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Strong approximation for Zariski-dense
subgroups of semi-simple
algebraic groups

By Boris WEISFEILER*
To Armand Borel on his sixtieth birthday

1. Introduction

In this paper we show that Zariski density of a subgroup of a semi-simple
algebraic group implies very strong restrictions on its finite factor groups. An
important part of our results is contained in the following:

(1.1) Tueorem. Let k be an algebraically closed field of characteristic
different from 2 and 3, and G an almost simple, connected and simply
connected algebraic group defined over k. Let T be a finitely generated Zariski
dense subgroup of G(k) and A the subring of k generated by the traces tr Ady,
v € I'. Then there exist b € A, a subgroup T’ of finite index in T, and a
structure G,, of a group scheme over A, on G such that ' € G, (A,) and I'" is
dense in G, (Ab)

Here A, denotes the localization of A at b € A and A, denotes the
profinite completxon{]gI A,/ ,I<w(Ab /I). Then A , is a compact topologlcal ring
and G, (A ,) is considered with the topology inherited from A »- The precise
statements of our main results are given in (8.2) and (9.1.1).

This work grew out of [MVW] where the case A C Q was treated. I am
grateful to my coauthors in [MVW], C. Matthews and L. Vaserstein.

(1.2) To see what is at issue in the theorem above, let us consider the case
when A = Z and G is a group scheme over Z. Our theorem then implies (see
(10.5)) that roughly the same strong approximation result holds for all Zariski
dense subgroups of G(Z) independently of whether they are arithmetic or not.
This seems to imply that the strong approximation is a general algebraic and not
an arithmetic property. (But this is not strange since the Chinese remainder
theorem which is, essentially, behind our approximation results, holds in any
ring.) The fact that we do not use any arithmetic information enables us to
generalize strong approximation to Zariski dense subgroups (instead of arithmetic
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ones) and to base rings of higher dimension (instead of rings of S-integers of

global fields).

(1.3) Related to our approach is the fundamental difficulty that we have to
work with finite groups, and the structure of algebraic groups is often of no help
since the Zariski closures of finite groups are the groups themselves.

To compensate for this handicap we use classification of finite simple groups
in our first (in order and in importance) step (see § 3). The classification is used
in the form that the number of sporadic groups is finite. Our next step (again in
order and in importance) uses the Steinberg representation theory of groups of
Lie type in their characteristic (see § 4). Another point where we have difficulty
is in Section 7; but there the difficulty is self-imposed: we want to obtain a result
for all cases for which we do not know counterexamples. Therefore we have to
invoke in Section 7 very detailed information on the structure of Lie algebras of
algebraic groups in small characteristics.

(1.4) Let us go back to a Zariski dense subgroup I' C G(Z) and take
further, G = SL,. Such a T’ is naturally embedded into every SL o(Z,) where Z,
is the ring of p-adlc numbers. Since SL,(Z,) is compact and T is 1nﬁmte the
closure I, of T in SL(Z,) is not dlscrete Then it is a p-adic analytic group
and it has a nontrivial Lie algebra L which is a subalgebra of the Lie algebra
Lie SL,, of SL,. We have Ad y(L) = L by construction for all y € T'. Thus L is
invariant under the adjoint action of I' and, therefore, under the adjoint action of
the Zariski closure SL, of T'. Therefore L = (Lie SL 2)(Q,). This implies that T

(»)
is open in SL (Z ). Let T be the closure of T in SL (Z). Clearly T C n Ty
Let SL (p,Z,) be the largest normal pro-p-subgroup of SL A(Z,)- Then I‘ -
l_[ L,SL, (p, Z,). For the latter group to be open in SL (Z) one needs only ()
that Ir'-SL (p,Z )/SL,(p,Z,) is SL,(F,) for almost all p. This is essentially
shown in Sections 3 and 4 (although the pieces are put together only in (8.11)).
Once the isomorphism I' - SL,(p,Z,)/SL,(p,Z,) = SL,(F,) is established the
rest of strong approximation follows almost formally. The situation is however
different in positive characteristics where one must work to establish a similar

claim for reductions modulo squares of maximal ideals.

(1.5) Let us now briefly describe the main ideas and steps of the proof. First
of all, we make two general remarks: (i) We tried to keep difficult parts of the
paper as independent of the rest of the paper as we could, and (ii) As we have
already remarked, we strove for a result which would cover all the cases to which
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we do not know counterexamples (the counterexamples we do know are de-
scribed in (12.2)).

In this outline we use the expression “for most ideals” in place of “for all
ideals of an appropriate localization.”

Let k, G, T, and A be as in Theorem (1.1). Using ideas and methods of
E. B. Vinberg (see [V]), we establish in Section 8 that G has a structure G, of a
group scheme over A, that for some ¢ € A the ring A, is finitely generated and
regular, and that G,(A,) N T is of finite index in I'. We take for I'" a certain
normal subgroup of T' contained in G,(A,) N I'. Using standard results about
group schemes we can assume that G, is smooth, connected and semi-simple.
This means, in particular, that the reductions of G A, modulo the maximal ideals
of A, are semi-simple.

We fix two representations of G: one, denoted Ad, on L/C, the Lie algebra
of G modulo its center, and another, Ad Ad, on the algebra End(L/C) of the
vector-space  endomorphisms of L/C. We choose then a very small but still
Zariski-dense subgroup A of I'. Since A is Zariski-dense, its reductions modulo
most maximal ideals have the same enveloping algebra in the two representations
as the reduction of G itself. In particular, the reductions of AdA are absolutely
irreducible.

In Section 3 we show that the assumption that the reduction AdA,, of AdA
is absolutely irreducible severely restricts the structure of AdT,,. That is, it turns
out that AdA,, is the socle of AdT,, and is isomorphic to a product of finite
simple groups of Lie type in the same characteristic as A_/M. The proof uses
classification of finite simple groups. We write down a finite list of finite simple
groups, and then show that if a finite simple group H is not on the list but its
aniversal central extension admits a representation of a given dimension (=
dim(L/C) in our case) over a field K, then H is of Lie type and of the same
characteristic as K. To compile such a list we include in it all the sporadic groups
and then check that it suffices to augment it by only a finite number of the
remaining ones.

Once we know that our group is a product [ | 1 <i<N; of simple groups of
Lie type, we apply in Section 4 Steinberg’s representation theory of such groups
and extend the imbeddings of finite groups N, in GL(L/C) to representations of
the corresponding simply connected algebraic groups H,. This enables us to use
algebraic groups. We establish that if End(L/C) has the same submodule
structure under [IN, as under G (both acting via AdAd), then ¢ =1 and
H, = G. That the submodule structures under I[N, and G are the same will
follow from (8.9). It is worth pointing out at this point that the crucial argument
of Section 4, our proof of (4.8), depends on the type of H, and not on that of G.
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Therefore, although some types of G are excluded by the assumptions, the proof
of (4.8) cannot use these assumptions. The reader could, quite properly, 1nterpret
this as an indication of how lopsided the whole situation is.

The combined result of Sections 3 and 4, to wit, that the reduction of I
modulo most maximal ideals M of A, is G,(A,/M), is, actually, the main result
of the paper. It is, however, neither deduced nor invoked until (8.11). To extend
it to strong approximation requires work, but only work.

Sections 5 and 6 are preparatory for Section 7 and were separated to unload
and streamline Section 7. In Section 5 we study group schemes over finite local
rings. In Section 6 we obtain a cohomological result suggested by J. Bernstein. In
Section 7 we study reductions I'; of I modulo any cofinite ideal I. The essential
step is the case when I is the square of a maximal ideal. The difficulty here is that
I'y= might be isomorphic to G,(A,/M) but have the same ring of traces as
G4(A,/M?) (if it is skewly embedded into Gu(A,/M?)). We reject this
possibility (essentially) by showing that if T'y. = G4(A,/M) then A /M? —
A,/M has a ring section. Then the cohomological result of Section 6 shows
(again, essentially) that I'j. is conjugate to the group section G,(A,/M) —
G4(A,/M?) corresponding to the ring section A /M — A /M 2 Then, of
course, the traces of I';. are contained in A,/M in contradiction to the
assumptions.

An extension from the case I = M2, M a maximal ideal, to the case of a
general ideal is standard and easy.

In Section 8 the stage is set for application of results of Sections 3, 4 and 7
and the corresponding conditions are verified. This gives our main result in its
precise form: Theorem (8.2).

In Section 9 several, mostly straightforward, reformulations of (8.2) are
derived. In Section 10 we specialize to the case when A is contained in a global
field K. In this case the topology of A extends to the ring of adeles A ® 4 K
making it into a topological ring. This permits us to drop the assumption that T’
is finitely generated. On the other hand in this case we can under suitable
reasonable assumptions extend our claim to describe the closure of T' not only in
G, (A ) (Where G, is a smooth semi-simple group scheme over A,) but also in
G(A ®, K). In partlcular we recover the usual strong approximation theorem
over global fields of characteristic zero and extend it to integral Zariski dense
subgroups.

In Section 11 we describe an interpretation and generalization given by
D. Johnson and J. Millson of the Thurston bending. Given a cocompact arith-
metic lattice in SO(n, 1) one can, using Thurston bending, deform it inside
SO, ,n+1(C) or/and SL, , 5. 5(C), for every positive integer N, in such a way
that the result will be Zariski dense. This gives an example of a non-virtually-free
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group which can be imbedded as a Zariski-dense subgroup into infinitely many
absolutely almost simple algebraic groups over C. Applying to such an embed-
ding our results about Zariski-dense groups, we construct certain quotients of the
profinite completion of such a lattice. The considerations of Section 11 are based
on results reported by J. Millson at a seminar at Harvard; I am grateful to him for
the permission to use them here.

Section 12 contains an observation of D. Kazhdan about the similarity of the
present work to Serre’s problem on elliptic representations. We also give in
Section 12 indications of how our proof and results break down in the excluded
cases.

(1.6) After the present work had been submitted, I learned that Madhav V.
Nori in “Subgroups of SL,(Z) and SL,(F,)”, to appear in Invent. Math,,
obtained independently and simultaneously with us results which substantially
generalize the results of [MVW] and, in the case of I' C SL (k), k a number
field, also those of this paper (i.e. they contain our Theorem (10.5)). His
generalization permits non-semi-simple groups, and his proof does not use
classification of finite simple groups.

Norr's THEOREM. Let T' be a subgroup of SL ,(Z[1/m]) and let G be its
Zariski closure. Then the closure of T in l—[p rmSLin(Z,) contains an open
subgroup of 11 DAG)Z,)".

Here G(Z,)" is the subgroup of G(Z,) generated by the Sylow pro-p-sub-
groups of G(Z,,).

Nori’s motivation for finding the quoted theorem came from Serre’s work
[Se].

(1.7) Help and advice of J. Bernstein and D. Kazhdan were indispensable
for completion of this work. I use this opportunity to acknowledge my indebtness
and gratitude to them. My thanks also go to A. Lubotzky, C. Matthews, J.
Millson, Y. Nisnevich, C. Riehm, D. Sibley, J. Tits, L. Vaserstein, and W.
Waterhouse for many helpful suggestions and useful conversations. Finally I am
grateful to the Mathematics Department of Harvard University for hospitality
which made this work possible.

ptm

2. Conventions and notation

(2.1) At certain points in the paper we use terminology of finite group
theory, the corresponding general reference is [G1]. However, we recall that “p””
megns “prime to p”. In particular, a p’-complement in a group exists if a Sylow
p-group is normal; then it is a subgroup of order prime to p which together with
the Sylow p-subgroup generates our group. A semisimple finite group is one
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which has trivial radical, or, the same, has no commutative normal subgroups.
The socle of a finite group is the normal subgroup generated by the minimal
normal subgroups of that group. We use Sym, and Alt, to denote respectively
the group of all and even permutations of n letters.

(2.2) For any group abstract or algebraic, and for any Lie algebra we use
C(+) to denote its center, N.(+) (resp. Z.(+)) to denote the normalizer (resp.
centralizer) of the object in parentheses, in the object used as a subscript. Next
2'(+) denotes the i-th derived group or Lie algebra of the object in parentheses.
For a group H, again abstract or algebraic, and an integer n, we use H ™ to
denote the subgroup of H generated by the n-th powers of the elements of H.
For a subset S of an algebraic (or abstract) group H we use (S) to denote the
subgroup of H generated by S.

In some cases we use () /(center) to denote (+)/C(*); it should not lead to
confusion.

(2.3) If H is an algebraic group then C(H), Ny(*), Zy(*), D(H), H™,
and ( * ) are all considered in the class of algebraic groups.

(2.4) For an algebraic group we use “simple” or “semi-simple” to mean
“connected simple” or “connected semi-simple”.

For an algebraic group G and a ring A we use G, to denote a structure of a
group scheme over A on G. Then if B is an A-algebra we get automatically the
structure G, usually denoted G, ®,B, of a group scheme over B on G. If,
however, B is a subring of A then one needs to work to construct a structure of a
group scheme over B on G,.

(2.5) For a group scheme G, over a ring A, any one of “simple”,
“semi-simple”, or “reductive” is used in the sense of [SGA3J]; that is, G, is
assumed to be smooth with connected reductive fibers.

(2.6) For a semi-simple group defined over a field k we use G*(k) to
denote the normal subgroup of G(k) generated by U(k) where U is a maximal
unipotent k-subgroup of G contained in a Borel ksubgroup of G. For a
semi-simple algebraic group G over Fp and an endomorphism o of G(Fp) we
denote by G,(F,) the group of fixed points of G under o; if G,(F,) = G(k) for
some structure of an algebraic k-group on G, then we assume F, = k; if G,(F,)
is a finite group of Suzuki or Ree type then F, is the smallest field k such that
G,(F,) € Gy(k) for some k-tructure G, on G.

(2.7) All associative rings we consider are assumed to have an identity
element. For a ring A and b € A such that b is not a zero divisor, we use A, to
denote the localization of A at b. However Q, and Z, denote, as usual, the field
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of p-adic numbers and the ring of p-adic integers. We use A to denote the
profinite completion lim, ,; . (A/I) of A; here I runs through the set of
cofinite ideals of A.

