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1.1

1. Introduction.

Our object here is to study linear, and, except in Section 14, finite
groups. Our results concern mostly the size of such groups although some
other, structural, results are obtained as well. The departure point for the
present work was a result of M. Nori [ ] which can be considered as a
conceptual refinement of Jordan's theorem on linear groups. It turned out
that the methods used in [MVW] and.[V] (and based on classification of
finite simple groups) can be used to generalize, extend, and strengthen both
Nori's [Proposition 21] and Jordan's. theorem. Most of the present work is
dedicated to obtaining the best‘bOQnds for our version of Jordan's theorem.
This turned out to be quite difficult, especially bec;usé of necessity to
specially handle groups in small dimensions. A qualitative result is much
easier to obtain, see B. Weisfeiler [NAS].

Before going on to the statements of our results let us introduce some
terminology. For a field k we denote by p(k) the characteristic exponent
of k, that is p(k) = char k if char k> 0 and p(k)=1 if char k = 0.
A l-group and a group of Lie l-type are both trivial. If p#l is a prime
then a group of Lie p-type is a group of Lie type of characteristic p (see
Section 4 for more detail). A group is said here to be centrally simple if
its quotient by the center is simple. Two groups are centrally isomorphic
if their quotients by the centers are isomorphic. OP(G) is, as usual, the
largest normal p-subgroup of G.

Let k denote an algebraically closed field of characteristic exponent

p. Our version of Jordan's theorem is

(1.1) Theorem (see (13.1)). Let G be a finite subgroup of GLn(k). Then G
contains

(i) a normal subgroup T 2 OP(G),

(ii) a normal subgroup L EIT
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such that
(a) T/OP(G) is a commutative p'-group isomorphic to a product of =n
cyclic groups;

(b) L/T is isomorphic to a direct product of finite simple groups of

Lie p-type;
4 Vs _
(C.) |G/LT|< n (n+2) if n = 63
(n+2)! 4if n > 63
If p=1 then OP(G) = 1 and L/T= 1 and we obtain the usual statement

of Jordan's theorems:

Theorem. If p=l then G contains a normal commutative subgroup B

that |G/B| = f(n).

The best f(n) known until our paper (B. Weisfeiler [ 1) was obtained
by G. Frobenius (see A. Speiser [ , Satz 201]); it was f(n)=ntn 12°(T(®D+D)
where m(n) is the number of primes =n. Recall that w(n) ~ n/%n n. Thus

our estimate is of the type n®o"8t " M and 6. Frobenius' is of the type

jconst n2/(£n n)2

When p#1 our result implies that of R. Brauer and W. Feit:

Theorem (see W. Feit [book, Theorem X1.1.2]). 1If pm is the order of the
Sylow p-subgroup of G then G contains a normal commutative p’-subgroup B

such that |G/B| = f(p,m,n) for an appropriate function of three variables.

Our Theorem (1.1) gives the above theorem with f(p,m,n)=p3m' n4- (n+2)!
(see (13.2)). This; of course, improves the estimate of R. Brauer and
W. Feit. But it seems also noteworthy that our function £f(p,m,n) shows

once again that the deviation of characteristic =0 case from characteristic

0 case is concentrated in the p-subgroup. Thus our f(p,m,n) 1is a product
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of the cube of the order of the Sylow p-subgroup with a function independent
of p and m.

Following H. Bass [J. Alg.] and using results of J. Tits [Free ] and
very recent classification of periodic simple linear groups (see, e.g.,

S. Thomas[vol. 41]) we can obtain the following structure result

(1.2) Theorem (see (14.1)). Let G be a subgroup of GLn(k). Then G
contains

(i) a triangulizable normal subgroup T,

(ii) a normal subgroup P 2> T

(iii) a normal subgroup F

[u

T .

(iv) a normal subgroup L 2> T

Ju

such that
(a) the Zariski closures of P/T and F/T are connected and semi-simple,
(b) P/T is simple periodic of Lie p-type,
(¢) [P,F] €T and F has a certain minimality property,
(d) L/T is simple finite of Lie p-type,

(e) |G/PFL| = nq(n+2)!

An interesting feature of this result (except for the estimate) is that
it exhibits a decomposition of linear groups into P and F parts.

A version of (1.1) for primitive groups- is more precise:

(1.4) Theorem (see(11.1)). Let G be a primitive subgroup of GLn(k) with
center C. Then G contains
(i) a normal subgroup A isomorphic to a direct product of alternating
groups Altmi, m, = 10,

(ii) a normal perfect subgroup L centerally isomorphic to a direct

product of finite simple groups of Lie p-type,
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such that

|c/AcL| < 2108275,

In other words this theorem says that unlimited growth of |G/C| comes
from groups of Lie p-type and the growth of type n®"" comes from the
alternating groups. The order of the remaining part is only of the type

c*inn . .
n s 1.e., incomparably smaller. This result should be, perhaps, compared
with a result of P. Cameron [ , Theorem 6.1], where one sees an estimate

ceinfnn
n

on the order of a primitive group, other than some specified groups.

Our proof of (1.4) begins with a study of centrally_simple linear groups.

(1.5) Proposition (see ( )). Let G be a finite centrally simple
non-commutative subgroup of GLn(k). Suppose that G 1is not of Lie p-type
and not isomorphic to an alternating group. Then

4 2 1og3(2n+1)+1
iAut G| =n (2n+l)

This result has relevance to the study of maximal subgroups of finite
groups of Lie p-type, p > 1 or, the same, of the primitive permutation
representations of the latter). In particular, one can combine (1.5) with
the results of M. Aschbacher [ ] and M. Liebeck [ ]. (I am grateful to

M. Liebeck for making his paper available to me before publication):

(1.6) Theorem. Let HO be a classical simple group of Lie p-type ch(qc)

and H a subgroup of Aut Hy with HD> H Let G be a maximal subgroup of

0-.

H. Then one of the following holds:
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(a) G is "known" (a list, called CH’ of these G 1is given in

M. Aschbacher [ D,

(b) the socle of G is simple of Lie p-type and |G| = 3cn’ where
p yP q

. . . c
n is the dimension of the natural representation of Xa,

(c) the socle of G 1is an alternating group,
2 log3(2n+1)+1

(d) the socle of G is simple and |G[ = n4(2n+1)

- e
Note that the estimate in (b) has the type compt Do, one n/fnn

(with the latter constant increasing with gq). Thus again there is a wide
gap between the estimates in (b) and -(d). Of course, the type of the

estimate in (b) can not be substantially improved. Thus it seems desirable

to separate cases (b), (c), and (d).

Another implication for maximal subgroups gives the follwing, rougher

(1.7) Proposition. Let H, be a simple group of Lie p-type cXa(qc) and

0

with H 2> H Let G, be a perfect centrally

H a subgroup of Aut H 0" 0

0
simple group and G a subgroup of Aut GO with G 2 GO. If G is a

maximal subgroup of H then one of the following holds

(a) GO is of Lie p-type,

or (b) GO is an alternating group,
4 2 10g3(2r+l)+l
or (c) |G| = r (2r+l)

where r = ntl 2n 2n+l 7 26 27 56 248
if Ka = An Cn,Dn ]31_1 G2 F4 EG E7 E8

This follows directly from (1.5) applied to the composite of GO A-CXBG@p)

d GLrGFp). Since, when q varies, the tower of groups ch(qc) is infinite,

it follows that groups in (b) and (c) can be maximal only for finitely many q:




1.6

(1.8) Theorem (see ). In the assumptions of (1.7) there exists r,
depending on ch (and not on p), such that if q > pr and G (as in

(1.7)) is maximal in H then G, is of Lie p-type.

0

We give in ( ) explicit values for r when H dis of classical

type.
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2. Notation and preliminaries.

(2.1) Some of terminology and notation was introduced in Section 1.

(2.2) If M 1is a group and X a subset of M then ZM(X) (resp. NM(X),
C(M), Aut M, AutC M, Out M) denotes the centralizer of X in M (resp.

the normalizer of X din M, the center of M, the group of automorphisms of
M, the group of authomorphisms of M trivial on C(M), the group of outer
automorphisms of M). Occasionally we also write NZM(X) for NM(X)/ZM(X)

and, in the case when X is a group, ﬁEM(X) for NM(X)/X-ZM(X).

(2.3) The symmetric and alternating groups on n letters (resp. on a set X)

are denoted Symn and Altn (resp. Sym X and Alt X).

(2.4) N is the set of non-negative integers. Z/a 1is the cyclic group of

order a.

(2.5) log x (resp. 4{n x) denotes logzx (resp. the natural logarithm of x).
I'(x) denotes the I'-function of x, so that TI'(nt+l)=n! when n € N. We often

use notation f(x) for

2 1033(2x+l)+1
f(x) = (2x+1) H

it is one of our main functions.

(2.6) Our notation for the parameter of twisted groups of Lie type agrees with

that of R. Steinberg [ ] and, therefore, differs from that of other authors,

see (4.1.1) below.
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(2.7) In our study we will need repeatedly the precise knowledge of centrally
simple groups having faithful linear representations of the given degree.
These are listed below in Table T2.7. 1In this table a+G denotes a perfect
central extension of G by Z/a; however, if a+*G appears in characteristic
p with p|a then it should be read as (a/p)*G; a*G(p=£) means that this
group appears only in characteristic {. This Table is compiled from

W. Feit [Nice , §8.4] and A. Zalessky [ 1987, §13]. See Table T6.3 for

different isomorphisms.




Centrally simple linear groups of small degree.

Table 2.7.

G = GLn(k), p(k) =p

(almost) any p

2. Alt5

Altg, 6° Alt,, A (7)
Alts(p#S), 6 Alt,, 2 Alt7

2+ Alt_, 2- A1(7), 2 B2(3)

59

Alt (p#2), Alt (p#2,3), A (11), B,(3)

sporadic p
3 'Alt7(p=5)
Altﬁ(p=2), Alt7(p=2)

4 K, (4) (p=3)

Alt7(p=7), Mll(p=3)

2.3

Lie p—t&pe

Ay )

4,6, 6%, 2,6
A3(pa) , 2A3(pza, Bz(pa) ,
%8, 2% (p=2), 4, 6™ (»3)
K (p%) (a22)

K % (p25)




3. Estimates for the alternating groups.
Let k be a field and p=p(k) its characteristic exponent. We quote

here some results of I. Schur, L. E. Dickson, and A. Wagner.

(3.1) Proposition. Let H ~ Altm. Let ¢ : H *—GLn(k) be a faithful
irreducible representation.
(i) If p=1 and m = 4, m # 5, them n = m-1; for m=5, n = 3;
(ii) dif m =9 or p#2 and m =7 then n = m-2; moreover, if p'* m
then n = m-1;

(iii) 4if m=5 (resp. 6,7;8}_then n =2 (resp. 3,4,4).

Proof. (3.1 (i)) is a result of I. Schur [ , §441; (3.1) (4ii) and (iii)
are results of A. Wagner [ s ] (although essentially known from L. E.
Dickson [ 1). See G. D. James [ ,» Theorem 6 (ii)] for (ii) when

m = 10. When m=9 see A. Wagner [ s ] and when p#2, m = 7, see

A. Wagner [ ]. To see (iii) we note that Alt, ~ SL20F4) and has there-

5
fore a 2-dimensional representation in characteristic 2; Altﬁ_: PSLZGFg)

and has therefore an irreducible 3-dimensional (= adjoint) representation in
characteristic 3, but it does not have, by Table T2.7 (the list of linear groups

of small degree), representations of dimension 2; Alt, ~ DSp4(F2) and has

8
therefore a representation of dimension 4 in characteristic 2, but, again by
Table T2.7 it does not have smaller representations; Alt7 has by above a

4-dimensional representation in characteristic 2, but by Table T2.7 it has no

smaller representations.

(3.2) Coroolary. Let H,p, and n be as in (3.1). If n = 8 then

|H| = (n+2)1/2.
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(3.3) Proposition. Let H ~ Altm. Let ¢ : H *—PGLn(k) be a faithful projective
irreducible reprsentation. Suppose that ¢ does not 1lift to a linear represent-
ation of H.
(i) If p=1, m = 4, m¢6, then m =< 2 + 2 log n; if p=1, m=6, then
n = 3;
(ii) for all p and m> 7 we have m < (8l + 32 log n)/15 = 5.4 +
2.134 log n
(iii) for all p and 4 =m <16 we have
m 4 5 6 7 8 9 10 11 12 13 14 15 16

n= 2 2 3 3 8 8 8 16 16 16 32 32 128

Proof. (3.3) (i) is a result of I. Schur [ ,» §44]. To prove (ii) and
W) W, W
(iii) write m =<2 ~ =22 T eTH12 T, Wy > e > W, for the 2-adic
decomposition of m. Then by A. Wagner [ Theorem 1.3 (ii)] we see that
m—-s-1
[——]
2 In if m> 7. For 7 <m =16, m # 11, this gives us the estimate

in (iii). For m=5,6,7 the estimates in (iii) follow from Table 2.7 (of
linear groups of small degree). For m=4 clearly n = 2 since Alt4 is

not commutative. For m=11 we get s=3 whence 8|n. Suppose n=8. Consider

in H~ Alt11 the subgroup Hl X HZ_“_{Alt8 X Alt3. We know that ¢ 1lifts to a
linear representation ¢ : Alt£1 9'GL8(k) where Alt£1 is the (non-split)
double cover of Altll (I. Schur [ §5, Theorem II]). Let T : A1t£1 4‘Altll
be the covering map. Then the relations (I. Schur [ » §5, relations (IV)])
show that 1 : ﬂ_l(Hl) - H1 is the non-split double cover of Alts. Since

n=8 the representation will be irreducible for Hl (by (3.1)(iii) with m=8).
Since H2 ~Z/3 and Ker 7 ~Z/2 it follows that ﬁ_l(Hz) ~Z/3 x Z[2. There-

fore ﬁ(n_l(Hz)) commutes with $(ﬁ*l(Hl)). Since the latter is irreducible,

$(ﬁ—l(H2))_E kId_.. But then &(ﬂ-l(Hz)) is in the center of ﬁ(ﬂ_l(H)), an

8

impossibility. Returning to the general m we see that s < log(m+l) . Since
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log (x+l) 1dis a convex function it is bounded from above by a tangent line at
any point. Thus s < log(mtl) <= (m+49)/16 (where we took the tangent at =x=15.
m-log (m+l)-1

imtos(ot=L
Thus n = 2 , or [

m-log(m+l)-1
2

m - log(mt+l) = m - (m+49)/16 = (15m-49)/16. This gives m = (81 + 321logn)/15

] =logn or 2+ 2 logn =
whence (ii).

