questions.

8.1. We described the Lie algebras of formal groups of Ritt. The
question: “Are there non-isomorphic formal groups of Ritt with the same
Lie algebra?”’—remains open.

8.2. For Lie B-algebras one could study their irreducible B-repre-
sentations. The case when B = K|[P], dim P = 1, is probably within
reach. However the case when dim P > 1 seems to be very difficult. One
point is worth mentioning: if dim G < o and G is simple then it is not
possible to assume even after a field extension that G has a split structure.
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A representation of G may not extend to a representation of the group of
inner automorphisms of G, and therefore we can not make a structure of
G split by a group element which preserves the representation.

8.3.  Study, for a given B-representation M of a Lie B-algebra G, ex-
tensions of M by G. The questions 8.3 and 8.2, if answered, would cover
the third paper of Ritt.

8.4. Study the forms of a given Lie B-algebra G. That is, describe
all Lie B-algebras G’ suchthat G ® L = G’ ® L (asB ® L-algebras) for
some B-extension L 2 K. If G is simple, dim G < oo and K is algebra-
ically closed then we know by Theorem 5.2 that G is a form of a split
B-algebra.

Problems of forms are usually formulated in terms of Galois coho-
mology. But it is not clear to us whether any form is “split” over a “differ-
ential Galois” extension. If it is so then one has next to solve the problem
of computing the “differential Galois” cohomology.

On the other hand, the problem can be formulated as the problem of
finding the flat connections, i.e., the problem of describing orbits of Ad G
on {we€ Q(P, G)|dw = —[w, wl]}.

8.5.  One should be able to prove the results of section 6 without the
assumption that P has a commuting basis (c.f., however 6.10). Moreover,
our proof is not canonical at several points (for example, the choice of e in
6.7). We had a feeling that part of our difficulty is due to the fact that we
really work with something dual to our situation, but we were not able to
find out what this dual is. It is also possible that Blattnet’s techniques
from [Bla 2] may be extendable to our case.

8.6. More generally, Blattner’s [Bla 2] and Block’s [Blo] techniques
may permit one to obtain more general results; for example, they may give a
description of not only Lie but also associate, and Jordan simple B-algebras.

Appendix I. Hopf algebras. Let K be a field. A K-algebra is a
K-vector space A equipped with a K-linear map u:4 ®; A — A. The
algebra A is associative if u(p @ id) = p(id @ p):A XA VA - A.
A unit for 4 is a K-linear map 5:K — A for which id = u(y ® id):A =
K®kA—>Aandid = pu(id ® 7):A = A Qx K — A.



1000 W. NICHOLS AND B. WEISFEILER

Dually, a K-coalgebra is a K-vector space C equipped with a K-linear
map A:C = C ®g C. Our notation is A(c) = X; cy; ® cy;. The coalgebra
C is coassociative if (A @ id)A = (id ® A)A:C = C ®g C. A counit for
CisaK-linear map e: C — K for whichid = (e ® id)A:C > C =K ®xC,
andid = (id @ e)A:C > C = C QK.

A bialgebra is an associative algebra B with unit, which is a coassoci-
ative coalgebra with counit in such a way that A:B - B ®x B and
€:B — K are algebra maps. That is, we require A(1) = 1 ® 1, A(ab) =
Layby; ® aybjyjfora, b € B, e(1) = 1, e(ab) = e(a)e(b).

A bialgebra B is a Hopf algebra if there exists a K-linear map
S:B — BwithZ;S(by;)by; = e¢(b)1 = E;b;S(by;) for all b € B. The map
S is called the antipode, and, if it exists, is unique.

Let C be a coassociative coalgebra with counit. Then C is the union of
its finite-dimensional subcoalgebras. The sum of the minimal subcoalge-
bras of C is called the coradical of C, and is denoted C. The coradical fil-
tration of C is the sequence of subspaces Cy < C; € C, S ---, where
C,={ceC:Alc)eCy® C+C®C,_1}; wehave C = U, C,, and
A(C,) € Liyj=n C; ® C;.

An element g of C is called grouplike if A(g) = g ® g, e(g) = 1.
The grouplike elements are linearly independent. The coalgebra C is
pointed if Cq is spanned by the grouplikes, and irreducible if it has a
unique minimal subcoalgebra. In particular, a bialgebra B is irreducible
iff By = K1.

