
COMMENTS ON DIFFERENTIAL INY ARIANTS 

By 

B. Weisfeiler 

MSRI and Pennsylvania State University 

The subject of differential invariants is possibly as old as the 

algebraic invariant theory itself. 

discovered was the Schwarzian 

The first differential invariant 

derivative (yilt /y") _ (3/2)(y"/y I )2 

of a function y(t) of one variable. It has several invariance 

properties; two of them are under a fractional linear change of an 

independent variable and, separately, under a fractional linear change 

of the dependent variable. 

The theory of differential invariants has never achieved the 

degree of maturity of the algebraic invariant theory. There seem to 

be several reasons for that. One of them is that by the turn of the 

century the theory of differential invariants was able to tackle 

(almost) only functions of one variable. The development of 

differential geometry required handling functions of more than one 

variable and such were developed in particular cases. The theory of 

torsion and curvature of a connection is an example. 

Another possible reason is that by the turn of the XX-th 

century mathematical values changed. In particular, Hilbert's 

finiteness theorem became a worthier model than explicit results in 

particular cases. The topic of differential invariants was not ready 

for a similar kind of conceptualization. 

We give below several examples representing, we hope, some 

important features of the subject. Then we prove a differential 

analog of Hilbert's theorem on finite generation of invariants. We 

conclude by pointing out several problems. In some of our comments 

we are rather informal. 

Professor Boris Weisfeiler disappeared on January 5, 1985, in a 
mountain zone near Chillan in Chile in circumstances which are still 
not completely explained. 
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Conversations with J. Bernstein, R. Herman, V. Kac, 

D. Kazhdan, and V. S. Varadarajan helped me enormously in 

understanding the subject of this paper. I am grateful to them. 

1. Examples. 

To start with let us give several examples. More examples can 

be found in literature, see annotated bibliography in the end of this 

paper. We always assume that we are working over 11:, the complex 

numbers. 

Example 1. Consider a system of ordinary linear differential equations 

of the first order: 

[

X 1 ~ t ) 1 
X' = AX where X = : ' A = 

xn(t) 

where the xi(t) and the aij(t) are functions of t from a given class '$ 

and X' = dXI dt. 

A substitution X = BY, where B = B(t) is an invertible n X n 

matrix and Y is the column of new variables, gives rise to 

Thus to describe the equivalence classes of systems with respect to 

linear changes of dependent variables is the same as describing orbits 

of matrices A E Matn('$) under the action of GLn('$) given by 

This is a classical problem, see [BVl] for a historical sketch. The 

group GLn('$) is sometimes called the group of gauge transformations. 

We assume, of course, that '$ is closed under subtraction, 

multiplication, taking the inverse, and differentiation; in other words 

we assume that '$ is a differential field. 

As in the geometric invariant theory to describe the orbits we 
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need. in particular. to construct functions P of the aij and their 

derivatives such that the values of P for A and B(A) are the same. 

We restrict our attention now to the case when the P are polynomials. 

In other words we are looking at the ring 

R = ~ [aU.a i j'a i r"] i.j=l ..... n of the so called differential 

polynomials in the aij' see [K] and [R]. and the action of GLn(~) 

GLn(~) 
on it. and we want to describe R • the ring of invariants of 

GLn(~) in R. 

This problem 

connection (of 

ILl X GLn(lL) over 

i.e. A E Matn(~)' 

admits a geometric interpretation. Recall that a 

class ~) on the principle GLn(IL)-bundle 

ILl is a map A: ILl _ Lie GLn(lL) = Matn(IL). 

Given a section B: ILl _ ILl X GLn(lL) one 

can compare it pointwise with the section c -.. c X Id to obtain a 

function B: ILl _ GLn(IL). i.e. B E GLn(~)' This new section B 

determines a new map B(A) E Matn(~) given by 

B(A) = B-1AB - B-1B' (see [BV]). Thus the question we are looking 

at can also be considered as a question of classifying connections in 

the principal GLn(IL)-bundles over a line. 