(3.4) Corollary. Let H, ¢, n, m be as in (3.3). If n =2, m = 4, then

: 2 10g3(2n+l)+l
|Aut H| < (2n+1) .

Proof. Recall that Aut Altm :‘:_Sym.tn if m = 4, m#6, (éee B. Huppert [ D
and |Aut A1t6| = 2+6!. Now our claim is verified directly for cases of (3.3)
(iii) using Table TA (values of functions for small arguments). If m > 16

we have by (3.3)(ii) that

|Aut H| = m! =m- (m/e)m =e- (m/e)m+l < 2.72 - (2+0.8 log n)6'4+2'134 log n

So it is sufficient to check that

2 log3(2n+1) +1

6.4+2.134 log n < (20+1)

2.72(2 + 0.8 log n)

for n = 128.
Now 1og3x = log x/log 3. Therefore

2 10g3(2n+1)+l

(20+1) - (2n+1)1'26 log(2n+l) + 1

1.26 log(2n) +1 _ 1.26 log n + 2.26 _

> (2n)

(2n)
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2.26 , _1.26 n1.26 log n + 2.26 1.26 log n + 3.52

2 ‘n > 4.79 n

-~ 4.79 nl.26(log n + 2.79).

On the other hand

6.4+2.134 log n 2.3(log nt+2.79)

2.72(2 + 0.8 log n) < 2.72(2 + 0.8 log n)

Thus it suffices to establish that.

4.79 nl.26(10g n+ 2.79)

2.72(2 + 0.8 log n)2+3(log n+2.79) _

or (2 + 0.8 log n)2*3 < nl*2®

0.547 ) _
or 2+ 0.8 logn<n . This holds for n=128. On the other hand if
f(x) : = 2+ 0.8 log x - x0'547 then f7(x) = 0.8/x - 0.547 X—0.453 <0

for x = 128. Thus f(x) <0 for x = 128 whence our claim.
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4., Recollections and preliminaries about groups of Lie type.

We use R. Steinberg [ ] as basic reference for groups of Lie type.

In particular, we denote by ch(mc) the universal group of Lie type cXa(mc).
As usual when ¢ =1 we just write Xa(m). The groups Dch(mC) are also

considered of Lie type (see (4.3.1)(b) below).

(4.1) Here m is the parameter associated to our group. This m is an
integral power m = qS of a prime q if CXa(mc) o Gﬂﬁm) for some simply
2., 2

connected algebraic E&rgroup. For groups of type 232 = C2, F&’ and 2G2

mc is an odd power of a prime, m = qs, 2s € N, s ¢ N.

(4.1.1) N.B. Some authors to whom we refer (Gorenstein, Landazuri, and Seitz

among them) use m differently. For them "CXa(m)" is our CXa(mc) except

when ch = "B G,. For these latter groups their notation ZXa(mz)

coincides with ours but then they write all related expressions (e.g. the order)

as functions of m2 (and not of m as we do).

(4.2) When m°® is a power of a prime q we say that q is a characteristic

of CXA(mC) or of a perfect group centrally isomorphic to CXa(mc) and

Dch(mc) or that these are of Lie g-type. Note that q generally depends not
on the central isomorphism class of (an abstract group) cXs(mc) but on its
representation as ch(mc), see (4.3.2) below. We write q = q(cxa(mc)),

q = Q(cha(mC)) etc.

(4.3) We denote by cE{-a(mc) the central quotient of ch(mc). E




(4.3.1) Cié(mc) is simple non-commutative except in the following cases

(@) E (), 5 (3), %&,4), ’B,(2) are solvable;

(b) the derived group of B2(2), 02(2), 2F4(2), 2G2(3) is simple

See R. Steinberg | » Theorems 5 and 34 and comments on them].

(4.3.2) The central quotients of the following groups are (sporadically)

|
|
|
I
I
]
|
|
|
non-commutative of prime index q (where q 1is as in (4.2)). ‘
|
I
|
|
I
I
|
isbmorphic to groups of Lie type in different characteristic or to alternating |

I

|

|

groups:

A]‘(‘{I)s Al(S): Al(T), A1(8)s Al(g)s

2 2
A2(2), A3(2), 32(3), A2(9), A3(4).

The isomorphisms are given in Table T6.3.
See R. Steinberg [ , Theorem 37].

When c}_{a(mc) is simple non-commutative we denote by cia(mc) the universal
cover of cia(mc). The kernel of the canonical map cia(mc)'"’-cxa(mc) is

called the Schur multiplier.

(4.3.3) (a) cia(mc) is isomorphic to ch(mc) except in the following cases
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Ap(4), AL(9), A,(2), A,(4), A4(2),

B,(2), By(2), By(3), D,(2), F,(2),
2 2

G,(2), G,(4), ‘A (4), A (D),

2 2
Ag(4),s “E,(4)

(b) In any case (exceptional or not) the kernel of cga(mc) - ch(mc)

is a g-group where n® = qs and q 1is a.prime. It holds for any q for

which ci;(mc) happens to be of Lie q-type.

See R. Steinberg [ , 1] or D. Gorenstein [ , Table 4.1, p. 302],

|
where the kernel of C}ﬁfa(mc) *‘cia(mc) is also explicitly given.




1
A ,n>2
n

Bz,q=2,m52
Bn ,q#Z ,1'122
Cn,qﬂZ,nZB

Cn,Q?&z ,1’123

d(Xa)

see 4.4.1
3
n2+2n
10
2n2+n
2n +n
2n +n
28

2n2—n

78
133

248

52

14

n2+2n

28
2n2-n
78

10

52

14

2.5

2n-2

2n—2 . 3

2n-3

11

17

29

10

2n-3

15

10

Table T4.4

A
g

see 4.5
1

Z/2

Sym3
Z/2

Z/2

[Ag[=2 if q=2

if q#2

A |=2 if q=3
| gl q

if q#3

A4

see 4.5
Z/(2,m-1)
%/ (n+l,m-1)
1
Z/2
1
Z/2
@/ (2,m-1))>

@/(2,m-1))%,n even

Z/(4,m-1),n odd

zZ/(3,m-1)
Z/(2,m-1)

1

Z/(n+l,mtl)

1
@/(2,m1))%,n even

@/ (4,m"+1),n odd

Z/(3,m+l)

4.4

upperbound
on

claglla
2

2(n+l)

24

2(n+l)
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(4.4) For a group ch(mc) of Lie type we denote by d = d(Xa) the dimension

of the corresponding algebraic group of type Xa. The numbers d = d(Xa) are

listed in Table T4.4.

(4.4.1) ERCOIIER

This is known (and can be easily checked by looking at a table of the orders
e.g. in D. Gorenstein [ , Table 2.4, p. 135]).

For groups not listed in (4.3.2) we denote by ¢-= ﬂ(ch(mF)) the smallest
degree of centrally faithful irreduﬁible representations of c§a(mc) (or, the
same, faithful irreducible projective representations of Cié(mc)) over all

fields of characteristic different from q = q(ch(mC)).

(4.4.2) Except for cases listed below B(ch(mc)) > (mb—l)/Z where

b = b(CXa(mC)) is the number of given in the 3E column of Table T4.4

Exceptions: A (4), A (9), Ay(4), By(2), By(3), D,(2), F,(2), “A;(9), *B,(®),

2E6(4).

This can be readily deduced from V. Landazuri and G. Seitz [ , p. 419].
The estimates we give are generally worse than the ones given there. The
advantage (for us) of our form for degrees is that they are given by a uniform
expression.

Using Table T&4.4 one can verify now that (with d and b as in (4.4.1)

and (4.4.2))

(4.4.3) (a) d < 2b% + b
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2 . . c : _ _
(b) d =b™ + 2b if either Xa is different from Cn(CZ_Bz’cl—Al) or

c N
m 15 even.

(4.5) Suppose that CXa(mc) is not listed in (4.3.1)(a). Let

A = A(CXa(mc)) denote the group Out(ch(mC)) of outer automorphisms of

Cia(mc) i.e. A := (Aut(cxa(m‘:)))/‘ia(mc). By R. Steinberg [ ] (see
D. Goremstein and R..Lyons [ s 7] for explicit information) we know that A

contains two subgroups (possibly trivial): A, and Af, and a subset Ag'

d
Ag is the set of graph automorphisms of ch (see_R. Steinberg [ s

Corollary to Theorem 29, Theorem 36, and subsequent remarks to both]); Aq
is given in column 4 of Table T4.4; it is a group unless ch is Bz, F4 or

62 and characteristic is 2,2, or 3 respectively in which case AgA is a

cyclic group generated by the non-trivial element of Ag;
Ad’ the group of diagonal automorphisms (see R. Steinberg [ s

Lemma 58 and proof of Theorem 36]); A, is given in column 5 of Table Th.4;

d
Ac, the group of field automorphisms, (see R. Steinberg [ » just

above Theorem 30]).

(4.5.1)(a) Af is isomorphic to the Galois group of F o over its prime field
m

F ,
q

(b) Af ~Z[/s where s =c¢ * logqm.

Proof. (a) is the definition. Writing m® = qS we get (b).

(4.5.2)(a) A = AdAng;
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(b) Ad is normal in A

(c) Ag can be taken to commute with Af.

(d) D3A = {1}, and DZA = {1} unless CXa = D&'

Proof. (a) is known from R. Steinberg [ , Theorems 30 and 36]. (b) is evident
from definitions (since Ad can always be chosen to come from a maximal twist-
invariant torus, see J.Tits [ 1). Since Ag # 1

implies that ¢ =1 we can assume in the proof of (c) that Xa(m) = GGFm) where
G 1is defined over the prime field Fq. Then Ag E'(Eﬁd G)GFq)/(InnG)GFq) whence

(c) evidently follows. Now (d) follows from (c) if one inspects columns 4 and 5

of Table T4.4

c c cs , ¢
(4.5.3) "X @) | = [7X @) - [A]

See R. Steinberg [ , Exercise (b) in the end of §10 and Corollary
to Theorem 35] or D. Gorenstein and R. Lyons [ , (7-1)(g)]

(4.5.4) In the notation of (4.4.2) we have except for groups from (4.3.1) (a):

(a) | %.8 log((mP-1)/2) if =D, and q =2
A =<3.03 log(@’-1)/2) if X _#D, or q#2
2 if mb =8

1.2 log((mP-1)/2

(b) |AgAf| <

2 if m =8
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Proof. Set x := (mb-l)/2. Comparing columns 3 and 6 of Table T4.4 we see that

4.8b if Cxa - D,
clagl 1A, | =
d g 3b otherwise

c .
For Xa = D4 we have c]Ad]|Ag| = 4,8b = 4.8 logﬁ(2X+l). Therefore using

(4.5.1)(b) we have

A

]

ag | IAgl 4 ] = c Tosm * [ag][,]

4.8(long) 1ogﬁ(2x+l) = 4.8 logq(2x+l)

{4.8 log(2x+l) if q =2
(4.8 log3(2x+l) if q = 3.

Since 4.8 log3(2x+l) = (4.8/log 3)log(2x+1) < 3.03 log(2x+l) we have (for

Xa = DA)

4.8 log(2x+1l) 1if q =2

|a| =
3.03 log(2x+1l) if q = 3.

If Cxa #D, then c[Ad[lAg[ < 3b whence c|Adl|Ag| <3 logm(2x+1) and

|A1 lAfllAdI1Ag|=c'logqm iAdHAfl

A

3(10gq m)logm(2x+l) =3 10gq(2x+l) < 3 log(2x+l).

This establishes the first two lines of (a).
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The cases mb < 8 for exception of those listed in (4.3.1)(a) are treated

in Table T4.5.4 below which directly follows from Columns 4, 5, and 3 of

Table T4.4. The remaining part of (a) follows from Table T4.5.4




Table T4.5.4

G Al(d) Al(5) Al(7) AZ(Z) .B2(2)

A A A A A A
& g

2 2
X 1.5 2 3 1.5 1.5

>
=]
]

A5(2)
A
2
3.5

G, (2)
{1}

1
3.5

4,10

2
A5 (4)

3.5




4.11

To prove (b) we procede similary. We have c[Ag] < 1.2b = 1.2 log_(2x+1)

by comparing columns 3 and 4 of Table T4.4. Then

[ael = agl 18] = (c log )|, | =

l.2(logqm)(logm(2x+l))

1.2 logq(2x+l) < 1.2 log(2x+l).
This together with a glance at Table T4.5.4 proves (b).

(4.5.5) Corollary. In the notations of (4.4.2) we have, except for groups

from (4.3.1)(a):

(a) 1A] < (@P-1)/2)2

(b) lAgAf| = (mb—l)/Z except for Al(é), A2(2), B2(2).

2 for x = 4

Proof. Set x = (mb~l)/2. The inequality 4.8 log(2x+l) < x
(i.e. n® > 9) together with a glance at Table T4.5.4 implies (a). Similarly,
the inequality 1.2 log(2x+l) < x for x = 4 and another glance at Table

T4.5.4 yield (b).

(4.5.6) Remark. (4.5.5) is much rougher than (4.5.4). However when we try
to extend our estimates to products of groups (in Section 9) the use of

logarithmic estimates for factors still leads (at least by our methods) to

power estimates for the product.




