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Abstract: Given a p-dimensional proximity matrix Dp×p, a sequence of correlation

matrices, R = (R(1), R(2), . . .), is iteratively formed from it. Here R(1) is the

correlation matrix of the original proximity matrix D and R(n) is the correlation

matrix of R(n−1), n > 1. This sequence was first introduced by McQuitty (1968),

Breiger, Boorman and Arabie (1975) developed an algorithm, CONCOR, based on

their rediscovery of its convergence. The sequence R often converges to a matrix

R(∞) whose elements are +1 or −1. This special pattern of R(∞) partitions the

p objects into two disjoint groups and so can be recursively applied to generate a

divisive hierarchical clustering tree. While convergence is itself useful, we are more

concerned with what happens before convergence. Prior to convergence, we note

a rank reduction property with elliptical structure: when the rank of R(n) reaches

two, the column vectors of R(n) fall on an ellipse in a two-dimensional subspace. The

unique order of relative positions for the p points on the ellipse can be used to solve

seriation problems such as the reordering of a Robinson matrix. A software package,

Generalized Association Plots (GAP), is developed which utilizes computer graphics

to retrieve important information hidden in the data or proximity matrices.

Key words and phrases: Data visualization, divisive clustering tree, latent structure,

perfect symmetry, proximity matrices, seriation.

1. Introduction

Correlation matrices are among the most well-studied objects in statistics.
But consider the following problem. For any p by p matrix D, define φ(D) to be
the p by p matrix whose ijth entry equals the Pearson’s correlation coefficient
for the ith and the jth columns of D,

∑
k(dik − d̄i·)(djk − d̄j·)√∑

k(dik − d̄i·)2
√∑

k(djk − d̄j·)2
,

where dik is the ikth entry of D and d̄i· denotes the mean p−1 ∑
k dik. What

happens if we apply this correlation operator φ(·) to a matrix D iteratively to
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obtain the sequence, R(1) = φ(D), and R(n+1) = φ(R(n)), n = 1, 2, . . .? Will the
sequence converge? If so, to what does it converge? Surprisingly, such natural
mathematical questions do not yet admit an easy solution in the literature. Our
interest stems from the need for developing information visualization tools in
analyzing data collected for studying the grouping structure among schizophrenic
symptoms and patients (Lin, Chen, Hwu, Lin and Chen (1998)). In general, we
can take D to be any proximity matrix; see Section 2.1 for a brief review. D is
denoted by R(0) when D itself is a correlation matrix.
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Figure 1. Plots for first two eigenvectors for selected correlation matrices in
the converging sequence. (ρ(n) is the rank of R(n)).
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One way of studying such a correlation matrix series is through visualiza-
tion. To do so, for each matrix R(n), we project the p column vectors of R(n) onto
the plane spanned by the first two eigenvectors of R(n). We did this for the se-
quence obtained by taking D to be the correlation matrix for the aforementioned
schizophrenic data. Figure 1 gives the projections of R(n), for n = 0, 1, 2, 3, 7, 9,
and 12. As we can see, clear elliptical clusters begin to form at step 3.

One of our goals in this paper is to provide a theoretical explanation for
the formation of the elliptical clustering patterns which appear in all our real
data and simulation studies. This is given in Sections 3 and 4. In Section 5, we
further explore the clustering pattern discovered earlier, and use it as a new way
to construct a seriation algorithm. For a brief review on the seriation problem, see
Section 2.2. A software package, GAP (generalized association plots), utilizing
these ideas is described in Section 6, and some concluding remarks are given in
Section 7.

1.1. The psychosis disorder data

Our study is motivated by a data set from the Taiwan multidimensional
psychopathological group research program (MPGRP) (Lin, Chen, Hwu, Lin
and Chen, (1998)). The data set consisted of the Andreasen’s positive and nega-
tive symptom scales (Andreasen (1983) and (1984)) of 95 first-time hospitalized
psychosis disorder patients. Among the 95 patients, 69 patients were diagnosed
as schizophrenic and 26 patients as bipolar disorder. The system of Andreasen’s
symptom scales include the Scale for Assessment of Positive Symptoms (SAPS)
with 30 items, and the Scale for Assessment of Negative Symptoms (SANS)
with 20 items. SAPS includes four subgroups: hallucinations (AH1-6), delusions
(DL1-12), behavior (BE1-4) and thought disorder (TH1-8). SANS has five sub-
groups: expression (NA1-7), speech (NB1-4), hygiene (NC1-3), activity (ND1-4)
and inattentiveness (NE1-2). The available data set has ninety-five subjects (pa-
tients) with fifty variables (symptoms). All the symptoms are recorded on a
six-point scale (0-5). Complete SAPS and SANS tables are available on our web
site.