(2.8) If G is an algebraic group (or group scheme) we use Lie G to denote
the Lie algebra of G. The adjoint action of G on Lie G is denoted Ad. For a
subset S of G(k), Z[tr AdS] denotes the subring of k generated by 1 and the
traces of Ads,s € S.

(2.9) For a finitely generated A-module M we use End(M) (resp. GL(M))
to denote both the algebra (resp. the group) of (invertible) A-endomorphisms of
M and the representable functors they define.

(2.10) Mat, (), GL,(*), SL,(*), SO,, and Spin, are used, as usual, to
denote the ring of all (n X n)-matrices, the group of invertible (n X n)-matrices,
the group of (n X n)-matrices of determinant one, the group of orthogonal
(n X n)-matrices of determinant one and the spinor group of a non-singular
quadratic n-space. SO(n, 1) denotes the real special orthogonal group of quadratic
form —x2+X,_;_.x?

i

(2.11) Z,N,N*,Q,R,C,Q,,Z,, Z/n all have the usual meaning: integers,
natural numbers (0 included), positive natural numbers, rationals, reals, complex
numbers, p-adic numbers, p-adic integers, integers modulo n.

(2.12) The symbol “:= " is used as follows: “A:= B” means that value B is
assigned to symbol A; in other words it is a substitute for “define A to be B”.
|A| denotes the cardinality of a set A.

3. Algebraicity of certain finite linear groups
Let k be a field of characteristic I # 0. The result of this section is:

(3.1) TueoreM. There exist positive integers m and r depending only on d
(and not on k) such that if H is a finite subgroup of GL ,(k), d € N*, which
satisfies:

(24H ™)< is absolutely irreducible,
then (2*H() . C(H)/C(H) is the socle of H/C(H) and is isomorphic to a
direct product of finite simple groups of Lie type and of characteristic 1.

(8.2) Amplification. (i) For m in the theorem one can take (d!)-b - c
where ¢ is the least common multiple of the exponents of the automorphism
groups of the sporadic simple groups, and b is the least common multiple of the
numbers p>?|Sp,,(F,)| when p runs over the primes < 2.
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(ii) For r one can take the product e - ((5d)!) - g where e is the least
common multiple of the orders of non-sporadic finite simple groups having
sporadic central extensions (see (3.2.1)) and g is the least common multiple of
the orders of finite simple groups of Lie type having absolute rank < d + 2 over
the finite fields F, of cardinality ¢ < 2¢*' + 1.

Remark. The estimates for m and r can be significantly lowered for groups
H with trivial center: the numbers b and e can be taken then to be 1. Other
estimates are also far from the best.

During the proof of the theorem we shall assume (as we may) that k is
algebraically closed. Thus “irreducible” = “absolutely irreducible”. We consider
V:= k? as an H-module. At several points, our proof uses estimates on the size of
different groups. These estimates are based on the following:

(3.3) LEmMMA. Let D be a finite commutative subgroup of GL (k) with
1+ |D|. Then

(i) D is a product of < d cyclic groups;

(ii) For any cyclic subgroup L = Z/n of Ngy (D)/Zgy (D), the in-
teger n < 29,

Proof. Since 1 + |D|, the group D is diagonalizable. Thus D < (k*)%. Since
any finite subgroup of k* is cyclic, it follows that a finite subgroup of (k*)¢ is a
product of < d cyclic subgroups, whence (i).

Let V = @V, be the decomposition of V into weight subspaces for D. The
group Ng; x(D)/Zgy (D) is isomorphic to a group of permutations of the V.
Thus it is a subgroup of Sym, whence our claim.

Now we can start our proof of the theorem.

(3.4) LEmMA. Let R be a normal subgroup of H. If H¢%" is irreducible then
V is isomorphic as an R-module to a multiple of a simple R-module.

Proof. By Clifford’s theorem [G1, Theorem 3.1.1], V is a direct sum of
isotypic components, V= @, _._V,, with each V, a multiple of a non-trivial
simple R-module and V, and V; having no isomorphic R-modules in common if
i+ j (ie, Homg(V,,V;) = 0 if i # j). The action of H on V permutes the V,,
1 < i < n, and therefore defines a homomorphism f: H — Sym,,. Since dimV =
d and dimV; > 1 we have n < d. Therefore f{H(*") = {1} C Sym,, i.e,, H(?"
preserves each V,, 1 < i < n. Since H¢?" is irreducible we must have n = 1, as
claimed.

(3.5) Cororrary. If H(" is irreducible then every commutative normal
subgroup of H is central and cyclic.
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Proof. Let C<H be commutative. Then any simple C-module is one-dimen-
sional, and therefore, by (3.4), C C k - Id,. Thus C is central and, as a subgroup
of the multiplicative group k* of the field k, it is cyclic as well.

Remark. If h has no center then (3.5) implies that H has no radical either.
This permits one, under the assumption C(H) = {1}, to bypass Proposition (3.6)
below and get a better expression for m.

(3.6) Prorosrrion. If H¢?'4D is irreducible then the radical of H is equal to
the center C(H) of H. In particular, H/C(H) is semi-simple.

Proof. Assume that H has non-central radical. Let C be the center of H,
and let S be the radical of Socle (H/C). We have S # {1} since the radical is
non-central. By the definition of the socle, S is a product of elementary
commutative subgroups, S = l_[(Z/q)’ where the g are different primes and
t, € N. Let S be the preimage of S in H. Since [S,S] C C, the group S is
mlpotent Let S= l—[S be its decomposition into the product of its Sylow
subgroups (see [G1, Theorem 2.3.5]). Since the only irreducible representation of
an lgroup in characteristic ! is the trivial one (see [Gl, Theorem 3.1.2]), it
follows from (3.3) that S, = {1}. Suppose that S,  {1}. Write C,=C N §,.
Since S, /C, is elementary abelian by construction and since C, is cychc by (3. 5)
we have in view of [Gl, Lemma 5.6.1(v)] that [S,,S,] C C where Cq is the
(only) subgroup of C, of order q..(Indeed, in notation of thlS lemma, we have
P:=S§,, P,cC, P;={1}. Since x? € C, for x €S, [x,y]" = [x%y] =
1mod P; by [Gl, Lemma 5.6.1(v)]. Since P; = {1} this gives [x,y]? =1 for
x,y € S, as claimed.) Then by [Gl, Lemma 5.6.1()—(v)] the commutator map
(x,y) — [x,y] factors through to give a skew-symmetric (with zero diagonal if
g = 2) bilinear form F, on §q = §,/C, with values in C'q =F,. Let S, be the
preimage in S, of the kernel {s € S |F,(S,,s) = 0} of F,. Since S, S, C,, and
C, are all characteristic subgroups of h, it follows that S/ is one as well. In
particular, S/ is a commutative normal subgroup of H. By (3.5) S[] = Cq, and
therefore F, is a non-degenerate form. In particular, ¢, is even, t, o Let M
be a max1ma1 totally isotropic (i.e., F (M M) = {0}) subspace of S Then the
preimage M of M in S, is commutative. Since M=M /C, is a product of s,
cyclic groups Z/q and since an image in M of a cyclic subgroup of M is cychc
we get that M is a product of at least s, cyclic subgroups. Therefore, by (3.3(i)),
s, <d. Since F, is non—degenerate we have ZS(M ) = M. Therefore
NS(M)/ZS(M) ) Z/q, whence by (3.3(ii)), g < 2¢.

Since S is a characteristic subgroup of h and since C, is central in H, the
action of H by conjugation defines a homomorphism ¢, from H into the group
A, of the automorphisms of S, trivial on C,. This latter group contains S, as a
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normal subgroup, and we have that A _/ S is a subgroup of Spy,(F,). As s, < d
and g < 29 we see from the deﬁmtlon of b that @, (H®) = {1} for all q. Thus
H®> ¢ Z,/(S). Since H® is irreducible and S € Z (o(H®), it follows that S
is commutative in contradiction to the assumptions.

Remark. One can obtain much better estimates if one uses the representa-
tion theory of extra-special (= Heisenberg) groups. One gets then that ] | A <d
(see [G1, Theorem 5.5.5)).

We assume from now till the end of this section that H:= H/C is
semi-simple. The conditions which guarantee this will always be included in the
statements.

Let N be the socle (the product of minimal normal subgroups) of H. Since
H is semisimple N is uniquely a (finite) direct product N =1 L Sistﬁ,. of
simple non-commutative groups. The action by conjugation of H on the pre-
image N of N induces a homomorphism ¢: H — Aut N with Kerp = C.

(3.7) LEmma. If H®9 is irreducible then o(H(") c T Aut N,.

I<i<t

Proof. Let N and the N,, i = 1,...,t, be the commutator groups of the
preimages in H of N and the N, respectively. By (3.4) the N-module V is a
multiple of a simple N-module, say W. Then, being an irreducible representation
of the central product N of the groups N,, W decomposes (see [G1, Theorems
3.7.1, 3.7.2 and subsequent remarks]) into a tensor product W = ® 1<i< Wi of
simple N-modules W,. Since the groups N, are not commutative and since their
representations on the W, are faithful (since they are on V), we have diimW, > 2.
Therefore 2° < dimW < dimV = d. Thus ¢ < log,d < d. Since the decomposi-
tion of a finite group into a direct product of noncommutative simple ones is
unique (if it exists) (see [Su 1, Corollary to Theorem 2.4.8]), the action of H by
conjugation on the set of the N, i < 1 < ¢, gives rise to a homomorphism 7:
H — Sym,. Since ¢ < d, we have m(H(')c (Sym,)?” = {1} whence our
claim.

(3.8) CoroLrary. If 2*H* 9 s irreducible then 2*H is a direct
product of non-sporadic finite simple groups.

Proof. Let @ and the N, be as in (3.7). Then o(2*H¢ D) = 9p(H)¢ iy
c [ 124(Aut N))<?) (by (3.7)). Now (Aut N,))¢®> = (1)} if N, is sporadic (by the
choice of c¢). Next Z(Aut(Alt,)) = Alt, for n > 3 (since by [Su 1, (2.19)] we
have [AutAlt,: Alt,] < 4 and since groups of order < 4 are commutative).
Further, for a simple group X(F,) of Lie type, the group Out X(F,):=
Aut X(F,) /Int X(F,) is (see [S1, Theorems 30 and 36]) an extension of the group
Gal(F,) of “field automorphisms”, which is commutative in the case of
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finite fields, by the group of algebraic automorphisms which in turn is an
extension of the group of “graph automorphisms”, which can be {1}, or Z /2, or
(only for type D,)Sym,, by the group of “diagonal automorphisms” which is
always commutative. Thus 2*H¢* °"%" is a product of non-sporadic finite simple
groups, 94H® 4 =TT ZV, where I D {1,...,t}. If j& I,1 < j<t,then

iel
N, centralizes [ I, _;N; and, therefore, 2*H edh js not irreducible. This
contradicts our assumptions whence all the N, are non-sporadic. Now our claim
follows from (3.7) and the remark that 2*(Aut N;) = N; for non-sporadic simple

groups.

(3.9) To complete the proof of Theorem (3.1) we pick an elementary
abelian p-subgroup D in a simple group Q under consideration. We try to
embed a central extension Q of Q in GL ,(k). If p # ! and the central extension
splits over D, then the inclusions of D in GL4(k) and of Ny(D)/Z(D) in
Nov, D)/ Zgy (D) permit us to use the estimates (3.3). This leads to a
conclusion that, for a finite number of exceptions which do not depend on [, only
groups of Lie type and of characteristic [ can appear as groups N,.. The finite
number mentioned above is then eliminated by raising everything to an ap-
propriate power r.

(3.9.1) As a first I;recaution we kill off the Alt,, for n = 6,7 and the groups
of Lie type which can have non-algebraic central extensions (see [Grl], [S2,
Theorem 1.1 and the next to last paragraph of the introduction], and [D]). They
are finite in number. Therefore we can take the least common multiple of their
orders and denote it by e.

(3.9.2) Assume N, is isomorphic to Alt,, for some h > 5, h # 6,7. If [ + 3
(resp. | # 5) take D = ((1,2,3),(4,5,6),...) C Alt,, (resp. D = ((1,2,3,4,5),
(6,7,8,9,10),...) C Alt,). We have D = (Z/3)!"/? (resp. D = (Z/5)"/?).
Since the Schur multiplier of Alt,, is 2 for h > 5, h + 6,7, the preimage of D in
N, splits over D so that we can consider D as a subgroup of H. Therefore by
(3.3(i)) we have in both cases h < 5d + 4.

(3.9.3) If N, is isomorphic to a finite simple group of Lie type, we can
assume (since we have taken care of exceptions in (3.9.1)) that N; is a central
quotient of X(F,) where X is either a simply connected absolutely almost simple
algebraic group defined over F, or a Suzuki or Ree group of types *B,, G,,F,.

Let g = p* and let U be a Sylow p-subgroup of N, (i.e., points of a maximal
unipotent subgroup of X defined over F, in the case of algebraic group X). Let
D be the center of U and assume that p # [. Then D is diagonalizable. The
action of the Borel subgroup Ny(U) on D factors through a one-dimensional
split torus and defines, therefore, a homomorphism F} — Ny(D)/Zy(D) whose
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kernel is of order at most two. Therefore by (3.3(ii)), ¢ — 1/2 < 2% or q <
24+1 4+ 1.

(3.9.4) It remains to bound off the ranks of the prospective candidates for
an N,. Note first that SL,(F,) contains a vector group L which is the unipotent
radical of the stabilizer of a point in the natural representation. We have
L = (Z/p)™~ V5. By (3.3(i)), we have (under the assumption p # I) that
(n — 1)s < d. Note next that any group of Lie type and of absolute rank u > 4
contains a subgroup A, with n > [(u — 2)/2]. Thus by the preceding remarks
(u—2)/2<n+1<d+2

(3.9.5) We can now conclude the proof of Theorem (3.1). By (3.8), 2*H (4"
is a direct product of non-sporadic finite simple groups. In view of (3.9.1), (3.9.2),
(3.9.3), and (3.9.4), (2*H )< GD"&) must consist of only groups of Lie type
and of characteristic I. Since (2*H(")(™ m = e - (5d)! - g, is irreducible by
assumption, we must have by the same argument as in the conclusion of our
proof of (3.8) that 2*H(® is a product of simple groups of Lie type and of
characteristic [.