5.1

5. Estimates for groups of Lie type in their characteristic.
Let k be an algebraically closed field of characteristic p = 2 and
c c c__s : I

L ~ Xa(m ), m =p , a universal finite group of Lie p-type.
Consider a non-trivial irreducible representation ¢ : L %'GLn(k) and

set N : =N We have the following chain of natural homomorphisms:

L.
GLn(k)

N - Aut L - Out L ﬂ-Af

f.

(where we use the notation of (4.5)). Let Nf be the image of N in A

(5.1) Proposition. n > d° where d is given in Table T5.1 below and

t :=max {1, |N.|/c}.




5.2

Table T5.1

Xa Aa Ba Ca Da E6 E7 E8 F4 G2

d atl 2a 2a 2a 27 56 240 24 6




5.3

6 if Xa=A2, n=3
(5.2) Corollary. The image of N din Out L has order <

n log n otherwise

Proof. By (5.1) we have |Nf|/c < logyn. Therefore by (4.52)

IN] = [agl-la - INg| = e fag] A

d . logd n.

f

Comparing tables T4.4 (where we have to take n=a) and T5.1 we see

3d if Xa=D4

clay| |a |=
& 2d otherwise

Thus for X =D we have
a 4

IN| = 34 logy n = 24 - log8 n = (24/log 8)log n =8 log n < n log n.

In the remaining cases

N| = 2d log, n = 2(d/log d)log n = (2/1log d) n log n
d g

When d > 4 this gives |N| =n log n. If d=3 then the type is A2 and

|N| = 2(d/log d)log n = (2/log 3) 3 log n

6 if n=d =3

LA

(2/1og 3) * (3n/4)log n <n logn if n = 4.

Finally, if d=2 then the type is A

1

n log n. This concludes the proof of (a).

and c]Ad||Ag| = 2 whence |N|<2 logn <
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(5.3) Lemma. Let G be an algebraic k-group of type Xa and ¢ : G 4'GLn
its non—-trivial irreducible rational representation over k. Then n = d

where d 1is as in Table T5.1.

Proof. Let b be the highest weight of ¢ and let R : = R(¢) be the set
of all weights of ¢. Then the Weyl group of G acts on R and, therefore,
|Wbl = IR| =mn. Let P be a parabolic subgroup of G corresponding to b
(the stabilizer of the weight space of weight b) and Wp the subgroup of

W corresponding to P. Then Wp "is the stabilizer of b. Hence n = lW/Wp[.
An easy case analysis gives that min{|W[Wp[, P parabolic} = d ° whence our

claim.

homomorphism a : F c +k (such a is, automatically, a power of the

Frobenius Tr) one zan define a new (in general) representation gea of L

by ¢ oa(f) = ¢(a(2)) (see R. Steinberg [ s 5] or [ , 12.13]).
By R. Steinberg [ , Theorems 7.4, 9.3, 12.2] there exists a set M

of irreducible representations of L over k such that every other represent-

r .
. 5 . 1
ation ¢ can be uniquely obtained as a tensor product ¢._£§0 @i:>Fr » Where
. SO c 2 2 2 .
wi € M, i=0,1,...,r and 1r=(s/c)-1 wunless Xa = B2, F&’ GZ’ and in this

latter case r=s-1.

Now let x be a generator of Nf and x its preimage in N. The x

acts on L as y ‘iﬁrz where vy € Ker(N %-Af) and 0 <z < s. It is clear
that replacing in the above decomposition ¢ = ®qaoiFrl the maps Fro by

yi_°ETJ' where y; are fixed (for every i=0,1,...,r) automorphisms of L
from Ker(Aut L %-Af) does not affect the claim. Thus there is still uniqueness
r .
and existence of decompositions ¢ = ® ¢io yio]Frl.
i=0

|
|
1
|
|
|
(5.4) Proof of 5.1. For a representation ¢ of L : = cXa(mc) and a
|
|
|
|
|
|




5.5

Let us take ¢ to be our representation from the beginning of this

Section. Every i=0,1,...,r we write as i=il+212 with 0 = il < z. Then
i i

we set. yy° Fri : = (y°]Frz) 2°]Fr 1. Since the action of x normalizes ¢

and in view of uniqueness of the tensor product decomposition we must have

O, ~ O, of j1 = j2 (mod z) and 0 < jl’ j2 < r. This shows that_the

175, =
tensor product, if non-trivial, contains at least as many non-trivial

as there are integral multiples of 2z between 0 and r. In view of the

expression for r given above we see that this number is = z/c.

z/c

1 dl) where d is the minimal dimension of a

Thus dim ¢ = max (d 1

non—-trivial irreducible k-representation of L. By R. Steinberg [ s

of G (where G is as in (5.3)) whence by (5.3) dl >d and (5.1) is

proved.

(5.5) Our proof gives an apparently stronger statement. Define the action of

Out L. on the set of equivalence classes of representations of L by (pea)(f) : =
¢(a(£)) for ¢ an representation, a € Out L, £ € L; here a dis a 1lift of

a to Aut L. Let (Out L)@ be the stabilizer of the equivalence class of

¢ in Out L.
Proposition. In the notation of (5.1)

6 if X = AZ’ n=3

|
|
!
Theorem 43] each irreducible k-representation of L is a restriction of one
|
|
|
a

| (Out L)@[ <

n log n otherwise.




6.1
6. Estimates for groups of Lie type in non-equal characteristic.

Let G be a finite simple group of Lie q-type, q#p, q a prime. To avoid
trouble with different characteristics (see (4.3.2)) we fix an isomorphism

o= S 2 10g3(2t+l)+1
G~ Xa(mp) and write mc=q . Set H: =7DG6. Set f(t) : = (2t+l) .

Let k be an algebraically closed field of characteristic exponent p=p(k).
(6.1) Proposition. Let ¢ : H *‘PGLn(k) be a faithful irreducible projective
|

representation. Then

(a) ]H| = f(n) except for the cases

H~?A,(9) and n=6 when [H| = 1.58 £(6);
and H~ D,(2) and n=8 when [H| = Q.62‘f(8)
(b) |Aut H| <= n f(n) except for the following cases
n = 2 2 4 6 8
H~ Alt, A, (8) A, (4) 253(9) D,(2)
|Aut H| = 2.6£(2) 2.71£(2) 4&4.1£(4) 12.61f(6) 27.69£(8)

(¢) |out H| = nz;

(d) |N )(®(H))| =n f(n) except when H ~ D4(2) and n=8

PGLn(k

(6.2) Lemma. If H is not centrally isomorphic to one of the groups
listed in (4.3.1), (4.3.2), and (4.4.2) then

1°X (@%)| = £(n)
a
- , b . b , 2 2
Proof. By (4.4.2) n = (m -1)/2, i.e. m =< 2n+l. Since B2(2), F4(2),
and 2G2(3) are excluded by (4.3.1) we have m > 2 and, therefore,
b = log (2n+l). If we exclude type Cr’ r = 2, in odd characteristic we

have by (4.4.1) and.(4.4.3) (b)

!
2
c d b™+2
X, @) | < n® <n® TP = @)D _ (on41)log(2ntD)+2
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For the type Cr’ r = 2, in odd characteristic we have m = 3 whence

b < log3(2n+1) whence by (4.4.1) and (4.4.3) (a)

m2b2+b _ 2 10g3(2n+l) + 1

]CXa(mc)|5nﬂ'S (mb 2b+1

) < (2n+1)

Note that the first occurrences of this latter case are for (r,m) = (2,3)

(resp. (2,5), (3,3)), (m’-1)/2 = 4 (resp. 12, 13).
2 log3(2n+1)+l

In general we have, therefore, that ]CXa(mc)| = max{k2n+1) :

log (2n41)+2 2 10g3(2n+1) +1

(2n+1) }. One easily sees that (2n+l) =

(2n+1)10g (2n+1)+2 if n=7. For n <6 the difference can come only from

groups of type Cr’ r = 2, 1in odd characteristic. As we remarked the first
such groups occur at n=4,12,13. One has |B2(3)| = 2+ 25,920 = £(4). There-

fore both functions give valid estimates for n < 12. Therefore f(n) can

be taken for an estimate for all n.
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6.4

(6.3) Proof of (6.1)(a) for the cases omitted in (6.2) is contained in Table T6.3
and for the case DA(Z) which requires special attention in (6.3.2). The
upper portion of Table T6.3 handles groups of Lie type which can appear in two
different characteristics (see (4.3.2)) or are isomorphic to alternating groups.
The lower portion treats groups for which LS-estimates (LS stands for Landazuri-
Seitz, see (4.4.2)) do not have the form (mb—l)/Z with b from Table T&.4
(see exceptions in (4.4.2)). Column 4 gives minimal n for which

|M/center] = f(n) (see (6.3.1) below for explicit formula). Column 6 gives

an adjusted estimate on dimensions of projective representations of M;
explanantions are given in notes d)-c) below. If Column 6 is larger than

minn then (6.1)(a) holds for M/(pénter). Column 7/giﬁes an estimate (still
from below) on dimensions of projective representations of M in such
characteristics p for which M/(center) is not isomorphic to a group of Lie
p—type; explanations are given in notes below.

Explanations:

a) We took an estimate for G in V. Landazuri and G. Seitz [ s p. 419]
and divided it by |G/DG| to obtain an estimate for M = G.

b) The estimate is the minimum over isomorphic groups on the same line
as M.

c) See (5.1).

d) See Table T2.7 (groups of small degree).

e) The estimate given in V. Landazuri and G. Seitz [ s p. 419] is
incorrect for Gz(é). The correct estimate is 12 (personal
communication of G. Seitz who also explained how a slip in the proof
of Lemma 5.6(b) of the above paper should be corrected).

f) D4(2) has an 8-dimensional projective representation as the derived

group of the Weyl group of E see R. Steinberg [ , §11, after

83

Theorem 37].




(6.3.1) Lemma. minn 1is the smallest integer 2(3x-l)/2 where

6.5
X 3 = %‘(~l + V0.5 + 8 log3 |M/center[)
|
Proof. Setting x=2n+l we have to solve 2x2+x = log3 |M/center| whence our

claim.

(6.3.2) Lemma. D4(2) does not have faithful irreducible projective represent-

ations of dimension 9 over fields of characteristic p#2.

Proof. Suppose ¢ : 54(2) 4—GL9(k),'p#2, is an irreguéible representation.
Since the center of @(54(2)) will be contained then in the center of SLg(k)
which is isomorphic to a subgroup of 9-th roots of 1 and since the center of
54(2) is isomorphic to Z/2 x Z/2, it follows that the center of ¢(ﬁ4(2))
is trivial. Thus ¢ dis, in fact, a representation of D4(2). But then the
proof of V. Landazuri and G. Seitz [ , Lemma 3.3(2)] gives that D4(2)

has no representations over k of degree =27, whence our claim.

(6.4) To prove (6.1)(b) we use (4.5.3). Except when H is in the Table T6.3
A A

d £ Agl Al
whency by (4.5.5)(b), (4.4.2) and (6.2) |Aut H|=n |°X_(m")| whence (6.1)(b)-

this gives us that |Aut H| = |H Ag[ =_|ch(mc)

When H is in the Table T6.3 one has to verify (6.1)(b) directly (see Table TA

for values of f(n) for small n).

(6.5) The claim of (6.1)(c) is contained in (4.5.4)(a) when (4.4.2) holds for

H. In the remaining cases one uses Table T6.3 to verify the claim directly.




6.6

(6.6) Of course, (6.1)(d) follows from (6.1)(b) for all but four cases. Set

N : = |NZ

.

(o (H))
PGL_(k)

Lemma. If n=2 2 4 6
- 72—
and H ~ Alt6 Al(S) A2(4) A3(9)
then N = 720 504 40,320 6,531,840

(6.6.1) If H ~ Alt, and n=2 then comparing rows Al(g) and DBZ(Z) of

6
Table T6.3 we see that p=3 so that ours is the natural representation of

to *
SLZGFQ). The normalizer of SchFg) is GchFg) . k‘, whence

NZPGLz(k)@(H)_: PGL,(Fy) and N = 2|H

(6.6.2) If H~A (8) and n=2 then comparing rows A (8) and 9(202(3))

| ¢

of Table T6.3 we see that p=2 and ours is the natural representation of

. M * .
SLZCFB). The normalizer of SLZCFS) is GLZGFB) k  whence N = [H .
(6.6.3) Let now n=4 and HN_E GL4(k) be a perfect group centrally
isomorphic to H ~ 32(4).: PSL3GF4). By Table T2.7 (groups of small degree)
we have p=char k=3. Then H contains a subgroup T isomorphic to

* %
Ker{NF64[F4 :Fp, > F4}. Clearly T ~Z/7 and NH(T)/T acts on T as

GalCF64fF4) ~Z/3. Let T be the 7-component of the preimage of T in

~

H. Since T is a Sylow 7-subgroups of H we have (by Frattini argument

that N We have that NZ contains

oL, (@) =B Ny iy (T or_i (/T
4 4 n

Z/3 and is contained in Z/6. By representation theory of Frobenius groups

we have that |NZ(T )/T | =4 whence |NZ(T )/T | =3 and NZ(T ) € H. Since

Ag can be assumed to be the transpose-inverse on T we have that then the

image of NZ(T ) in Out H = A

a° A <A does not contain A . Thus this
g f 8




image is a subgroup of Ad -Af il Sym3. If it is the whole group =~ Sym3
then Z (TN) contains a subgroup centrally isomorphic to Sym,. Since
GLA(k) 3

all eigenspaces of T  are l-dimensional this is impossible so that the
image S of NZ(TN) in Out H 1is of order 2 or 3.

If |S! = 3 then take the 3-component s~ of the preimage of S in
H. Tt commutes with T whence by multiplicity 1 of eigenspaces of T we
have that § is diagonalizable. But since |S~] =3 and char k =3 it

follows that S  is unipotent. Thus s ={1}.

(6.6.4) Let n=6 and let HN_E‘GLB(k) be a perfect %roup centrally
isomorphic to H ~ 2.».13(9) ~ PSU,(Fg). We have 1| = 27 3%. 5.7 = 3,265,920.
We assume that p#3, di.e., char k # 3.