Psychiatrists in the MPGRP are concerned about the grouping structure
among the symptoms, the clustering structure of patients and the general be-
havior of patient-clusters on each symptom-group. They can be phrased as three
multivariate analysis problems: (1) the linkage amongst n subject points in the p-
dimensional space; (2) the linkage between p variable vectors in the n-dimensional
space; (3) the interaction linkage between the sets of subjects and variables. Fac-
tor analysis and clustering methods are commonly applied to solve the first two
problems but there is no general technique for studying the third problem.
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2. Proximity Matrix Map and Seriation

2.1. The proximity matrix map

The concept of using points of different shading to represent proximity and
raw data matrices is not new to researchers in the fields of taxonomy (Sneath
and Sokal (1973)), seriation (Caraux (1984), Streng (1991), Minnotte and West
(1998)), cluster analysis (Gale and Halperin (1984), Streng (1991)), statistical
computing (Murdoch and Chow (1996)), multidimensional scaling (Chen and
Chen (2000)), and gene expression (Wen et al. (1998), Lyer et al. (1999)).
As an illustration, consider the Pearson correlation matrix of the fifty symp-
toms (Kendall’s rank correlation and other possible association measurements
produce similar results). This is the matrix D used in Figure 1. First a color
spectrum (blue-red in Figure 2a) is selected. Then the proximity matrix is pro-
jected through the color spectrum to get a color proximity matrix map (Figure
2b). From Figure 2b, blocks of dark red points on the main diagonal can be
easily located. Thus, thirty positive symptoms are divided into several small
groups of symptoms; whereas, all the twenty negative symptoms form a more
coherent cluster except symptoms NE1 and NE2 on the lower right corner. Mur-
doch and Chow (1996) cleverly used elliptical glyphs to represent correlations.
However, their method is for displaying correlation matrices and not other types
of proximities.
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Figure 2. The colored correlation matrix maps for the fifty symptoms. (a)
Blue-red color spectrum for correlation coefficients; (b) Correlation matrix
map with the original SAPS/SANS order; (c) correlation matrix map with a
random permutation.
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2.2. The seriation problem

In Figure 2b grouping is transparent, but this is not always true for proximity
matrix maps. When the fifty symptom’s correlation map was constructed, the
variables were already laid out in a prespecified order from Andreasen’s symptom
table. When the fifty symptoms are randomly permuted, as shown in Figure 2c,
almost everything is lost: the structural patterns, the blocks, and the relationship
between the groups. Note that permutation does not alter any numerical infor-
mation in the original proximity matrix, but the corresponding map becomes
useless. In order to recover the missing structure from Figure 2c, or even to get
a better structure than Figure 2b, we need a seriation algorithm. Seriation is a
data analytic tool for finding a permutation or ordering of a set of objects using
a data matrix (symmetric or asymmetric). Hubert (1976) and Marcotorchino
(1991) discuss seriation from the standpoints of problem setting, methodology
and algorithms. Using Marcotorchino’s (1991) notation, the initial matrix is de-
noted as T, with the set of objects and the set of variables denoted as I and J
respectively. The basic principle of seriation is to find a reshaped matrix T’ with
a permutation of I, together with a permutation of J, to identify the embedded
latent structure. When T is symmetric, we usually want T’ to approximate a
Robinson form (Robinson (1951)). A Robinson Matrix, R = [rij ], is a symmetric
matrix such that rij ≤ rik if j < k < i and rij ≥ rik if i < j < k. If rows and
columns of a symmetric matrix T can be sorted such that it becomes a Robinson
matrix, we call T pre-Robinson.

3. Properties Related to the Convergence Problem

Given a proximity matrix D, a sequence of sample Pearson correlation matri-
ces is iteratively generated from D, R = (R(1), R(2), . . .), where R(n) = φ(R(n−1)),
n > 1, and R(1) = φ(D). Typically, this sequence of correlation matrices con-
verges to a matrix R(∞). Figure 3 illustrates the convergence well, using colored
maps. The top-left map is that of Figure 2b. In fact it takes twelve iterations
(only six of them are shown here) for this sequence of correlation matrices to
converge to a limiting matrix R(∞) in which all elements are plus or minus one.
Our web page has complete set of maps for the converging sequence of correlation
matrices.

3.1. The p-dimensional cube and cone
Correlation matrices can be visualized in an alternative way. The p col-

umn vectors of a matrix can be treated as p points in the cube [−1, 1]p. A
3-dimensional example is shown in Figure 4a. Starting with the sample correla-

tion matrix




1 0.197 0.072
0.197 1 −0.003
0.072 −0.003 1


 = R(0), it takes six iterations to converge to
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1 1 −1
1 1 −1
−1 −1 1


 = R(∞). The three points of R(n) are shown as an, bn, and cn for

n = 1, . . . , 6. As can be seen, an and bn move together toward (1, 1,−1) while cn

goes toward (−1,−1, 1).
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Figure 3. Maps for the converging sequence of correlation matrices at selected
iterations (0,1,4,6,8,12) for the fifty symptoms.