4. Algebraicity of certain homomorphisms
between finite groups of Lie type

Let p be a fixed prime, k a field of characteristic p, G an absolutely almost
simple simply connected algebraic group defined over k, m; € N*for1 <i < t,
q;:= p™, the H, absolutely almost simple simply connected algebraic groups
defined over F,, H, ,(F, ) universal (see [S1]) groups of Lie type (where o, is the
twisting automorphlsm of H, (F ), fi H1<,< Hi o(F,) = G(k) a group homo-
morphism with central kernel.

If p =2 and n € N, there exists ¢ = e¢(n) € N such that if m > e and D
is a 2"-complement in the normalizer of a Sylow 2-subgroup of H(F,) (with
g = 2™), a universal group of Lie type, where H is an absolutely almost simple
simply connected algebraic group over Fq of rank < n, then T:= Z, (D) is a
maximal torus of H and D distinguishes the roots of T in Lie H. Indeed since
the number of possible groups H of rank < n and of possible types of o is finite,
we can assume that H and the type of o are fixed. Then existence of e follows
from the fact that the union in T of groups D over infinitely many m is dense in
T. See also (5.5) below.

(4.1) Tueorem. Let g: G — GL, be a rational absolutely irreducible k-rep-
resentation of G. Assume
(i) g cannot be represented as a non-trivial tensor product of irreducible
representations of G;
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(i) geo f(l—llsiS H, .(F,)) is absolutely irreducible.

(iii) Every (Adego f) (nlSistH,.’oi(Fqi))-submodule of Mat, over k is
(Ad -~ g)(G)-invariant).

(iv) Ifp = 3 then G is not of type G, and if p = 2 thenm; > e(1 + rank G),
1 <i<t, and G is not of type B,(n > 1), C,(n = 1), or F,.

Then t = 1, G is defined over F,, and there exist a rational Fisomorphism
f: H, - G and an integer n such that (feFr")a) = fla) fora € H, ,(F,).

Here Ad denotes the action of GL; on Mat,; by conjugation: (Ada)(x) =
a X a~! for a € GL;, x € Mat ;; and Fr denotes the Frobenius endomorphism.

(4.2) We assume (as we may) in the proof of the theorem that k is
algebraically closed. Since g o f: l_[H,.,o‘(Fqi) — GL, is irreducible, it can be
decomposed (see [Gl, Theorems 3.7.1 and 3.7.2]) into a tensor product
gof= ®,_,_h where the h;: H; ,(F ) — CLd, i=1,...,t, are irreducible
representations of the H; (F, ), and d= T[ 1<i<d: By [SL, Theorem 43] the h;,
are restrictions of rational representatlons B, H - GL a,- Set h=® h,.

l<i<t' it
(4.3) LEMMaA. t = 1.

Proof. Assume t > 2. Then [hl(Hl) hy(H,)] = {1}. In particular,
(Ad e h,)(H,) acts trivially on L,:= Lie hy(H,) C Mat . Since L, is 1'Il<,<,
invariant, it follows from assumption (4.1) (iii) that L, is (Ad° g) (G)-mvanant
The group K:= {a € G|Adeg(a)(l) =l forall l € L,} is a normal subgroup of
G. Since G is almost simple and since f(H, ,(F,)) C K, it follows that K = G.
Thus G acts trivially on L,. Hence h2( H, O(F )) acts trivially on L,
Lie hz( H,). This is impossible. Therefore t=1

(4.4) Since t = 1, we may (and shall) drop subscripts of H, g, H(F,), h, f,h,
etc. Set H:= h(H), L:= Lie H, N:= Ngi, (L), and Z:= Zg, (L). Clearly, Z is
normal in N, and we have a natural monomorphlsm of algebralc groups N/Z —
Aut L. Since h extends go f: H o«(F,) = GL,, it follows from (4.1) (iii) that L is
g(G)—mvanant i.e. g(G)C N. Let 7 denote the composition N->N/Z -
AutL. Let M:= «(N) C AutL, h:= moh, g=mog, H:i=h(H), and G:=
g(G).

(4.5) LEmma. G and H are absolutely simple (adjoint) subgroups of M
such that
() G'(k)nH> H+(F );
(ii) Any AdH +(F )-invariant subspace of Lie M is Ad G-invariant;
(iii) If p = 2, q = 2™, then m > e(1 + rank G).

Proof. Since H o (F,) = H/(F,)/(center), (i) follows from the assumption
that f(H(F,)) c G and from the fact that the image of G(k) in G is contained
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in G*(k) (see [BT3, Corollary 6.5]). To prove (ii), take an Ad H} (F,)-invariant
subspace P of Lie M and pull it back to an Ad H,(F,)-invariant subspace P of
Lie N C Mat,. Then it is Ad G-invariant by (4.1) (iii), whence (ii); (iii) is a
repetition of (4.1) (iv).

(4.6) LEmMMA. Let H be an absolutely simple algebratc group as above.

(i) The irreducible Ad H-subquotients of Lie H are also Ad H +(F )-irre-
ducible.

(ii) Lie H is irreducible under Ad H unless H is of type A,,_(n=1),or
p =23 and H is of type G, or Eg, or p=2 and H is of type B (n > 1),
C(n>1), D(n>1n+2), E; or F4.

(iii) IfI_ItsoftypeAnp 1(A,=B,=C)),orp = 3andeoftypeE6,
orp =2 and H is of type D, (n = 3) or E then the derived algebra of Lie H is
the only Ad H-composition factor of L1eH which is a non-trivial Ad H-module.

(iv) If p = 3 (resp. 2) and H is of type G, (resp. F,), then Lie H has
exactly two non-zero Ad H-composition quotients; both of them are Lie algebras
of type A, (resp. D,).

(v) If p =2 and H is of type C, (n = 2) or B, (n > 2), then Lie H has
exactly two non-trivial composition factors and one one-dimensional one; the
non-trivial factors come from subgroups of type A, + - -+ +A, (n times) and D,
which are normalized by a maximal torus.

Proof. Statements (ii)—(iv) are essentially well-known (and are contained in
the table on pp. 124, 125 of [H]). Now (i) is a corollary of [S1, Theorem 43]; in
bad cases listed in (4.6) (iv) and (v), one must also point out that a twist by
Frobenius or by a non-central isogeny of an irreducible Ad H- or Ad H; (F, )
module is again irreducible.

(4 7) LEMMA. Let H be an absolutely almost simple algebraic group, L=
Lie H, and H the adjoint group of H.

(i) 2(Aut L)° = Ad H unless p = 2 and H is of type G,, or is isomorphic
to an orthogonal group SO,, n > 3, n # 4, or is isomorphic to Sp,,, n > 1.

(i) If p = 2 and H is of type G, (resp. isomorphic to SO,, (n > 3)), then
D(Aut L)O is of type C; (resp C,).

(i) Ifp = 2 and His isomorphic to Spy,, (n > 1) or SO,,,.1 (n = 1), then
P(Aut L)° = G2" x (Ad H) and Ad H acts irreducibly on (the 2n-dimensional
vector space) Ci"

Proof. These statements are a summary of (a part) of the table on p. 98
of [H].
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(4.8) ProposiTiON. Assume that (4.5) (i), (i), and (iii) hold.

(i) If conditions of (4.7) (ii) do not hold then M = G = H.

(i) In any case G 2 H; if G # H then G is of type C,, for somen > 3 and
M=G.

Proof. The proof is rather involved because of many possibilities for Aut L
and Lie H.

(4.8.1) Case: (4.6) (ii) or (iii) and (4.7) (i) hold.

Since Z(Aut L)=AdH (by (47) (i) and G is simple we have G C H.
Then Lie G is an Ad H +(F )invariant subspace of Lie H. Now Lie H has exactly
one Ad H-subquotient which is a nontrivial Ad H-module and by [H, table on pp.
124, 125] this submodule is the derived algebra of Lie H. Since G is simple it
must contribute non-trivially to the non-trivial submodule of Lie H. Thus Lie G
contains the derived algebra @(Lie H) of Lie H. An (attentive) glance at the
tables on pp. 124, 125 of [H] or at classification tables shows that LieG D
9(Lie H) and G C H imply that G = H, except in the case when p = 2 and H
is of type A; = D,. In this latter case the commutator of Lie H is the Lie algebra
of a subgroup of type G, of H (see [S3], [H], or [W1, Appendix]). Then G+H
and the simplicity of G imply that G is of type G,. Let D be a 2complement in
the normalizer of a Sylow 2-subgroup of H; (F,). Then by (4.5) (iii), D is
contained in a unique maximal F, q-torus T of H and in a unique maximal F -torus
T, of G. Wehave T, € T and T/T, = G, g, or (Rg, 5(Gm r,, )/G ok, In both
cases T(F,)/T(F,) % {1} (by (4.5) (iii)). Since T(F )=D (smce p = 2), the
above is a contradlctlon to the assumption T(F,) C G (which is implied by (4.5)
@)

(4.8.2) Case: (4.6) (iv) and (4.7) (i) hold (i.e., p = 3 (resp. 2) and H is of
type G, (resp. F,)).

If LieH = LieG then H=G. If LieH + LieG then since Lie H has
exactly two non-zero Ad H-subquotients both of which are of type A, (resp. D,)
it follows from (4.6) that G is of type A, (resp. D,). Since p = 3 (resp. 2) we
have PSL (k) = SL(k) (resp. PSpmS(k) = Sping(k)). Since H+(F yc G*(k)
by (4.5) (i), the assumption that G is of typé A, (resp. D,) implies that H (F,)
has a (faithful) representation of dimension 3 (resp. 8) which is not the case by
[S1, Theorem 43] since H does not have such a representation.

(4.8.3) Case: (4.6) (v) and (4.7) (i) hold (i.e. p = 2 and H is isomorphic to
PSp,, (n > 3) or to Spin,,,; (n = 3)). Since by (4.5) (i) AdG is Ad H+(F )-
invariant, it follows from (4.6) (i) and (v) that Lie G  projects either on both or on
exactly one non-trivial Ad H-subquotient of Lie H. In the latter case, D, a
2’-complement in the normalizer of a 2-subgroup of H o (F,), has fewer roots in G
than in H} (F, ,) Which is impossible in view of (4.5) (iii).
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(4.8.4) Case: (4.6) (v) and (4.7) (1u) hold (i.e. p = 2 and H is isomorphic to
Spgn (n 2 1) or SOy, (n > 1)). Let U be the unipotent radical of N and V the
set of fixed points of U on k% Since U is unipotent we have V #+ 0. Since H
normalizes U it follows that HV C V. Since H is absolutely irreducible we have
V = k¢ whence U = {1}. Thus N and, therefore, M are reductive. By (4.7) (iii)
we have then that 9M = Ad H, whence again G € H. Now the argument is
concluded exactly as in (4.8.3).

(4.8.5) Case: (4.7) (ii) holds. Let A = Lie M and I = 9(Lie H ). By (4.6) (i)
and (v), I is irreducible under H H o(F,), and, therefore, under G as well. If
LieG N I = 0, then G must be of type A +A + -+ +A, (r times) where
r=3or n if H is of type G, or D,. Since G is absolutely simple this possibility
does not occur and, therefore, LieG D I. If LieG ¢ Lie H then LieG D I
implies that either Lie G = A (and then G = M, whence H C G as desired) or H
is of type G, and G is of type A . In this latter case, let D be a 2-complement
in the normalizer of a Sylow 2—subgroup of H +(F ). Then D is contained in a
unique maximal F_-subtorus T of Hand D = T(F,). Since the root subspaces of
T on LieH are then one-dimensional, T, = Zz(D) is the maximal torus of G.
The root subgroups of D on H +(F ) are contained in the root subgroups of T, on
G and since T C T, the conjugates of elements of these root subgroups by T are
again contained in . appropriate root subgroups of T, on G. Thus the root
subgroups of T in H are exactly the root subgroups of T, in G whence G = H
(and the case under consideration: G of type A,;, H of type G,, is thus
impossible).

We are left with the case Lie H D LieG 2 I. Let D and T be as in the
above proof. An inspection of the table on pp. 124, 125 of [H] shows that T = T,
unless G is of type G, and H of type A 3. This latter case can be excluded as in
(4.8.1) (or by the present proof after slight notational modifications). So we can
assume T = T,. Now the proof we used above (using consideration of root
subgroups) works here as Well and yields G = H.

(4.9) Proof of (4.1) concluded. The group N is reductive (it was proved in
(4.8.4)). Since g(G) € N (by (4.1) (iii)), it follows that g(G) € 9N. Write
N =11, _, _N; where the product is almost direct and the N, are absolutely
almost simple. &N acts irreducibly on k¢ since H (or G) does. Let ¢:
2N — GL, be the natural imbedding. We can write ¢ = ®, _, _ @, where o,
is an irreducible representation of N, 1 < i < s. Let ;, be the projection of N on
N, 1 <i<s. Then g(a)= ®,_,_@;°7(a). By (41) (i), it follows that
@; o m, = 1 for all but one i. Since G is irreducible we have 7,(G) # {1} for
1 < i < s. Thus ¢, = 1 for all but one i whence 2N is absolutely almost simple.
Now the projection 2N — M has only scalars in the kernel. Therefore G D H
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implies that g(G) 2 h(H). If G = H then simple connectedness of H implies
existence of f: H — G such that go f=h.If G2 H, G +# H, then by (4.8) G
is of type C,. Therefore G is of type C, or B,, the case excluded by (4. 1) (iv).
Thus we obtain a rational surjective homomorphism f: H - G with f(a)
(g° f)(a) = h(a) = h(a) fora € H «(F,). By (4.1) (iv), f= foFr" where fisa
central isogeny and, since G is simply connected f is an isomorphism. Thus f
gives G the structure of an F_-group for which f is an F_-isomorphism. (Another
way to see F -structure on G is to observe that G = (Aut L)°, whence F. struc-
ture on L y1elds F-structure on G and then to use [BT2, (2.24) (ii)]).

