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1. Introduction

The present paper is a branch off of [ ] and was provoked by a paper

of M. Aschbacher { }. Consider a finite simple classical group Gy (i.e.

. 2 2 s .
a group of Lie type An’Bn’Cn’Dn’ An’ Dn over a finite field k ~ Fpm.) Let
G be a finite group such that G0 ¢ G ¢ Aut GO‘ Let ¢ denote a projective
representation of smallest dimension for GO (usually referred to as a
natural representation) over an algebraic closure kK of k. M. Aschbacher

describes a family CG of subgroups of G (recalled in (5.3) below) and

proves then

(1.1) Theorem. If G0 is of type D4 assume that G contains no
triality automorphism of GO' Let H be a maximal subgroup of G such that
0 Then either H is a subgroup from CG or

(i) the socle HO of H 1is simple,

(ii) (le0 is absolutely irreducible,

(iii) the characters of ¢|Hy, and ¢|G, generate the same field.
Our result in [ ] 1is particularly relevant to the case when H

satisfies (i) and (ii). It is

(1.2) Theorem. Let H,; be a simple absolutely irreducible subgroup of

PGLn(E). Then one of the following holds:

(i) H0 is of Lie p-type,



or
(ii) Ho ~ Altd for some d and HO lifts to a linear representation
of Altd in GLn(k),
or
2 log3n+5
(iii) |Aut Hol <n and the field generated by the character
values of HO is F _, s¢ nz.
pS

Since in (1.2)(ii) above only a finite number of Altd can appear (see
[Weisfeiler]), we see that there exists a finite list ?n (independent of

k) of isomorphism classes of finite simple groups such that we live

(1.3) Corollary. In the assumptions of (1.1) one of the following holds
(with n being the degree of ¢):

(i) HEe Cq
(ii) H, € :',vn,

(iii) HO is of Lie p-type.

Since in the case (1.2)(ii) above the character values generate at most

a quadratic extension of Fp (see [G. James]), (1.2) and (1.1)(iii) also

imply

(1.4) Corollary. Under the assumptions of (1.1), if k ~ F w > n2,
p

where n is the degree of ¢, then either

(1) Hecg,

or



(ii) HO is of Lie p-type.

Both (1.3) and (1.4) say, in essence, that most of the maximal subgroups
of most of the finite classical groups are of Lie p-type. Thus it is
definitely of interest to study the maximal subgroups of G of Lie p-type.
To this end we use the Steinberg tensor product theorem [ Theorem 41] and

his result [ , Theorem 48] about the possibility of extending the imbedding
of H0 into PGLn(E) to a representation of the corresponding algebraic
group. This permits us (at the cost of an extension of the family CG to a
wider one SCG (see (5.4) below)) to strengthen (1.1)(ii) as follows (see

(6.2) for a better statement):

(1.5) Theorem. In the assumptions of (1.1) assume in addition that the

socle H0 of H 1is of Lie p-type and p # 2,3. Then either H is a
subgroup from SCG or @,HO is absolutely infinitesimally irreducible (see

[Steinberg] for the latter notion).

The question arises, of course, whether the conditions that qJIH0 is
infinitesimally irreducible, H does not belong to 8CG, and HGO = G are

sufficient for H to be maximal. This is definitely not so. A look at E.B.
Dynkin's paper [ ] shows that there are infinitely many representations

#H — G of the connected algebraic group corresponding to HO into the
connected algebraic group corresponding to Gy whose image 1is

infinitesimally irreducible (for large p) but not maximal. By restriction
to groups of rational points over finite fields we get counter-examples to
the question above. Nevertheless the class of examples we described turns
out to be fairly typical. We first show (in (2.1)) that the imbedding

HO — G0 does extend to a homomorphism of the corresponding connected

algebraic groups ¥ — @. Then we have



{(1.6) Theorem. Let G, Gg and ¢ be as in (1.1). Assume that p # 2,3 and
m2 3. Let H be a subgroup of G with socle HO of Lie p-type, cp|H0
absolutely infinitesimally irreducible, and G = HGO. If the image of % in
G (of algebraic groups) is a maximal algebraic subgroup of & and H0 is

not isomorphic to one of a finite list R (independent of p and §) of

simple groups, then H 1is maximal in G.

The proof of this claim uses the classification of finite simple groups
to compile the list R.

There is a gap between (1.5) and (1.6). First, it may happen that ¥#
is not maximal in G but, because of extra automorphisms, H is maximal in
G. This question, it appears to me, can be settled only after E.B. Dynkin's
paper [ ] is redone in positive characteristics. Second, the finite list
mentioned in the statement is probably almost empty. Third, the condition
m2 3 1is imposed because I can obtain only fragmentary results on whether

there exist imbeddings of H into Symd ¢ G (see, however, ( }).

'Fourth, although the condition that p # 2,3 can be relaxed, after modifying
the statement (see ( )) the case when p = 2 seems in an unsatisfactory

condition,.



2. Extension of homomorphisms between finite groups of Lie p-type to

algebraic groups

(2.1) We consider here two finite universal groups of Lie p-type G and M,
a homomorphism 7: G — M and a representation w: M — GLn(Fp). We assume

that ¢ :=w o 7 is an irreducible representation of G. Let @ and M be
algebraic absolutely almost simple simply connected groups associated to G

and M respectively. By a result of R. Steinberg [ , Theorem 43] ¢ and

~

@ extend to representations ¢ and o of & and . Moreover the highest

~

weights of ¢ and « can be chosen to satisfy the additional conditions

given in R. Steinberg | , Theorem 43], (see also (4.1.3) below). Under

~ ~

these additional conditions ¢ (resp. w) is determined by o (resp. )

uniquely up to equivalence of representétions. This implies that

(2.1.1) ¢@(G) (resp. «(M)) is determined by ¢ (resp. «) uniquely as a
subgroup of GLn.

~

Indeed, two different é and ¢' would give that é(g) = A(;’(g)A'1 for

1

g E€EG, i.e. o¢(g) = Ap(g)A whence A is scalar in view of the

irreducibility of ¢.

We are interested in when the following holds (it makes sense by

(2.1.1)):

(2.1.2) Conjecture. J(G) c J(m).

Our results in the direction of this conjecture are given in (2.2),



(2.3.3), (2.4), (10.3), (10.4).

(2.1.8) Remarks. (i) This statement is similar to the main result [ .@),
p.500] of A. Borel and J. Tits. The main difference is that we are
concerned with finite groups and, therefore, one of their powerful
instruments, the Zariski closure, is not available.

(ii) Our proofs are based on R. Steinberg's [ , Theorem 43]. This
proof is non-constructive. The only case when we are able to use it
effectively in the case when M is the stabilizer of a non-degenerate
bilinear form. But even in this case (see below) the proof is not

direct.

(2.2) Proposition. (2.1.2) holds if M is classical and « is its natural
representation, except possibly in the case when p = 2, M is of type Dm

~

and « 1is a twist by the Frobenius endomorphism of an infinitesimally

irreducible representation of ¢.

(2.2.1) Proof. Let w(M) be a stabilizer of a non-degenerate bilinear form
f. Then ¢(G) also preserves f. Since ¢(G) is irreducible f is the

unique (up to a scalar factor) bilinear form preserved by ©(G). Thus ¢ is
equivalent to its contragredient mv. By R. Steinberg | , Lemma 78] the
highest weight of (é)v satisfies the same inequalities as one of ¢ from
R. Steinberg [ » Theorem 43]. Since (&)v and & are equivalent on G
this implies by R. Steinberg [ , Theorem 43} that é and (é)v are

~

equivalent. Thus ¢(§) preserves a non-degenerate bilinear form. This
form, by unicity of f for ¢(G), must be proportional to f whence our

claim.

(2.2.2) Let now (M) be the stabilizer of a non-singular quadratic form F



with associated bilinear form f. If p# 2 then F is uniquely determined

by f and we are done by (2.2.1). Since & is irreducible this implies

that n = 2m and o(M) ~ SOZm’ i.e. M 1is of type Dm.

Write o ~ @ 9y ° Frl where the ¢; are infinitesimally irreducible
(see R. Steinberg [ , Theorem 4.1] or ( ) below). Let

I = {i|<;i ~ Id}. Suppose that |I| 2 2. The condition that é preserves a
bilinear form (it does preserve f) is the condition of symmetry on the
highest weight of é (see R. Steinberg [ , Lemma 78]). This condition is
then satisfied by the highest weights of every 51. Thus each &i(G)

preserves a non-degenerate bilinear form. This form is necessarily
alternating (well-known and proved in (2.2.3) below). Then by M. Aschbacher
[ » 9.1(4)] ¢(Q@) preserves a unique, up to scalar multiple, quadratic
form F'. We must thus have that F and F' are proportional whence

~

¢(Q) ¢ S(m). This concludes our proof of (2.2).

(2.2.3) Lemma. Let H be an irreducible subgroup of GLn(?z). If H
preserves a non-degenerate symmetric bilinear form f then f is

alternating, i.e., f{(x,x) =0 for all x ¢ Fg.

Proof. Set V = Fg. By the irreducibility of H there exists v e V
and 815008y € H such that {vi 1= v+giv} is a basis of V. We have

f(v+gv,v+gv) = f(v,v) + f(v,gv) + f(gv,v) + f(gv,gv). This =0 by

symmetricity and invariance of f. Thus f(vi,vi) = 0 whence f(w,w) =0

for all w =3 a;vy-



(2.3) Let G be the simple Lie algebra over C of the same type as Q.
Let X be the highest weight of ¢. Then ¢ is a unique quotient of the

reduction modulo p of an irreducible representation ¢ of G with "the

same" highest weight A. Let dO(X) denote the degree of the latter

representation. It is given by H. Weyl's formula

(2.3.1) dy(A) =T __((A+p,a)/(p,x))
€Y

where S is the set of positive roots of @G, p 1is the sum of fundamental

weights, and (-,-) is a scalar product invariant under the Weyl group.

~

(2.3.2) Let now G ~ °x (qc) (in the notation of R. Steinberg [ 1). Set
a

~

c -
q except when Xa = Bz’

2 2

G,,“F, when we set q :=q - p_l/z.

e
1]

(2.3.3) Proposition. (2.1.2) holds if p# 2 and q > 2d0(x).

Proof. Let V be the space of ¢, V its reduction modulo p and V'
a maximal submodule of V such that the G-module V/V' 1is isomorphic ¢.
We consider @G acting on E := End V/V' wvia Ad - ¢. Then E is the

quotient of reduction modulo p of End V. Since End V~ V@V’ (as
G-modules) the action of G on End V satisfies: ((ad e 5)(§a))i = 0 for

i>2dimV = 2d0(k) for every root element Xy Therefore in A. Borel

[ 5.13] we have for every absolute root subgroup Xa(t) of G that

(2.3.4) (Ad » ¢)(x (t)) = Eiszdo(x)tixa,i'
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For all cases, with the exception of 282,262,2F4 and , for
an appropriately chosen root subgroup xa(t), we have that xa(Fq) c G, We
consider then (2.3.4) as a system of linear equations with Vandermonde

determinant (if q > ZdO(X)) whose constant terms lie in Ad » ¢ (G) ¢

Ad o S(m). Solving it we obtain that

(2.8.5) X, ; €F + Ad o o(m) .

*X, 1

In particular, each X, preserves Lie w() ¢ End V. Therefore

o1

~

(2.3.6) Ad - Q(G) preserves Lie «(fl).

If p# 2,3 then Aut Lie «{M) has the same type as M (see R.