Let H ~ 2K (9). Then Zz : = Rer(*Ay(9) + A;(9) = @/3)?. By
D. Gorenstein and R. Lyons [ s, (7-8)(3)] Out HN.: Z/4) + &/2) (the
dihedral group) acts faithfully on Z. It is easy to check then, using
elementary representation theory of Out H on Z (: = the dual of 2),
that the stabilizer of apoint z € Z in Out H is isomorphic to Z/2.

Let ¢ : H ﬁ-GLG(k), char k # 3, be an irreducible representétion. If
¢(Z) = Id then the 3-Sylow subgroup of ®(HN) is the same as that of
H ~ PSU4(F9) and it contains an extraspecial 3-subgroup P of order 3
» a, b €TF c €F

(consisting of matrices in an appropriate

9’ 3’

0o @R
o'lo +

1
c 1

basis). By representation theory of P any of its irreducible faithful
representations is of degree 9 > 4. Thus the case ©(Z2)=Id dis impossible.
Since @(HN) is irreducible it follows then that ¢(2Z) ~Z/3 and consists

)(¢>(H ))

of scalar matrices. In particular, ¢(Z) is in the center of N : =

N
GL6(k
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whence the image S of N in Out H acts trivially on ¢(Z) whence
@|Z(E Z ) 1is stable under S. By one of the remarks above we have then
|S| = 2, as desired.

(6.7) One may need (and we shall in Section 16) a variation of (6.1)(a):

Proposition. Let G be centrally simple perfect finite subgroup of GLn(k)

of Lie q-type, q#p. Then |G| < f(n) except in the following cases

n = 2 4 T 6 8

- 9o
G T 2:0B,(2) 4Ky (4) 6 K39 2°D,(2)
G = 720 80720  1.96 - 10’ 3.48 108
. - 3 #2 43 p#2
q - 2 2 3 2

Proof. If G 1is not centrally isomorphic to a group from (4.3.3)(a) or
from Table T6.3 then our claim follows from (6.2). Let Gm be the universal
cover of G. If G dis in Table T6.3 one readily verifies that |GN| = f(n)
except for the pairs (D(zéz(B)), 2) (for p=2), (Dﬁz(Z), 2) (for p=3),
By, &), Ey(),5), Ay, 6, CE 0, D, K9, &), 6,2, 8,
(ﬁ4(2), 9), (ﬁ4(2), 10). Now note that since G is perfect, its center C
is contained in the group of n-th roots of 1. Thus C ~Z/m, where
m|(n/pa) where pa is the highest power of p dividing n. Applying this
information to the pairs (GN,n) given above and taking into account (6.3.2)
one is left only with pairs listed in (6.7).

Now it remains to check the groups from (4.3.3)(a) which are not contained

in Table T6.3. These groups, their orders, their centers, and the estimates

for the from V. Landazuri and G. Seitz | » p. 419] are




G 33(2)
l¢™| 2.9+ 10°
Center (GN) Z/2
LS-estimate 7

f(LS-estimate) 9.42+ 10

62(3)
1.27 + 10
Z/3

14

2,67+ 10

7

6.9

2
35(4)
1
1.1 - 10 1
Z[3 xZJ2 xZ[]2
21

6.58 - 1012




7.1

7. Estimates for sporadic groups.

Our purpose here is to obtain estimates from below on the minimal degrees
of faithful irreducible projective representations of the 26 sporadic groups.
This Section uses references which, often, are not used in other parts of the
paper. For this reason we refered directly to many papers without placing them
in the list of references at the end of the paper.

My knowledge of sporadic groups is very scanty and, in many cases, the
literature on them contains enormous gaps covered by references to unpublished
work, lectures, and personal communtications. I had good fortune of being
helped in many cases where I Waé at loss by Robert Griess. I am extremely
grateful to him; the arguments he supplied are marked so; some other data refers

directly to his personal communitcations. However some of his suggestions were

later superceded. Therefore we refer directly only to portion of the many
arguments he offered.
2 log3(2x+1)+1
We want to keep the estimate f(x) := (2x+1) . This is,
however, impossible (as it was for 2A3(9) and D4(2), see (6.1)), for

Suzuki's group Suz and Conway's groups +1 and +2. To give an estimate

for these groups we introduce cumbersome functions F(H,n). To define them

we use notation (for ays ays b € R)
1 t < a;
y (t) _ -
al, 32’ b b a2 >t = al
f(t) t = a,
We also use & for the Christoffel symbol.

a,b




7.2

(7.1) Theorem. Let k be an algebraically closed field of characteristic
exponent p=p(k) and ¢ : H ﬂ-PGLn(k) a faithful irreducible projective

representation of a sporadic simple group H.

(a) Unless H is centrally isomorphic to Suz, +1, +2, we have
|H| = £(n)

(b) ]Suzl = 12,18, Suz (n) =: F(Suz,n)

I

-1] (n) =: F(+1l,n)

y24,499] * l!

.2|

In

Y90,24,| 2| =% FC:2:m)

(7.2) Our proof of (7.1) is mostly contained in Table T7.2. In this table minn
(resp. min n) is the smallest integer m such that f(m) = |H| (resp.

m2 log m + 4.32 = 1H|). We will need min n in §10. To obtain estimates we
try to find two subgroups H1 and H2 and to use their lower estimate to
estimate Cd(H). Column "Subgroup" says what subgroups we use and the next
column gives a reference to a source where existence of these subgroups is
pointed out. The next three columns describe the estimate obtained from Hl
and H2 and give a reason why such an estimate holds. The possible reasons
are listed in 7.3 below. The "adjusted estimate" is generally equal to the
minimum of the estimates for H1 and HZ' If there is another reason for
taking the indicated estimate it is given next to the "adjusted estimate".

The next three columns describe precise results if such are known to me. The

last column gives sometimes an indirect reference; e.g. c) [51] is paper [51]

in the list of references of c).
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7.5

(7.3) Reasons.

(a) For the groups Mi,i=ll,12,22,23,24, the exact values of degrees
of their faithful irreducible (linear) representations in all characteristics
are given in

G. James, The modular characters of the Mathien groups, J. Algebra,

27(1973), 57-111.

(b) From the Table T2.7 (groups of small degree) we can obtain the

exact value of Cd(H) if it is <5. . Otherwise we have, of course, Cd(H) = 6.

(¢) S. A. Syskin, Abstract properties of the simple sporadic groups,

Russian Math. Surveys, 35 : 5(1980), 209-246.

(d) For a group of Lie type we obtain our estimates from V. Landazuri

and G. Seitz [ » p 419]. Note that the ones we need are, generally, listed

as exceptions.

14+2m

(e) For an extraspecial group (E of order ) ¢ m = 1, we have the

1+2m 142m

estimate qm if q#p (see (8.1)). However if NH(q ) =:N(q ) acts

transitively on the center q of q1+2m then the estimate becomes (q—l)qm
because N(ql+2m) permutes central characters of ql+2m and our claim follows
from Clifford theory. N. B. e) can be tricky to use if the Schur multiplier
of H is divisible by gq: in this case one has to trace what happens with

14+2m ,
q after a central extension.

(f) If H contains a subgroup R which is the middle term of

1+E->R->M->1 with E=q" (i.e. E~ (Z/qQ)™) with p#q and q a

prime which is prime to the Schur multiplier then by Clifford theory the
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faithful irreducible projective representations of R have degree not less
than the minimal length of an orbit of M on the characters of E, i.e. on
E':=Hom(E, F)-

Particular cases are: 1) q-* r(:=(Z/q) x (Z/r)) then the orbits have
length r, 2) M acts transitively on EY (for example M 2 SLmCFq)), and
3) M is isomorphic to a Mathien group Mi in which case non-trivial orbits
have length =i.

(gl) We apply £) and h). Since M does not have subgroups of index

24

=23, each orbit of M24 on 211- has length 1 or =24. Since by a) M,
is irreducible on 211 it follows by j) that for +1 (resp. for +0) orbits

of length 1 all lie in the center whence our claim.

(g2) For 36 « (2 M12) we again have from Table T2.7 that 2 -Ml2 is

irreducible on E:=36%F36. Then 2M12 acts on P(E)_:]P5GF3) and, one easily
sees, has only orbits of length =12. Since the center of 2M12 inverts the
elements of 36 it follows from the above the 2M12 has on 36 only orbits

of length =2+ 12=24.

h) We need several times the following argument: Suppose qm- M is a
subgroup of H with M irreducible on qm and m odd. Suppose ¢: H-H
is a cover with central kernel Z/q. Then the preimage of qm in H is
isomorphic to an{ (although the representation of ¢'1(M) on qm+1 may
not be completely reducible). Indeed, if the preimage S:=¢-l(qm) is not
commutative then the commutator map defines an alternating bilinear form on
qm with values in Ker ¢. Since m is odd, the form must be degenerate
and since it is (evidently) M-invariant and M is irreducible, this form

is zero. Thus S 1is commutative. The map x +x' on S is also invariant

-1 _ ,
under ¢ " (M) and, as above, must be trivial, whence our claim.
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(i) We consider E x RQGF3) where E ::Eég and ggam3) = D(SO;GFB)).
We have E ~E as 950F3) - module since it possesses an invariant non-
degenerate quadratic and, therefore, bilinear form. One easily derives from
Witt's theorem that QQCFB) acts transitively on the vectors of the same
length; possible lengths are 0, 1, =1. The stabilizers of the corresponding
vectors are: the commutator of a parobolic subgroup ]Fg . QEGFB), and (for
both lengths #1) R?GF3). This gives lengths of orbits of QQCF3) as 1,
2132 (isotropic), 2214 (for both anisotropic) whence our estimate in view of

f).

(j) If H is an irreducible subgroup of GLu(k) with H perfect with

center of order m then m/n. This is evident.

(k) R. L. Griess Jr., The structure of the "Monster'" simple group, in
"Proc. Conf. on Finite Groups'", W. R. Scott, F. Gross, ed., Academic Press,

New York, 1976, pp. 113-118.

(£1) M. E. O0'Nan, some evidence for the existence of a new simple group,

Proc. London Math. Soc. 32(1976), 421-479.

(£2) We have to show that Cd(H) = 18. We already have that Cd(H) = 15
and by use of A2(7) it is sufficient to consider the case p=7. So let
@ H *—GLn(k) be a centrally faithful irreducible representation of the
universal cover H of H. Let C(~Z/3) be the center of H. H contains
(see D. Gorenstein and R. Lyons [ s p. 61]) subgroup E ~ 31+4 whose center

is C. If o(C) # 1 then it follows from (8.1) and from complete reducibility

of ¢iE in characteristic 7 that 9|n. Since n = 15 it imples that n = 18.
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Thus it suffices to consider the case when Ker ¢ = C. In this case the
Sylow 3-subgroup ¢(E) of B(HN) ~ H 1is isomorphic to (:E/B)4 and is, see
D. Gorenstein, R. Lyons [ , p 61], a self-dual NH(@(E))IZH(@(E))—module.
The structure of NH(Q(E)) is given in £1) p. 422. One sees from that that

NH(®(E)) is transitive on (p(E)=Idn whence n = 80 in our case.

(m) R. L. Griess Jr., personal communication.

"5, Alt9 occuring in F3 is the unique
twisted holomorph, the estimate is. 24 (from 21+8) times the degree of the

(n) (R. L. Griess) Since 2

smallest irreducible projective (and non-linear) representation of Ag' This

latter is =8 by (3.1)(b). Thus the minimal degree in characteristic #2 is

=% . 8 = 128.

(o) D. Gorenstein, R. Lyons,

(p) By p 245 of J. H. Conway (Three lectures on exceptional groups,
pp. 215-247, in "Finite simple groups', Proc. Confer of London Math. Soc.,

M. B. Powell, G. Higman ed., Academic Press, London, 1971) we see that

DM(24) contains a subgroup A M24, A :_212, (non-split) with the action

12 .
of M24 on 2 being dual to that of M24

just another group 212). The orbits of qu on the Golay code are of

on the Golay code (which is

lengths 1, 759, 2576, 759, 1. Thus, if char k # 2, the shortest non-

*
trivial orbit of M on Hom(A,k ) 1is of length 759 whence our estimate

24

by f).
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(q) By o) p. 67 F3 contains a subgroup R ~ 34- SLzﬂFg) (which is
contained in N(3C) in the notation of that paper). The action of S:=SL20F9)
on E:=34 can not be trivial. Thus we are dealing with a representation of
S over ZF3. This representation can not be reducible, for all homomorphisms
of SLZGFQ) into SLZGTB) or SL3GF3) are trivial. Thus it is irreducible.
Let ¢ be its extension to 'fg. If ¢ 1is reducible then it is a sum of two
conjugate 2-dimensional representations of SLzaFg), or in other words our
representation is the natural 2-dimensional representation of SL20F9) on
Fg(: E). 1In this case S acts trénsitively on E-{1} (and also on E -{1}
where E is the set of charac&efs of E). Thus in §his case, by f), we
have estimate 92—1=80 on dimensiqns of representations_of F3.

If ¢ 1is irreducible then ¢ ~ ¢ . ® (¢l Fr) where ¢ is the natural

1 1

2-dimensional representation of SL20F9)‘ However in this case the center
C ~7Z/2 of S acts trivially on E. But this is impossible because the
centralizer of the only (conjugacy class) element of order 3 in F3 does not

contains 3 x 34' SLZCF9)'
(rl) See comment e) to Table T6.3.

(r2) Since the primitive cube root of 1 dis not in IF5, the element of
order 3 fixes no line of 52 :;Eﬁ. Since the normalizer of every line permutes
transitively the non-zero elements of this line (by o) p. 56) we see that

4><Sym3 has two orbits of length 12 and one of length 1 on 52 (and on

its dual) whence by f) the estimate.

(7.4) Once the table is complete we see that |H| = f(n) if the "adjusted

estimate" is >minn for H. If this is not the case then |H| =y (n)
al,az, H
:="adjusted estimate" or an estimates for one or both of

where a2:=minrh a

1
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the Hi’ combined with the corresponding restrictions on p. Now inspection

of Table T7.2 completes the proof of (7.1).