5. Remarks on semi-simple group schemes over finite local rings

Let A be a finite local ring with identity R its radical, k = A/R, k = F,,
q = p™, p a prime.

Let G be a connected and simply connected absolutely almost simple group
scheme over A (see [SGA3, § XIX.2]). Recall (see [B3, (16.6)]) that G, is
quasi-split. Every Galois extension k’ of k lifts to a unique Galois extension A’ of
A (by [Mc, § XV]) and we have that Gal(A’/A) is canonically isomorphic to
G(k’ /k). Since G, is quasi-split, it is determined (see [SGA3, XXIV.3.11]) by a
homomorphism r: Gal(k’/k) = AutDynG where k' is a splitting field of G and
Dyn G is the Dynkin diagram of G. Lift k’ to A" as above and define a quasi-split
form G, of G, using the same homomorphism r: Gal(A’/A)(= Gal(k’/k)) —
Aut DynG. Now [SGA3, XXIV.1.12 or XXIV.1.21] implies that G4 and G, are
isomorphic (since they have the same reductions). Thus we have:

(5.1) LEmMA. G is quasi-split over A.

Denote by f,, i > 1, the reduction mod R’ maps f: A — A/R’, f: G, —
Ga,pi» and  f: G(A) > G(A/R'). We write f for fi. Set G(R):=
Ker(f: G(A) » G(A/RY)).

(5.2) LEmMA. (i) The G(k)-module G(R')/G(R'*") is isomorphic fori > 0
to L(k) ® R'/R'*! where G(k) acts trivially on the second factor and acts on
the furst factor via Ad.

(ii) The map (x,y) — [x,y] maps G(R') X G(RY) into G(R**7) and the
induced map of G(R'/R*') X G(R!/RI*!) into G(R'*i/R**i*1) is given by
(1, ® 1), (I ® 1,)] = [l, L] ® ryr, where 1,1, € L(k), r, € R)/R™!, 1, €
Ri/Ri*! and we identify G(R®/R**1) with L(k) ® R*/R**Y,

Gii) If [L(k), L(k)] = L(k) then [G(R), G(R)] = G(R®).

Proof. This is well-known (for general smooth group schemes as well). We
can assume that R'*! = 0. Then L is a free A-module with, therefore, L(R') =
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L(k) ® R'. The “exponential map” [ — [ + 1 identifies L(R‘) with G(R'). The
claim (i) follows since everything we did commutes with the action of G(k).

To prove (ii), notice that for a split G it follows from Chevalley commuta-
tion relations. For quasi-split G we extend our ring and then use descent, noting
that everything we claim and do is compatible with the action of the Galois
group. Now (iii) is an evident corollary of (ii).

Let T be a maximal A-torus of G contained in a Borel A-subgroup of G.

(5.3) LEmma. T is the unique maximal A-torus of G such that f(T) = T,.
Proof. This follows from [SGA3, XI.1.11 and XXIIL.5.6.13].
(54) LEmma. T(A) = T(k) X T(R).

Proof. T(A) is a finite commutative group; its image under f is a p’-group
T(k) and its kernel is a p-group T(R). Thus (6.4) follows from the structure
theorem of commutative groups.

Denote the p’-component of T(A) by T(p’); by (5.4) T(p’) = T(k). We say
that T(p’) distinguishes the roots of T on G if for two roots 7,7, of T on G,
r|T(p’) = r,|T(p’) implies that r, = 1,.

(5.5) LEMMA. There exists & = &(G) € N (which does not depend on k)
such that if |k| > & then T(p’) distinguishes the roots of T on G.

Proof. For any pair of roots there are only finitely many fields | C k which
do not distinguish the given pair (because an infinite number would be dense in
T and then T would not distinguish these roots, which is absurd). As there are
only finitely many pairs of roots our claim follows.

Assume now that R™ # 0, R™*! = 0, and let K be a subgroup of G(R™)
= L(k) ® R™ invariant under Ad G(A). Since Ad G(R) acts trivially on G(R™),
K is just a G(k)-invariant subgroup of L(k) ® R™. Write K = Y L(k)® D,
where the L, are G(k)-invariant subspaces of L (in particular, ideals of L) and
the D, are subspaces of R™. By inspection of the tables at the end of [H] we
establish that:

(5.6) L possesses a largest G(k)-invariant subspace L which is not L itself.
That is:

(i) L = {0} if Lisnot of type A,, ;, n>1; G, or E¢ if p = 3; B,, C,,
D,, E,or F, if p=2;

(ii) L is the center of L if L is of type A, ,, n > 1; Eg with p = 3; D,,,
n#2o0rE;if p=2;

(iii) L is of type A, (resp. D, resp. D,) if L is of type G, and p = 3 (resp.
F, and p = 2, resp. C, and p = 2);

@iv) L is of type A, + .-+ +A, (n times) if L is of type B, and p = 2.
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(5.7) LeEmMaA. There exists a long absolute root b with respect to T such that
the corresponding root subgroup U:= U, of G is defined over A and LieU ¢ L.

Proof. This is trivial if G is split. If G is not split (but then it is quasi-split)
then G is of type A, D,, or E¢. In these cases the condition LieU ¢ L is empty
since in these cases I, C L1e T (see tables at the end of [H]). Now by inspection
of possible actions of the automorphism groups of Dynkin diagrams one observes
that any such action fixes a simple root (which then verifies (5.7)) unless L is of
type A,,. In this latter case let a,,...,a,, be simple roots; then b:=
a, + --- +a,, satisfies (5.7).

6. Cohomological remarks

Let k be a finite field, G an absolutely almost simple simply connected
algebraic group over k, and L its Lie algebra. We are interested in
HY(G(k), L(k)).

(6.1) LEmMA. Let C be the center of L. If |k| > 9 then the natural map
HY(G(k), L(k)) — H'(G(k), L(k)/C(k))
is an isomorphism.
A Proof. Consider the exact cohomology sequence
H'(G(k),C(k)) - H'(G(k), L(k))
- HY(G(k), L(k)/C(k)) - H*G(k),C(k))
associated to the exact sequence
0 — C(k) » L(k) - L(k)/C(k) —» 0

of G(k)-modules. The group H*G(k), C(k)) = Hom(G(k), C(k)) is trivial since
G(k) is equal (if |k| > 3) to its own commutator group (by [S1, Theorems 5, 34,
and Corollary to Lemma 64]). Similarly, the group H* G(k),C(k)) of central
extensions of G(k) by C(k) is trivial since (if |k| > 9) G(k) has no central
extensions (by [S2]).

Now let L be the adjoint Lie algebra of L and ad: L — L the adjoint map.
Since Kerad = C we have an exact sequence

0 - L(k) /C(k) S (k) > L(k)/ad L(k) - 0.

The group S = L(k)/ad L(k) is commutative and isomorphic to C(k)* =
Hom (C(k), k) (see [H, pp. 124, 125]); G(k) acts trivially on S. Associated to the
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above exact sequence we have a long cohomology exact sequence
HY(G(K), L(k)) — H(G(k),S) > HYG(k), L(k) /C(K))
- HY(G(k), L(k)).

We have HY(G(k), L(k)) = L(k)¢® = {0} and H°(G(k), S) = S®® = S. Thus
we obtain an injective map 8: S — HYG(k), L(k)/C(k)).

(6.2) ProposiTioN (J. Bernstein). Suppose |k| > 9 and that the only G(k)-
invariant ideals of L are central. Then § is an isomorphism.

Proof. Since 8 is injective it remains to prove that it is surjective. Now
[CPS1, CPS2] imply, under our conditions on G and k, that
dim, H*(G(k), L(k)) < dimC (so that our claim follows from (6.1)). That is, if G
is split then, as was pointed out to me by Brian Parshall, statements (2.8), (2.7),
and (3.3) of [CPS1] combine to give the result. Indeed, in our case V = L so that
LB = L¢, dim L, = (rank of G), and also ¢ can be taken to be the simple roots.
Now [CPS1, (2.7a)] says in view of [CPS1, (3.3)] that dimZ'(U,, L)' < 1,
whence [CPS1, (2.8)] gives that dim, H'(G(k), L(k)) < dim LS as required. For
G of twisted type the desired inequality is explicitly contained in the table in
[CPS2].

Remarks. (i) J. Bernstein has shown me how to use L and the action of G
(see (6.4) below) to construct non-trivial elements in H Y G(k), L(k)), and B.
Parshall told me how to derive the inequality dim, H*(G(k), L(k)) < dimC from
results of [CPS1] in the case dimC > 1.

(ii) We also have &: L/adL —» HYG, L) which is injective; A is also
surjective by [SGA3, XXIV.1.12] (see (6.4) below). Thus § is an isomorphism in
this case as well.

(6.3) CoroLLary. HY(G(k), L(k)) = C(k)*.

Proof. Combine (6.1) and (6.2).

We now assume that A is a finite local ring, R is its radical, R%2 =0, and
A/R = k. Let G be an absolutely almost simple simply connected group scheme
over A, H=R, ,G. Let C be the center of L and C the connected reduced
center of H. Then C(k) € R, ,G(R) = L(k) ® R and C(k) = C(k) ® R if
we identify R, ,G(R) with L(k) ® R. Let M = H/C. In view of previous
remarks M(k) has the largest normal p-subgroup P which is isomorphic to
(L(k)/C(k)) ® R = ad L(k) ® R. Let h denote the projection M(k) —» G(k)
— M(k)/P.

The P-conjugacy classes of sections s: G(k) = M(k) of h: M(k) - G(k)
are (by [CPS1, § 2]) in one-to-one correspondence with the elements of

HYG(k);P) = H(G(k),ad L(k) ® R) = H(G(k),ad L(k)) ® R.
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Let G be the adjoint group of G. Then G acts on G by automorphisms.
Therefore G(A) acts by automorphisms on G(A) and on M(k). Clearly, the
automorphisms from G(R)(= L(k) ® R) when acting on M(k) map a section of
h to a section. Now (6.2) can be reformulated as

(6.4) ProposiTioN. G(R) acts transitively on the sections of h.

Proof. Fix one section s, G(k) = M(k) of h, and take it for 0 €
HY(G(k), P). Then for p € G(R) and (0 X g) € s,(G(k)), we have p(0 X g) =
(Adg)(P) — P) X g = l(g) ¥ g. Then I: G(k) — P is the cocycle determining
the section p(s,); this cocycle is cohomologous to 0 if and only if p € ad L(k) ®
R. Thus on the cohomology level, the class of I is represented by (Ad g)(p) — p.
This class is exactly the image under 8 of p(modad L(k) ® R)€ S® R =
H°(G(k),S ® R) where S is as in (6.2). Thus (6.4) does, indeed, follow from
(6.2).

7. Approximation on the finite level

Let A be a finite ring (with 1) and R its radical. Then A (see [M, (VI.2)]) is
a direct sum of local rings, A= &, _,_,A,, and R;:= A; N R is the radical
(= the maximal ideal) of A;. Write k:= A,/R;, k; = F, where g; = p/™ with
primes p,, 1 <i <t Set R%= A. We say that A is of class m if R™ + 0,
Rm+1 = 0.

Let G be a connected and simply connected absolutely almost simple group
scheme over A of constant type (see [SGA3, § XXII.2]). The groups G, are
quasi-split by (5.1) and therefore G itself is quasi-split. We use notation T, T(p’)
of Section 5.

‘As in Section 5 we denote by f; the projections

A —> A/R',G(A) = G(A/R'), Gy = G, g, L(A) > L(A/R’) etc.

and set G(R?) = Ker { f: G(A) - G(A/R")}. Set f:= f,.

Let L:= Lie G be the Lie algebra of G. It is a free A-module. The action of
G on L is denoted, as usual, by Ad. We denote by C; the center of L, .

Let T be a subgroup of G(A).

(7.1) Assumptions. (i) q; > max (10,&(G)), 1 < i < t, where &(G) is the
same as in (5.5);

(ii) The only proper ideals of the Lie algebra L(k;) = L(F,), 1 <i < ¢, are
central;

(iii) The image of T in G(k;) under the reduction modulo R & @ jeiAjis
the whole G(k;,);

(iv) Z[tr Ad £(T)] = A/R>
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In (iv) trace is taken in a free A/R%module L(A/R?).

Remark. Condition (7.1) (ii) excludes types G, if p, = 3 for some i, and B,
(n>1),C,(n=1),and F, if p, = 2 for some i. On the other hand, it and (7.1)
(i) enable us to use (6.4).

(7.2) Tueorem. If (7.1) (i)—(iv) hold, then T' = G(A).
The proof will be given in several steps.
(7.3) Step 1. The theorem holds if R = 0.

Proof. In this case I is a subgroup of nl <i<:G(F,) where the G(F,) are
universal groups of Chevalley or Steinberg type. Since q; > 5, 1 < i < ¢, these
groups are perfect and simple modulo their centers [by [S1, Theorems 5, 34, and
Corollary to Lemma 64]). Since I' projects onto each G(F,) by (5.1) (iii), it
follows that I' modulo the center is a direct product of simple groups. Since
[G(F,),G(F,)] = G(F,) and since I is a subgroup of I_Il<l <G(F,), it follows
that T is 1somorphlc to a direct product, T' = [T, <j<lp Tt of finite simple
groups each of which is isomorphic to some G(F, ), 1 <i<tLletpnl<i<t,
be the projection of G(A) onto G(A;). For each j, 1 <j<r, let I(j):=
{ilpr.T; = G(A))}. By (7.1) (iii), we have UIS]STI(]) [1,¢], and, since
[T, T ] = {1} for k # j, we also have I(j) N I(k) = @ if k # j.