Steinberg | ]} or G. M. D. Hogeweij | 1). Therefore, in this case

¢(G) ¢ «(M). The same is true in characteristic 3 except when M is of type

A2 and in characteristic 2 except when M is of type D nz3, or G

n’ 2°

(2.3.7) These latter cases can be treated as in B. Weisfeiler [ , Section

4]. We do only the case p = 3. If M is of type A2 then G can be of
type A2 or Gz. If G is of type G2 then the 3-dimensional irreducible
representation of M gives rise to such a representation of G ~ Gz(q).

Since this latter group does not have any non-trivial irreducible

representations of degree < 6 this case is impossible (one can also use a
description of all finite subgroups of SLS(FP)).

If G 1is of type A2 (and p = 3, M of type Az) then both @& and

M extend the representation ¢ of G. Therefore o(&) =o(M) by (2.1.1).
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(2.3.8) It remains to consider the case p =3 and G ~ 262(328+1). Let

9 := Fr®. Let «,f be simple roots of G. We can assume that G contains

all elements x2a+3ﬁ(v)xa+zﬁ(v9) with v any element of k := F We

323+1'

have by (2.3.4)

- . Oyy - i+p®
Q(x2a+3ﬁ(V)ha+2ﬂ(v )) - Ei,jSZdO(A)V p jx2a+3ﬂ,ixa+2ﬁ,j.

- . .
If q (=p°) > 2d0(x) we obtain as above in (2.3.5), that X2a+35,ixa+23,j

preserve Lie «(M), for all i and j. In particular, Xoa+38,1 =

X2a+35,ixa+2ﬂ,o and Xa+2ﬂ,j preserve Lie «(W). Thus (2.3.6) holds in the

case under consideration. The proof is completed as in (2.3.7).

~

(2.4) Proposition. (2.1.2) holds if p# 2, M is of type G2 and o is

its representation of dimension 7.

Proof. Let V be the space of w ® id so that V can be considered
(when p # 2) as an algebra of octonions ¢ and Ml = Aut 0. We consider

the orthogonal group # of the norm form of O; ¥ is of type D4. We let

# act on 0 ® 0O ® 0 via its different fundamental representations
corresponding to the extreme ends of the Dynkin diagram of #. Then the
diagonal action of 1 determines an embedding M — # so that M is the
set of fixed points of the triality automorphism o of $#. Since p # 2

and the action of W on ¢ is completely reducible it follows from (2.2)

that each projection Ti o we T (on i~-th factor, i = 1,2,3) extends to

~

LER G — H. Since w oo 7(G) ¢ M it follows from (2.1.1) that ¢ o ;1 =
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Ty, O ° My =TMa, 00 Mg =Wy, i.e. ¢{(G) ¢ G. Thus o

induces an
endormorphism of @§.

Since it is an automorphism of % it is also
(?traversality?) an automorphism of @.

Since it is trivial on

G it must
Thus ¢(G) ¢ «(M) as claimed.

be trivial on Q.
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3. Tensor product decomposability

The "if" part of the following result is a Corollary to Theorem 41 of R.
Steinberg [ 1. The "only if" part and its proof are modelled after E.B.
Dynkin [ , Theorems 3.1 and 3.2].
(3.1) Theorem. Let k be an algebraically closed field of characteristic
exponent p, G an almost simple algebraic group over K, ¢ and <

infinitesimally irreducible representations of G with highest weights A

and p respectively. Then ¢ ® ¥ is irreducible if and only if
(i) supp A ] supp p = ¢,
(ii) A and g can not be connected by a p-chain.

Here supp A is the set of simple roots o« of G such that

(A,qv) #0 (in 2). Let A (resp. 3, resp. E+) be the set of simple (resp.

all, resp. positive) roots of G. The p-chains are defined by

(3.2) Definition. Let A and u be weights of G. A subset

Xqyee, @y €A is a (minimal) p-chain connecting A and g if

(mc1) (x,a;) %0

(mc2) (m,a ) # 0
and for m > 1

(mc3) (x,a;) = ... =& ) =0
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~

{mc4) (p,a;) = ... = (p,am_l) = 0

~

(mc5) (ai'ai+1)(ai+1’ai) & pZ
(mc6) (ay,a5) =0 if |i-j] 2 2.

(3.3) Remark. Let 4y, 4, be two subsets of A such that &y N Ay = g
and A1 cannot be connected to A2 by a p-chain. By inspection of the

Dynkin diagrams one verifies that this can happen only if either p = 3 and
& is of type G2 or p=2 and G is of type Bn' Cp» F4. In both cases
the roots in each Ay and a, have the same length but the roots from 4,
have length different from those from Az. This remark explains why the "if"

part follows from the Corollary toc Theorem 41 in [ 1.

(3.5) Lemma. Let ¢ and ¥ be infinitesimally irreducible representations

with highest weights A and p. Let gy eva®y be a minimal chain

connecting supp A with suppp (m =1 if supp A{] supp » # ¢). Then
¢ ® v 1is reducible.

(3.5.1) Proof when supp A [] supp 2 # ¢. Let « € supp A [] supp u.
Let x and y be the highest weight vectors of ¢ and ¥

respectively. We have

(*) ege_ x = (A )x.

Indeed e,e_ X =e_ex+ [ea,e_a]x = hax = A(ha)x = (A,av)x {(we have

e.x = 0 since x 1is a highest weight vector). Here {ea}aez U {h l,en is



a Chevalley basis of the Lie algebra Lie G of G. Since ¢ is

~

infinitesimally irreducible it follows that 0 S (A,« ) £p -1 and since

o« € supp X it follows that (A,av) # 0. Thus (x,av) # 0 in k. Then (%)
implies that e_ Xx# 0.

Let z := (p,av)e_ax ®y - (x,av)x ® e_,v- Then z # 0 by the above, but

e,z = 0by (*). For B €A, f§# «, we also have [eﬁ,eﬁa] =0 eﬁx = 0, epy

= 0. Therefore eﬂz =0 for all B €A. Let A be the set of y € £+ such

[}

that e,z 0; A24A. If A# 3" there exists y € $* - A such that

[ey,e_a] = cey;, 6 € A. It follows that eyz =0 i,e. y €A, a

contradiction. Thus A = 2+ and z is a highest weight vector of ¢ ® ¢ for
Lie G.

If ¢ © ¥ were irreducible for @G it would be for Lie G a direct sum
of a number of equivalent irreducible representations. Then the highest

weight X + p of ¢ ® ¥ should be congruent modulo p-(lattice of weights)

to X + pu - «, or, the same (ﬂ,av) 20 modp for all g € 3. This can

happen only when p = 2, @G is of type Cn’ n21l, « 1is the long simple

root, say Otn.

In this latter case let An be the fundamental weight of Cn paired to
a. Set A' =X - An’ B o= p - An. These are dominant weights by our

assumption that « € supp A [] supp #. Since p =2 and A and x are the
highest weights of infinitesimally irreducible representations, it follows

that « ¢ supp A', « & supp p'. Let o', ¥', 9y be the infinitesimally

irreducible representations of G with highest weights Af, u', A Then by

n:
R. Steinberg [ , Corollary to Theorem 411}, 94 ® Py and ¥' ® ¢, are

infinitesimally irreducible and, therefore, equivalent to ¢ and v

respectively. Thus ¢ ® ¥ 1is equivalent to ¢' ® ¢' ® Pn & ¢ But 9h is
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the representation of Cn with highest weight An and so 9n ® 9y has a

highest weight 2xn which is the highest weight of 9, ° Fr

characteristic 2).

The representation ¢y ° Fr

(in

has the same dimension as

¢, and so ¢, ® ¢, can not be irreducible.
(3.5.2) Assume now that supp A {] supp o = 4 but that A and p can be
connected by a p-chain {al,az} of length 2. Let x and y be the highest
weight vectors of ¢ and v. Then
X, = X, X = e X, X = e e X
0 1 oy 2 o,y
Vo 1=V, VYV, i1=¢ Yy, V¥ = e e y
0 1 , 2 oy,
From (mc3) and {(mc4) we have
(k%) e, ,xXx=0=e_ V.
1
As in (*)} in (3.5.1) we have
ealx1 (A,al)x0
emzx2 = ()\--a‘ ,cxz)x:l = —(al,az)xl.
Under our assumptions these imply that Xy Z0 , Xy # 0. From (**):
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Similarly
eazyl (“1"‘;)5’0
fa V2 (n=atp,21)y ~(05.01)y;
eazy2 =0 = ealy1
and
vy # 0, Vo # 0.
Let

7 = (J\,al)(al,az)xo ® Vo + (czl,c<2)(cxa,oc;)x1 ® vyt (p,,txz)(ozz,cxl)x2 ® Vo-

Then z # 0. We have

D
N
!

= —Ohag) (e ag) (ag,00)x) ® vy + (aq.05) (ay.07) (Aa))xy 8 vy = 0
and
e Z = (alvag)(‘xzval)(#!az)xl ® YO - (ﬂ,a;)(azro‘l)(‘xlraz)xl ® YO = 0,

~

{Remark: If (a2’“1) € pZ then =z = (A,a;)(al,a;)xo ® Yo and we still have

e 2z =0=e,z. But we do not know anymore that Vo £ 0).
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Now we have eﬁz =0 for all peA. Let A= {y € Z+|eyz = 0}. We have

A ¢ A, Since [ea,eﬁ] = tea+ﬁ, o, €A and « + § €3 it follows that

Z+ N (A+A) ¢ A, Let vy € 2+ - A be such that oy - ) - o, € A. Then

whence y € A. Since A and 3 [] (A+A) ¢ A it follows

that A = 2+. Thus ¢ ® ¥ 1is not infinitesimally irreducible.

On the other hand since ¢ and ¥ are infinitesimally irreducible and
supp A [] supp # = ¢, it follows that A + g is a highest weight of an
infinitesimally irreducible representation, whence ¢ 8 ¢v if irreducible

must be infinitesimally irreducible, a contradiction.

(3.5.3) We leave the general case as an exercise.
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4. Fields of rationally of representations of finite groups of Lie

p-type

The arguments below are based mostly on R. Steinberg [ ,8§12,13] and
on ideas of M. Liebeck | ,§2] or myself [ ,857.

(4.1) If ¢: G — GLn(Fp) is a representation of a group G we call the
field Fp(¢) generated over Fp by the Tr ¢(g), g € G, a rationality

field of ¢. It is important for us, in view of (1.1)(iii) to know the
fields of rationality of irreducible representations of groups of Lie p-type.

It is known (see, e.g., [Aschbacher (3.2)] that

(4.1.1) For finite groups G and absolutely irreducible ¢ the

representation ¢ is equivalent to a representation G — GLn(Fp(m)).

The main problem for us here is to describe Fp(w) in terms of the

highest weights of the corresponding algebraic group.

(4.1.2) If G is an algebraic semisimple group defined over a finite field
k ¢ ?p then there is an action of T := Gal(Fp/k) on the weights of @;

this action preserves a system of simple roots A of G (with respect to
appropriate choices), see, e.g., J. Tits [ ,3.11. Namely we associate to

every « € A a conjugacy class Pa of minimal non-solvable parabolics.
Then for ¥ € ' we have that 7(Pa) is also such a class, say Pﬁ, and we

set then 7y(x) :=pg8 and extend this action by @O-linearity to all weights.