8.1

8. Estimates for extraspecial groups.

Let k be an algebraically closed field of characteristic exponent
p:=p(k). If q # p 1is a prime then eﬁery extraspecial gq-group E of
ordre ql+2a has faithful irreducible representations over k and they all
have degree qa (see D. Gorenstein [ s 1). Let AutcE denote the
group of autormorphisms of E which are trivial on the center of E. We have

3utCE‘3 Inn E and Inn E =~ Czlq)za. It is known (see e.g. B. Huppert [III.13.7

and III.13.8]) that AutcE/Inn E ~ SpZaGFq) if q # 2 and =~ OzaGFz) if

q =2; here ¢ =0 or 1 and O;é is the orthogonal group of a quadratic
2a | ; 2a2+a
form on Eé of Arf dinvariant ¢&. Recall that [SPZaGFq)[ <q (see
: 2

3 £ 2a"-a
(4.4.1)) and |02a(]F2)| =2 |302ac|F2)[ < 22 if a>1 (see (4.4.1)
and take into account lower-dimensional isomorphisms, (see R. Steinberg [ s

Theorem 37]). We have |0;CF2)1 <=6 (see J. Diendonne [ , 11.10.31).

For d € N set

’ 21og3d+3
d if q #2

N(d,q) := < 2d°108%H 1f q=2,d>2
24 if q = 2, =2

(8.1) Proposition. Let V: E ﬂ-GLd(k) be a faithful irreducible representation.

Then
(@) d=q%
(b) |AutCE| = N(d,q)

(q-1)N(d,q)

)
(¢}
~—
s
[}
=
=
1A
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@ [Ny, 10 V) /2y 4y WEN)| = [t 5|

Proof. We have already given references for (a). Thus a = 10qu. Note that,

since V¥ 1is irreducible the center C of E acts on kd via a fixed

%
character (with values in p <€ k ). Therefore for n € N (V(E)) we
q GL4 (k)

must have that er(C)n_l = ¥(C) and then that nw(c)n_l = Y¥(c) for any

c € C. Thus N (F(E)) inducés'on E automorphisms from Aut E. Thus
GLd(k) : c

(d) follows from (b). Since Aut'E/AutcE ~ Aut C ~Z/(g-1), (c) also follows

from (b). If q # 2 then q =3 so that a < log,d. Therefore
3
24 21qg3d+3

i 2
|Aut E| =q Isza(Fq)l <¢% . 4

If q=2 then a = log d whence if d > 2 we have

2 2
|aue E| < 28,5 . Q2 _,  platta

a, 2a+l _

=2 - (2% d210gd+l

2 = N(d,2) for d = 2.

Finally if q =2, a =1, then d =2 and |Aut E| =2 + 6 = 24 = N(2,2).

(8.2) Corollary. 1In the assumptions of (8.1) we have

n 2 3 & 5 7 8 9 11 13 16 17
|AutcEiE 24 216 1920 3000 16,464 3.3'106 4.2-108 1.6-]05 3.?-105 ]_.10H 1.&-]06
; 6 7 6 6 11 7
|Aut E|= 24 432 1920 12000 98,784 3.3-10 1.26-10 1.6-10 L.4.10 10 2.2-10
21 gnt+l '
1
16 195 2048 17616 778,230 h.?']ﬂﬁ 2-10? 2.5-10B ﬁ.5-109 1.3-]011 i 3.9-101'

2
2a"+a _ (qa)23+3 _ d2a+3 <d = N(d,q).

2.6.10

4.7-10

2.8-10

]

12
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n21ogn+1

Moreover, |Aut E| = 2 for n = 4.

Proof. If n =q° 1is a power of an odd prime then |AutCEI = n? l Ca(q)|

and |Aut E| = (g-1) * |Aut E| whence by direct computation of ICa(q)| the

+
expressions for the above n. If n = 2% then |Aut E| < n? « max ]053(2)|
c +

+
and we use then expressions for ]053(2)| from, say, J. Diendonné [ ,

§11.10].
210g3n+4
The estimate n < 2

2logntl

n210gn+l holds for n > 12 and since the
estimate 2n applies by the table above to 4 <n < 12, n a prime

power, we obtain the concluding stétement of (8.2).

(8.3) Corollary. In the assumptions of (8.1) assume also that q # 2. Then

210g3d+1
|Aut E| = 2d .

Proof. The claim holds for q = 3. Assume q > 3. Let d = qa (by (8.1)(a)).

Then from the proof of (8.1) we have |Aut E| = (gq-1) | AutcE| and

_ 2log d+3
]AutcE| <d % . We have thus to check whether

210g3d+3 2log d+3
F(d) := 2d /(g-1)a ¢ is = 1. We have

n 2= tn(q-1) + 2(1/en 3 - 1/fn q)and

i F(d)

fn 2 - ¢ q+ 2(1/én 3 -1/tn q)azsnzq

v




8.4

2a% 12 2
n 2 + —7§;{§J1 - (2a“+1)n q

2

0.69 + 1.8232£n q - (2a2+1)£n q.

v

Thus fn F(d) > 1.82 a’fn q(én q - (2+ —5)0.55)
a

>1.82a%tn q(fn q - 1.65).

This latter expression is > 0 1if q = 6. Thus our claim follows for q = 7.

If q=5 then 0.69 + 1.82a°én%q - (2a’+1)¢n q = 1,49a® - 0.9 > 0, whence (8.3).
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9.1

9. Estimates for direct products of finite centrally simple groups.
Let k be an algebraically closed field of characteristic exponent p=p(k).

Let G .o sG be finite perfect centrally simple universal (i.e., with trivial
m

1"

Schur multiplier) groups. Let by Gi +—GLn (k),i=1,...,m, be non-trivial
i

irreducible representations. Set G := Hlsiim Gi’ P 1= @ifigm ¢y M o= Hifism n, -

Let Ci be the center of Gi,i=l,..,m.
We introduce the following subsets of the set of the i, l<i=m.

IAlt’ the set of i such that @i(Gi) is isomorphic to Altai’ a; z 10;

, the set of i such that Gi is isomorphic to a group of Lie

p=type: (see Table T6.3 for exceptional isomerphisms);

ILie, P

I . »s the set of i such that G, is isomorphic to a group of Lie
Lie,p - i

p’-type but not isomorphic to any group of Lie p-type (see Table T6.3 for

exceptional isomorphisms) and neither isomorphic to 2A3(9) or D4(2).

» the set of i such that G, is centrally isomorphic to
extrz-spor i

Suz,*1,+2, if p#3, to 2A3(9), and if p#2, to DQ(Z).

I est the set of the remaining indices; i.e. ¢.(G)) for i€1I . is

isomorphic to Alt; for a, z 10, or centrally isomorphic to Alt7, Altg,
i

3 di includ i I .
or to one of the 23 sporadic groups not included in extra-spor

These sets are pairwise disjoint.

Set H:=II,
i

G,, L:=II, G,, A:=II, G,, C = center of H,
¢'IL:LC'_,p . 161Lie,p + 1EIAlt +

and for R C GLn(k) set

NZ(R) := N )(R)/z

(R).
GLn(k )

GL_(k

NZ(R) := N

(R)/R-Z (R).
GLn(k) GLn(k)




9.2

Thus NZ(R) '"describes" the part of the automorphism group of R 'realized"
in NGL (k)(R) and NZ(R) the corresponding past of outer automorphism group.
n

2 log3(2x+1)+1
Set f(x) := (2x+1) .

f(n) 4if n<10, n#6.8
1.58f(6) if n=6
4.62f(8) if n=8
(nt+2)! 4if n=10

(9.1) Theorem. (a) |H/C|=

r :
nf (n) if n=2,3,5,7,9,10,11
4.1 £(4) Af n=4

12.61 £(6) if n=6

27.69 £(8) if n=8

231  f(12) if n=12

én+2)! if n>12

|[Aut H| =<

|out H| < [log n]!n2 if n

=2
(b) if IAlt=¢ and
(1) |Iextra—spor[ # 1
or (ii) n, =4,

Iaiiim’ i¢Iextra—spor

or (iii) m = 3,

then |H/C|

1A

f(n);

|Aut H| < {h f(n) if n#b
4.1 £(4) if n=4

[Out H] = [log n]!n2

(¢) 4if m=2, I |=l (assume T ={1}), and

extra-spor

@y

Alt™ lIextra-—-spor

n/nl=l,2, or 3 then

F(Gy»m) if m=l
|H/center| <L 60F(*1,n) if m=2, G, ~ *0, 48 = n =72

f(n) otherwise
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F(Gl,n) if m=1
3.05« 48 f(48) 4if m=2, G,/C, ~ +1, n=48
|Aut H| < e T
- 1.43+ 50 £(50) if m=2, Gl/Cl_: 1, n=50
n f(n) in the remaining cases
|out H| = 32

where F(Gl,n) = F(Gl/center,n) is defined just before (A6).

The normalizer of ¢(G) in GLn(k) permutes the (isomorphic linear)

groups ®(Gi). Let ¢ : NZ(¢(G)) +—Symm be the corresponding homomorphism.

(9.2) Theorem. (a) Ker $ is solvable with D°(Ker ) = {1};
(b) |Ker o] = . and, therefore,

e 2
(c) |NZ(¢(G))| = [log n]! * n".
Remark. Of course, if G does not contain Da(m) then Dz(Ker 9) = {1}.

(9.3) Lemma. If |Gi/C = f(ni) for i=l1,...,m and TI_. =¢ then

i| Lie,p
(a) |G/center| = f(n)
- Jn f(n) if n#4
(b)  [Aut G| = {4.1 £(r) if n=4
(e) |0ut G[ < [log n]!n2

(d) [mout G| = n?.

1A

f(Im,) = £f(n) (the last

Proof. We have |G/center[=ﬂ1Gi/Ci] < TE(n,) i

inequality by (Al)(a)). This proves (a).
Now we use (6.1)(b), (c). Note that the exceptions in (6.1)(b) are all,
but A2(4) for n=4, excluded: Alt, and Al(8) do not have representations

6

of dimension 2 unless they are of Lie p-type (see column 7 in Table T6.3) and

2A3(9) is excluded for n=6 by |3A3(9)[ > f(6), similarly D4(2). Thus we
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2 — == N
have ]Out Gi| =n7y and |Aut Gi[ = nif(ni) unless n, 4, Gi-— §4(2) when
|Aut G,| = 4.1£(4), if G, is of Lie p’-type. For the remaining centrally
i
simple groups: alternating of degree #6 (recall A1t6-: DBZ(Z)) and sporadic,
This implies (d).

- ‘n2
— i'

we have |0ut Gi! < 2. Thus 10ut Gi
To prove (b) and (c) let us split the set J = {1,...,m} of indices

into the subsets J ..,Jr such that Gi-: Gj if and only if 1i,j € JS

1°°

for some s. Then Aut G = Aut(HGi) = Hliifr((T%EJi Aut Gj) X4 Sym Ji) where
Sym J, permutes the isomorphic Gj’ j€Jg. Let ti:=|Ji]. Let
ﬁi = min{nj,j € Ji}. Assume for definiteness that if some Gj :_32(4) then
i € J,. Write iAut G.] < a.,n.f(n,) where a.=1 unless i=1, n,=4, and

1 3 ii i i ] 1
Gj': 32(4) for j € Jl, and ai=l.025 otherwise, for i=1l,...,r. If nj=2

then G, ~ Alt (see Table T2.7), i.e., |Gj/CjE=60,.]Aut Gj|=120. Thus in

notation of (Al) |Aut Gji = n,f(8,). Then by (Al) we have |[Aut G| =

t
l
lfiﬁ_rcnj“ilz&ut 6,1ty ) < (al 1 f(n) 7 I My f( )
tl ti ti tl ti
' -
= a; Hﬁi (HE(ni) (ti')) sa; n HE(ni )
t t1 t
= a nf(ﬂﬁi ) = a, nf(n) = a; nf(n)
This proves (b) if a1=l. If al=l.025 and tl > 2 we use (Al)(d) to get
t t t
that allf(ﬁl) 1 = f(ﬁll) and then the argument can be continued (from the

middle) as above (but alhfactor will be lost). 1If a1=1.025, t1=l, m>1 then
t

~d
the above alf(n)ﬂ'i232 %‘(ni ) < alf(4)f(n/nl) < f(n) by (Al)(c). This concludes
the proof of (b).
Part (c) now follows as above:

|out G| = I (T, |out Gj|)ti' (I, Out G ) It ! =< nn - (2 DY)

€J

< n%([log n]!)
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Set g(x) := I'(x+3); recall that T'(a+3)=(n+2)! for n € N.

(9.4) Lemma. If G, ~Alt , m, =10, for i=l,...,m then

. i
i

1A

(a) |Aut G| = (n+2)!

(b) |out G| = n- ([log n]!)

Proof. By (3.1)(a) we have m, = n,;+2, so that |Gi/center} < l/2(ni+2)!.
Since Altr = Symr for r =7 (see D. Gorenstein | s p+ 304]) we have
1Aut Gi| = (ni+2)! Now the same argument as in the proof of (9.3) yields
L] ‘
j) Hﬁti' where _Zi
get (b) note that |Out G| = ILOut G, » It ! < 2
i i idi

|Aut G| = IH(Aut G t, = log n. Then- (A2) gives (a). To

log o, [log n]! as claimed.

(9.5) Lemma. For a group Gi’ i€ Ir we have

est’

(@) lej/c,| = fnp;

A

(b) |Aut G| = 2f(n))

(c) IOut Gil 2

1A

Proof. When Gi is centrally isomorphic to a sporadic group (a) is contained

in (7.1). If Gi is centrally isomorphic to Alt? or Alt, we see from

9

Table T2.7 (groups of small degree) that Alt. has no non-trivial projective

7

representations of dimension 2 and one easily sees that |A1t?| = 2520 < f(3).

For Alt9 we see from the same Table T2.7 that it does not have non-trivial

projective representations of dimension =4 and then |Alt,| = 781,440 < £(5).