This is the problem we are concerned with here. The answer 

to this problem is trivial in our case (see [NW.Theorem 5.2] which is 

applicable because in the one-dimensional case curvature is always 

zero): Ii ~ is differentially closed then GLn(~) acts 

transitively on Matn(~) (action as above) and. therefore. 

RGLn(~) = IL. 

However. if ~ is not differentially closed there may exist more 

than one orbit of GLn(~) on Matn(~)' In the classically most 

interesting cases where ~ is the field of formal Laurent series in t or 

the field of convergent (outside 0) series the problem was solved 

recently by D. G. Babitt and V. S. Varadarajan (see [BV1]. [BV2] 

and the forthcoming papers). They first classify the orbits for the 

action of GLn(~f)' where ~f = lL«t» is the field of the formal Laurent 

power series. Then they study the action of GLn(~ conv)' where 

~ conv is the subring of lL«t» consisting of the series s = s(t) 
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convergent for 0 < I t I < t = t(s) some t(s) > 0, on the convergent 

parts of orbits of GLn(:f'f)' In other words, they study the orbits of 

GLn(:f' conv) on the sets CB(A), B E GLn(:f'f)) " Matn(:f' conv)' 

that is, the equivalence classes of germs of linear differential 

meromorphic (with at most an isolated pole in 0) equations at O. 

Example~. Consider now a system of ordinary linear differential 

equations of the second order: X" = 2AIX' + A2X, Setting X = BY 

we obtain that Y" = 2(B-I A1B - B-1B')Y' 

+ (B-1A2B + 2B-IAIB' - B-1B")Y. Thus the action of GLn(:f') on 

M = Matn(:f') $ Matn(:f') is given now by 

B 1 = 1 [
A 1 [8- 1 A 8 - 8- 1 8' 1 
A2 8- 1 A2 8 + 28- 1 A1 8' - 8- 1 8" 

If :f' is a differentially closed field with the field of constants 0:: 

then, again by [NW, Theorem 5.2], we see that GLn(:f') acts 

transitively on Matn(:f') by B(A I ) = B-IAIB - B-1B'. Thus to study 

the action of GLn(:f') on M is the same as to study the action of the 

stabilizer of the subset N: = 0 $ Matn(:f') on N. The stabilizer is 

The action of GLn(O::) on Matn(:f') is given by B(A2) = B-I A2B and we 

GL (0::) 
are led to considering the invariants R n where R is the algebra 

of differential polynomials in the entries of A2, as in the previous 

example. 

A more detailed study of this case and some of its 

generalizations is conducted in [W,Ch. IV] and Section 2 of the 

present paper. 

In the nextexample we give a description of a result from [W] 

which is, undoubtedly, the most interesting study of differential 

invariants from the "algebraic" point of view. 

formulation of this result is given in [MI], [M2] . 
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Bxample~. Consider the linear differential operators 

The changes of variables (both dependent and independent) of the form 

{ 
y • A(t)y 

t: • u(t) 

form a group if A t: 0 and U· t: O. This group preserves the equation 

L(y) = O. We are interested in the polynomials in a1.a2 •...• an and 

their derivatives which are invariant under this group. It turns out 

that such invariants are very few. We are led then to considering 

relative differential invariants. These are. in essence. differential 

forms. i.e. such differential polynomials P in the ai that the 

substitution Y1 = A(t)y. t1 = U(t) gives P times some power of the 

Jacobian of our substitution. Using our substitution (and solving a 

couple of differential equations. the procedure corresponding to an 

extension of the differential field) one can bring the equation L(y) = 0 

into the form where a1 = 0 = a2' Since the most interesting action 

occurs in this case we assume now that a1 = a2 = O. The only 

transformations from our group which preserve linearity of L(y). the 

equation L(y) = O. and the condition a1 = a2 = 0 are of the form 

Y1 = ky/(ct+d)n-1. t1 = (at+b)/(ct+d) with k t: O. ad-bc t: O. 

a.b.c.d.k E tt. The group G(tt) of such transformations is isomorphic 
• to a quotient of SL2(tt) X tt by a finite central subgroup. If we 

write (gL)(y) = 0 for g E G(tt) as y ~ n ) + (g(a3»y ~ n - 3 ) + ... 