_L
Let FG = {y €T | v{¢) =« for all « € A} and let Hﬁ := F;a, the fixed

field of Fé. If G 1is absolutely almost simple then kG =k if GQ is
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split over k, [Kazk] = 2 1if G 1is quasi-split of type 2An,an,2E6 and

3

[kG:k] =3 if @ 1is quasi-split of type D

4
If G is just almost k-simple then G is centrally k-isogeneous to

RK/kH for some finite extension K of k and for an absolutely almost

simple K-group ¥ (see | ] for a definition of the Weyl field restriction

functor Rk/k and for the above claim). In this case 53 = FH so that

(4.1.3) Let @ be an absolutely almost simple algebraic group over k and

G := G(k). Set also q := |K|], a := [k:Fp], c := [kG:k]. Let ¢ be an

absolutely almost irreducible representation of G. By R. Steinberg [ ,

Theorem 43] ¢ extends to an absolutely irreducible representation ¢ of

~

G. By R. Steinberg [ » Theorem 41 and 43] ¢ is equivalent to

®?;3 @y ° Fri where the w; are infinitesimally irreducible.

(4.1.4) Let A be the highest weight (with respect to an appropriate

¥

simple root system) of an absolutely irreducible representation ¢ of @.

Let Al,...,k (where r = rank(G)) be the fundamental highest weights.

r

Then we know that A = p-x¢ and xw = Z§=laixi with 0 < a; < p 1if and

Yo Fr

only if o is infinitesimally irreducible.

(4.1.5) (see R. Steinberg | ,§13] or C.W. Curtis [ 1.) To a
representation ¢ of G (from 4.1.3) there is also uniquely associated a
Curtis highest weight. Let 8 be a Borel k-subgroup of G, U = [8,8] the
unipotent radical of 8, and ¥ a maximal k-torus of 8. Set T := J(k),
B :=8(k), U := U(k). Then, associated to ¢, there is a unique tuple

(Xw’pl""'"r') where
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%
€

x¢ Hom(T,Fp)

Ky = +1

r' = rankk Q.

We call (X¢'”1""’”r') the Curtis highest weight of ¢. One sees
easily that xw(T) c kG. Defining an action of Gal(kG/Fp) on Hom(T,kG)
via the action on the second factor only we obtain an action of Gal(kG/Fp)

on the set of representations of G. Our purpose is to relate this action to

the tensor product representation of ¢, see (4.1.3).

(4.1.6) Let A be the simple root system of G (from
(4.1.8),(4.1.4),(4.1.5)). Assume, in addition, that G is simply connected.

Then ¥ 1is a direct product over k of k-subtori 51,...,3 each

r.'

corresponding to a relative simple root, i.e., to an orbit of qa on A,

Moreover, over K (or kG) each Si is a direct product of 1-dimensional

tori corresponding to the (absolute) simple roots in the corresponding orbit.

(4.1.7) We now make the following observation. If x is a generator of

Z/(q-1) then every element #1 of 2/(q-1) has a unique representation in

2?_1 a.pi
the form x 170 "1 with 0 < a; <p and 1 € Z/(g-1) has two such
representations: ag = ... = a, ¢ = 0 and ay = ... 4, 4 =D - 1,

(4.1.8) We note that if 31 corresponds to a trivial orbit, i.e., to a
simple root « € A, then for the corresponding fundamental weight A we

have that >\|Ti (where Ti = Sj(k)) is a generator, say y, of

Hom(Ti,?;). Then (4.1.7) shows that 2?;3 aiplx, 0 < a; < p, corresponds to
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X except when Eajp =q -1, 1i.e. when a; = ... =a, ;=p-1.

Considering Zaipix as a highest weight of the rank 1 k-group G,
corresponding to « we see thereby (and by Steinberg | , Theorem 45])
that the representation of Ga with highest weight 21 0 a;p A 0 < a; <p,

restricts to a representation of Ga(k) with the Curtis highest weight

i

2a;p i
(x ,1), unless Zaip =q - 1.
When Zajpi = q - 1 then the dimension of the representation of Ga
with highest weight (g-1)A is q and by [ , Corollary (d) to Theorems 44

and 45] we get that the representation of Ga with highest weight (g-1)A

corresponds to the Curtis highest weight (1,-1).

(4.1.9) If now 5i corresponds to a non-trivial orbit (of length ¢ =

[kG:k] then), let « = {al,az,...,ac} be that orbit. Set Ti 1= 5i(k).

Then Ti ~ ké. Let Ga be the group of relative rank 1 corresponding to «

and let xl, ..,Ac be the fundamental (absolute) weights of @
corresponding to S ERRREL P By the definition of twisting we have (see
- (j-1)a o
[ }) that leTi = AjeFr for j =1,...,c. We can take

—%
xllTi for a generator say yx, of Hom(Ti,Fp) and then (4.1.7) together

with the above remark about Aj[Ti show that Zj 121 O ain x 0< aij <
Eaijpl+(J"1)a

p, corresponds to ¥x except when all aij = p - 1. Now the

argument of (4.1.8) shows that the representation of G_ with the highest
24

. c a-1 i < : . .
weight Ej=1 2i-0 aj P lj, 0 < ;3 < b, restricts to a representation of
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i+(j-1)a

Zaijp
,1) except when all

G_(k) with the Curtis highest weight (x
(¢4

aij are p - 1 in which case the corresponding Curtis weight is (1,-1).

(4.1.10) As mentioned in (4.1.5) Gal(kG/k) acts on the Curtis highest

weights of G = G(k) where @ is an absolutely almost simple simply

connected k-group. For each Curtis highest weight h := (x’“l""’“r') let

A = A(h) be the highest weight of the corresponding as in (4.1.8) and

_ ol a-1 i
(4.1.9) representation of . Write X = 2j=1 Zi=0 aijp Aj where the Aj

are the fundamental highest weights of G@ and 0 < aij < p. Denote by

s : Gal(&ﬁ/Fp) — Aut A the action of Gal(&a/Fp) on A defining the
twisting (see (4.1.2)).

We have Fr(x) = xp and, using the correspondence described in (4.1.8)

and (4.1.9) we see that on every G_, « € A, we have that
e

NPy ) = S50 3978 ay et e (Frag) ¢ 55, g e (o).

(for the case when the corresponding By = -1 we have aij =p -1 for all

i and the above equality is equally clear).
Thus it holds for weights of @ as the whole. To give a somewhat nicer
description we define the section s: Z/a — Z by taking for s(n mod a)

the integer between 0 and a - 1 congruent to n modulo a. Then we have

the following action of Gal(k/Fp) ~ Z/a on the set of p'? highest welghts

-1 i
of G of the form 2?21 2?=0 aijplxj

S ) s{i+1 mod a)
Fr(a) = Ej=1 X dij p Aj.
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Our major contention can now be stated as

(4.1.11) Theorem. Let ¢ be an absolutely irreducible representation of
G = G(k) and let X and p be the highest weights of representations of @

corresponding to ¢ and ¢ o Fr as in (4.1.3). Then
p = 6(Fr)Fr(A).

Remark. This, of course, can be verified ad hoc, using just R. Steinberg's
extension theorem [ , Theorem 43]. However, the "details" seem to be
equivalent to our discussion. The statement of (4.1.11) was, undoubtfully,

known. For example, M. Liebeck in [ ,§2] states substantially the same.

(4.2) For each highest weigth A of the form E§=1 2?;% aijpjxj we call

A(Q) = piz§=1 ajhjr 1=0,1,...,a-1, the parts of A. Let A(i) be the
intersection of an orbit of A({(i) wunder Gal(k/Fp) (as described in

(4.1.10)) with the set of parts of A.
(4.2.1) Example. G split of type Aa, a=20, p> 3,

_ 2 6 10 15 16
A= Al + 2p Al + 3p°A + p Al +p Al + 3p kl.

Then the non-zero parts are:

2 6 10 15 16

We have:

A(0) = A(5) = A(10) = A(15) = (ry,p%A;,p 0% 010 ),



-25-

2

A(2) = 2p°A

]

1 ’

It

A(8) = A(16) = (3p% ,3pt6r,).

(4.2.2) Let now I'(i) be the (setwise) stabilizer in Gal(k/Fp) of A(i)

(for the action given in (4.1.10)) and let k(i) := kr(i) be the fixed field
of T'(i). 1In the Example (4.2.1) we have

r'(0) = <fr®>, k(0) = F
r(z) = <>, k(2) = k,

r) = <Fr10>, k(6)

it

s |
-
o

The intended use of the above notions is based (see proof of (4.3) and

( ) below) on the following tautological

(4.2.3) Proposition. Let G be an almost simple k-group, |[Kk| = pa, d a

divisor of a, ¢ its absolutely irreducible representation with the highest

weight A = 2?:?"1 pStid 2§=1bjkj where 0 < bj < p? and the Ay are the

fundamental highest weights of G. Let t := a/d, k' := F £ < k. Then ¢
p

considered as a representation of (Rk/k.a)(k') (of course, ~ G(k)) 1lifts
to an algebraic ﬁp—representation of Rk/k'G with highest weight

a/d-1sr ' ' ; s
2520 Ei=1bj,ixj+ai/d where the X' are the fundamental weights of Ry k'@

d

and 0 < b <p.

ji
Indeed the fundamental weights of Rk/k'G are elements of the orbit of
the fundamental weights of G (identified with an almost simple component of

Ry @ over ?p) under Gal(k/k')).
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(4.3) Let G and G be as in (4.1.10). It follows from C. Curtis [
,(5.5)] that an irreducible ?pG—module ¢ with curtis highest weight

(x,pl,...,pr,) is isomorphic to a unique quotient of the left ideal in the

groub algebra Fp[G] generated by a sum of the form ﬁéﬂxwﬁ where U,W,Uw €

F [G] and H, := ¥ x(t)t € F_(x)[G]. This implies that
p X ter p

(4.3.1) Fp(cp) = H-'p(x)-

This is, clearly, what is meant in R. Steinberg [ , Corollary (a) to

Theorem 46].
Let ¢ be the corresponding representation of & with highest weight

P bixi, 0 < bi < pa, and let Fw and Fé its stabilizers in Gal(kG/Fp)

and Gal(k/Fp) with the actions described in (4.1.11) and (4.1.10)

. F(P ' Q
respectively. Set k(p 1= kG and k¢ = k7,

(4.3.2) Theorem. (i) k¢ = Fp(w),

(ii) k<p = k¢ if the action & of Gal(kG/Fp) on A 1is trivial,

(iii) [szk$] = [kg:k] otherwise.

Proof. (i) is a combination of (4.3.1) with (4.1.11). (ii) follows
directly from (4.1.11) (and can also be deduced from J. Tits [ , concluding
statement of (3.3)]). If the highest weight of 6 {see (4.1.13)) 1is not
invariant under Gal(&a/Fp) neither is the corresponding Curtis highest
weight. Thus k¢ ¢ k, whence k¢k = kG’ i.e. 0 < [k¢:k¢] < [kG:k]. But
all the fields involved are finite, so [szké]l[kazk] whence (iii).
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(4.4) To complete the picture consider again an algebraic absolutely
irreducible representation ¢ of an algebraic absolutely almost-simple
k-group G. Let A be the highest weight of ¢, A(i) and I'(i) have the

meaning described in (4.2). Set pu(i) := Zp eA(i)*- Let Byreeeiby be the

set of different non-zero u(i) and I O the corresponding

irreducible representations of @.