9l
If Gi is isomorphic to Alt;, a = 10, then (a) is contained in (3.4).

Finally, (c) is known, see D. Gorenstein [ , p. 304].
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(9.6) Proof (9.1)(a) and (9.2). (9.1)(a) follows directly from (9.3), (9.4)

and (A3) and (A6) since the estimates for ome G, hold by (3.1), (6.1), (7.1),

i
and (9.5). To prove (9.2) note that, similarly to the proofs of (9.3)(b), (c)

and (9.4), we have that Ker ¢ is a subgroup of IIEEQEFGi))' Then: by (6.1)(c)

— 2 ) o, —
|NZ(@1(G1))| =n; if G, is of Lie p’-type; by (5.1}, |NZ(@i(Gi))| = Znilog n,

= ni if Gi is of Lie p-type; and by D. Gorenstein, [ » p.304] we have

Iﬁi(@i(ci))l =2 =< nz in the remaining cases. Thus tﬁE(¢(G))I = (Hni)- (m!)

i
= nz' (m!) = nz([log n]!). This proves (9.2)(c); and (b) was also implicitly

proved above. To prove (9.2)(a) recall that DS(Out G) for every simple group

G of Lie type and |0ut E[ < 4 1in the remaining cases.

(9.7) Proof of (9.1)(b). If |I > 1 (and T, =¢) then (46), (Al),

extra-spor|

and (9.5) imply that |H/C| = f(n). The same argument as in the proof of (9.3)

together with the fact that IOut Gi| =2 = ni for sporadic groups,
2

i

2

lout a,(9)| =8 <36 <n’ if G ~ ’Ay(9), and |out D,(2)| = 6 = 64=n]

if Gi-: D4(2) gives |0ut H] = ([log n]!)nz. The estimates on |Aut( )| in
(9.3), (9.5) together with evident estimates |Aut Gi] = F(Gi’ni) for

ic¢€ Iextra—spor’ combined with (Al) and (A6) give that |Aut H| = nf(n).

If T =¢ then the above proof works again but the reference to
extra-spor

(A6) is not needed anymore.

If |1 | =1 and (9.1)(b)(iii) holds then so does (9.1)(b)(ii).

extra-spor

So assume that Iextra-spor={1}’ n/nl = 4., Then Aut H = Aut(H/Gl) x Aut Gl'

(n/nl)f(n/nl) if n/nl¢4.

We have by above |Aut(H/G1)| <
4.1 £(4) if n=4n

1

Now |Aut 6| = F(G ,n) and the claim follows from (A6).
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(9.8) The proof of (9.1)(c) is also similar. If m=1 then we are done in

view of (7.1) and of definition of F(G,n). If m=2 then n2=n/nl=2 or 3.

If 2 ¢ I then from Table T2.7 (groups of small degree) G2 is isomorphic

Lie,p
to Alt; for a=5,6, or 7, or 31(7). First, |Out G| =4 (and =4 if

G, ~ Altg) and |Out G1| =8 (and =8 if G, ~ 233(9))3 whence the estimate
on Out H.

Now if n,=2 then [G,/C,| = 60 and [H/C| =60 F(Gj>n)). If n,=3
then [G,/C,| = 2,520 and [H/C| = 2,520 F(G »n,).

We now refer to Table TA6 and use notation therefrom. We have

F(Gysny) = F(Gy,ay) = |G1/Cl]. We see from the Table that 60F(G ) =

’ 1°%1
F(Gl,Zal) = f(2al) and 2,520 F(Glfal) = F(Gl,Sal)=f(3al) unless Gl‘: +0.

If G,/C; ~ +1 we establish by direct calculations that 2,520 F(Gy»n) =
F(Gl,Snl) = f(3nl) if n, = 25 and 60 F(Gl,nl) = F(Gl,2nl) = f(Gl,2nl) =
f(2n1) if n = 31. The remaining part of the estimate on |H/C| is then
verified by direct calculations again.

1f, finally, 2 € ILie,p then we have to check weaker inequalities
F(Gl’n1n2) = |Aut Gll which, of course, hold if the ones above hold.

The estimate on |Aut H| holds if m=1 holds by the definition of
F(G,n) and if m=2 by (A6) except when m=2, G1 ~ +0.

We assume now that m=2, Gl/Cl‘: 1. Then Aut Gl = Glfcl. If n2=2
‘1| = 2n,£(2n)) if n

12 26; for n1=24,25 we have

values given by (9.1)(c). If n,=3 then 5040 - |-1] = 3nlf(3nl) if

we see that 120 -

n, = 24,

That |Aut H| =nf(n) holds in the remaining cases is easily seen from

Table TA6.




10.

Let k, m,

the Gi’ (Pi’ nis i=1l, ..., m, ¢, H,

10.1

Estimates for direct products of centrally simple and extraspecial groups.

and L have the same

2 log3(2n+1)+l

meaning as in §9. Recall f(n)=(2n+l)

f

F(Gl,n) if

1.025 £(4) if
fH(n) = ﬂ 3.05 £(48) if

1.43 £(50) if

. Set

2._
H=G,, G,/C; ~ A3(9),D4(2), Suz, +1, or -2.
m=1, H/C ~ 32(4)
m=2, G1/Cl ~ +1, n=48

m=2, GI/C1 *1, n=50

[2

N'f(n) in the remaining cases.

1+2a

1+Zal
Let El,...,Er be extraspecial groups of orders Py ;...,pr where
pl < pz < see = pr’ pi # p for i=l’ooo’r’ and ai = l for i=l,|-¢,r-
Let @i H Ei %-GLd (k) be faithful irreducible representations. By (8.1)
i
: a
we have d;=p,”. Set y:=®@ _,_ V¥4, d:=I_,_ d;, E:=I_,_ E
and, if pl=2, set also E := Hésiir Ei’ Vo= ®2515r wi, d := HZSiSrdi'
Set G := LXHXE, w:= (®Lpi) ® V¥, n := (Hni)d, N := |Aut (HXE)]|,
d := (log 3-1)/2 = 0.2925, B := log,, *1| - 2 log 24 = 4.32.
(10.1) Theorem.
(-
n f(n) if =n=2,3,5,7,9,10,11
4.1 £(4) if n=4
12.61 £(6) if n=6
(a) |Aut (HXE)| <
27.69 £(8) if n=8
231 £(12) if n=12
(n+2)! if n> 12

\_
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1+2a 2a2+l

(b) If T, and |E/E| = 2 then |Aut(HXE)|<2 n F,(n/2%).

e - ¢

(10.2) Corollary. If I e s, E # {1} then

Al
(a) N =n f(n) if any one of the following holds

(i) py # 2
(ii) pl=2, 1= a; = 5;
(a'l'l)al
(iidi) pl=2, a; =2, n=2

(b) N =2 n2 log w1 otherwise.
(10.3) Corollary. If IAlt = ¢ thén
(a) |Aut(H><E)|f§max(nFH(n), 2n2 log n + 1)
(b) |Aut(H><E)| = nz log n +5 for n =2
(¢) |Aut(ixE)|<2n” 1080+ 1 ¢ 4o 39,

(10.4) Proof of (10.1). Note that since the Ei are not isomorphic and none
of them is isomorphic to a quotient of H we have

(10.4.1) |Aut(HXE)| = |Aut H| + I |Aut E_|

l=i=r

2logmn+1 _ (191 for n> 12 and

Since one easily sees that 2n
=f(n) for =n < 14 one gets (a) from (Al)(a), (A2)(a), (8.2), and (9.1)(a).

2 log3 n+ 3
To prove (b) note first that n = f(n) by (A7)(a). There-

fore by (9.1)(b), (c)

|Aut(ExE) | < (0/2%) Fy (0/2%).
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Assuming that a#0 (otherwise we are done) we have pl=2 and

2&+l2 2a2+a+l

|Aut E1| = 2. (Za) 2 whence (b) follows, in view of (10.4.1).

(10.5) Proof of (10.2). We have IA1t=¢’ E # {1}.
(10.5.1) Assume first that
|Aut H| = (T ) £(TIn,)) -

If p #2 then by (10.4.1), (8.3), and (A7) (a)

|Aut(BxE) | = @n)E(m,) - 1 2 ab 10839y

h|
(Hni)f(ﬂni) Hf(dj) = nf(Hn:.L de)

1A

1A

nf(n),

whence (10.2)(a)(i).
2 log d1 + 1
If p=2 but 1=a =5 then 24 <£(2) and 2d = d,£(d))

(direct verification). Therefore (10.4.1), (10.1)(b) and (Al) give

|Aut(HXE)| = nf(d )f(n/d)) = nf(n)

whence (10.2)(a)(ii).

(a+l)a 2a%+a1 ay
Now let p1=2, a; z 2, n =2 . Then by (A5) 2 2 f(n/2 7) = f(n)

whence by (10.4.1) and (10.1)(b) we get (10.2)(a)(iii).

For (b) we note that the "otherwise" condition implies a, = 6. Now

(b) follows from (A7) (c).
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(10.5.2) Now we consider the remaining case when |Aut H[ = (Hni)f(Hni). It
follows then from (9.1)(b),(c) that either m=1 and H=G1 is centrally
isomorphic to Suz, °*1, *2, 2A3(9), D4(2) or A2(4) or m=2, n=48 or 50,
and Gllcl or G2/C2 is isomorphic to -1.

Assume first that E # {1}. Then by (8.3),(A7)(a): |Aut EI =
2 log3+3

ﬂ2di < f(d) whence |Aut(HxE)| = |Aut H| «£(d). Using one of

(Al) (c) or (A6)(c), (d) we get, therefore that [Aut(H><E)| = E(Hni)f(anni)

unless m=l, Gl/cl‘: +1 and d=3. In this latter case we have ]Aut E[ = 432

(by (8.2)) and Aut *1 = +1. Then

18 1.8.10% < (3.28)£(3.24) ~ 4.10%3

|Aut (HXE) | = 432+ 4.16 « 10
and since nf(n) = 72f(72) if n = 72 it follows that in all cases (if
E# {1}) [Aut(@xE)| = d(In)£(dmn,).

Now (10.2) follows as in (10.5.1).
= 14+2a
(10.5.3) Now we can assume that E={1} so that E=E1.: 2 > ai=a; 2 1.
If a =5 then |E| = f(d) and the argument of (10.5.2) works except when

d=2. When d=2, m=1, G, ~ Az(é) we still get our claim by (Al)(c). 1In the

1

remaining cases we have to check that 24 -

Aut H| = 2 (I )£(2Mn,). If

m=1 this is readily seen (except for +1) from Table TA6 (compare lines

1
and 48f(48) = 1.63 - 1020 whence the desired estimate holds in this case as

F(G,2a;) and 24 |Aut G[). If w=l and G

well. The cases m=2 and n=48 (resp.50) and IAut H| < 3.05 48f(48)

(resp =1.43 -« 50£(50)) are verified directly.

~ +1 then one has |Aut(HxE)| =

20
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(10.5.4) We now assume that a = 6 (and the assumptions of (10.5.2) and

(10.5.3) hold). Suppose first that |Aut H| < d - M, £(IIn;) and

0= 292 en (by (10.4.1) and (A5))

d2 logd + 1

|Aut(HxE)| = 2 (dln ) £(Tn,) = (dln,)£(dln,)

I

nf(n).

This gives (10.2)(a)(iii). The condition [Aut H] = dHnif(Hni), d = 64,
evidently (from expressions in (9.1)(c)) holds if m=2. If m=1,

Gl/CI-: A2(4) (resp 233(9), D4(2)-Suz, *l, *2) then n, = 4 (resp. 6,8,12,24,

1

20 (by Table T7.2)) and (10.2)(a)(iii) follows from the comparison of lines
64a;f(a;) and [Aut G| in Table TA6, except, of course, when G,/Cy ~ -1.
In this case it holds if d = 4096 = 212. Thus it is sufficient to check

(10.2) (a) (111) for m=l, G,/C; ~ +1, d=2°, 6 = a = 11, directly. We have

a 6 7 8 9 10 11

|aut E| = Jattatl o 23 g, 1000 1.7-10%0 6-10°0 3.3.10%% 2.9.1076

‘1| + |Aut E| 2.5-10*2 3.4-10° 7.1.10°° 2.5.10° 1.4.10%% 1.2.10%°
£(2% 24) 2.9-10°%  9.10%%  1.5.10% 1.5.10%°  9.10% 3.1,

Thus (10.2)(a)(iii) holds in all cases.

(10.5.5) It remains to prove (10.2)(b) in the case when the conditions of (10.5.2),

- 21+2a’

(10.5.3) and (10.5.4) hold. So |E| a = 6. We have to check

. r2 logr+1

|Aut E

Aut H| =
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2a2+a+1

where r=2°:s, s=lin,. Substituting |Aut E| < 2 and taking log we

see that it suffices to check

loglO |Aut H| = (2/10g102)logios + (Qa+1)loglos.

Noting that a = 6, 1i.e., 4a+l = 25 we easily see that (4a+l)loglos
supplies a power of 10 sufficient to overcome ]Aut Hf (here, of course,

s =4 (resp 6,8,12,24,20) if m=l and G /C, ~ K,(4) (resp. 253(9),
D,(2), Suz, *1, *2) and s=48 or 50 if m=2 and G,/C; or G,/C,~ -1).

This proves (10.2)(b).

_ (10.6) Proof of (10.3). 1If Ialt=¢’ E={1} then (10.3)(a) follows from (9.1)(b),

(¢) (and the definition of FH(n)). If E#{1} it follows from (10.2).

2 log ni+4.32 for all sporadic G (since min n <

(adjusted estimate) in Table T7.2). We have 5-4.32=0.68 and 120°68=5.42 > 2.

2 logn+5

We have F(G,n) = 2+n

2 logn+5

Thus |Aut G| = n for a sporadic G. We also have f(n) =n

if n =4 by (A7)(b), 4.1- £(4) < 4> 1084 +5 21log 6 +5

2 log 8+5

» 12.61f(6) < 6

I

n=<12.