+ (g(an»Y1 = 0 then the problem of finding (relative) differential 

invariants is the same as finding for all m E Z the differential 

polynomials P(a3 ..... an) such that P(a3 ..... an)dtm = P(g(a3) ..... g(an»dt~ . 

Thus we consider the algebra R: = $ 3=Ca3 ..... an)dtm (where 
m~O 

3=Ca3 ..... an) is the algebra of differential polynomials) and we want a 

description of RG(tt). Set for i~3. i~n 

1 ..,;.< __ ..,;1 ... );,..8...;.,( .;;;.i _-..;;2..;;)_' ... ~;..· .;.,1 .;.,( .;;.2..;;i_-..,;8_-_2;;..;;..) _, _ a < 8 ) 
9 i : = - ! i-s 

2 i~s~O (i-s-l)!(i-8)1(2i-3)!s! 
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Theorem ([W,P. 53] and also [MI, Lemma 2]). 

i=3 •...• n and their repeated brackets with 93 generate 

the algebra RG(O:). 

Morikawa gives in [MI, Lemma 2] also relations between the 

2(n-2) relative invariants 9 i and 9 ikl. One also has 

Theorem (see [W, p. 39]). Let RoR-1 be the quotient field 

of R. Then (RoR-1)G(0:) is the differential field of 

rational functions in the 9i' i=3, ...• n, and 9 301 with 

. . 9 3 d 
res p e c t t 0 d e rt vat l 0 n - -. 

9 4 dt 

There are many results in [W) which describe in much detail 

decompositions of the level sets of the differential invariants into 

orbits under G(O:). 

Finally, let us note that the invariants 9 i.9j 01 were used 

(first. I believe. by G. H. Halphen) to study geometry of the curves in 

lPn-l(o:). Halphen used them to describe the moduli space of such 

curves in lP3(0:); his proof, though, had gaps. 

Let L(y) be as above and let yl(t) •...• yn(t) be a basis of 

solutions of L(y) = O. Then the curve C: 0:1 _ o:n is given by 

the parametric representation (yl(t) •.. . 'yn(t)) . If Ys = r a;Yi is 

another basis then det I a! I ¢ 0 and, therefore. L(y) = 0 is the same 

for all curves A(C) where A E GLn(O:). Conversely. if a curve C is 

given parametrically by (Y1(t)"" 'Yn(t)) and is not contained in any 
o:n-1 then 

L(y): = [wronSkian Of]-I 0 [wronSkian Of] 
yl·····yn y·yl···· · yn 

gives rise to C. 
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Thus the classes of linear equivalence of curves C!; a:n 

which are not contained in any a:n- 1 correspond bijectively to 

equations L(y) = 0 of n-th order. 

The image of our curve in "n-l(a:) is given by the 

homogeneous coordinates (Y1(t): Y2(t): .... Yn(t». Then it is clear that 

the curve in lPn- 1(a:) does not change if we replace y by A(t)y and t 

by u(t). Thus we have 

Theorem. 

lPn- 1(a:) 

The equivalence classes oj the curves in 

(not contained in any "n-2(a:» correspond 

biiecttvely 

under the 

t -.. u(t). 

to the 

group of 

equivalence 

variabl est 

classes 

changes 

of L(y) = 0 

y -.. },,(t)y. 

The geometric properties of such curves are. therefore. 

expressible through the properties of the invariants Si' 9i • 1. 

Example ~. Consider the differential invariants of the action of 

G :::: Z12. G = C1.0). on a: given by o(y) = -Yo Thus we consider 

:fCy)G where :f is an apropriate (differential) field of functions on 

a:. It is clear that ~Cy)G = ~[y2.(y.)2 •...• (y(n»2 •... ]. 