Set G := G(k), ¢ := 9|G, ¢; = 9416 for i=1,...,t, q:= |k|.
Suppose that ¢ is absolutely irreducible and that A = 2?5? aixi with

fundamental weights Ai of @ and 0 < a; <dq. Let F¢ be as in (4.3) and

ri), i =1,...,t, as in (4.2). We clearly have I"<p = ﬂ§=1 (i) whence

by (4.3.2) (i)

(4.4.1) Proposition. Fp(w) = Fp(wl)...Fp(¢t).

Set k' := Fp-(w) 1 k. Then by (4.2.3), (4.4.1) implies

~

(4.4.2) Proposition. ¢ can be considered as an Fp(¢)—representation of

Rk/le-

We next consider the case when t from (5.4.3) is 1, i.e. A = By In
the case of an algebraic K'-group G, 1its algebraic K'-representation ¢
and a subfield K of K' such that [K':K] < <, denote by R%,/Kw the
®a...°°¢' It will be a K-representation of RK’/KG' In our case, if ¥ is

a non-trivial absolutely irreducible representation of @ whose highest
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weight is a part of A (see (4.2.3)). Assume that A(s) # 0 for
definiteness. Then by (4.2.3)

By (5.1.1), (5.2.8) the representation with highest weight A(s) has a

non-degenerate bilinear, quadratic or sesqui-linear form if so does ¢. Let
# be the unitary group of that form. It is defined over k? Let k' :=
kr(s). Then by (4.2.3) ¢ can be considered as a representation of

Rk/k'G'

(5.4.5) Proposition. ¢(G) ¢ Ry /k ¥

?? SOME CONFUSION HERE

Possibly some pages are out of order in the manuscript
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5. Invariant bilinear and sesquilinear forms and an extension of

the family CG of M. Aschbacher

(5.1) Let @G be an absolutely almost simple algebraic group over a finite
field k, |k| = p?, ¢ an absolutely irreducible Fp—representation of G
:= G(k), X the highest weight of the corresponding (as in (4.1.3))

representation & of @ and A(0),...,x(a-1) the corresponding parts (so

that J\(i)/p1 is the coefficient of pi in the p-adic decomposition of A).
If G preserves a non-degenerate bilinear form, say f, then so does

G. Conversely if G preserves a non-degenerate bilinear form then it means
that the representation ¢ is equivalent to its dual @v. By the unicity of
the correspondence (see (4.1.3)) the dual %v of the corresponding
representation of & should restrict to ¢v and equivalence of ¢ and mv
implies that of é and &v.

Now by R. Steinberg [ , Lemma 78] 5 has an invariant bilinear form

if and only if its highest weight A satisfies A = —WOA, where wo is the

longest element of the Weyl group. If this condition holds for A it does

so for its parts (see (4.2)) as well. Whence

(5.1.1) The components of the tensor-product decomposition of ¢, as in
(4.1.3), have non-degenerate invariant bilinear forms if so does ¢.

In characteristic 2 for groups of type B,.C, F and in characteristic

4

3 for groups of type G2 there are additional ®-decompositions of the

representations, see R. Steinberg [ , Corollary to theorem 41] and/or §3

above. For them the same argument as above yields

(6.1.2) The components of these additional ®-decompositions of ¢ have a

non-degenerate invariant bilinear forms if so does g¢.
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Its handy to use (and worth mentioning) that (see R. Steinberg [ R

Exercise after Lemma 78])

{5.1.8) Wy = 1 unless G is of type An’D or E6 in which case it

2n+1’

is the non-trivial symmetry of the Dynkin diagram.
In particular,

(5.1.4) All irreducible representations of an algebraic group have a

non-degenerate bilinear invariant except those representations of
An’D2n+1’E6 whose highest weight is not invariant under the symmetry of the

Dynkin diagram.

(5.1.5) Quadratic forms in characteristic # 2 are completely described by

the associated bilinear forms. In characteristic 2 I do not know a criterium

for the existence of a non-singular invariant quadratic form (similar to,

say, the condition A = —wox for the existence of a bilinear form). This

lack of understanding can be, however, bypassed at this stage (see ( )

below) using (5.1.2) and M. Aschbacher [ , 9.1(4)]. We also observe (see

(2.2.3)) that if ¢ preserves a symmetric bilinear form f in

characteristic 2 then f is alternating, i.e. f(x,x) = 0.

(5.2) We now look at non-degenerate invariant Hermitian forms. Hermitian

forms are associated to a quadratic extension K' of a field Kk'. For the
purposes of our applications (that is in view M. Aschbacher [ , b. 469],

(see (5.3) below) we are interested only in the cases when

(5.2.1.) k' = k(o).

(Otherwise our gruop G would fall into the family 05 of M.
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Aschbacher.)

Suppose that K' has a subfield k' of codegree 2. Let b := [k':Fp].
The condition that ¢ has an invariant Hermitian form means that woFrb is
equivalent to wv, or in the notation of (5.1) and (4.1.11) that

(5.2.2.) s (Fr®)FrP(n) = “h

where X is the highest weight of G as in (4.1.3).

We have further

{5.2.3) ¢ 1is not equivalent to @V.

b

Indeed, if ¢ is equivalent to ¢V then ¢eoFr is equivalent to ¢

and then by (4.3.1) Fp(x) ¢ k', a contradiction.

Thus (see (5.1.4)) only the cases when G is of type An’D2n+1'E6 and

the representation ¢ has highest weight A which is not invariant under
the automorphisms of the Dynkin diagram are of interest to us. This together

with (5.2.2) implies that

(5.2.4) d(Frb) is non-trivial of order 2.

Thus

ZD 2

, . . . 2
(56.2.5) @ 1is a Steinberg (twisted) form of type An' an+1’

Eg.

Also from (5.2.2), in view of (5.2.4),

(5.2.6) FrP(n) = a.
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Since d(Frb) # 1, it follows that k' ¢ k and, since finite fields have a

unique subfield of a given degree, it follows that

{(6.2.7) fk:k' J(=a/b) is odd

(otherwise it would have been impossible to have Kk = kG' i.e. 6(Frb) #1).

In view of (5.2.7) and (5.2.4) it follows that o (Fr2)\ = -Woh, a condition

which holds, of course, for every part (as in (5.1} or (4.2)) of A, or in

analogy with (5.1.1).

(5.2.8) Proposition. If ¢ has a non-degenerate invariant Hermitian form

(but no invariant bilinear form) then @& is a Steinberg {twisted) form over
k of type zAn’2D2n+1'2E6 and every component of the tensor product

decomposition of ¢, as in (4.1.3), has a non-degenerate invariant Hermitian

or bilinear form.

(5.3) We can now describe M. Aschbacher's family CH. It consists of 8

subfamiles C .,C8. Instead of copying his descriptions we give only the

10
properties which we are going to use. We say below that a representation is
®-decomposable if it is isomorphic to a tensor product of representations and
®-imprimitive if a representation space can be realized as a tensor product
of spaces with the group action permuting the factors. Thus usual notions of
reducibility and imprimitivity of representations can be expressed as
®-decomposability and ®-imprimitivity.

The group H we are dealing with here is a classical group with simple

socle; we consider it acting on its "natural" module via a projective

representation. For a subgroup G of H we consider its lifting G to
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the linear representation.

~

C1 consists 6f G with reducible G ,

~

C2 consists of G with imprimitive G ,

C3 consists of G which belong to C2 after a field extension,

-~

C4 consists of G with ®-decomposable G ,
05 consists of groups over smaller subfields,

C6 consists of normalizers of certain nilpotent groups,

~

C7 consists of G with ®@-imprimitive G ,
C8 consists of other classical groups on the same space, which happen

to be subgroups of H.

(5.4) It seems proper to extend M. Aschbacher's family CG to SCG (€ for
"extended") by adding one additional family C9 (which is in the same
relation to C7 as C3 is to Cz). We describe C9 at the level of detail

of M. Aschbacher. Let V be a vector space over a finite field K with a

form f which is either

I. trivial
IT1. alternating
IIT. quadratic

IV. Hermitian

Let k be a subfield of K of (odd in case IV) prime codegree. We

consider V' := ®oeGa1(K/k)Vo with the form f' := ®Gf0. In the language
which seems preferable we consider (V' ,f') := dﬁ/k (V,f). We use

superscript @ to denote that we are taking tensor products; R?/k (V,f)
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would be, thus @cv° with the form @Gfo and would produce, as noted, M.
Aschbacher's family CB' The condition that the degree ([K;k] is a prime is

made in order to improve the chances of subgroups defined below to be
maximal.
We now consider V' with the forn

f"

f' unles p =2 and f is alternating or quadratic

il

the unique quadratic form associated by M. Aschbacher [ » 9.1(4)]

to f' if f is alternating.

The case when p = 2 and f is quadratic we do not consider (it cannot give
a maximal subgroup).

Our family C9 will consist of the stabilizer in the group of

semi-similitudes TI(V',f") of (V',f") of the decomposition (V',f') ~

Rﬁ/k(v,f). It is clear that our groups from C9 are normalizers in
C(V',f") of groups isomorphic to GU(V,f) X Gal(K:Fp) where GU(V,f) is

the group of unitary (or orthogonal) similitueds of (v,f).

Finally we let C' be the set of groups given by the families C1 - 08

and Cg. For a classical simple group HO and a subgroup Ho ¢ H ¢ Aut HO

~

we let 8CH be the family of subgroups G of H whose preimage G is of

the form Ny(M[] H) for M€ C'.

(5.3) Let ¢,9.§,G6,k,a, etc. be as in (5.1). Consider k' := k 1] Fp(¢)
and K’ :='Fp(w) (consult (4.4),(4.3)). Then by (4.4.2) we can consider Q
as a K'-representation é' of the k'-group G' := Rk/k'G' Thus ¢' : G —

GLn K In view of (5.2.4) and (5.2.7) we have



(56.8.1) Proposition. If ¢'(@') preserves a non-degenerate Hermitian form

f but no bilinear form then f can be chosen with coefficients in k' (in

a basis in which &’ is defined over K'}.

A similar statement holds also for bilinear forms.

{(6.3.2) Proposition. If ¢'(@') preserves a non-degenerate-bilinear or

quadratic form then the latter can be chosen with coefficients in K' in a

basis in which ¢' is defined over K'.

Proof. Let f' be a non-degenerate bilinear form invariant under
¢'(@"). Since it is unique up to scalar factor and ¢' is defined over K'

. R
we have o(f') = th with t0 € Fp,

1-cocycle and by Hilbert's theorem 90 ta is cohomologically trivial so

g € Gal(Fp/K }. Then t0 is a

that o(tf') = tf' for some t € ?;. We take f := tf',

(5.4) The innocent-looking statements of (5.3) have less innocent

consequences.

(5.4.1) Set K" =K' if ¢(G') has no non-zero invariant belinear or

sesqui-linear form and if it has a non~-degenerate invariant bilinear form.

Let K" be the unique quadratic subfield of k' if &(G’) has a

non-degenerate Hermitian form. Let H# be the unitary group of the
corresponding ¢'(G')-invariant bilinear form. Then % is defined over K"
by (5.3). The following follows directly from (5.3):

(5.4.2) Proposition. o' (G'(K")) ¢ H(K").