Suppose that |I(j)| > 1 for some j. Then I; projects onto each G(A)),
i € I(j), and the kernel of each such projection is trivial. Thus we have
1somorphlsms h;: I, - G(A) for all i € I(j). Fix some s € I(j) and set
hi=h,oh ' fori e I(]) Then h,;: G(A,) > G(A,) is an isomorphism, i € I(§).
By [S1, Theorems 30 and 36] all A,, i € I(j), are isomorphic and each h,,
i € I(j), is a composition of an algebraic A isomorphism u;: G, — G, (recall
that (7.1) (iii) keeps us away from bad characteristics) and of a field isomorphism
o: A, > A,

We have trAd g = trAd u,(g) and o,(trAd g) = trAd o,(g) for g € G(A)).
Thus the subring Z[tr AdT'] is contained in & 1<j<-Bj where B; is the subring
of ®, 1G) y:v generated by { ©, _ 1GY o(a),a € A }. This latter ring is isomor-
phic to A Slnce by (7.1) (iv), we must have B; = ®._, . A, it follows that

iel(j) "
I(j) = {s} in contradiction to our assumption that [I(§)| > 1.

(7.4) Step 2. If t = 1 and R® = 0 then (7.2) holds.

Proof. Assume the contrary. Let K:= A/R and p:= p,(= chark). By (7.1)
(iii), f(T") = G(k). Let I' be the preimage of T(k) under f. The kernel P of f:
G(A) — G(k) is a p-group and therefore, so is the kernel Pof £ T > G(k)
Since T(k) is a p’-group, we have by [Gl, Theorem 6.4.1(i)] that Iisa
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semi-direct product of a p’-group P’ and of P. By (5.4) P’ is conjugated by an
element of P to T(p’) (= p’~component of T(A)). Therefore, replacing T, if
needed, by its conjugate in G(A) we can assume that

(7.4.1) T(p’) c T.

Let K be the kernel of f: T —» G(k), K € G(R) = L(k) ® R. Since
A(T') = G(k) we get that K is G(k)-invariant. We identify G(R) with L(k) ® R.
Then by (5.6) there exists D C R such that K € L(k) ® R + L(k) ® D where
D + R since T #+ G(A). Take D, C R, D, 2 D, dim,R/D, = 1. Replacing A
by A/D, and T’ by its image in G(A /D)) (which does not affect conditions (7.1)
(i)—(iv)), we can assume that D, = 0; i.e. we can assume

(7.4.2) dim,R =1, K c L(k).

Let b and U, be as in (5.7). Since Uy(k) = f(U,(A)) is contained in a root
subgroup of T(k) = f(T(p")), since Uy(k) C f(T'), and since T(p’) distinguishes
the roots of T by (5.5), it follows that

(7.4.3) AT N U,(A)) = U,(k).

In particular, I' N U,(A) is nontrivial. Since U,(A) = G, ,(A) = A for our
choice of b, we can consider I' N U,(A) as a subgroup V of A. By (7.4.2) and by
our choice of b we have that VN R = {0} and f: (I' N Uy(A)) - Uy(k) is an
isomorphism. Thus A = V + R, a direct product of two elementary abelian
groups. In particular, pA = 0 and, by [Mc, (XXIL.1)], A D k (as rings) and
A = k[¢] for any ¢ € R (since dim, R = 1). Thus we have proved

(7.4.4) A = k¢, e2=0.

Now we can complete the proof of (7.4). By (7.4.2) the image I’ of T in
H:= G(A)/L(k) (where L(k) c L(k) = G(R)) is a section of H — G(k). By
(7.4.5) A = k[e] and therefore there is a section sy,: G(k) > G(A), g > 0X g
€ L(k) X G(k). This gives rise to a section §,: G(k) — H.

Now (for the first time) use (7.1) (ii). It implies that L(k) c C(k),
the center of L(k). Then (6.4) tells us that by applying an automorphism
from G(A), G the adjoint group of G, we can assume that T = 5o(G(k))
(the assumptions (7.1) are not affected by such change). Therefore T C
$o(G(k)) - C(k). Therefore tr AdT" C tr Ad s(G(k)) C k (the latter by our choice
of s,). This contradicts (7.1) (iv).

(7.5) Step 3. If R% = 0 then (7.2) holds.

Proof. We have R = @, _, _,R, so that G(R) = nlsistG(Ri). For m €
G(R), write m = nlsistmi with m, € G(R;). By (7.4) given s, 1 <s <'t,
there exists m € I' N G(R) such that m, & C(k,). Let I, be the preimage in I’
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of G(k,) under the projection I' — G(k,). Then T, C G(A, + R), whence
gm,g~ ' =m, forg € T, and i # s. Therefore gmg 'm~! € G(R,). Since m, &
C,(k,) and since G(k,), and, therefore, I, act irreducibly over k, on M=
L(k,)/C(k,) (by [S1, Theorem 43]) it follows that the images in M, of the
gmg~'m~', g €T,, generate M,. Since L(k,) does not have proper invariant
G(k,)-submodules for the possible exception of C(k,), it follows that I, o G(R)).
Thus T D l'[lsistc(ﬂ,.). This together with (7.3) implies that T = G(A) as
claimed.

(7.6) Step 4. Theorem (7.2) holds.

Proof. Let I'" =T N G(R). By (7.5), I" - G(R?) = G(R) and by (5.2),
[G(R), G(R)] = G(R?). Thus by [G1, Theorem 5.1.1] I" = G(R) whence by
(7.1) (iii) I' = G(A) as claimed.

8. Global approximation

Let k be an algebraically closed field of characteristic p, G an almost simple
simply connected algebraic group defined over k, L its Lie algebra, C the center
of L, ¢ the order of the schematic center of G. Let T be a subgroup of G(k) and
let A = Z[tr AdT] be the subring of k generated by the trAdy, y € T. Set
['= 9T - T, I":= 9T - T4, and A= Z[tr AdT"].

(8.1) Assumptions. If p = 3, assume that G is not of type G, and if p = 2
it is not of type B, (n > 1), C, (n > 1), or F, (see (12.2) below for comments
about these excluded cases).

(8.2) THEOREM. Suppose that T is finitely generated and that it is
Zariski-dense in G. Then there exists b € A’ such that
(i) A, is finitely generated,;
(i) A, = A}
(iii) G has a structure G 4, Of a semi-simple group scheme over A, such that
I’ C Gu(A,); A
(iv) I is dense in G, (A,).

(8.3) Lemma. (i) T and T’ are normal in T

(i) T /T is a finite commutative group of period c, T /T is a finite solvable
group of period c?;

(iii) T and I, are finitely generated;

(iv) Any homomorphism of T into a commutative group of period ¢ factors
through T.

Proof. (i), (ii), and (iv) are evident; (iii) follows from the finiteness of T /T
and I'/T” and finite generation of T (by [MKS, Corollary 2.7.1]).
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Let G be the adjoint group of G.
The action of G on L preserves C and therefore there exists a homomor-
phism h: G - GIL(L/C).

(8.4) LEmma. Kerdh = 0.

Proof. In view of (8.1) and [S3] (or [H]) Z(Lie G) = L/C and since L/C is
non-commutative Kerdh does not contain 2(Lie G). On the other hand L/C is
irreducible under G by (4.6) (i), (i) whence Kerdh N Z(Lie G) = 0. But
9(Lie G) is the unique minimal ideal of Lie G (by tables on pp. 124, 125 of [H])
whence Ker dh (which is an ideal) must be zero.

v(8.5) CoroLLARY. h: G — h(G) is an isomorphism.

Proof. Since G is simple Kerh can only be infinitesimal. This latter possi-
bility is rejected by (8.4).

Now we need several comments on fields and rings of definition of I’; in
these comments we follow E. B. Vinberg [V, §§ 1, 2].

Let K be the field of quotients of A.

(8.6) ProposrTioN. (i) K is finitely generated;
(ii) G has the structure Gy of an algebraic K-group such that I" € Gg(K);
(iii) The field of quotients of A’ is K.

Proof Let v,,...,7, be generators of I'. Choose a basis of L and consider
the field K generated by the matrix entries a;, (¥m) of the matrices Ad y,,. Then
K has s - (dim L)? generators. Since K C K it follows that K is also finitely
generated (by [Bal, Lemma 3.7]). -

Denote by Ad the representation of G on L/C. Note that trAdh = trAd h
for all h € G. Let D be the K-subalgebra of End(L/C) generated by AdT.
Since Ad is absolutely irreducible for AdG and since AdT is Zariski-dense in
AdG, it follows that L/C is absolutely irreducible for AdT as well. Thus D is
central and simple over K. In a K-basis of D the operators R oAdy of right
multiplication by Ady, y € T, are given then by matrices with coefficients in K.
Therefore the Zariski-closure R cAdG of R *Ad(T) is defined over K. By (8.5)
this gives us a K-structure on G; we denote it by Gx. We have AdT C Gg(K)
by construction.

By [BT2, (2.24) (ii)], G has then a unique structure G of a K-group for
which the projection Ad: G — G is a K-map. By [BT3, (3.17)] we know that
Ad(G(K)) is normal in G Gx(K) and the quotient is an abelian group of exponent
c. Thus D(Gg(K))G(K)¢ C Ad(G(K)). In particular, by (8.3) (iv), AdT ¢
Ad(Gg(K)), ie. for every v;,v; € [ there exist hj, h, € Gg(K) such that
v,h7t € C(G) for i = 1,2. Write x;:= y;h ", i = 1,2, with x, € C(G). Then
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=hi-x7=h;, i=12 ie ¥°€ Gy(K). Also [y,,7,] = [hx,, hox,] =
[hy, h,], whence [v,,7,] € Gg(K). Thus T = 9T - <9 ¢ G(K) as claimed.
Now denote by K’ the field generated by A’. Then K’ C K. As in the
previous case G has a structure of a K’-group which is described by a
K’-subspace V of L/C. Since AdT’ acts absolutely irreducibly on L/C this
subspace V is determined up to multiplication by a scalar. But then PV, the
projectivization of V, is determined uniquely. Denote by P the map AdG —
PGL(L/C). For h NPGL(L/C)(POAdI‘) we have h(PV) = PV in view of
uniqueness. If h € G(K) then the above says that PoAdh € PAdG(k) N
PGL(PV), i.e. PoAdh € PoAdG,(K’). Since P and Ad are K’-isomorphisms
we have that h € G(K’). Since I'<T, this implies that Ady € G (K’) for
vy € I'. But then Z[tr AdT'] € K’, whence K = K’ as claimed.

(8.7) ProposiTiON. There exists b € A’ such that
(i) Ay is finitely generated and regular;
(ii) Ay = A%,
(iii) G has a structure G A, Of a semi-simple groupscheme over A, such that
(@) GafA) 2T
(b) (Lie Gy, )(Az) and (Lie G, )(A3)/(center) are free Ayzmodules.

Proof. Pick elements v,,...,7, from I such that the field generated by the
trAdy,, 1 < i <s,is K (possible in view of (8.6) (i) and (iii)). Let A’ be the ring
generated by the trAdy,, 1 <i <s. Augment v,,...,y, to a generating set
Yiooo > Ym» M =8, for T (recall: T is finitely generated). Take a K-basis of
Lie Gx(K) and let A be the subring of K generated by the matrix entries of the
Ady;, 1 <i < m, in this basis. We have then that AdT" c GL,(A).

Since A D A DA’ D A, since A and A’ are finitely generated, and since A
and A’ have the same fields of quotients there exists b’ € A’ such that A = A’
(for example, take for b’ the product of denominators in expressions of the
generators of A through elements of A’) In particular, A p=A, =A) = A’
are finitely generated (although A and A’ may be infinitely generated). Since A b
is finitely generated and integral, there is b € A,, such that A,,,. is regular.

Now pick a set f},..., f, of K-algebra generators of k[G] and a set
Y1>--->7Y, of generators of I' (possible by (8.3) (iii)). Let b,, pl<is<m,
1 < j <r, be the denominator of £( Y;) € K in its expression as a fraction of
elements of A,,,.. Next consider comultiplication p: K[G] - K(G) ® K[G] and
coinversion «: K[G] - K[G] and pick b, b; € A,,. such that bu(f) e
Apprlfroe s £l 8 Apylfi,.-os ful and biu(f) E Ab’b"[fl’ oo fu] for
l1<i<m. Set b= b'b"l‘[1<,<ml‘[1<]<,b,]b,b; Then Aylfy, for---» £l
is a Hopf algebra over A; and, therefore, defines a structure of a group scheme
G,, over Ay on Gy. Since £(v;) € Ay it follows that T" € G Al Ap)-
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The set of points x € Spec A; such that G, is smooth, connected and
semi-simple contains an open subset U of Spec A;. (That is, by [SGA3, Corollary
VI1;.2.3, Proposition VI.3.5] there exists an open V C Spec A; and an open
subscheme Hy of G such that H, is smooth with connected fibers. Therefore
Gy — Hy, is closed, whence its image S under the structure map into V is
constructible. Since the generic fiber Gy is smooth and connected it follows that
the generic point of V is not in S. Therefore, since S is constructible, V — S
contains an open set W of V; that is, G, is smooth with connected fibers. Then
[SGA3, XIX.2.5] shows that an open U with desired properties does exist.) Let
b,,...,b, be generators of the ideal defining the complement to U. Then G Aoy
is sem1-51mple over Ay, . b,

Since G;,b b, IS smooth its Lie algebra is a projective Ay, .. p-module.
After an add1t10na1 localization at appropriate b, , € A, it will become free.

In the case of (Lie G, )(A,)/(center) we first localize to kill torsion and
then proceed as above. Denote the combined element by which we localized by

b,,, (so that b, , = 1 if C = 0). Then (8.6) holds with b=0bb, -+ bb,, b,,,.

Let B be a subring of k, B D Aj;. For any ideal I of B, we have a map
fs.r Gp— G/, the reduction modulo I. It induces a map on points
fo.rr Gg(B) = Gy(B/I) = Gg,(B/I).

Let m and r be numbers constructed in (3.1) for d:= dim(L/C). Further,
let 7’ be the least common multiple of |GL ,(F,»)| for m < e(d) where e(d) is
from Section 4. Consider A:= (2*T<™")¢"™, Since T’ D <>, we have that

(*) A c (941‘/(m))<"'>.

We still have that A is Zariski dense in G (because the Zariski closure of A
is (2G0T = G).