Clmm. :fCy)G is not a finitely generated differential 

algebra. 

Indeed. if zl ..... ~ are (differential) generators of :fCy)G 

then we can assume that zl ..... ~ have no constant term. Let it be 

the differential subalgebra without 1 of :fCy)G generated by the 

~. Then the ideal it· :fCy) of :fCy) will be a finitely generated 

(by the zi) ideal of :f C y) . 

[R. sI.15]. 

This. however. is not the case by 

2. Formalism and finite generation theorems. 

Consider a commutative algebra Kover a:. The algebra 

Dera: K is a vector space over K and a Lie algebra over a: with the 

bracket defined by 
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for k E K. P1.P2 E Dera: K. 

We fix a pair (K.P) where K is a commutative algebra over a: 
and P is a K-subspace of Dera: K such that [P.P] ~ P. The 

algebra K [P] of differential operators is. by definition. the associative 

algebra over a: generated by its subalgebra K and the K-subspace P 

with relations 

pk = p(k) + kp 

PP1 - P1P = [P.P1] 

for k E K. P.P1 E P. 

Let K Cx1 ..... xn) denote the algebra of differential polynomials 

over K. i.e. the symmetric K-algebra over the free K [P] -module 

E9 K[P]xi' K[P] acts on KCx1 ..... xn) in such a way that for 
l~i~n 
a."t E K Cx1 ..... xn) and pEP we have 

p(ab) = p(a)b + ap(b) 

Generally. any K-algebra A with an action of K [P] on it is called a 

differential algebra if it satisfies the above condition. 

Even a finitely generated differential algebra over a differential 

field need not be Noetherian. An example exists already in KCx) 

when dimK P = 1; it is described in [R. %1.15]. (Actually a stronger 

counter-example is established in [R. %1.15].) However K C x) has 

a weaker Noetherian property. Recall that for an ideal I of a ring A 

its radical, Rad(I). is the ideal of A given by 

Rad(I): = Ca E A I am E I for some m = m(a) E a-D. 

Definition. A differential K-algebra A will be called rdN (: = radically 

differentially Noetherian) if every radical differential ideal is the 

radical of a finitely generated ideal. 

In the terminology of [K] radical ideals are called "perfect" 

and rdN above is expressed in [K] by saying that perfect differential 

ideals form a "conservative Noetherian system". As with the 
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Noetherian property, rdN implies that a strictly increasing sequence of 

radical differential ideals is finite. 

As Example 4 shows, passing to the rings of invariants may 

result in non-finitely generated rings even if one starts with the 

finitely generated rings. We still, however, have that the weaker 

finiteness property, rdN, is preserved if the action of the group is 

sufficiently simple. 

Theorem. Let A be an rdN algebra over a differential 

field K (with derivations P) and let G be a reductive 

(possi b 1 tI di sconnect ed) al gebrai c group over It. 

Suppose that G(It) acts on A btl K-algebra automorphisms 

and that 

(1) pP(g(a)) = g(p(a)) for gEG(It), pEP, aEA. 

Assume also that A has a filtration AO=K~Al 

~ ... ~ As ~ ... such that 

(iv) dimK Ai < 00, 1=0,1, ... 

Then AG(It) is a differential subalgebra of A and it is 

rdN. 

Note that this result applies to Example 4 and to Example 2 

(see the concluding remarks in this example). We shall give a wide 

class of examples satisfying the above theorem later on. 

That A G(It) is a differential subalgebra of A follows directly 

from (0. The proof that it is rdN is essentially the same as the proof 

of Hilbert's theorem on finite generation of invariants. We shall 

outline this proof. 

Since G(It) is Zariski-dense in the algebraic group G we see 

that G itself acts on A by K-automorphisms. Since G is reductive 
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(and char K = 0) it is completely reducible on each Ai and there is a 

1 · . G - G(a::> fA· b f canonic a projection Ei. Ai - Ai - Ai 0 i on Its su space 0 

fixed vectors. We have that Ei I Aj = Ej if j ~ i. Thus we obtain 

a canonical E: A _ AG(a::). We have 

E(ab) = E(a)b for a E A. bEAG. 