Remark. The meaning of this is that unles é'(G') =3# or K' =Kk' we have
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that é'(G'(k')) = é(G(k)) is not a maximal subgroup of H(K").
(5.4.3) To proceed'we need some notation. Let XA(i),A(i), and TI(i) have
the same meaning as in (4.2). Set p(i) := ZMGA(i)”' Let Byseeoabiy be the

distinct non-zero p(i) and let ¢y be the corresponding representations of

G. Let Ki,K} and ki be the fields constructed as in (5.4.1) and (5.4.2)

for each 9;- Let Gi 1= Rk/k'(G)' Let f1 be an appropriate form on the
i

space V, of ¢;. We let

f := ®.=1fi except when p = 2 and all fi are bilinear (hence alternating)

]

the unique quadratic form defined as in M. Aschbacher [ ,(9.1)(4)].

By (5.3.1) and (5.3.2) each fi' i=1,...,t, is defined over Kg.
Moreover, by (5.1.1) each fi has an associated non-degenerate bilinear form

if ¢(@) has one, and each fi is either Hermitian or has an associated

~

non-degenerate bilinear form if ¢(G) has an invariant non-degenerate

bilinear form.

(5.4.4) Proposition. Let 1t := X{-1 Gi'
Let again K' := F (¢), k' := k[] K' and let K" be defined as in

(5.4.1). By (4.1.1) k' 2 ki. K' 2 K%’ i=1,...,t. Thus we can consider

the direct product M := X§=1 Gi as a K'-group. Let # be the unitary

group of f and Hi the unitary group of fi' We have as in M. Aschbacher

a natural map o : ﬂ§=1 H; — #. It is defined over K" and therefore we



have

(5.4.4) Proposition (T, ¢;@}(K"))) ¢ (M. 3, (K)).

-37~
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6. Necessary conditions on maximal Lie p-type subgroups of classical

finite groups
All fields below are considered as subfields of a universal field.

(6.1.1) Let K be a finite field, © an automorphism of K of order 1 or
2, V a vector space over K of dimension n, f a formon V which is as
in M. Aschbacher | ] (see (5.4)) of type I, II, III, or IV. We consider
the connected algebraic group ¥ associated to (V,f) so that # is

defined over k and #(k) = SU(V,f), the special "unitary" group of (V,f).

(6.1.2) Let K' be another finite field and G an algebraic absolutely

almost simple simply connected group defined over k'. Let ¢ : @ —> H be a

~

homomorphism of algebraic groups. We set G := G(k') and ¢ :=¢|G. We
assume that ¢(G) ¢ H(k).
Since k' is finite @ 1is quasi-split over k' and is split by an

extension ké of k' of prime degree over k' (see (4.1.2)).

{(6.1.3) We assume that J(G) is absolutely irreducible (on V ® Fp) and

denote by A the highest weight of 6. Then the Galois group Gal(Fp/k')

acts on the weight as in (4.1.2); this action factors through Gal(h&/k’).

Let T, be the stabilizer of A in Gal(Fp/k’) (subsequently, in our

special situation of ®-indecomposable representations, we will have
Iy ,
Fx = [~ where I'~ is from (4.3)). Set ki 1= Ep . Since the action of
¢ ¢
Gal(Fp/k') factors through that of Gal(hé/k’) we see that k; is either
k' or hé. We say that X is symmetric in the first case and non-symmetric

in the second.
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(6.1.4) Now let %~ be the universal covering group of H#, 3#  the adjoint

group of #, and we denote by = both projections H#° — % and % — H .

All these are defined over k. We set HO :=m(#"(k)). This group is almost

always simple (see R. Steinberg [ , Theorems 5 and 34]) so that our
present notation almost always agrees with that of M. Aschbacher [ ]. In

all cases Aut HO/Int HO is solvable (see R. Steinberg [ , Theorem 30 and

35] and use the fact that the center of ¥#(k) is either cyclic or 2Z/2 x
2/2).

{(6.1.5) Assume henceforth in this Section 6 that both H0 and G/center

are simple. This is the only case of interest to us. We can and do identify

then HO with Int H0 c Aut HO. Moreover since n(H(k))/H0 is solvable we

have that G := mo@(G)

N

HO. Consider H ¢ Aut HO, H 2 HO. Let N :=

NH(E).

(6.2) Theorem. Assume

(a) if H is split of type D4 (i.e. n=28, f is quadratic of

maximal Witt index) then H contains only those algebraic outer

automorphisms of ¥H# which preserve the given embedding % — GLn'
(b) NHO = H.

If N is a maximal subgroup of H, then either N is contained in some

member of SCH (see (5.3),(5.4)) or

(i) ¢ 1is ®-indecomposable

1]
o]

(ii) K = ky, k= k' {except when n f quadratic of maximal Witt

index, ¢(Q) =#, G of type °D,, k = kj = kg)

(iii) ¢ 1is defined over K
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(iv) (@) is maximal among connected k-subgroups of ¥ invariant under

outer algebraic automorphisms of ¥ contained in H.

Can the following happen?

T = Ademeq(G(k)), Hy := Adem(3" (k)

h € (Ad # )(k) ¢ Aut ¥
heh™! - G

but h induces on Aderog () an outer automorphism?

(6.2.1) Amplification of (6.2)(i) (see Section 3). ¢ 1is ®-indecomposable

if and only if ¢ 1is equivalent to a representations cpoFri of G where

(i) ¢' is infinitesimally irreducible,

(ii) if p =2 and G is of type Bn’cn’F4 or p=3 and G 1is of

type G2 then ¢' does not admit additional ®-decompositions provided by R.

Steinberg [ ,Corollary to Theorem 41].
(6.2.2) Amplification of (6.2)(ii) (see below).

(i) If f =0 then G is split of type A, (m22), Donsp(m21),  or

E6 and K =k = k' = Ké,

(ii) If f 1is Hermitian, n > 3, then @G is non-split of type

2

ap(m22),%0, . (m21), or 2p., K = kg k=K', and A is

61

not symmetric,

(iii) If f is alternating or quadratic then
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(a) G can be split of type B m>1), Cm (mz1), D2m (m>2), G

m

E7, E8 gnd K=k=k' = ké, or

(b) split or quasi-split of type A_ (m22), 2Am (m>2), Do+t (m>1),

m

2 2

D2m+1 (m2>1), E6’ E6 with X symmetric and K = k = k' = ki, or

3 2

(c) quasi-split of type D4 or D2m {(m22) with A symmetric and

(d) the particular situation excluded in (6.2)(ii) takes place.

(6.2.3) Corollary of (6.2)(ii). Let o : Aut H0 — Gal(K/Fp) be the

surjective map defined in R. Steinberg [ }. Then

G(NAutHO(ﬁ)) = o(Aut Hy).

Proof. Indeed since G and ¢ are defined over k it follows that

the action of Fr on H restricts to the action of Fr on ¢(G) whence

our claim.

Remark. it is remarkable that 3D and 2D2m with non-symmetric A

4

3

can not appear as maximal subgroups, except for D4 in a very special

situation. This situation, with all justice, should have been included into

the family SCH. Namely, instead of the family C,S of M. Aschbacher we
should consider subgroups arising as Hk,(k') for some structure Hk' of a

k' -group on # and some subfield k' of k of prime codegree. An evident



extension of this would also exclude subgroups 282(228+1) in B2 (228+1)

(case n = 4, f alternating).

(6.3) The statement of (6.2.1) holds inview of (3.1) and (3.3) once we prove
the following

Lemma. ¢ 1is ®-indecomposable if and only if the representation & of

G extending ¢ (as in (4.1.3)) is ®-indecomposable as a representation of

G.

Proof. By R. Steinberg [ , Theorem 13] since ¢ is ®-indecomposable
it is of the form w o Fri where o 1is infinitesimally irreducible. Let j

be such that Fritd jg the identity on G. If ¢ 1is equivalent to ¢, 9®
¢, then o ~¢ - FrJ ~ (@ioFrj)®(¢zoFrj). Thus we can assume that ¢ is
infinitesimally irreducible. Let él and 52 be extensions of ¢, and ¢y
to @&. Then the representation 61 ® 52 of G 1is irreducible as its
restriction to G is irreducible. The highest weight of 61 ® &2 is the sum
of the highest weights of 51 and &2 and, therefore, 51 and 62 are

infinitesimally irreducible. It follows from (3.1) that then ¢ is

equivalent to 91 ® 95 whence we get one implication of (6.3). The reverse

implication is obvious.
(6.4) Proof of (6.2)(i). Let A(i) have the meaning described in (4.2).
Set pn(i) = Zy&A(i)“’ let Biveeoiby be the set of different non-zero

n(i), let Pprer Py be the corresponding representations of @G and 95 =

9;/G.
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It follows by (4.4.1) that Fp(v) = Fp(vl)...Fp(wt) so that Fp(¢) o}
Fp(wi) for 1 =1,...,t. In view of (5.1.1), (5.2.8) and [ , 9.1(4)],
t >1 implies that G is contained in a member of C4 (see (5.3) or M.

Aschbacher [ , p. 9721).

Suppose, therefore, that t = 1. if A is the only non-trivial A(i)
let s = |A]. If s > 1 then by (4.2.3) and again (5.1.1), (5.2.8) and
[ , 9.1(4)] G is contained in a member of C9 (see (5.4)). Thus ¢ is

equivalent to w o Fri with « infinitesimally irreducible. If o permits
additional ®-decompositions (as in (3.3)) then G falls into the family C4

again.

(6.5) Proof of (6.2)(ii). We rather prove (6.2.2). The cases (6.2.2)(i)
and (6.2.2)(ii) are contained in (5.1.4) and (5.2.8) respectively. We can,

therefore, assume that f is alternating or quadratic. The claim of

(6.2.2)(iii) is (in view of (5.1.4)) that the groups N for G of type 3D4
and 2Dzm(m22) can not be maximal if A is non-symmetric except in one
case. So suppose that X is non-symmetric. Then, by J. Tits [ , Theorem
3.3.], & is defined over ki = ké. In particular, the enveloping algebra
k-é(G(ké)) is isomorphic to Matn(ké).

We have, unless N is in SCH that Fp(¢) = k (by M. Aschbacher
[ , pb. 469]), Fp(@) = ky by (6.2)(i) and (4.3.2)(i), and Ky = hé by

the assumption that A is non-symmetric. Thus Ké = k and km(G(ké)) =

kg G(k')) whence G' := ¢ (G(kg)) € H(K).

7. Primitivity of infinitesimally irreducible representations of

groups of Lie p-type
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(7.1) Theorem. Let G be a universal group of Lie p-type and

¢ : G— GLn(?p) an infinitesimally irreducible representation. If G is
not isomorphic to one of a finite set Rl of groups then the action of G
on F

B via ¢ is primitive.

(7.2) Proof. Let B 2 U be a Borel subgroup and the Sylow p-subgroup of

G. Let V := ?g; we write gv for o¢(g)(v), g €G, veEV. Let v be a

highest weight vector of G on V so that Uv = v. Then v is unique (up

to an element of ?;) by R. Steinberg [ Theorem 46(a), (b)].

Write V := " .V

i=1 for an imprimitivity system of V, let

i
: - i ., = ..
¥ G Symm be the homomorphism such that ng V¢(g)1 For a vector
W EV we write w = @wi for the decomposition of w with w; € Vi'
In particular, for the highest weight vector v let I = {1‘|vi # 0}.
The condition uv = v for u € U means that v = uv = Ga(uv)i = $V¢(u)i'

that is, I is invariant under +(U). Therefore I' = [1,m] - I is also

invariant under +¥(U). Hence V' := ®iEI'Vi is invariant under U. Since

kv is the unique line in V invariant under U, since kv ¢ V' and since
U has a non-trivial vixed line in every non-trivial space on which it acts,

it follows that V' =0, {.e. I = [1,m].