Let C be a coalgebra with a distinguished grouplike element 1. An
element p of C is called primitive if A(p) = p ® 1 + 1 ® p. The set of
primitives is denoted P, or P;(C). The subspaces P{(C) € P,(C) & ---
are defined by P,(C) = {p € C:A(p) —p @1 —p ® p e L'{ P;(C) ®
P,_(C)}. If C is pointed irreducible (i.e. C; = K1), then P,(C) =
C, N Kere.

Appendix II. Some notions from differential geometry. Let M be a
variety over a field k. The variety M may be differentiable with &k = R, or
analytic with & = R or C, or algebraic with characteristick = 0. Let § =
F (M) be the ring of (differentiable, or analytic, or regular) functions on M.

A vector field X on M can be thought of as a derivation of F—the
derivation is differentiation along X. Thus, the set P = P(M) of vector
fields on M is Der, §. We have that P is a Lie k-algebra and an F-module,
with the commutation of vector fields (Poisson bracket) satisfying [ 7 X, Y]
=fIX,Y] — Y(f)Xfor X, Y € D, f € §. If P has a commuting basis of
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complete vector fields, then M has a global co-ordinate system. In par-
ticular, M is a quotient of G}, and the basis can be taken to be the image
of the set of standard differentiations f — df/0dx;.

Let V be a k-vector space. An m-form on M with values in V is an
F-m-linear map w:P™ — F @, V such that, for each permutation 7 on m
symbols, w(Xy, ..., X,,) = (det DX 1y, - .., Xoom) forall Xy, ..., X,
€ P. The set of m-forms with values in V is denoted Q™ (M, V); it is an
F-module.

The exterior differential d:Q”(M, V) —» Q" Y(M, V) is defined, for
Xo, -+, X,, € P, by

)X, .. X)) = —— T (=1 X:((Xo, -+, Ki s X,y)
m+1 i=0

1 E (_1)i+j

+
m+1 o=<i<j=m

co(X:, X1, X0, - Xy oo X5, o X)),

For m = 1, this reduces to
dw)X,Y) = %(X(w(Y)) — Y(wX)) — w(X,Y]), for X,YeP.

Let G be a Lie group, complex analytic Lie group, or algebraic group,
and consider a principal bundle over M with structure group G. Since the
bundle locally looks like M X G, we will give definitions for this case only;
in general, one glues together local charts.

Consider the group Map(M, G)—the maps are differentiable, ana-
Iytic, or regular, as the case may be. The multiplication in this group is
defined componentwise: for £, g € Map(M, G), m € M, we have (fg)(m) =
f(m)g(m). The group Map(M, G) can be interpreted in two ways: as the
group of sections of the fiber bundle M X G, or as the points over & of the
“same” group G. According to the second interpretation, we can consider
Lie(Map(M, G)) as simply § ®; Lie G = Map(M, Lie G). Now for each
g € Map(M, G), define the differential 1-form dg € Q'(M, Lie G) by
dg(x) = g~ 'X(g). (Here X(g) is a tangent to G at the “point” g, and
g2 'X(g) is its translate to the identity). The 1-form dg is called the loga-
rithmic derivative of g.
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Now define the action of Map(M, G) on Q!(M, Lie G) by g Nw) =
dg(X) = g_lX(g). (Here X(g) is a tangent to G at the “point” g, and
g X (g) is its translate to the identity). The 1-form dg is called the loga-
rithmic derivative of g.

The above definition of a connection is not standard. In the standard
definition, a connection is a 1-form & on M X G with values in Lie G, sat-
isfying certain additional conditions. Our definition relates to the stan-
dard one as follows. Let & € Q' (M X G, Lie G) represent a connection.
Lets,:M — M X G be the identity section—that is, s,(m) = m X e for
m € M. Then s¥(@) = w € Q'(M, Lie G). Conversely, take any w €
Q!(M, Lie G). Now every section s:M — M X G is of the form s(m) =
m X g(m), m € M, for some g € Map(M, G). There is a unique con-
nection @ € Q'(M X G, Lie G) with s*(&) = g Ww)=dg + (Adg ™ H(w)
for all such s; indeed, & is defined by this equation and the requirement
that @(4*) = A, where A* is the vector field tangent to the fibers m X G,
m € M, and with constant value A € Lie G. For details, see [Kob, Section 1,
Chapter II] or [Spiv, p. 8-14].

Finally, the curvature of the connection represented by w € Ql(M, Lie G)
is the orbit of a 2-form Q@ = dw + 2[w, w] (Cartan equation), under the
action of the group Map(M, G) on Q*(M, Lie G) given by g(Q) =
(Adg)( Q). The expression [w, w] is a 2-form given by [w, w](X, Y) =
[w(X), u(Y)].
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