Let L denote the free A;-module structure on L/C. For a ring B, a
B-module M and a subgroup II of (End;M)* we denote by B-II the
B-envelope of II in End ;M.

To give meaning to the next statement we remark that the adjoint represen-
tation of a B-group scheme is always a B-morphism (see [SGA3, § IL4]).
Therefore so is Ad.

(8.8) LEMMA. There exists b € A, such that for any maximal ideal M of
Ay, the reduction H:= ﬁfn u(I) satisfies the assumptions of (3.1).

Proof. Since L is free, so is End , (L) let e,,. .., e; be its basis. Since A is
Zariski dense in G and is absolutely 1rredu01ble on L it follows that KAdA =
End (L) so that one can write ¢; = Xa,,0 (finite sum) with 1 <i < d? and
a,s € K. Let b be the product of denominators of the a,;. Then Ay, - AdA =
EndA“(E). Set B:= Ay,
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Now we have
(2H™) = £2,((2*T)7) 2 £ ().
By the previous paragraph we know that B - A = End o(L), whence
(B/M) - £ u(8) = £ 1(B - A) = End gy, (L ®5(B/M)).
Thus f3 ,(A) is absolutely irreducible, whence so is (2*H¢™)¢" as claimed.

(8.9) LEmMA. There exists b € B:= Ay, such that for every maximal ideal
M of B:= Ay, every AdAdff (A)-submodule of (EndEnd L) ® (B/M) is
also an Ad AdGj rsubmodule.

This means that over a sufficiently large residue field the sub-module lattices
of End(L) ® B/M under the finite group AdAdfj ,(A") and under the alge-
braic group AdAdGj ,, are the same.

Proof (J. Bernstein). Set F:= Ad Ad, E:= EndEnd L. Thus F: G - E. By
localization at some a € B we can assume (see [SGA3, Proposition VI;.2.2]) that
F is a smooth embedding of smooth schemes. Let J be the B ideal defining
F(G) as a Bsubscheme of E. Now consider the envelope K - (F(A))(C E ® K)
and let {v,},-:<, ¥ € F(A), be its basis. Let further [,...,1,, m =d® — s,
be a K-basis of linear forms on E ® K which vanish on K - (F(A)). Since A is
Zariski dense in G, it follows that k - (F(A)) = k - F(G), i.e. that the [, vanish
on F(G) as well.

Thus [, € ] ® K, 1 < i < m (by Hilbert Nullstellensatz and smoothness of
F(G) C E). We can assume by multiplying the I, by appropriate a, € B that
I, € E (the dual of E) and that [, € J for 1 <i < t.

Now localize at a’ € B, to ensure that the reductions [, ,, modulo any
maximal ideal M of B,, of the [, are linearly independent and that the same
holds for the reductions ¥; ,, of the y,. Then since [, € J, 1 < i < ¢, we have that
l; vy €] ® (B,, /M), whence F(G)p S nlsistKer l; ;- On the other hand
since the ¥, ,, are still independent we have

(Baa’/M)'F(A) = n Kerii,M’

l<i<t

(Baa’/M)F(A) c F(G)Baa’/M g nKerzi,M

Now

implies that
(Baa'/M) : F(A) = (Baa’/M) : F(G)Baa’/M
as claimed (set b:= aa’).

(8.10) LEmma. The G-module L/C cannot be represented as a non-trivial
tensor product of irreducible G-modules.
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Proof. Let A,..., A, be the fundamental weights of G and let A =
2, <i<m@;\; be the hlghest weight of Ad. We have (in an appropriate numera-
tion of the A;) that A = A, + A, for type A, A = A, for type B,, A = 2A, for
type C,, A = A, for type D,,, }\ = A, for type Eg, >\ = A, for type E., A=A
for type Eg, A = A, for type F,, and A = A, for type G,.

If Ad is a tensor product of, say, two representations with highest weights
{1, lbg, then p, + p, is the highest weight of Ad. From the expressions for A we
see that this is only possible for type A, with p, = A}, py=A, or u; = A,
ps = A, and for type C, with u; = u, = A. But in these cases the tensor
product in question is reducible.

(8.11) Proof of (8.2) concluded. It remains only to find b so that (8.2) (iv)
will be satisfied. Let B:= Agz;;. Since B is finitely generated, the set S of
maximal ideals M of B such that |B/M| < max(10, &(G)) with & G) from (5.5)
is finite. Pick an element s,, in each M € S and set a = I1 mesSy- Then
|B,/I| > max(10, &(G)) for any ideal I of B,.

Let M be a maximal ideal of B, and let p:= charB,/M. Set I':=
fB w(AdT"). By (8.8) and since L is a free B module, we have B,AdA =
Mat ;B,. Therefore (B,/M) - fB w(AdA) = Mat 4(B,/M) whence fB w(AdA) is
absolutely irreducible. Since fB w(AdA) C (DT3™)M, it follows that 'y
satisfies the assumption of (3.1). Let N be the socle of I';,/C(1},).

By (3.1), there exist simply connected absolutely almost simple algebraic
groups H,, 1 <i <t, each defined over a finite field F,, g, = p™, and a
homomorphism f: 1_[10 < H(F,) = Gg(B,/M) with central kernel (the case of
Suzuki and Ree groups is excluded by (8. 1)) such that (Ad° f )(1_[1 i< H(F,)) =
AdN. We want to check that the conditions of (4.1) are satisfied with g:= Ad.

Indeed, (4.1) (i) holds by (8.10), (4.1) (ii) holds by (8.8), and (4.1) (iii) holds
by (8.9). The restrictions on the type of G in (4.1) (iv) are contained in (8.1). It
remains to check that m, > e(1 + rank G), 1 < i < t, is satisfied. We have by
(3.1) that

N2 fy M((94F1(4<'">)m)(w)/(center) 2 f5 u(A)/(center).

Now if m; < e(d) for some j, then by definition of " we have (H(F, ))<'> c
C(H)), whence fB y(A) will not be absolutely irreducible (the same argument as
in (3 8)). Thus the conditions of (4.1) are satisfied and, therefore, the conclusions
of (4.1) hold: t = 1, G is defined over F, , and there exist an F, ,-isomorphism
£ H, - Gg ,u and n €N such that feFr" extends f. Thus N =
G(F,)/(center) for some g = p™. Since the central extension G(F,) of N is a
perfect group, we have that I';, = G(F,). By (8.6) (ii) we have A’/(A" N M) =
B,/M, whence F, = B,/M.
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Now let I be an ideal of B, such that B,/I is finite. We shall check that the
conditions of (7.1) hold with A:= B,/I. First, (7.1) (i) holds by our choice of a in
the beginning of (8.11) and (7.1) (ii) follows from our assumption (8.1). Then
(7.1) (iii) holds by the conclusions of the preceding paragraph and (7.1) (iv) holds
since Z[tr Ad f,f ('] =B,/I in view of the Chinese remainder theorem and
(8.6) (i)-

Thus hme (") = limGg(B,/I) = (B ) where the inverse limits are
taken over cofinite ideals of . B,. “Thus (8.2) holds with b = bbba.

9. Some reformulations

(9.1) Our first result is an extension of (8.2) to semi-simple (simply con-
nected) groups which are not necessarily absolutely almost simple. To formulate
the result it is convenient to view the group G X G as the group G over the
algebra k @ k.

Thus let G,,...,G,, be simply connected Chevalley group schemes over Z
andlet k,, ..., k,, be algebraically closed fields. We can consider G:= [ ], <i<nGi
as a group scheme over k== @, _._, k; in general, it is not of constant type.

Let ¢ = ¢(G) denote the order of the schematic center of G so that
c(G) = l’Il<,<m (G;). Also if S is a group, write S} for the group

(S¢D28) (D P8¢ . 98).

(9.1.1) TueoreM. Let I' be a subgroup of G(k). Assume

(a) T is finitely generated.

(b) Projection of T on each G, is Zariski-dense there.

(c) If G, is of type G, (resp. B,, C, or F,) then chark, + 3 (resp.
~chark; # 2).

Then there exist b € A:= Z[tr AdT], b € k*, and a structure Gy, on G of
a semi-simple group scheme over A, such that

(i) A, is finitely generated,
(ii) 1-‘c(C) C Gy (Ab)
(iil) Te, is dense in Ga (A b)-

Remark. This theorem can be proved in exactly the same way as (8.2). We
will however, outline an approach which is somewhat simpler.

Let ¢, be the identity of k; and pr; be the projection of k on k; and of G
on G..

1

(9.1.2) LEmma. There exists b’ € A N k* such that A, = &,_ _ B,
where the B, are integral domains.

Proof. Suppose that e is a minimal idempotent of A and that Ae has a zero
divisor a. Let S = {i|l <i <m, ak; = 0}. Then a@:=a + X, _¢¢; € k* and
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a/d € A, is an idempotent of A, different from e. Repeating this process at
most m times we find a b’ satisfying the conclusions of (9.1.1).

Let K;, 1 < i <t, be the quotient field of B;, let ¢; be its identity, and let
Sq;={jll<j<m,ée # 0}.

(9.1.3) Lemma. Foreveryi,1 <i<t, and any j, s € S;
(i) chark; = charkg
(i) G; is of the same type as G,.

Remark. A version of (9.1.3) (i) was originally obtained jointly with
C. Matthews as a part of intended joint work. I am grateful to him for his
permission to use it here.

Proof. We have e, Z]ese If chark pl, p; # 0, and chark, = p, and
p; # p, then p & j €, # 0 whence it follows that €; is not a primitive 1dempotent of
B, in contradlctlon to assumptions.

Suppose now that for j, s € §;, the type of G; differs from that of G,.
Consider Ii=prl € G; and I';:= pr,I" C G,. By (8.2) applied to both I; C G;
and T, C G,, there is a b € B, such that for every maximal ideal M of (B,),,
reduction of (I};) mod M is a universal finite group of the same type as G; and
similarly for G,. Assuming that |(B;),/M| > 10 (which can be achieved by
additional localizations), we see that I' projects on A; X A, where A; and A,
are universal groups of Lie type which are not isomorphic. Thus reduction of
I’ mod M contains a direct product of groups, whence the ring (( B;),/M)[tr Ad I']
is not a field, in contradiction to either the maximality of M or the integrity of B,.

(9.1.4) Proof of (9.1.1). Replacing k, by K j» We are now in the situation
where we can apply (8.2) to each factor (G, pr,I"). After having done that, we
note that we have the conditions of (7.1) with the only difference that G now is
not of constant type. But the proof of (7.2) goes through anyway in this slightly
more general case.

(9.2) Let A be a finitely generated integral domain and G an absolutely
almost simple simply connected semi-simple group scheme over A. Let T' be a
subgroup of G(A) such that the field of quotients A - A~! of A coincides with
that of Z[tr AdT']. For s € Spec A, let k(s) be the residue field of s and I, be
the image of T in G(k(s)).

(9.2.1) TuEOREM. Assume that G is not of type G, if char(A - A~') =3
and not of type B,,C,, F, if char(A - A~') = 2. If { s € Spec A|dim s = 0 and
T, #+ G(k(s))} is Zariski-dense in Spec A then T is not Zariski-dense in G.

Proof. If T is finitely generated and Zariski-dense then, by (8.2), there exists
an open U C Spec A such that T, = G(k(s)) for all closed points s € U(A).
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Hence our claim holds for a finitely generated I'. Reduction to this case is done
as in the proof of (8.6).

(9.3) Now let I' be a finitely generated subgroup of GL, (k) where k is an
algebraically closed field of characteristic + 2 or 3.

(9.3.1) THEOREM. There exist a subgroup I’ of finite index in T, a finitely
generated ring A, a simply connected semisimple group scheme G over A, and a
homomorphism f: T" - G(A)/C(G(A)) such that

(i) Ker fis solvable;

(ii) Im fis dense in G(A)/C(G(A)).

Proof. Let H be the Zariski closure of T in GL,. Take A:= T' N HY A is
finitely generated because T is and [T /A| = |[H/H°| < oo. Let R be the radical
of H°. Then G:= H°/R is semisimple and adjoint. Let 1 H® > G be the
projection. Since Ker f C R, it is solvable. Let I':= f{A); it is Zariski-dense in G.

Let G be the universal cover of G and 7: G — G the corresponding map.
Let ¥,,...,7, be generators of T (it is finitely generated since A is). Let
yer X(¥), 1<i<t Set I= {(Y1>--->Y,)- Since T is Zariski dense, so is I
By (9.1.1) there exist a finitely generated ring A (denoted A, in (9.1.1)) and a
structure G, of a semi-simple group scheme G, on G such that I' N G4(A) is
dense in G,(A) and I":= T N G,(A) is of finite index in I Setting I':=
£~ Y m(T")), we obtain our claim.

(9.3.2) Amplification. If char k = 0 then there exists a function &: N*—> N*
such that for every I' as in (9.3.1) there exist (in addition to A, G, I"”, f having
properties (i) and (ii) of (9.3.1)) normal subgroups I, and T, of I' with
I 2I"2T, and

(ifi) T/T,] < e(n),

(i) DXT,/T,) = (1),

Proof. We use notation of the proof of (9.3.1). By [Ba 2] we know that
H/H?° contains an abelian normal subgroup M of index < &(n) with appropriate
e. We have by construction that I'/(T' N H°) = H/H®. Let T, be the preimage
of M in I'. It is a normal subgroup of I' of index < &(n). So it is finitely
generated since I' is. Let m be the exponent of M. Then N:= (I)); is a
characteristic normal subgroup of I, whence it is normal in I. T',/N is a
commutative group of exponent m; since it is finitely generated it is finite.
Therefore N is finitely generated. By construction N € H? and since I' N H? is
Zariski-dense and (I’ N H?) /N < oo, it follows that N is also Zariski-dense.

Let G, G, f, and 7 be the same as in the proof of (9.3.1). Let ny,...,n, be
a set of generators of N, let #i, € 7 X(n,), 1 <i < ¢, and let N = (#,,...,#,).
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Then by (9.1.1), the chara;cteristic normal subgroup~ N2:= N(¢, is contained in
G(A) and dense in G(A,). The group I, = m(N,) clearly has the desired
property.