Let J be an orbit of U on {1,m]. Then ziEJVi is an invariant vector

of U on V. By the unicity of v it follows that
(7.2.1) U is transitive on [1,m].

In particular,
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{(7.2.2) m 1is a power of p.

For every g € G there exists therefore ug € U such that +(g)(1) =

w(ug)l. Let L be the stabilizer of 1 in G. We have that uél-g € L,

that is,

(7.2.3) G = UL.

In particular, G = BL, or, in the terminology of D. G. Higman (see G.

M. Seitz [ 1) L 1is flag-transitive. Thus (7.2.3) and (7.2.2) give

(7.2.4) L is flag-transitive of index a power of p.

By G. M. Seitz [ , Theorem A and second paragraph on p.28] the set Rl

of isomorphism classes of groups in (7.2.4) for which U ¢ L is finite. If

UCL then m=1 and G is primitive. This concludes our proof.



..46..

8. @®-primitivity of ®-indecomposable representations of groups of Lie

p-type

See (5.3) for definitions of ®-primitivity and ®-indecomposability and
(6.2.1), (6.2.2) on more details on ®-indecomposability.
(8.1) Theorem. Let G be a universal group of Lie p-type and

¢ : G — GLn(Fp) its ®-indecomposable representation. If G is not

isomorphic to one of a finite set Rz of groups then ¢ 1is ®-primitive.

(8.2) Proof. Let V := ?g. Suppose there exist vector spaces Vl""’vm

over ?p and a homomorphism of G in the normalizer in GL(®'1"=1 Vi) of the
evident action of ﬂ?=1 GL(Vi) on ®?=1 Vi such that the resulting action
is equivalent to ¢. We may assume then that V = ®?=1 Vi and that ¢(G)

does normalize the action of ”T=1 GL(Vi). This defines a homomorphism

Y : G— Symm. Since ¢ 1is ®-indecomposable we have that

(8.2.1) +¥(G) is transitive on [1,m].
Therefore,

(8.2.2) dim Vi, = ... = dim Vin

Set d = dim Vl. Then

(8.2.3) n = d™.
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Let 2t be the number of roots of an absolutely almost simple algebraic
group G corresponding to G. Then the infinitesimally irreducible

representations of G have dimension at most pt {see | ?]1). Thus

n < pt whence

(8.2.4) m<s t logd ps<t log2 p.

(8.2.5) This is, clearly, only rarely possible. For example, if G is of

type Al(pa) (the only case when d can be equal 2), G has, except in a

few cases, non-trivial permutation representations only of degree 2> pa + 1,
Thus if m# 1 we must have pa + 1< log2 p (t =1 in this case). This

inequality never holds.

(8.2.6) The previous discussion generalizes to all classical groups. With

the exception of a finite list Ré of isomorphism classes of finite

universal classical groups of Lie p-type the following table (8.2.7) holds
{by B. N. Cooperstein [ , Table 1]) and implies that m = 1 for almost all

classical groups. This implies (8.1) for classical groups not from Ré.
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(8.2.7) Table

Group t minimal a lower conditions

possible d>1 bound on m#l when (8.2.4)

(see (9.2.2)) holds with m#1
An(pa) Elgill n+1 pah never
Bn(pa), p odd n® 2n+1 p(2n-1)a never
Cn(pa), p3>2 n2 2n p(2n—1)a never
c,(2), n23 n? 2n 2n—1(2n_1) never
Dn(pa), n>4 n(n-1) 2n pa(2n~2) never
2An(pza), n>3 ngill n+1 pa(n+1) never
an(pza), n>4 n(n-1) 2n pa(2n—2) never

(8.2.8) For exceptional groups and groups of Suzuki and Ree an analogue of
B.N. Cooperstein [ , Table 1] does not seem to exist in the literature. We
use instead V. Landazuri and G.M. Seitz [ , p.419]1. They give lower bounds
on dimensions of non-trivial irreducible representations. Considering the
linear permutation representation (over C) of a non-trivial permutation
group gives a trivial representation plus some number of other
representations, at least one of which is non-trivial. Therefore from [ ,

p.419] we derive that, with the exception of a finite list Rg of finite

universal groups of Lie p-type which were not considered in (8.2.8) and
(8.2.7), the following table (8.2.9) holds and implies (8.1) for the rest of
groups of Lie p-type.



(8.2.9) Table

Group

Eg(p?)
E, (p%)
Eg(p?)
F,(p%)

6, (p%)

2 Za)

Eg(p
3 3a
Dy (p™%)
2B2(22a+1)

2 2a+l
P (22211

262(32a+1)

36

63

120

24

36

12

24

minimal
possible d>1
(see (9.2.2))

27

56

248

24

27

24

a lower

bound on n#1

conditions

when (8.2.4)

holds with m#1.

never

never

never

never

never

never

never

if a=0

if a=0

if a=0
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(8.2.10) It follows that (8.1) holds with Ra being the union of Ré, R%

and the groups

2

2 2
B,(2), “F,(2), %6,(3).
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9. Tight embeddings of groups of Lie p-type into groups of Lie p'-type

We consider quadruples (G,M,7,~) consisting of a universal group G of

Lie p-type, a group of Lie p'~type M, a homomorphism = : G > M, and a
representation o : M — GLn(Fp), n > 1. We assume above and throughout

this section that G and M are associated to absolutely almost simple
algebraic groups G and . We call a quadruple as above admissible. Our

result is

(9.1) Theorem. There exists a finite list R3 of isomorphism classes of

finite groups of Lie r-type, r a prime, such that if G is a universal

group of Lie p-type not isomorphic to a group from the list R3 then there

is no admissible quadruple (G,M,7,w) satisfying the additional condition that

¢ :=wer 1is an infinitesimally irreducible representation of G.

(9.1.1) Remark. The above Theorem can be generalized to admit just
irreducible ¢ and representations @ of M over fields of characteristic
Just different from that of M. Although it does not follow from the proof

it is probable that a minimal Ra as defined above is very small or even

empty.

(9.1.2) Remark. If we replace the condition that M is of Lie p'-type by,
say, the condition that M is centrally simple but not of Lie p-type then
there are infinitely many examples of G which can participate in a
quadruple satisfying the remaining assumptions of (9.1). The following are
such examples (they and other doubly transitive groups are relevant to some

restrictions in our final results, see ( ) and ( 1)
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Let G be SLz(pa), 7 a homomorphism of G into M ~ Alt a such
p+1

that T(SLz(pa)) is doubly transitive on p+l1 points (the action of

SLz(pa) on the points PI(F a) of a projective line). Then the linear
p

permutation representation over € of Alt a is a direct sum of an
pr+l

irreducible representation o' of dimension p and of a trivial

representation. Since r(SLz(pa)) is doubly transitive w'er is an
irreducible representation of SL2(pa) (see, e.g. | 1). If p# 2 then

SLz(pa) has only one, namely, the Steinberg irreducible linear

representation of degree pa (see, e.g., T.A. Springer [ , Ch. II, §3]).

Let o be a reduction of ' module p. Then it is known (and follows from

the fact that «' is of defect 0) that wer is irreducible. It is then a
representation with corresponding highest weight (pa—l)xl. So it is

infinitesimally irreducible only if a = 1. For the sake of reference we

record this:

(9.1.3) Let 7 : SLz(pa) — Alt a . D # 2, be the permutation
pT+1

representation of SLz(pa) on PI(F 1) and o : Alt a . — GL a(Fp) the
p° po+1 p

reduction modulo p of the non-trivial component of a doubly-transitive

permutation representation of Alt on pa+1 letters. Then wer is

p+1

irreducible; it is infinitesimally irreducible if and only if a = 1.

Note that when (and only when) pa =5, Alt has 2 different

doubly-transitive permutation representations of degree pa+1.
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We also have an analogue of (9.1.3) for SU3(pa)( ~ 2Az(pza)).

(9.1.4) Let 7 : SUa(pa) — Alt 3a . pa > 2, be the permutation
p°a+1

representation of SUs(pa) on the points of the absolute in P2(F 2a) of
p

the corresponding Hermitian form. Let o : Alt

b —> GL Sa(Fp) be the

3a+1 D

reduction modulo p of the non-trivial component of a doubly-transitive

3a

representation of Alt on p +1 letters. Then wer is irreducible,

p3a+1

it is infinitesimally irreducible if and only if a = 1.

(9.2) A construction of a R3 can be based directly on the estimates of V.

Landazuri and G.M. Seitz [ , p. 419], or on the estimates in my paper
[NAS]. But it seems preferable to use our [ ] (which is based on [ 1).

Set

210g3(2x+1)+1
(*) f(x) := (2x+1) .

Then

(9.2.1) Proposition. There exists a finite list Ré of universal groups of

Lie r-type, r a prime, which contains isomorphism classes of all

non-centrally simple such groups such that if G 1is a universal group of Lie
p-type, not isomorphic to a group from Ré and @ : G — PGLm(FE), m> 1,

an irreducible projective representation with £ a prime, £ # p, then

|G| < f(m).

Proof. This follows from [ , (4.4.2) and (4.4.3)(a)].
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(9.2.2) Lemma. Let M be a universal group of Lie r-type, r a prime. Then

M has a irreducible representation over ?r of dimension £ d where

type of M: A B Cc D E

d: n+l1 2n+1 2n 2n 27 56 248 26 7

By the type of M we understand the type of the corresponding algebraic
group .

Proof. Let L be a simple Lie algebra over T of the same type as M.
Then L has an irreducible representation ¥ over € of dimension d
(see, e.g., E.B. Dynkin [ , Table 30]). The "reduction" of this
representation modulo p (as in R. Steinberg [ , §12] or in A. Borel [ ,
5.11]) has as a subquotient an irreducible representation of W (and,
therefore, one of M) with the same highest weight as ¥. Its dimesnion is,

of course, £ d (and can be, for special p, < d).

(9.2.8) Let Rg denote the set of isomorphism classes of centrally simple

universal groups of Lie r-type, r a prime, which have non-trivial central
extensions (see [ , (4.3.3)] for an explicit list). For a group M of
Lie type we denote by d(M) the number d given in (9.2.2) for the

corresponding universal group.

(9.2.4) Corollary. Let (G,M,7,0) be an admissible quadruple with G not
isomorphic to a group from Ré U Rg. Then for d = d{(M) we have

|G] € £(d).

Proof. Since G is not from Rg, G 1is its own universal cover and

~ ~

therefore the homomorphism 7 : G— M 1lifts to a homomorphism = : G — M
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~

where M is the universal group of Lie r-type corresponding to M. Let

7 : M- GLS(Fr) be an irreducible representation with 1 < s £ d as in

(9.2.2). Then not all compositions factors of mer are trivial (for

otherwise %o7(G) would be a unipotent group). Let %' : G — GLt(Fr) be a

non-trivial composition factor of #er. Then 1 < t < s € d and by (9.2.1)
we have the inequalities claimed with t instead of d. Since the functions

involved are monotonous and t £ d the claims follow.

(9.3) Let now Rg be the set of isomorphism classes of universal groups G

of Lie r-type, r a prime, which can be subgroups of a group M ~ A1(4),
AL (9), A,(4), B,(2), B,(3), D,(2), F,(2), 2A,(9), 2B,(8), %E.(4), 2B, (2)

1 r2 T2 ' 73 ' T4 ' 4 ' 3 ' 2 ’ 6 ’ 2 ’
2F4(2), 262(3) with r different from the characteristic of the argument

(such groups satisfy, of course, a simpler condition |G} < |2E6(4)| <

3.1-102%),

(9.3.1) Lemma. If (G,M,7,0) is an admissible pair with G not isomorphic
to a group from Rg and with a classical M then n 2 2(d—3)/2 - 0.5 where

d = d(M).