Indeed if a.b E Aj then we write a = Ii + aO' aO E A~(a::) and Ii 

belongs to the (canonical again) complement Cj of A ~ (a::) in Ai" Then 

ab = lib + aOb. Clearly aOb E AG(a::) and lib E C .• A~(a::) 
The latter is (as a G(a::)-module) a quotient of Cj @ A ~ (a::) and since 

the latter is. as a G(a::)-module. a multiple of Cj it follows that 

Cj @ A ~ (a::) has no trivial G(a::)-submodules whence 

(Cj • A ~ (a::) )G(a::) = (0) whence the required property of E. 

A similar argument based on commutativity of actions of G(a::) 

and P shows that 

pEtal = E(pa) for pEP. aEA. 

Now let J be a radical differential ideal of AG. Then Rad(JA) is a 

radical differential ideal of A. rdN implies (in the same way as in the 

Noetherian case) that a finite set of radical generators of Rad(AJ) can 

be chosen from J. Let it be a1 •...• ad E J. Let a E J. Then 

a'1 E Rad(AJ) and. therefore. at E ~ A • K [P] a l.. Write 
1~i~d 

at = ~ b.f.(p)(a. ). Then by the above at = E(at ) n Ij 

= ~.E(b.)· f .(p)(e(a. » 
J J J Ij whence 

at E Rad(~A G(a::)K [P] ai)' i.e. J = Rad(~A G(a::)K [P] ai). Thus J is 

the radical of a finitely generated ideal of A G(a::) as claimed. 

A version of the above result for the field of rational 

differential invariants is much simpler. 

Theorem. Let r b e a g r 0 up act i n g 0 n a fin i tel y 

generated differential field extension L of K (with 

derivations P) by a.ut omorph isms. If p(Y(i» = y(p(i» and 
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y(k)=k for all YEr. pEP. lEL, and kEK. then 

Lr is a finitely generated differential 

extension of K. 

Ii e I d 

Proof. Since the action of P commutes with that of r. Lr is a 

differential subfield of L. But by [K.Proposition 11.14] any subfield 

of a finitely generated differential field is a finitely generated 

differential field. whence our claim. 

It is proper now to recall again that a very interesting study 

of the field of differential rational and algebraic functions on the 

differential manifolds of oo-jets of maps of U!: a::1 into M(a::). 

where M is a homogeneous under G algebraic variety. was undertaken 

by M. Green [G]. His results give. in particular, a more detailed 

information on the structure of the differential quotient field of 

A G(a::) for some A from the next to last Theorem. In addition. 

M. Green computes explicitly differential invariants in a large number 

of cases. 

We shall now describe a class of examples to which the above 

theorems apply. 

First. let us consider the algebra U of germs at 0 of the 

holomorphic functions f: U _ a:: defined on a neighborhood U of 0 in 

a::n. Set a::n: = e a::ti and OJ: = %ti' Then f(t1 ... ·.tn) =!-
i~O 

i ~ 0 means that the ij ~ O. 

of f, i.e., as functions on U. 

We consider the a _ as the coordinates 
. i 

Then the coordmates of Of/otm are 

Thus the coordinates of f are acted upon by 

of the free a:: [ol ..... on] -module 

generated by a_ 
o 

To make our considerations independent of the 

choice of the uniformizers 

PU: = e UOi !: Dera:: U and 

polynomials in one variable. 

t 1 ..... t n we 

the algebra 

are led to 

of 

considering 

differential 

Note now that in actuality the a _ are also coordinates on the 
j 

ring a:: [[t1 ..... t n]] of formal power series. Therefore an algebraic 
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study of objects arising in the algebra :xea_} will. by necessity. 
o 

be only a study of formal objects. We thus replace :x by 

~: = a: [[t1 ..... tnJ J and P:x by P~: = $ ~6i and then ~ by its 

field of quotients K and P~ by P: = $ K6i. (Note that there is a 

difficulty with our definition of K as the notion of formal Laurent 

series in many variables is not straightforward.) 