Remark. Actually one can take #(N< - &N) for T, because we factor the
center out anyway.

(9.4) Let G be an algebraic semi-simple simply connected R-group such
that H:= G(R) has no compact factors. Let K be a maximal compact subgroup
of H and X:= H/K. Let T be an irreducible torsion-free lattice subgroup of H
and Y:= T'\ X so that Y is a locally symmetric space of finite volume. Write
G =G, X Gy X+ XG,, a product of R-groups. Suppose the G;, 1 <i < n,
are absolutely almost simple, and G, = R G/, n + 1 <i <m, where the
C-groups G/ are absolutely almost simple.

(9.4.1) Tueorem. If m = 1 assume that G # SL, g. There exist a number
field k with the ring of integers A,a, b € A, an absolutely almost simple simply
connected group scheme 9, over A, with G being an R-factor of

(Ri (9, ® k)) ®R

and a finite cover Y' — Y with solvable group such that for any ideal I of A,
there is a cover Y — Y’ with the group 9,(A,/I).

Proof. If rkzG = 1 then by [GR, Theorem 0.11], we have that Q[trad I'] is
a number field and by [R, Corollary 13.20], T" is finitely generated. The same
(and more!) holds in the case tkgG > 1 by a result of D. Kazhdan (finite
generation) and G. Margulis (arithmeticity) (see [M]). By A. Borel’s density
theorem (see [B1] and [B2]) I is Zariski-dense and, therefore, (9.1.1) is applic-
able. It, together with the inclusion A C Q[trAdT'], implies our claim (take
Y':=I"\ X, and, for I':= Ker{ %, (A) = 9,(A,/I)} take Y":= I'" \ X).

(9.4.2) Remarks. (i) The above proof needed only finite generation of I,
Zariski-density of T' in G, and local rigidity of T'. Therefore the claim also holds
for finitely generated, Zariski-dense, torsion-free I' such that HY(T, Ad) = 0 (see
[R, Theorem 6.7]).

(ii) (9.4.1) follows directly from Margulis’ super rigidity (see [M]) if rkzG >
1. Indeed, T is then arithmetic and our claim reduces to the usual strong
approximation theorem.

10. The one dimensional case

Let k be a global field (i.e. either a number field or a field of functions on a
curve over F, for some q). Assume (8.1). Let o be the ring of integers of k and V
the set of all inequivalent valuations of k. Let V, be the set of archimedean
valuations of k. For v € V — V , let k, denote the completion of k at v, o, the
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ring of integers in k,, and p, the residual characteristic of o,. We use I I'°% ck,,
to denote the restricted product of the k, over v € S C V. For a subset T of V
we set kpi= [ 1™k, and o;:=I1, 0,

Recall that k_ is a locally compact field with o, open in k, and k; is a
topological ring with o, open in it.

Let G be an absolutely almost simple algebraic k-group. For any k-group H,
H(k ) is a locally compact topological group with H(o,) open in H(k,). If k is a
number field then H(k,) is an analytic group over Q, and so is every closed
subgroup of H(k,). The analytic Q,,-groups have Lie algebras which are Lie
algebras over Q,. We use U (with any modifiers) to denote an open neighbor-

hood of the identity in the topological group in question.

(10.1) TueoreM. Let G be an absolutely almost simple simply connected
algebraic group over k. Suppose that chark # 3 if G is of type G, and
chark #+ 2 if G is of type B,(n > 1), C,(n > 1), or F,. Let T be a Zariski dense
subgroup of G such that T € G(k) and the subfield of k generated by tr Ad T is
k itself. Then there exists a finite set S, S 2 V,, such that the closure of T in
GI I, k,) is open.

Proof. Let v,,...,¥, be elements of T' chosen so that I= (Yoo v o> Yy I8
Zariski-dense in G (possible since dimG < o0) and the field generated by tr Ad T
is k (possible since k is finitely generated). Then by (8.2), there exists b € o such
that tr Ad T C o, (= localization of o at b) and such that I is dense in G ol 0p)-
Let S be the finite subset of V consisting of the archimedean valuations and of
such v that b & o,. Then the above says that T is dense in Gy, [(0y_s); since
this latter group is open in G, _(ky_s), we get our claim.

Now we want to obtain the strongest approximation theorem possible for
our methods. To this end, we use the following observation from the proof of
Lemma 2.1 in [P].

(10.2) LEmma. Let K be a locally compact ring, H an algebraic group
scheme over K, and T a subgroup of (the locally compact group) H(K). Then
there exists an open neighborhood U of the identity of H(K) such that for any
U’, U’ C U, the Zariski closure of T N U’ is normalized by the Zariski closure
of T.

We recall our convention that U with any modifiers always denotes an open
neighborhood of the identity in the group in question.

Proof. Let Hg be the Zariski closure of I' N U. Since Hy D Hy when
U 2 U’ and by the Noetherian property of the algebraic varieties, it follows that
there exists a U such that the Zariski closures of I' N U and I’ N U’ coincide for
all U’ C U. For any y €T there exists then a U, so small that }/Uyy_1 c U



APPROXIMATION FOR SUBGROUPS OF ALGEBRAIC GROUPS 305

Thus y(U, N T)y™' c UNT, and since the Zariski closures of UN T and
U, N T coincide, it follows that y normalizes this Zariski closure.

(10.3) LemmA. Let k be a global field, G an absolutely almost simple
algebraic group defined over k, T' a Zariski-dense (in G) subgroup of G(k) such
that the field generated by tr AdT is k. Let SC V, S 2 V,. Then either T is
discrete in G(k_g) or there exists a U C G(ky,_g) such that for any U’ C U,
I' N U’ is Zariski-dense in G and the field generated by tr Ad(T' N U’) is k.

Proof. Take U as in (10.2) for K = k,_g and H = G. Assume (as we may)
that U is a subgroup. Since the Zariski closure of U N T is normalized by G
(which is the Zariski closure of I') and since G is absolutely almost simple it
follows that if T is not discrete in G(k_g) then U N T is Zariski-dense in G. Let
k’ be the field generated by tr Ad(I' N U’) for a U’ C U; k’ is not finite since
otherwise I' N U’ would be finite (by [Bal, Corollary 1.3(a)]) and this would
contradict the Zariski-density of I' N U’. (Note that we used the fact that
I' n U is a group.)

Therefore [k: k'] < o0. As in the proof of (8.6) (ii), it follows that G has a
structure G,. of a k’-group such that Ad(I' N U’) € Ad G(k’). Let us replace G
by Ad G (which does not affect either assumptions or conclusions). Let G":=
Ry /xG. (Note that G’ is not semi-simple if k/k’ is not separable.) Since G is
defined over k’ we have the natural k’-homomorphism s: G — G’ (induced by
k" = Ry k). Let s% G(k") - G'(k’) and Rk/k G(k) - G’(k’) be the homo-
morphisms of groups of points induced by s and R, 4 Fora sufficiently small U,
open in G'(k’), we have that the Zariski closure of U N R L is normalized by
RY sl (by (10.2)) and contained in s(G) by construction. Thus R? I c
NeAs(G)). ]

The unipotent radical R,G’ of G’ is isomorphic over k’ to a direct sum of a
number of copies of Lie G on each of which s(G) acts via the adjoint representa-
tion, and G’ /R G’ is isomorphic to a direct product of a number of copies of G
in which s(G) is embedded diagonally. Then by simplicity of G one easily
establishes that N, /r,cA(8(G)) = s(G) and that N (s(G)) = {1} whence
NAs(G)) = s(G); that is, R} T C s(G). Since R}, ,I' € G'(k), it follows
that Rg/k,l‘ C G'(K") N s(G) = s(G)(k’). Thus, since s was a k’-map, we have
I' € G(k’), whence tr AdT" C k’, whence k’ = k as claimed.

(10.4) CoroLLARY. Let k, G, and T be as (10.3). There exists a finite
ScV,S2V, such that I:=T N G(oy_y) has the following properties:
() T is Zariski-dense in G;
(i) T is discrete in G(k,) for any finite w € S;
(iii) The fields generated by tr AdT and tr Ad T are the same.



306 BORIS WEISFEILER

Proof. For any T C V, set fr== I'n nvETG(oO). By (10.3) there exists a
finite S’ having properties (i) and (iii). Since for w € S’ the projection of
G(k,) X G(oy_g) = G(k,) has compact kernel, it follows that if I" is discrete
in G(k,) X G(oy_yg), it is also discrete in G(k ). Therefore if (ii) does not hold
with w € S, then T is not discrete in G(k ) X G(oy_g). Applying (10.3) with
S:= 8§ — {w}, we get that I' N G(oy_;) still has properties (i) and (iii). Since
S’ is finite it follows that after a finite number of steps it will become impossible
to carry on the above procedure. At this point (ii) will hold as well.

(10.5) TueoreM. Let k be a number field, G an absolutely almost simple
simply connected algebraic group defined over k, T a Zariski-dense (in G)
subgroup of G(k), such that the field generated by tr Ad T is k. Then there exists
a finite S, V, € S C V, such that:

(i) The closure of T is open in G(ky_g) and

(i) T N G(oy_g) is discrete and Zariski-dense in G(k,) for each
wesS-V

a*

Remark. Our work on (10.5) was started jointly with C. Matthews and the
ideas of our proof were developed at that time. I am grateful to C. Matthews for
his permission to use them here.

Proof. Take S as in (10.4) and I:= T N G(oy_g). Then T is Zariski-dense
in G by (10.4) (i) and, therefore, by (10.1) the closure of T in G(oy_(rus)) is
equal to G(0y_(rs,) for some finite T C V — S. Extend T so that in addition to
the above properties (i) it will contain all v € V — § such that p, = p,, for some
w € T, and (ii) G is quasi-split over k, and split by an unramified extension of
k,if v €V —S—T. Since I' is Zariski-dense it is infinite and since G(o0;) is

“compact, I' is not discrete in G(o7). Since the field generated by tr Ad Iisk
which is dense in k; it follows that the projection of I' on every direct factor
G(o,), w € T, of G(oy) is not discrete. Let H; be the closure of Iin G(op). It
is a Qp (= nweTpr)-analytic group. Let L be the Lie algebra of H;
considered as an analytic group; L is a Lie algebra over Q. Consider it as a
subalgebra of (Lie G)(kr). The Q-subalgebra of End, ((Lie G)(k;)) generated
by AdT contains (by (10.4) (iii)) k. Thus L is actually a k,-subalgebra of
(Lie G)(k;) which has nontrivial projection on every (Lie G)(k,), w € T. Since
it is invariant under Ad I and since T' is Zariski-dense in G, it follows that L is
Ad G-invariant and by simplicity of (Lie G)(k,) it follows that pr, L =
(Lie G)(k,,). Therefore, since L is a k -algebra, we have L = (Lie G)(ky).

Since (Lie G)(k;) = Lie H; it follows that the analytic Q,-groups G(k;)
and H, share a common neighborhood of identity; i.e. H; is open in G(k;). Let
H be the closure of I in G(oy_g). We know that pr.H is open in G(k;) and
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pry_rusyH = G(oy_(ryus))- Write pry for pry, pr, for pry_ 1), and H, for
pr;H, i = 1,2. We consider H as a subgroup of H, X H,. Take h € H, and let
h € pri*h € h X H,. Then set h:= pryh. Then we can consider & as an element
of Hy,/JH N H,. This defines an homomorphism ¢: H, - H,/H N H,. Since
{p,v€T}N{p,vE€V—-(SUT)} = J and since every G(o,) is virtually
a pro-p,-subgroup it follows that ¢ is trivial on a subgroup H , of finite index in
H,. Let H be the preimage of H, in H. Then g(H,) = {1}, whence HNH,=
pr,H. This establishes our claim.

(10.6) CoroLLARY. With the assumptions of (10.5), if T € G(oy_35) for
some finite S C V, S 2 V,, then the closure of T in G(oy,_g) is open.

Proof. Since T is Zariski-dense it cannot be discrete in the compact group
G(oy_s5). Since I' = T' N G(oy_jg), it follows that S as constructed in the proof
of (10.5) contains S, whence our claim.

(10.7) CoroLLArY. With the assumptions of (10.5), assume that T' con-
tains a unipotent element. Then the closure of T in G(ky_y,) is open.

Proof. The subgroup generated by a unipotent element is never discrete in
G(ky_y, ). Therefore I' N G(oy._y, ) is not discrete, whence our claim in view of
(10.5).

11. On the profinite completion of
some arithmetic cocompact lattices in SO(n, 1)

Let k:= Q(\/rj ) where p is a rational prime, let A be the ring of integers of
k, and fi=— px2+ X,_,_,x a quadratic form over k. Denote by G:=
SO(f, ) the special orthogonal group of f; it is a group scheme over A.
By [R, Theorem 6.15] the group G(A) is finitely generated. The constructions of
this section are based on Millson’s report on [JM] at a seminar at Harvard; I am

grateful for his permission to use them here.

(11.1) TrEOREM. With N an integer > 1, there exist subgroups I'y, and T},
of finite index in G(A) such that T has Spin( fy, R)/(center) and T}, has
SL, . yv+3(R%) as quotients. Here

— -1 -1

-1
R = A[tl"‘"t2[(N+l)/2]—l’(tlt2 e t2[(N+l)/2]—l) ] a’nd F' e R/;
fn=- ‘/;xg + X o«

1<i<N+n
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This shows the extent to which the congruence subgroup property fails to
hold for G(A); that it does not hold is known from [Mi].

In our proof of (11.1) we shall construct Zariski-dense embeddings of a
congruence subgroup I' of G(A) into SO, , y,(C) and into SL, , v, ;(C) thus
proving:

(11.2) THEOREM. A cocompact lattice in SO(n, 1) has faithful homomor-
phisms, with Zariski-dense image into infinitely many nonisomorphic almost
simple algebraic C-groups.

Remark. “Infinitely many” in the statement above can be most probably
replaced by “almost all up to isomorphism”.