Proof. Let s be the rank of the algebraic group M corresponding to
M. Then one sees (from (9.2.2) where n = s and the type of M is As’ Bs'
CS, Ds) that s 2 (d-1)/2. On the other hand from [ , (4.4.2)] applied

to M (the cases excluded there are excluded here by the assumption that G

is not in Rg) we have n 2 (mb~1)/2 where b is the number given in [ ,

Table T4.4} and where M is centrally isomorphic to CXs(mc) in the

notation of [ , (4.1)]. By { , Table T4.4] we have further that b £ s.
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Still further, our assumptions excluded cases when M is centrally
isomorphic to 2B2(2), 2F4(2), 2G2(3) (where m = /2, /2, /3 respectively).
Thus we have that m 2 2. Thus we have (under our assumptions) that 2n + 1

> m? > 2P > 2% > 2‘d"1’/2 or n 2 o(d=3)/2 _ 0.5 as claimed.

(9.3.2) Remark. One may find it more handy to verify the inequality

n 2 (2%5-1)/2 directly from V. Landazuri and G.M. Seitz | , p.419].

(9.3.3) Corollary. Under the assumptions of (9.3.1) if G is not

isomorphic to a group from Ré U R% U Rg and if wer is infinitesimally

‘irreducible then d £ 78 and so |G| < 3.10%2,

Proof. Let t be the number of positive roots of @. Then the

dimension of any infinitesimally irreducible representation of § is < pt.

Thus n £ pt. But |G} 2 p2t_ Thus n < |G|1/2, whence by (9.2.4)

n < (£(d))2. Thus by (9.3.1) 2(9°3)/2 _ 5 5 < (£(d))2/2. one checks that

this inequality is violated for d > 78 whence our claim.

(9.3.4) Corollary. Under the assumptions of (9.1), if G is not isomorphic

to a group from R3 | R3 U R3, then either |G| < 3-102%2 or M is of type

Eg and |G| < 1.5-1033,

Proof. We Kknow by (9.3.3) that if M is classical then d < 78. But

d £ 78 also for all exceptional types but E whence the claim in view of

81
(9.2.4).

(9.3.5) Corollary. (9.1) holds with RB the union of R, Rg, Rg plus the

isomorphism classes of all universal groups X of Lie r-type, r a prime,



where |X]| < 3-1022 or X 1is a subgroup of a group of type E8 of

characteristic r'  and |X]| < 1.5-1033,

(9.3.6) Final comment. In our proof of (9.1) we tried to exhibit not only
that a finite R can be found, but also that this R is not outrageous in
size and that there are lines of analysis which clearly restrict R

further. Among further constrictions we mention

(i) the relation of the maximal degree of infinitesimally irreducible
representations of G to the order of G was used only tangentially,

(ii) a very powerful tool completely left out is the T.A. Springer

and R. Steinberg result [ » 1.5.17]; for classical groups V. Landazuri and
G. Seitz [ , p. 416] is probaly stronger,
(iii) the condition : |G/center| divides |M/center| is certain to

eliminate many cases.

A final analysis seems certain to involve a computer.
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10. Tight embeddings of groups of Lie p-type into groups of Lie p-type

(10.1) We consider guadruples (G,M,T,w) consisting of a universal group G

of Lie p-type, a group M of Lie p-type, a homomorphism + : G — M, and a
representation o : M — GLn(Fp), n > 1. We assume above and throughout this

section that G and M are associated to absolutely almost simple algebraic

groups & and M. We call a quadruple as above admissible (in this

section). We let ¢ : =w o 7 and let § and & be represetnations of G

and J corresponding to ¢ and o as in (4.1.2).

(10.2) Theorem. There exists an integer m0(53888) and a finite list R4

(independent of p) of isomorphism classes of universal finite groups of Lie
p-type such that the following holds: If (G,M,r,») 1s an admissible

~

quadruple, @G,0,¢,5 etc are as above and

(a) @ is ®-indecomposable,
(b) p#2
(c) Fp(¢) = Fpm , m > m, (= 12)

(d) the isomorphism class of G is not in R4,

then §(Q@) ¢ &(m).

(10.2.1) Comment (10.2)(c) is used only for exceptional M via (2.3.3). It

can, no doubt, be replaced by pm z dg- thus including (c¢) in (d).

(10.3) Proposition. Suppose that
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(a) M is classical,

(b) M is not of type Dn or Bn if p=2,
(c) G 1is not isomorphic to a group from Rl U Rz,

(d) (G,M,r,») is an admissible quadruple,

(e) w o 7 1is ®@-indecomposable.

Then §(G) c &(m).

Proof. Let =7 : M — GLm denote a non-trivial representation of m of

the smallest dimension. Then

(10.3.1) If G is not isomorphic to a group from Rl U Rz then either mnor

is irreducible or np(M) = SOm and mer stabilizes a non-singular point.

Indeed, let V = Fg and suppose that mer is reducible by vV, € V.
Let # denote the stabilizer of V1 in . It is an algebraic group

containing G. If w|# is reducible then so is G. Thus @|# must be
irreducible. 1If it is imprimitive, ®-decomposable or ®-imprimitive then so
is G. This is again impossible by (7.1), assumptions, and (8.1)
respectively.

Since w|¥# is irreducible ¥ must be reductive. Since it is not
imprimitive, or ®-decomposable, or ®-imprimitive, the semi~simple part of the
connected component of # must be simple. One sees easily (say by E.B.
Dynkin [ » Theorems 4.2, 5.2 and Lemma 6.1] or M. Aschbacher [ . D. 472])

that this can happen only when 1 is an orthogonal group SOm. dim V1 < 2
and V1 is non-singular. However, if dim V1 = 2 then the connected
component of # has non-trivial center C. Since C is not the center of

I and since G 1is centrally simple, it follows that «|[C is not scalar and
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centralizes G. This contradicts the irreducibility of wor.

This proves (10.3.1).
(10.3.2) If in (10.8.1) mer is irreducible, then ¢(G) € & ().

Indeed, by (2.1) 77 extends to 7:G — M. We have, of course, that

~ o~

wemn agrees with ¢ on G. By the unicity of the extension to an algebraic

~ ~ o~

group (see (2.1.1)) we have, therefore, ¢ = wey.

(10.3.3) If in (10.8.1) 7er is reducible, then ¢(G) < w(m).

Indeed then M is SOm and 7eo7T(G) ¢ H ~ Som—l' Since by (10.3.1)
mer(G) can not preserve a 2-dimensional subspace, we see meoT is
irreducible in the natural representation of $. Thus by (10.3.2),

é(G) c ;(H), whence our claim.

(10.3.4) Possible example. It appears that in characteristic 2 every

irreducible representation of SO is irreducible when restricted to

2n+1
Sozn.

(10.4) Proposition. In the notation of (10.1) assume that

(a) M 1is exceptional,
= m > —
(b) |Fp@)] =p", m2my := 122,

(c) wer 1is ®-indecomposable.

Then &(G) ¢ S(m).



._60_

(10.4.1) Lemma. Let G~ °X.(q°) and let q be as in (2.3.2). Let t be

t

the number of positive roots of §. If p# 2 and q > 2p then

¢(&) c o(m).

2

Proof. Suppose first that G is not 62(328+1). Then after an

appropriate twist by the Frobenius we can assume that the highest weight A

of w 1is of the form A = % aixi where 0 < a; <p and the xi are

fundamental weights. From Weyl's formula we see that do(x) < do((p—l)p) =

pt whence our claim by (2.3.3).

If G ~ 2G2(323+1) then (up to a twist by the Frobenius) G has only 3
A

®-indecomposable representations (with highest weights 0 - A 17 2%1). We

1!
have d0(2xl) = 27 < 2.35 whence our claim by (2.3.3).

It remains now to obtain a bound on t from (10.4.1). This bound will
be extracted from the lengths of certain chains of centralizers. If g € G

is semi-simple (i.e. of order prime to p) then ¥ := G(g) contains a
maximal torus J of G. The root system 21 of ¥ with respect to ¥ is

a subsystem of the root system ¥ of @G with respect to ¥. We consider

sequences g, = 1, SRS - of semi-simple elements of G such that
(10.4.2) (i) gy is a p'-element for i =1,...,x,
(ii) gi+1 € ﬁZG(gO,...,gi) for i=20,...,x-1.

It follows from T.A. Springer and R. Steinberg [ ,4.3, 5.3] and a

simple analysis of root subsystems of root systems of type Gz, F4, EG’ Eq,

E that

8
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(10.4.3) If {go,...,gx} is as in (10.4.2) and IT(gi)l >5 for all i =
1,...,x, then the rank of DZm(gO,...,gi+1) is strictly less than that of
ﬁZm(gO,....gi) for i=0,...,x-1.

In particular, we have

(10.4.4) If {go,....g is as in (10.4.2) and |T(gi)| >5 for i=

<)

1,...,x, then x < 8,

(10.4.5) If G ~ X (a), X, #A,, 223, p#2 then x = a and

T(g;) 2 (g-1)/4 in (10.4.2).

Indeed, the center of G 1is elementary abelian of period at most 3 (for

E6) if Xa # Aa' One then chooses in the Dynkin diagram a sequence of

length a of embedded diagrams such that no member of the sequence is a

subdiagram of type Ab, b 2 3. Then one can choose elements g1r--18y in
the split torus of G such that lgil = q -1, and then |T(gi)] z (g-1)/4.

For example in E6 take subsystems D5 D D4 o A3 ) A2 o Al'

Combining (10.4.4) and (10.4.5) we have

(10.4.6) If 6 ~ Xa(q), X, # A,» 9228, p#2 then a < 8.

(10.4.7) If G

i

A(d), q 2 61, p# 2, then a < 8.

Indeed, take in the Dynkin diagram of type Aa the sequence

3 ... of embedded diagrams. Taking for g5 i=1,...,a, the
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generator of Zy )(Aa_i(q))(: Z/(q-1)) we see that the image of éi

a-i+1(d
G/center is of the same order as éi if i > 1, and it is of order
(gq-1)/(a+1,q-1) if i = 1. since q 2 61 this gives us a sequence of gy
as in (10.4.2) such that T(gi) 2 5 for at least the 9 last g
Therefore by (10.4.5) a < 8.

To deal wit 2Aa(qz) we consider it as SUa+1(q) and view in it a
sequence of naturally embedded subgroups SUa+1(q) J Ua(q) J Ua—l(q) J ...

As In the case of Aa(q) this gives (one has, though, to replace in the

proof gq-1 by gq+1):

2

(10.4.8) If G~ “A_(g), a22, 261, p#2 then a < 8.

a

In 2Da(qz) we consider the sequence 2Da(qz) 3J 2

2
Da_l(q ) ... 2
203(q2) ~ 2A3(q2) o] 2Az(qz) 2 2A1(q2) ~ Al(q) where in 2A3(q) we consider

the sequence of subgroups as for 2Aa(qz) above. This gives:

(10.4.9) If 6~ °D,(q®), a 23, g2 23, p#2, then a<s.
Combining (10.4.6)-(10.4.9) and verifying directly for 2E6(q2),

3D4(q3), 262(32S+1), we see that

(10.4.10) If G ~ CXa(qc), q 2 61, p# 2, then the number t of positive

roots of G satisfies c¢t < 120 and for G ~ 2G2(328+1), 2/3 t = 12/3 €

120.
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[Indeed, 120 is achieved for E8 when ¢ =1, t = 120. The next worst

case is 2D8(q2) when ¢ = 2, t = 56.]