27.69£(8) < 8 whence (10.3)(b) holds (by (10.1)(a)) for all 4

1A

If n=2 or 3 then by Table 2.7 (groups of small degree) |Aut(HXE) | 120

(resp. 5040) which 527 (resp. 38’1?), whence (b) holds also for n=2 and 3.

If E={1} it leaves (in view of (9.1)(b), (c)) only the case when m=2, nln2=48

1n2) < 3.05. One verifies that then |Aut H| =

or 50 and ‘Aut HI/nlnzf(n
(on )2 log(nln2)+5

12 -
Thus E#{1}. 1In this case our claim follows from (10.2) in view of (A7) (c)

2 logn+1 - n2 logn+5 for n > 2.

2logn+1

and the evident inequality 2n

for n = 37
2 log 39 + 1

To prove (10.3)(c) note that by (A7)(c) nf(n) = 2n

for
2 log 48 + 1

and, in addition, one verifies directly that [Aut G| = 2-39
any sporadic G. Further one verifies that 3.05- 48 - £(48) < 2+ 48
and 1.43+50f(50) < 2 - 502 log 50 + l. These remarks together with (9.1)(b),

(c¢) and (10.2) imply (10.3).
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11. Estimates for finite quasi-primitive group.
Let k be an algebraically closed field of characteristic exponent p=p(k),
M a finite subgroup of GLn(k), and C the center of M. Recall (see
R. Brauer [ s p. 64, where ¢q should be K]) that M is quasi-primitive
if it is irreducible and if for every normal subgroup N of M, any two

irreducible constituents are equivalent. Of course, any irreducible

W

representation of a centrally simple group is quasi-primitive. Let

be the socle of M/C and S its preimage in M. Recall that f(n)

2 log3(2n+1) + 1
(2n+1) .

(11.1) Theorem. Suppose that M is quasi-primitive. Then M contains
(i) a normal subgroup A isomorphic to a direct product of alternating

groups Altmi, m, = 10;

(ii) a normal perfect subgroup L centrally isomorphic to a direct
product of finite simple groups of Lie p-type;
(iii) a normal subgroup E isomorphic to a direct product of extra-

special groups whose orders are powers of distinct primes q with

q|n, q#p;
such that
(“
nf (n) if n=2,3,5,7,9,10,11
4.1 f(n)  if n=4
12.61 £(6) if n=6
(a) |M/CL| = <

27.69 £(8) if n=

231 £(12) if n=12

(n+2) ! if n> 12
_
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n2 log n + 5

(b) |M/ACL| if n =2

n

n2 logn+1

and = 2 if n = 39

() |M/s| = [log n]! n’+ |N(E)/z,(E) - E|

(11.2) Lemma. S is a central product of C with centrally simple groups
1+2a,

" . 1
..,GIn and extraspecial groups El""’Er with !Ei| = p. s a; > 0,

G
i

1’°
Pi#Ps Pi[ns Pi¢133. if i#j, i,j=l,...,r.

Proof. S is a direct product of simple groups. Write S = 61 X eua X §m><ﬁl

...><Er where the Ei are simple non-commutative and Ei are elementary
b -

abelian, IEi] = pii, pi#pj if i#j. Let ﬁi,i=l,...,m; be the preimage of

G1 in M. Then Gi = [ﬁi, ﬁi] is centrally simple.

Let ﬁi,i=l,...,r, be the preimage of Ei in M. Note that since M
is primitive every normal commutative subgroup of M is central. The pairing
Ei><ﬁi -+ C given by [x,y]=[x,y] where x,y are preimages of x and y in
Ei does not depend on the choice of x and y. Let fi 1= {x € ﬁi|[x,Ei]={l}}
and Fi the preimage of fi in Ei' Then Fi is commutative. As it is a
characteristic subgroup of ﬁi and, therefore, of M, it is normal. Therefore
F, cC, i.e., fi={1}. Thus our pairing is non-degenerate. It follows now

i
from D. Gorenstein | ] that E.=E, .C,i=1,...,r, where the E are
i 7i i
1+2ai
extraspecial, lEi] =Py ,pi;épj if 1i#j. The center of Ei is of order
pi and is contained in scalar matrices of degree mn. Therefore pi]n,i=1,...,r.

Finally, pi#p i=l,...,r, since the p-subgroup of C is trivial (k contains

only trivial p-th roots of 1).

(11.3) Proof of (10.1). Let V be an irreducible component of the action of S

on k" and V and v := dim V. Let, further, D be the product of the Gi
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which are isomorphic neither to alternating groups Alta, a = 10, nor to groups
of Lie p-type. Let U (resp. W) be an irreducible component of the action
of ADE (resp. DE) on V (resp. U). Let w :=dim W, u := dim U. We
have by (10.1)(a) that Aut ADE is bounded as claimed by (11.1)(a) with
n replaced by u. Let F(n) denote the right-hand side of (11.1)(a). Thus
|Aut ADE| < F(u).

Write V=U® U where U is an irreducible representation of L. Let
N := NGLn(k)(L)/L' ZGLn(k)(L). Then N can be identified with a subgroup of
Out L. Since k" is a multiple of ‘U as the L-module (as k® is primitive)
it follows that N, acting on ﬁhé_irreducible represgntations of L by

$n(£) 1= ¢(ﬁﬂﬁ—l), where n is a 1ift of n to )(L), preserves the

Nor (k
n
equivalence class of ¢. Then (5.5) together with the argument of the proof

of (9.2) shows therefore that |N] < [log u]! 52.
The action of M on S induces automrophisms of A,D,E,L. Let us

etc) the corresponding maps ®, : M —+ Aut A

denote by ®, and (resp. A

A A

and EA : M~ QOut A etc. We have aL(M) C N whence |5L(M)| < [log G]!Gz.

L'.DD,

Clearly Ker o n @app S ZM(S) = C. Therefore |M/CL| = [5L(M)]- |mADE(M)|

E
Aut ADE| < [log E]!Ez- F(u). One checks easily that uu < n

= o (0

implies 'M/CLI < F(n), thus proving (11.1)(a).

For (b) we have by (10.3)(b) that |Aut DE| = w2 log w + 5. We have

also ]5A(A)I = [log u/w]IZlog u/w = [log u/w]!u/w and Ker @, N Ker wp
N Ker Vor = {1} whence as above
|M/ac] < [0, @]+ |op ()] - |Aut DE|
< [log G]!Gz[log u/w]! u/w w2 log w +75

n2 log n + 5, as desired.

From u-* (u/w) *w <= n it follows that this <
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For the second estimate in (b) we have as above

Aut DE

|M/ACL| < [1log ul! Gz' [log u/w]l! u/w -

2 logw+1 which

If w = 39 we have by (10.3)(c) that |M/ACL| < 2w
together with the above and the inequality u* (u/w) *w < n implies the
desired inequality. Assume that s := a-uf/w =2 (resp. 3) and

38 = w = [39/s]. Then |M/ACL| < 32|Aut DE| and one verifies using (10.2)(a)
and (9.1)(c) that our claim holds in -this case as well. If s = 4 then we
can use [log a]!az[log u/w]!u/ﬁ < f(s) and invoke (A6) to conclude the proof.

Finally (c) is an evident corollary of the estimate in (9.1)(c) on

Out H, the estimate we established on (Out L)ﬁ and of an evident estimate

on the contribution of NM(E) to Out E.
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12. Estimates for irreducible finite groups.

Let now k be an algebraically closed field of characteristic exponent

p=p(k).

(12.1) Theorem. Let H be an irreducible finite subgroup of GLn(k). Then
H contains

(i) a commutative normal diagonalizable subgroup B;

(ii) a normal perfect subgroup 1L centrally isomorphic to a direct
product of simple groups of Lie p-type

so that

nt(m+2)! if n < 63

(a) |H/BL| < (n+2) ! if n> 63

Moreover

(b) for all n = 2

|H/BL| < (nt+2)! - n4020/((n—20)2+1000)

(¢) for n = 63 we have

4a,
|H/BL| < (n#2)! n 'F

where a r is given by Table T12.1.
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Table T12.1
airr aall CLirr aall
2 .34 .34 33 .83 .83
3 .7 .7 34 .53 .61
4 .78 .78 35 0 .6
5 .37 .53 36 .77 .77
6 .81 .81 37 0 .55
7 .67 .76 38 .47 .54
8 .88 .88 | 39 .71 .71
9 .89 .89 40 .44 .48
10 .58 .79 o 41 0 .47
11 .1 .81 42 .64 .64
12 .94 .94 43 0 .41
13 0 .81 bh .37 .4
14 .62 .77 45 .57 .57
15 .97 .97 46 .34 .34
16 .93 .93 47 0 .32
17 0 .77 48 .49 .49
18 .98 .98 49 0 .25
19 0 .81 50 .26 .26
20 .89 .89 51 .41 .41
21 .97 .97 52 .22 .22
22 .63 .78 53 0 .16
23 0 .75 54 .32 .32
24 .95 .95 5 0 .07
25 0 .75 56 .13 .13
2% .61 .73 57 .23 .23
27 .92 .92 58 .09 .09
28 .74 .74 59 0 0
29 0 .69 60 .13 .13
30 .88 .88 61 0
31 0 .67 62 0
32 .64 .65 63 .04 .04
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(12.2) Proof. Set V := k" and let V = @?=1 V, be an imprimitivity system

for H on V. Let H, := {h € H|hV, = V,}. Then H, is primitive on V..
i i i i i

Let Li be the largest perfect normal subgroup of Hi centrally isomorphic

to a direct product of finite simple groups of Lie p-type and Ci the center

of H,. Then
1

(12.2.1) [H/L.C.| satisifies (11.1)(a).

Let ¢ : H ﬂ-Symm be the homomorphism defined by h(vi)=v¢(h)i and let

M := Ker 9. Then MVi=V for -1#1,...,m. In particular, we have homorphisms

i

w, + M—~H Set Mi = mi(M), i=l,...,m. Since M is normal in H we have

i i’

that Mi is normal in Hi' Therefore each perfect factor of L either it

is contained in M, or M, intersects it in its center. Let L£ be the
largest perfect normal subgroup of Mi which is centrally isomorphic to a
direct product of finite simple groups of Lie p-type and let Ci be the center

of Mi' Then since MiLiCi/LiC ~ Mi/(LiC Mi) and since by the above

i i

_ oty s
comments CiLi N M, CiLi we get

(12.2.2) [M;/L.c | < [ /L.cC,|

_ m -l r . — m -1 .
Let L := ﬂi=l w; (Li), B := ﬂi=l @y (Ci), clearly L and B are
normal. Consider the evident homomorphism w := @?_ w, : M~ HT_ M,. Note
i=1"1 i=1"1
that

(12.2.3) Ker o = {1}.
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We have (B) C Il _,C{. This and (12.2.3) give that

(12.2.4) B 1is a commutative normal subgroup of M.

We also have (L) C H?=1L£. Moreover, since Ker w = {1} and the

projection of (L) on each LE is the whole Li it follows that

(12.2.5) L 1is perfect and centrally isomorphic to a direct of finite simple
groups of Lie p-type. Clearly, me)=w(M) N H?=1L£. Thus

m P ) st
SOOIy LyCiMyaLiCs

| 2

o Q) /o) N 17_ L7C)

©(M) /o(LB) ~ M/LB.
Since evidently

m / m L,C,

m
) I Mg b0 |

Lic//my_1scs| < |n
11 1=

1 =1"1"1 i=1"1

we get from (12.2.2):
m
|M/1B| <1, |H/L.C,|
Since H is irreducible on V it follows from Clifford theory that Hi :_Hj

: oz m - m . -
for i,j=1,...,m. Thus I _, [H,/L.C/| |H;/L,C; |7, Since M=Ker{H > Sym_}

this implies

(12.2.6) /e = mt [H /L |"
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If now n/m(= dim V;) > 12 then (A9)(i) implies that [H/BL| = (n+2)!
Thus it is sufficient to consider the cases when n/m < 12. Set r := n/m.
For 2 =r = 12 values we use the estimate IHlleCII < t_ where t_ is
from Table T12.2. For r=2,3,4,5 we get a good estimate because all possible

simple groups H, are known from Table T (groups of small degree) and we get

1
good estimates on their normalizers from W. Feit [ s p. 76] for r=2 and
3 (maxima are respectively for Hl_: Alt.5 and :_Alty), from Zalessky [ s

p. 95] for r=4 and 5 (maxima in both cases are for Aut 32(3)). For
6 =r =11, r#8, we take tr=rf(r) . (use (6.1)(d) to justify). For
r=8 (resp. 12) we take t8=|Aut 34(2)] (resp. t12=|Aut(Suz)|). Of course,
it has to be verified that admitting central products‘fdr Hl lowers the
estimate, but this is straightforward in our range.

Set F(m,r,t) := tm(m!)f(rm+2)!. For each r = 12 we find, using a
computer, the first m such that F(m,r,tr) <1, F(m+1,r,tr) = 1. We denote
this m by m 3 it is given in Table T12.2.

It is then easy to see that F(m,r,tr) 1 for all m> m_. Namely
F(m+l,r,tr) = F(m,r,tr)- t (m+1) / (rmt+3) (rmtd) . . o (emtr+2) .

It is evident that Fl(m,r,tr) 1= tr(m+l)/(rm+3)...(rm+r+3) decreases when
m increases. By the definition of m_ we have Fl(mr’r’tr) < 1. Thus the
same holds for all m = m .

Note that maximum of rm_, 2 <=r =12, 1is 63. Thus |M| < (n+2)! if
n > 63. For each n =< 63 the computer takes for an estimate on |M| the

maximum of (n+2)! and all t?(ml) such that r = 12, mr=n. One then checks,

on the computer again, that these maxima satisfy the inequalities claimed in

(12.1).
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Table T12.2

r 2 3 4 5 6 7 8 9 10 11

€. 60 2520 51840 51840 1.24-10° 6.6-107 1.05:10° 1.22-10° 4.47-10° 1.5-10°

m 30 21 13 4 7 5 3 3 “2 2

12

9-10

11
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13. Estimates for arbitrary finite linear groups.