Theorem (11.2) exhibits again how properties of the irreducible lattices in
rank > 2 Lie groups fail miserably in rank 1. In this case Margulis’ super-rigidity
(a homomorphism with Zariski-dense but not relatively compact image into a
simple Lie group extends to a homomorphism of Lie groups, see [M]) does not
hold. (Cf. [W2, (5.6), (7.2)] for a discussion of other differences between rank 1
and rank > 2 cases.)

We fix an embedding of k into C. Let R be the subfield of real numbers in
C. Let V:= R"*! with basis ¢,,..., e, and assume that f has the given form in
this basis. Consider V':= )., -n_1Re; and let G’ be the special orthogonal group
of fi=— px2+ Y, _._x7 Then G(R) = SO(n,1), G'(R) = SO(n — L,1).
Let K= GER)N GL(EIS,,S,,Re,-); it is a maximal compact subgroup of G(R)
and K’ = G’(R) N K is a maximal compact subgroup of G’(R). Let H:= G(R) /K
and H":= G'(R)/K’; these are hyperbolic symmetric spaces and H’ (which we
consider embedded in H) is a totally geodesic subspace of H. J. Millson
introduced (in [Mi]) geometric methods for studying G(A)\ H. Namely, he has
shown that for an appropriate torsion-free congruence subgroup I' of G(A), the
(n — 1)-dimensional submanifold M:= (I' N G’(R)) \ H’' does not separate X:=
I' \ H. Therefore [M] is a non-trivial cohomology class in H" (X, R). Since X is
compact, by Poincaré duality there exists a loop s which represents the dual
class, [s] € H{(X,R).

Recall that H and H’ are simply connected and therefore m,(X) = I" and
m(M) = I'. Now Millson’s results on [M] and [s] permit one to give a
presentation for I'. Let Y:= X — M, let U,, and U, be small tubular neighbor-
hoods of M and S, and let Z:= U,, U U,. Then Z, Y, and Y N Z are connected
and open in X and X = Y U Z. Take a base point on s. Then by the van
Kampen theorem [O, Corollary to Theorem II], m\(X) = m((Y)* . vz 7(Z)
(free product with an amalgamated subgroup). Let us identify two copies of M
in Y N Z via retraction of U,, to M. Now note that Z N Y retracts to M V M
(one-point joint of M with M). Therefore 7 (Y N Z) = @ (M) * 7(M). Similarly
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Z retracts to M V s whence 7(Z) = 7 (M)* (s). Now we have to describe the
maps « and B induced by the natural embeddings of 7,(Y N Z) into 7(Y) and
7,(Z). Because of our identification of copies of M in Y N Z we have that a:
7(Y N Z) - 7 (Z) is given by a(c,*c,) = cic5 ' *s° € m(Z) for c¢p,c, €
7(M). Now the map B: #(Y N Z) - 7(Y) is given by two homomorphisms
@ m(M) - 7(Y), i = 1,2, so that B(c, *¢,) = ¢,(c;)s(cs ). For the com-
posite map 7 (Y N Z) - 7(Y) — 7(X) which we denote w, we can assume
that (w e @,)(¢) = c¢. Then (w° @,)(c) = scs™ . Thus the van Kampen theorem
gives us

(11.3) LemMmA. T has a presentation
I = {(w(m(Y)),s|scs ! = w(gpy(c)) forc € T")
where @,: I'" = w(m(Y)) C I is a homomorphism.
Set A:= w(7(Y)) C I and let n: I' = G(R) denote the natural embedding.
(11.4) LeEmMa. n(A) is Zariski-dense in G.

Proof. We saw that w: I'"*1 > I C I' (where #(Y) is identified with
I'"*I). Since I is Zariski-dense in G’ (by [B1] or [B2]) it follows that the
Zariski closure of n(A) contains- G’. Since sG’s™ ! #+ G’ because sI's ! =
w(1*T") C A, and since G’ is a maximal connected subgroup of G, it follows
that our claim is true.

Now embed V into an inner product space R"*V*! by adding new

orthonormal vectors e, 1, ..., ¢,y and assuming that they are orthogonal to V.
Define r, =0, r, = 1, 1,,;, = r,_, + r> + 1. Define for t < (N + 1)/2,
2t—2
€y 1= €~ Zo Tlnii T €oig 15
im

2t—1
e2t = en - Z rien+i + en+2t’
i=0

where we assume that e, 5., =0. Set P,=Ré,_, +Ré,, for 1 <t<
(N + 1)/2.

(11.5) LemmMma. (i) The P, are mutually orthogonal,
(ii) The P, are orthogonal to V';
(iii) Each P; has a non-trivial projection on Re,,.

Set d:= [(N + 1)/2]. Let o; be an orthogonal transformation in the plane
P, i =1,...,d. The Thurston bending (see [JM]) of I' in SO, , ., is the group

I(ay,...,05):=(n(A),n(s)o, -+ a;) €SO, ns1-
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(11.6) LemMa. The map ¢ = n(w(c)) for c € m(Y), s = n(s)o, --- o,
defines a homomorphism of T onto I'(o,,...,0,).

Proof. 1t is sufficient to verify that the above map preserves the defining
relations of T’ from (11.3). But since the o, commute with I'" (by (11.5) (ii)) we
have

n(s)o, -+ 0y n(c) o5t -+ o7 'n(s7h) = n(s)n(c)n(s™)

= n(scs™") = n(gy(c))
and the relation holds since @,(c¢) C A and A is not bent.
Pick d independent transcendental numbers ¢,,...,t, € C and define

t, 0
6, € GL(P,) by 6,.;=(0 t.‘l) in the basis {&,,_; + &y,8y;_, — €,;} of P.
Then 5, € SO, . y. 1. '
(11.7) Lemma. T:= (5, ...,6,) is Zariski-dense in SO, , 5. .

Proof. Note first that by the definition of the Thurston bending, n(A)
remains unbent and, therefore (by (11.4)) the Zariski closure of I' contains
G = SO, , ,. Since n(s) € SO, |, it follows that the Zariski closure of I contains
G, -+ - 6,. Since there are no algebraic relations (sufficient: no relations which are
monomials) between eigenvalues of the different 6;, 1 < i < d, it follows that the
Zariski closure of (6, - -+ 6,) contains the product of orthogonal groups SO(P;)
of the P,. And then it is routine to verify (by (11.5) (i) and (iii)) that the SO(P,)
together with G generate SO, , v ;.

Let now ¢,,...,%,,_, be independent transcendental numbers, £,,: =

= = ~ ~ — 29 0
(£, -+ t53_1) " ", and define G, in the basis &,;,_,, &, of P, by g, =(t20 ' ; )
2i
Define Thurston bending in SL,, ., in exactly the same way as before,

permitting, however, arbitrary o, € GL(P,).
(11.8) Lemma. T:=I'(G,,...,0,) is Zariski-dense in SL, ., if N > 3.

Proof. As in the proof of (11.7), we have at once that G and the group of all
diagonal, in the basis {&,}, transformations of X, _, _ yC&; is contained in the
Zariski closure of I'. By use of the maximality of SO,,, in SL,_,, it is not
difficult then to derive our claim.

(11.9) Proof of (11.1) and (11.2). Let us consider only the case of SO, y_ ;-
By construction I is Zariski-dense in SO, , .., Specialization t, > 0, i =
1,...,d, gives us a homomorphism of I onto T; by (11.6) it is an isomorphism.
Since the orthogonal groups SO(P;) lie in the Zariski closure of I it follows that
the &, must be all written over the field of definition K of I. Thus K >
k(t,,...,t;). On the other hand T' < SO(fy, A[t,, t;%..., t; t;']). Therefore
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= k(t),...,t;). Now let Tj=Tn (image in SOy, , of Spiny, . (K)).
Smce T is finitely generated, it follows that |F /T < oo (see e.g. (8.4) (ii) and
(8.6) (iii) (a)). On the other hand, the argument in the proof of (8.6) (ii) and the
above information give us that there is a localization of Z[tr Ad '] which
coincides with a localization of A[t,,t;},...,t, t;']. Now a reference to (8.2)
concludes the proof.

12. Miscellania

(12.1) The similarity to Serre’s problem on l-adic representations was ob-
served and explained to me by D. Kazhdan. Recall (see [Se]) that the problem in
question is to describe the action of the Galois group Gal(k/k) on the ladic
cohomology of an algebraic variety X defined over a number field k. An analogue
of this problem in the case when k is a function field and X an elliptic curve was
solved by J. Igusa [I]. In the functional case over C, the Galois (= monodromy)
group action on ladic cohomology comes from its action on the integral
cohomology and our results from (8.2), or (9.1), or (9.3), or (10.5), or (10.6) give
at once information about the T-adic closure of such an action. In particular, they
say that if the Zariski closure G of the monodromy group is semi-simple then the
closure of the image of the monodromy group in the l-adic cohomologies is open
in the groups of Q rational points of the Zariski completion. And, even more, as
in [Se], they say that for almost all I these ladic closures must contain the
subgroup G*(Z,) of G(Z,) generated by the unipotents of G(Z,).

(12.2) Situation in the excluded cases.

(12.2.1) In the cases when chark = 3 and G is of type G, or chark = 2
and G is of type B, or F,, it is possible that our Zariski-dense subgroup I' is
contained in an infinite version of a group of Suzuki or Ree (see [T2]). In this
case the closure of T in G(A,) will not be G( A,). This, probably, can be
detected on the level of reductions modulo maximal ideals—such reductions will
be, probably, finite groups of Suzuki and Ree. Besides, this case can have, as well,
other deviations described below.

(12.2.2) Let now p = 3 if G is of type G,, and p = 2 if G is of type B,
(n>2), C, (n>2),or F,. Consider a split group G defined over F, and let T
be a maxima.l‘split Ftorus in G, and R the system of roots of G with respect to
T. Write R = R, U R, for the partition of R into the sets of long and short roots.
Let further x: Ga F, G be a Chevalley system of F,-parametrizations of the
root subgroups of G with respect to T.

Now let k D F, be any field of characteristic p (preferably imperfect). For
two additive subgroups A and B of k we define, following [VW, § 6], the
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subgroup
GE(A, B):= (x,(B),7 € Ry %,(A), ' € R,) of G(k).

For a subgroup I of G(k) and r € R, write C(I'):= {¢ € k|x,(c) € T'}. It was
shown in [VW, § 6] that C(G%(A, B)) = A for r € R, and C(G%(A, B)) = B
for r € R, if A and B satisfy the following necessary and sufficient conditions
(see [VW, Theorem 1.1]):

(i) ABCA;

(i) BAP C B;

(ili) A? C B C A;

(iv) BB C B if R, is connected;

(v) AA C Aif R, is connected.

(12.2.3) We are interested in finitely generated groups. Therefore we take
finite subsets A, and B, of k and consider I':= GE(A,, B,). Then A:= C(T),
r € R,, and B:= C(TI'),r € R, satisfy (i)—(v) (actually, A and B are, of course,
the smallest subsets of k which satisfy (i)—(v) and contain respectively A, and
B,). Although (i)—(iii) do not necessarily imply that either one of A and B is
closed under multiplication (e.g. p = 2, K = F,, k = K(¢t), A:= X, ¢0,1,2,4,7,8Kt",
B:i= X, ¢i.751113172:Kt"), it seems that (since we are going to localize any-
way) that we can assume that A and B are rings (without identity). Then only
(iii) remains and we are, essentially, reduced to the case considered by J. Tits in
[T1, Section 10.3.2]. But then the closure of GE(A, B) in GE(A) will be, clearly,
GE(A, B). Thus it is impossible to prove (8.2) in the cases rejected there. But it is
reasonable to expect that if the groups of the type considered here, as well as the

groups of Suzuki and Ree are taken into account then a version of (8.2) should
hold.

(12.2.4) The point where the above phenomenon (of A D B D AP) is
detected by our proof is when we consider reduction modulo the square of a
maximal ideal M. For the groups of (12.2.3) the groups G(M/M?) (in notation
of § 7) will be equal sometimes to L(k) where L(k) is as described in (5.6).
However it seems to be the only place where the feature under discussion
influences the proof. Finally, to recover A we should, as before, take Z[tr Ad I'].
To recover B we should take Z[tr Ade «(I')] where ¢ is an inseparable isogeny
with d¢ # 0 (see [BT3, (3.8))).

(12.2.5) Finally, in addition to the above complications there may exist
non-trivial (or even anisotropic) forms of groups in (12.2.1) and (12.2.3), (see,
however, [BT3, (3.9)—(3.14))).

(12.3) Comments on other possible versions of strong approximation.
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What we did in this work was to take A for the definition of the adele ring
of A. However geometric considerations invariably lead to other definitions
related to families (“flags”) of embedded subvarieties (see [Pa]). Such an
approach would require a completely different (from profinite) topology on A,
and the corresponding results would be very interesting.

(12.4) Relevant recent work.

Two very recent papers: R. Griess, Quotients of infinite reflection groups,
Math. Ann. 263 (1983), 267-278, and ]. Cohen, Homomorphisms of cocompact
Fuchsian groups on PSLy(Z_[x]/(f(x))), Trans. A. M. S. 281 (1984), 571-585,
intersect (on very particular cases) with results of the present work. The former
paper gives also very precise information on reductions mod p for all p.

Another work (of which we knew while writing this paper) is: R. S.
Kulkarni, Surface-symmetries, holomorphic maps, and tessellations, to appear,
which studies (among other things) “frequency” of simple quotients of the
Fuchsian groups. As with the Artin problem (see [Ma]), very interesting informa-
tion is obtained modulo certain generalized Riemann hypotheses.

Finally, we analyzed the proof of Section 3 more closely and it yielded the
following statement: There exists a function f: N — N such that for every field k
of characteristic exponent p, every finite subgroup H of GL,(k) contains a
normal subgroup H, such that |H/H,| < f(n) and H, contains normal sub-
groups H, D H; such that H; is a p-group, H,/H, is a commutative p’-group
and H,/H, is a product of simple groups of Lie type and of characteristic p.
Moreover f(n) < (n + 2)! for all sufficiently large n.

PeNNsYLvaNIA STaTE UNiversity, UNIvERsITY PaRk, PA.
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