(10.4.11) Proposition. Let 1 be exceptional, G ~ CXa(qc), q261, p#2

and ¢ ®-indecomposable. If q° 2 pi22, then ¢(G) c «(M).

Indeed, by (10.4.1) (with change of notation) we have that

¢@) c o) if ¢ > 2°p°t. But ct < 120 by (10.4.11) and 2° < p®

evidently. Thus qC 2 p122 > chct whence our claim.

(10.4.12) We can now complete our proof of (10.4). We have that

= i ~ C c i = pM > i
Fp(w) Fq or Fqc if G ~ Xa(q ). Thus if Fp(¢) p’, m = 122 implies

122

that q© 2 p whence (10.4) follows directly from (10.4.11).

(10.5) Now we can complete the proof of (10.2). Let R4 consist of Rl
and Rz. Then (10.3) holds and it remains to consider exceptional . Then

q 2 61 1is implied by (10.2)(c) whence (10.4) holds.
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11. Sufficient conditions for maximality of a subgroup of a Lie p-type

of a classical finite group of characteristic p

(11.1) We let HO be a finite simple classical group and H0 c H ¢ Aut H.

If Hy is D4(q) we assume that H does not contain the triality

automorphism of HO' We denote by HO' as in (6.1), a lifting of HO to
its natural projective representation on a vector space V over a finite

~

field K, K 2 Fp, with a form f, so that, as in (6.1), H0 =Q(V,f). We

denote by ¥ the algebraic linear group associated to (V,f).

(11.1.1) We further consider a universal group G of Lie p-type which is

associated to an absolutely almost simple simply connected algebraic
Fp~group G. We consider a homomorphism ¢ : G HO' By (2.1), except when

p =2 and f is quadratic, ¢ extends to a homorphism ¢ : G — H# of

algebraic groups.

(11.1.2) Let G be the image of ¢(G) in H and N := NH(E). Our second

main result is
(11.2) Theorem. Suppose that

(i) p# 2

(ii) |K] 2 p™™%,
(iii) G 1is not isomorphic to a group from a finite list R of groups,

(iv) H contains no algebraic automorphism of Ho if

Hy ~ D4(q)/center which do not preserve the given
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representation,
(v) H = NHg,
(vi) Fo(e) = K,
(vii) ¢ is absolutely irreducible and absolutely ®-indecomposable,

(viii) ¢@(@) is maximal among connected algebraic subgroups of @G

(¢ 1is defined over K).
Then N 1is a maximal subgroup of H.
(11.2.1) Discussion.

(i) is probably not needed but at many points the proof would become
much more complicated.

(i1} 1is needed at two points to apply (10.4) (see (11. ) below) and,

in a weaker form |K| > p2 to exclude the possibility of an embedding

©(G) — Altd (see (11.3.3))}. Since we believe that (10.4) holds without the

assumption on logpr(Q), (ii) can be, probably, replaced by |K| > pz.

This condition still excludes infinitely many G as examples (9.1.3) and
(9.1.4) show.

(iii) excludes finitely many isomorphism classes of G. The set R is,
probably, much smaller than we construct.

(iv) is dependent on our use of M. Aschbacher's results { 1.

(v) excludes "uninteresting" maximal subgroups.

(vi) and (vii) are justified by M. Aschbacher's result and our (6.2);

they are necessary if we exclude groups from SCH.

(viii) is, actually, raison d'etre of the whole paper; it reduces the

question on maximal subgroups for finite groups to that for algebraic groups.
This latter problem might be solvable using the ideas of E.B. Dynkin [ 1

and [ ]. We discuss in Section 12 below some cases when (vii) is also
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necessary. The reason that it may fail to be necessary is that the Galois

group part of Out HO contained in H may not preserve the conjugacy class of

G in HO‘

(11.3) We assume here that G and ¢ are as in (11.1) but N is not
maximal. Let R be a maximal subgroup of H such that R » N. If R

belongs to the family C1 (see (5.3)) then ¢(G)) is reducible (contradicts

(11.2 (vii)). If R belongs to 02 or C3 then ¢(G) is (absolutely)

imprimitive in contradiction with (7.1). If R belongs to C4, C7 or C9
(see (5.4)) then ¢(G) 1is absolutely ®-decomposable (in contradiction with
(11.2)(vii)) or absolutely ®-imprimitive (in contradiction with (11.2)(iii)

in view of (8.1)). R can not belong to C5 by (11.2)(vi). In the case of
the family 08 only the case when R 1is orthogonal in dimension 4 is

excluded by (11.2)(vii).

The remaining cases will be excluded in view of (11.2)(viii) below in

( ) if R = N. This leaves the family CG'

In this case ¢(G) 1is contained (see M. Aschbacher [ , b. 472]1) in
the normalizer of an extraspecial group S of order r2m+1 and dimK V =
rm, r a prime, r # p. A projection of this normalizer modulo S gives a

homomorphism 7 : ¢(G) — Pszm(r). By our conditions the projective
representation « : PSp(r) — PGL(V) 1ifts to a linear representation

w : Sp2m — GL(V) (contained in the normalizer of S) and 7 to an
embedding 7~ : ¢(G) — SpZm(r). Thus (G,SpZm(r),row,o) is an admissible

pair as in Section 9 and is thus excluded by the assumption (11.2(iii)) in
view of (9.1). Thus we have, by M. Aschbacher { , p. 469) and since the

groups in C8 not excluded so far can be seen to satisfy the conclusions

below in view of the condition (11.2)(iii),



-67~

(11.3.1) The socle M of R is simple.
Our major step is
(11.3.2) Proposition. M is of Lie p-type.
In the proof we consider the other possibilities

(i) M is of Lie p'-type,

(ii) M~ Altm for some m,

(iii) M is sporadic.

The case (iii) is excluded in an ad hoc manner by creating a finite set
Ré of the isomorphism classes of finite universal groups of Lie type which
have central isomorphisms with subgroups of sporadic groups and then

including Ré inteo R,

In the case (i) we have that Aut M/M is solvable, whence R/M is

solvable. Since the groups G which are not centrally simple are rejected
by (11.2)(ii) (family R3) it follows that G c M. Lifting M to Hy we

obtain an admissible pair of Section 9 satisfying the assumptions of (9.1).

Thus this is impossible by (11.2)(iii) and (9.1). [Note that we lifted G

to HO using universality of G and the fact that G has no sporadic

extensions, consult family Rg.]

(11.3.3) In the case M ~ Altm we consider first the case when m 1lifts in

~

HO to a group isomorphic to Altm. We know by G.D. James [ , 11.5] that

for every irreducible representation o of Symm over ?p we have Fp(w) =
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Fp. Since Altm has index 2 in Symd the restriction o' of o to Altm

is either irreducible, and then Fp(w') = F , or it has two irreducible

p
components, say wi and “é' For 7y € Gal(?p/Fp) we, therefore, have that

either 7°wi ~ wi or 7003 ~ wé. If the first case happens for all

(@5) = F,. Otherwise the stabilizer of (the

vy € Gal(Fp/F p

p) then Fp(wl) = Fp
equivalence class of) wi is of index 2 in Gal(Fp/Fp) and then

Fp(“i) = Fp(wé) = sz.

In view of (11.2)(ii) and (vi) we can not, therefore, have that 0(G)

is isomorphic to a subgroup of Altm.

(11.3.4) When M~ Altd and M 1lifts in HO to a group which is a
non-trivial central extension of Altd, the corresponding (projective)
representation of a cover of Symd may require a quadratic extension of Fp

for accomodating values of its characters (see I. Schur [ , IX in §4.11}).

Then Altd may require an extension of degree 4. We shall, however, bypass
this question. First recall (I. Schur [ , IT in §5]) that the universal

cover Alt; of Altd is of degree 2 if d > 7.

Let d > 7 and let o : Alt; — GLn(Fp) be a faithful irreducible

representation. We have by Weisfeiler [ , (8.8)(ii)] (which follows from

A. Wagner [ , Theorem 1.3(ii)}) that m< 5.4 + 2.2 logzn. On the other
hand, as in the proof of (9.3.3) and (8.2.3), we have n < pt where t is
the number of positive roots of G. Thus m < 5.4 + 2.2t logzp. This 1is

completely analogous to (8.2.4). As there, the tables (8.2.7) and (8.2.9)

imply that, with the exception of groups G isomorphic to a finite set R%

of groups, the above inequality fails. This concludes our proof of (11.3.2).
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(11.4) We can now conclude our proof of (11.1). Let, as in (11.3) R 2 N.

Then by (11.3.1) and (11.8.2) the socle M of R is simple of Lie p-type.

~

Let M' be the lifting of M to H0 and M the algebraic absolutely

almost simple simply connected group corresponding to M. By (2.1)

(applicable in view of (11.2)(i)) the embedding M' — Hy extends to a

~ -~

homomorphism o : M — #. By (10.2) it follows that é(G) € «(Mm), whence by

(11.2)(vii) either M = Hy or M = G thus establishing maximality of N.



-70-

12. More necessary conditions for maximality

(12.1) Let, as before in (6.1) and (11.1), % be the algebraic linear group
associated to a finite field K with an automorphism @ of order 1 or 2, a
vector space V over k and a form f on V. Let k be the fixed field
of ©. Then # 1is defined over k. Let G be an algebraic absolutely
almost simple simply connected gruop defined over a finite field k'. Then

& 1is quasi-split over k' and it is split by an extension ké of k' of

prime degree over Kk' (see (4.1.2)). We set

(12.1.1) q := |k"}, m := [k': Fp], c := [ké:k'], r = rank of Q.

Let ¢ : G— # be an irreducible (on V & F,) and @-indecomposable

representation of @G such that J(G(k')) c H(k). We set, as before,

~

(12.1.2) G :=G(kK'), ¢ :=9]|G.

Let A be the highest weight of 5 and FA the stabilizer of A in
the Galois group of Fp/k' acting as described in (4.1.2). Set
(12.1.3) ki := F

We have by (4.3.2) (mutatis mutandi) and in view of the
®-indecompasability of ¢, that Fp(w) = ky. We are justified by M.

Aschbacher [ , P. 469] in assuming that

(12.1.4) K = k';
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Otherwise ¢(G) will fall into CH' We can also assume (after twisting

G if necessary by a special isogeny, see A. Borel and J. Tits { , §31)
that

~

(12.1.5) ker ¢ is a central group subscheme of G (i.e. dp is non-zero

on every root subalgebra).

We now set

(12.2.2) H := # (k)

so that

(12.2.3) Hy < H .

Let further A := Aut Hy. Set T := Gal(k/Fp). Then it follows from
R. Steinberg [ » Theroems 30 and 36] that there exists an epimorphism

¢ : A—>T. Set Ay := Ker ¢. Then H « A, and
(12.2.4) AO/H ~ Aut Aﬁ'

Here AH is the Dynkin diagram of ¥H# and we assume that JAut AHI = 2

if p=2 and # is of type Cz.

(12.3) Let now ¢ : G — ¥ be the composite of ¢ and of the projection

# — # . Since ¢ 1is irreducible, the center of ¢(G) consists of scalar

matrices and is, therefore, contained in the center of ¥#. Thus



(12.3.1) 5_(G) is the adjoint group of G§.

We set G := é—(G).
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