Let k be an algebraically closed field of characteristic expoment p=p(k).

(13.1) Theorem. Let G be a finite subgroup of GLn(k). Then G contains
(1) a triangulizable normal subgroup T, T 2 OP(G),
(ii) a normal subgroup L such that L > Op(G) and L/OP(G) is perfect

and centrally isomorphic to a direct product of finite simple groups of Lie

p-type
so that
|G/LT| 1'].4 (‘D+2) ! if 'D. < 63
=
(a) = | (nt2) ! if n> 63
Moreover

(b) for all n = 2

G/LT| = (n42)1 4020/ ((n=20) + 1000)

(¢) for n = 63 we have

ba
le/LT| < (nt2)t n 2

where @11 is given in Table T12.1.

(13.2) This result implies one of R. Brauer and W. Feit [ 1.
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. Then

Corollary. Suppose that pa is the highest power of p dividing |G

G contains a normal commutative diagonalizable subgroup B such that

p3an4(n+2)! if n = 63

3

le/B| < p°2 |c/L| < .
p- (n+2)! if n> 63

Proof. Let pC be the order of the Sylow p-subgroup of L/OP(G). Then one

easily sees from (4.4.1) that IL/OP(G)] < p3c.

Let pt=|0p(G)|. Write D
for a p’-complement to OP(H) in T. Then D is commutative. The action

of D by conjugation on R := OP(H)- defines a linear action of D on

a Fp—vector space R := R/[R,Rj -Rp, i.e., a homomo;phisw. w :=D - GL(R).
Let E=dimF R so that GL(ﬁ)‘: GLE(Fb). It is evident that every commutative
p'—subgrouppof GL;CFP) has order = pt. Let B := Ker w. By the above

|B| = ]DJ/pt = |D|fpt. By D. Gorenstein [ ] B (acting trivially

on R) acts trivially on R. Thus B is the p’-component of the center of T.

In particular, it is a characteristic subgroup of T and, therefore, a normal

subgroup of G. We have

3¢ t t
‘P *P

L/R| « |D/B| - |R| = [G/L

|G/B| = |G/L

P

Since pt' pC is the order of a Sylow p-subgroup of L we have t+c = a.

Thus the above gives

l6/B| = p°2 |G/L|

as claimed.
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(13.3) Proof of (13.1). Set V :=k". Let V) :=V2V,2...0V >
Vm+l =: 0 be a sequence of G-submodules of V such that Vi # Vi+l’
i=l,...,m and Wi 1= Vi/Vi+l is irreducible for G for i=l,...,m. Set
n, := dim Wi' The action of G omn Wi defines a homomorphism
W, * G *—GL(wi) o~ GLni(k). Set Hi 1= wi(G).

Set w := @c% : G %-HGLn (k). The kernel of ® dis a unipotent subgroup

i
of G. Since each Hi is irreducible it has no unipotent mormal subgroups and,

therefore, Ker ® 1is the largest unipotent normal subgroup of G. Since G

is finite this latter is just Op(G). Thus

(13.3.1) Ker o = OP(G).

wn
0]
-
fas
I

G/OP(G) and let éi : H *—Hi be the map induced by mi,i=1,...,m.

75}
]
rt
£
’Ii
®
e

.. We have
i
(13.3.2) Ker o = {1}.

Let Li and Bi be the subgroups claimed in (12.1) for Hi. Let

L’ := ﬂ?=1 5'?‘(Li), B := HT=1&if'(Bi). As in the proof of (12.2.4) and

(12.2.5) we get
(13.3.3) B’ is a commutative normal subgroup of H.

(13.3.4) L’ 1is perfect and centrally isomorphic to a direct product of finite

simple groups of Lie p-type.




13.4

We also have

m

w(H) T_y

m
LiBi/Hi=l LiBi

~ w(H) /o(L’B’) ~ H/L’B”.

- - m
~ o(H) /w(d) N I_ LB,

Since

- m
S0 T LBy /My LBy | < [0, /T 1By

we have that

.

sns| o '
(13.3.5) |H/L’B |:§Hi=l |Hi/LiBi

If now all n, = 64 then our claim follows from (A9)(ii). 1In the remain-
ing cases we use estimates on |Hi/LiBi| for n, = 63 obtained by the

computer as described in (12.2). For each pair m , m,, 2 < my,.m = 64 we

1’ 72 2

take for a new estimate for ml+m2 the maximum of the estimate obtained before
for m1+m2 and of the product of these estimates for m; and m, . We repeat
this procedure until it stabilizes. It turns out that it gives new (compared

with §12) values only for n =< 55. Then one checks using the computer that

. The case

the estimates claimed in (13.1) for n = 126 hold for |H/B'L’
when some ni = 63 and some =64 1is handled as follows. If I 1is a subset

of 1,...,m and Zi = 126 then, as remarked, the computer establishes

€1i
the required estimate.

In view of (A9)(ii) it remains to show that if A is the estimate (hold

by the computer) for r = 64 and if d = 64 is such that r+d > 126 then

A(d+2)! = (r+d+2)!
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We know (by a check on a computer) that this holds for d=64. By induction

suppose it holds for some d. Then for d := d+l1 we have
A(d+3)! = A(d+2)! (d+3) = (r+d+2)! (d+3) < (r+d+3)!

whence our present claim:

(13.3.6) The estimates of (13.1) hold for H.

Let now L be the preimage of L in G and T the preimage of B.

Since B 1is diagonalizable T is triangulizable. This concludes our proof

of (13.1).
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14, Extension to infinite linear groups.

Let K be an algebraically closed field of characteristic exponent p=p(k).
For a subgroup H of GLn(k) let H® denote its Zariski closure and set
H® :=H N (HC)°. When H® is semi-simple it contains, by J. Tits [ s
Theorems 3 and 4], a smallest (automatically connected) normal subgroup

such that H/H N F is periodic; we call this F the Tits subgroup of ue.

(14.1) Theorem. Let G be a subgroup of GLn(k). Then there exist
(i) a normal triangulizable-subgroup T of G,
(i) normal subgroups F, P, L of G with T=F NP N L,
such that
(a) P¢/T¢ and F°/TC are connected, semi-simple and commute,
(b) F¢/T 1is the smallest among normal subgroups H of c¢/¢
such that H N G/T projects onto the image of (G/T)° in the Tits subgroup
of (6/T)€,
(c) FP 2'9G° and G°/FP is finite commutative; in particular, FCPC=(GC)°.
(d) P/T is direct product of infinite simple groups of Lie p-type,
(e) L/T is a direct product of finite simple groups of Lie p-type

4
_ n*(m#2)! if n < 63
(© e/PFLl = () if n = 64
Moreover

(g) 1if G 4is finitely generated then P=F.

(14.2) Proof of (1l4.1). First, let us show how (g) follows from (a)-(f). By
(¢) FP is of finite index in G. Therefore FP is finitely generated if G
is finitely generated. But then P/T = PF/F is also finitely generated. This

is not so if P/T is infinite (by (d)). Hence P/T={1} if G is finitely

generated, whence (g).
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(14.3) Now consider the case when Zariski-closure of G is connected and almost
simple and G dis periodic. By J. Tits | s Theorem 3 and 4(iv)] we have
then p > 1 and G¢ is defined over ?ﬁp. Let us fix a (rational) irreducible
representation g : c¢ %-GLd. Since G° is connected g 1is also primitive

(for otherwise G° would contain a subgroup of finite index preserving a

o d | .
decomposition of k= into a direct sum).

Since G is irreducible and primitive on V := kd there exists a finitely
generated (and, hence, finite) subgroup G1 of G which is also irreducible
and primitive. Write G=Ui=lGi where Gi+l E_Gi and Gi+l # Gi (for example,
Gi+l = <xi,G£> where Xy € G - Gi)' Let Si be the‘preimage in Gi of the

socle of Gi/center. Then Si is a central product of centrally simple

perfect groups H,

1’1""’Hi’mi and of extraspecial groups Eil""E of

i,ri

relatively prime power orders. It is clear that each Hi i is contained in
L]

if E and E have not

L i i * - . - s
some H Similarly, Ei+l,3 < El’S i+1,3 i,s

i+l,s

relatively prime orders. Therefore

(14.3.1) there exists ¢ such that m,=m , r.=r for i =c¢ and E, .=E
1 c ie 1,] Cc,S

for i1 = ¢ and appropriate j and s.

We can assume (after renumeration) that c=1, Hi+l,j 2 Hi,j’ Ei+1,j=Ei,j

for i = 1. Then set H, := Uw H, ,, E, :=E . We have that the H, and
k| i=174,3° 7j 1,3 3

and the E_. Clearly m.HS - IE  is

the E commute. Therefore so do H
s J ] 5§ s

c
J
a normal subgroup of G°. Since G° is connected and almost simple this implies

that m1=l and rl=0 (that is, there is only one Hj and no ES).

Set H, := P:=U .H
1

j=1H5° Then

H; 10

(14.3.2) H is centrally simple.
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By a recent (overlapping) results of V. Belyaev [ 1, A. Borovik [
N. Chernikov [ ], B. Hartley and B. Shute [ 1, S. Thomas [ 1 (see,
for definiteness S. Thomas [ s Theorem 2]) we get

(14.3.3) P 1is centrally simple of Lie p-type over a subfield K of ii;
We have that P is normal in G and therefore, G acts by automorphisms
on P. By R. Steinberg [ s Theorems 30 and 36], any automorphism of P
is a product of a diagonal, graph, field, and inner one. However, since c¢
is connected and since graph automdrphisms do not belong to G¢° and field

automorphisms do not induce automorphisms of ¢ we get
(14.3.4) G/P consists of diagonal automorphisms.

This implies
(14.3.5) G/P is finite commutative; it is given in column Ad of Table T4.4.

(l4.4) Assume now that Y := ¢ 1is connected and semi-simple. Then by

J. Tits [ , Theorems 3 and 4(i)] Y contains a connected normal subgroup
F which is the smallest such subgroup with the condition that the image of

¢ in VY/F 1is periodic. Write Vl,...,Vm for almost simple quotients of

V/F. Let Gy be the image of G in Vi, i=1,...,m. Then (14.3) applies to

Gi and we have by (14.3.5) and (14.3.3) that DGi is centrally simple of

Lie p-type. Set P, := DGi. Let ¢, : G~ Gy be the natural projection.

m

Then 5 i= 11,
l:

-1
l¢i (Pi) satisfies

(14.4.1) o (B)=P,, 06 C P, |c/P| < =

Is
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Let ¢ : Y ~+ F/center be the natural projection and let P := Ker ¢ M B.

Then ¢i(P) is normal in Pi. Therefore, since P is centrally simple,

i

$i(P) is either in the center of P, or contains DPi. Since P is a

subgroup of yl"'ym it follows that
(14.4.2) P 1is centrally isomorphic to a direct product of some of the Pi'

Next, P 1is normal in P and, by construction, P induces only inner

automrophism of P. Thus
(14.4.3) P =P+F where F=Z3(P).

Let F :=FS, P := PS. Then in view of (14.4.1) and (14.4.3).
(14.4.4) F+P=c"

Now, if H is a smallest factor of Y such that H 1 G projects onto
the image G in ¥ then, clearly, HcF. If H#F then ¢(G)/9(H N G) is
isomorphic to the projection of G onto the complement to H in F and, in

particular, is #{1}. Thus

(14.4.5) F 1is the smallest among normal subgroups H of ¢¢ such that

o(H N G) = ¢(G).

(14.4.6) Remark. Note that since G may induce non-inner (hence, diagonmal,

automorphisms of P there is no decompostion similar to (14.4.3) for G.
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(14.4.7) Example. Let H := PGLanp[t]). For c Epr we have a specialization
homomorphism LN t >c of fﬁp{t] to Eﬁp' It induces an epimorphism

$c : H~ PGLnGFp). Let cl,...,cm Eimp. Then we define a homomorphism

¢ = did x H?=1$C : H ~+—(P(;'L1_L)m'+1 =: V¥ with G := ¢(H) Zariski-dense in Y.

i

The group T is then the first simple factor of Y. Write y=F x ﬂ?=1 Vi

where Vi 1= (@C (H))c. Let H be a direct factor of Y. If F is not a
i

factor of Y then G N Y. ={1}. 1If H=F x T, V. for I a subset of
1 1 i€l i
{1,...,m}, then G/G N H =~ Hi¢1 . (H). Thus Y itself is the smallest
i

normal subgroup H of Y such that the projection of G/GNH on F is
equal to that of G. So F=Y.

We conclude this example by pointing out that it is_not necessary that
all simple factors of F are of the same type. For example, replacing H
by mwl(PSO (F )) and then proceeding as above we get that Y. =~ PSO_.

¢y n° p 1 n
(14.5) Assume now that G is primitve. Let C be the center of G (so
that T=C in our case). Let Y := (Gc)°. Since G is primitive Y is

semi-simple. Set V=V1...VS, an almost direct product of almost simple groups.

The group N := NGL (V)/ZGL (Y) consists of permutations of factors and of
n n

outer (that is, graph) automorphisms of the Vi. By (14.4) G° contains

normal subgroups P and F such that (14.1) (a)-(d) hold with T=C. Thus

(since PSF°=(¢%)° and G°/PF consists of diagonal automorphisms of P)

it follows that for N :=N (PF)/Z (PF) we have |N| < Iﬁ Outer

GL (k) GL_ (k)

diagonal automorphism group of P|. As in (4.5.4) this imples

(14.5.1) IN[ = n2 log n
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It is, therefore, now remains to study Z := ZG(PF). This latter group
is finite and, since G 1is primitive, it is completely reducible. An
argument similar to ones we used in Sections 10 and 11 shows that Z contains
a nromal subgroup L centrally isomorphic to a direct product of simple
finite groups of Lie p-type such that Z/L satisfies the conclusions of (11.1).

Now a repetition of arguments of Sections 12 and 13 yields (14.1) in complete

generality.
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