Now let G be an algebraic a:-group acting. say. linearly on 

M: = Am. We consider 1R: = 1Rn: = ethe set of oo-jets at 0 of 

holomorphic maps f: U _ M(a:). U open in a:n• 0 E U}. The 

action of G(a:) on M gives an action of G(a:) on 1R by 

(g(m))(x) = g(m(x)) for gEG(a:). mE1R. xEU~a:n. 

This action is differential which in our case means that p(g(m)) 

= g(p(m)) for p E P:x. g E G(a:). m E 1R. Our action gives rise to a 

differential action of G(a:) on the algebra :XC xl ..... ~}. As 

before. we pass over from )4 to ~: = a: [[t1 ..... tnJ J. and then to 

K: = ~. ~-l. Our Theorems apply to such actions (with G reductive 

for the first Theorem). They also apply to the case when M is taken 

to be just an algebraic variety over a:. 

As a more concrete example. consider the case G = SL2 acting 

via the natural representation on M: = A 2. We take n < 00 and 

consider the action of G(a:) on A: = K e x.y}. As G(a:) commutes 

with P: = $ Kai we are looking at invariants of G(a:) acting on 
l~i~n 

direct sums (= $_ Kai(Kx $ Ky)) of natural SL2(a:)-modules. By 
i<m 

the classical invariant theory we know then that A G(a:) is generated 

(as a K-algebra) by the determinants 

[
6_X a_x] 

0_,; = det i j 
i;j 6,,;,Y C>-;y 

1. . J 

. i ~ I U~ o. 
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3. Problems 

The above results most probably extend to the case (including 

Example 1 and its analogs) when an action of the group is such that P 

still acts on the algebra or the field of the invariants. However some 

actions of interesting groups on interesting algebras do not have this 

latter property, see, e.g., Example 3. I do not know how to define 

such actions, whence 

Problem 1. Give a definition of a differential action covering 

Example 3 and other examples appearing in the literature (say in 

[V,Pp. 143-152]). 

The first two Theorems quoted in our discussion of Example 3 

give some kind of finite generation of the type one should be looking 

for. 

Such a definition should be given, it seems, in terms of factors 

(Le., cocycles) associated to an action of a group in question on the 

base differential field K. 

Also it may be more convenient to consider actions of the 

differential Lie algebras instead of groups. A formalism is introduced 

in [NW] for classification of certain differential Lie algebras; it 

should be applicable here. 

Another argument for considering Lie algebras instead of groups 

is that the differential Lie algebras of Cartan type (see [NW]) do not 

seem to have any group analog, except in the class of convergent or 

holomori>hic maps, which seem to be of different flavour, see comments 

after Problem 3. 

Once we have a definition of the general differential action we 

may look again at differential invariants. These, however, will not be 

generally preserved by some differentiations from P. 

Problem ~. (J. Bernstein) Show that for an appropriate class of 

differential actions of differential groups on rdN-algebras the rings of 

invariants are again rdN with respect to derivations from P which 

normalize the action of our group or its Lie algebra. 

Example 3 seems to confirm this conjecture: the bracket with 
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9 3 plays the role of the desired derivation. 

The algebraic differential invariants of the type we consider 

here are generally formal invariants. i.e. invariants of germs of 

functions. equations, groups. etc. at some point. 

Problem~. Find a way of putting the invariants together to obtain 

global results. 

Some results of this type are given by M. Green [G. 'S3]. 

We return to the interesting question of describing even at 

some point the decomposition of formal orbits into orbits under the 

action of the group of analytic-. COO etc. transformations. This has 

been addressed on a number of occasions. but the discussion of this 

question is beyond the scope of the present note (see however 

concluding remarks in Example 3). 

[BV] contains several references to problems of such kind. 
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