A further observation shows that the points at each iteration are confined
on three of the six surfaces of the cube. These surfaces form a 3-sided “cone”
with the vertex at the intersection point, (1, 1, 1), of the three planes. At early
iterations (iterations 0 to 1 in this example), each point moves toward its own
corner (the corner with all coordinates equal to −1 except for the point itself).
At intermediate iterations, the centering and product steps in calculating the
correlation coefficient force columns with similar pattern to attract each other
and move toward the corner with simultaneous ones on these coordinates. Several
groups may form at an intermediate stage. At the final iteration, only two groups
survive and these two groups of points are at one of the 2p−1−1 pairs of opposite
corners with 1 and −1 on opposite coordinates. The converging paths for 20 of
the 50 symptoms projected onto the 3-dimensional cube of columns NB1, DL9,
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and TH3 are displayed in Figure 4b. Behavior similar to that in the simulation
can be seen in the converging paths.
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Figure 4. The Converging paths of the columns on the p-dimensional cube.
(a) Simulation study with 3 columns on a 3-dimensional cube; (b) Converging
paths for twenty of the fifty symptoms projected onto the 3-dimensional cube
of (NB1, DL9, and TH3).

3.2. Will the sequence converge?

The iteratively formed correlation matrix sequence for the fifty-symptom ex-
ample converges to the limiting matrix R(∞) with positive and negative ones. Is
convergence guaranteed? If so, does the limit matrix R(∞) contain only positive
and negative ones? The first answer seems to be Yes according to computer
output for all examples we have studied, including extensive computer simula-
tions of correlation matrices with various dimension and correlation structure.
Unfortunately, we cannot prove it yet. What we know at this moment are some
weaker facts.

It is easy to verify that the mapping φ defined in Section 1 is continuous
at any correlation matrix R, except when R is degenerate (a correlation matrix
R is non-degenerate if all diagonal entries are one and no column of R equals
1 = (1, . . . , 1)T , and is degenerate otherwise). Since the set of all correlation
matrices is compact and the mapping is differentiable, it can be speculated that
some fixed point theorem can be used to prove convergence. This is non-trivial
due to the existence of chaotic mapping.

In an unpublished article, Kruskal (1977) attempts to prove convergence
but he needs complicated conditions on R(0). A related problem is to find the
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stationary points of φ : φ(R) = R. It is easy to see that if R consists of +1 or
−1, then R is a stationary point. Are they the only ones? The answer is no:
Figure 5 in Section 4.2 gives all stationary points for p = 3, and 4.

3.3. The decreasing sequence of ranks

While convergence is important in itself, we are more concerned about what
happens before convergence. We find an interesting rank reduction property with
elliptical structure and later explore this for seriation and clustering purposes.
At each iteration, groups become more coherent while individual columns grad-
ually lose their identity. The high dimensional structure collapses to a lower
dimensional one each time two or more columns move close enough to a common
corner. We have the following observation.

Lemma 3.1. The ranks of {R(0), R(1), R(2), . . .}, {ρ(0), ρ(1), ρ(2), . . .}, form a non-
increasing sequence.

Proof.

ρ(n+1) = ρ(φ(R(n)) = ρ(Cor(R(n))) = ρ(Cov(R(n)))

= ρ
(1
p

(
R(n) − 11T

p
R(n)

)T (
R(n) − 11T

p
R(n)

))
= ρ

(
R(n)

(
I − 11T

p

))
.

Since ρ(AB) ≤ min[ρ(A), ρ(B)] and ρ(AB) ≥ ρ(A)+ρ(B)−p (Sylvester’s Law of
Nullity), we have ρ(n+1) ≤ min(p−1, ρ(n)) and ρ(n+1) ≥ (p−1)+ρ(n)−p = ρ(n)−1.
This completes the proof.

Two facts emerge from the proof: if R(0) is of full rank (ρ(0) = p), the rank
of R(1) is p − 1; the rank is reduced by at most 1 at each iteration.

For our numerical results, rank is calculated as the number of eigenvalues
greater than ε = e−13 so different ε’s could result in slightly different rank lists.
For the case study in Figure 1, it takes twelve iterations for the sequence to
converge to R(12) = R(∞). The ranks are {50, 49, 49, 40, 20, 7, 3, 2, 2, 2, 2, 2, 1}.
Theoretically this cannot occur since the reduction of rank is at most one at
each iteration and only the first iteration is guaranteed to reduce the rank. It is
possible that the ranks for the rest of the matrices in the sequence are 49, but
the structure of the column space spanned by R(n) becomes flatter and flatter
and eventually collapses to a lower dimensional structure. Besides, while the
numerical rank decreases from p to 1, the sum of squares of the eigenvalues (equal
to the sum of squares of all p2 elements in the correlation matrix) increases to
p2 at R(∞). That is, the variation becomes more and more concentrated on the
leading eigenvectors. For example, the sums of squares of the eigenvalues for the
particular sequence of matrices are (237.0, 514.6, 933.7, 1214.4, 1313.0, 1383.1,
1517.7, 1761.0, 2119.1, 2436.5, 2499.1, 2500.0, 2500.0), Figure 9. However, this
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increasing trend may not be true at early iterations for a highly homogeneous
proximity matrix D.

3.4. The elliptical structure theorem

In this section, we investigate the mechanism for the formation of elliptical
structure as in Figure 1.

Theorem 3.1. Given a full rank correlation matrix R, all p column (row) vectors
of R,Ri, i = 1, . . . , p, fall on the p-dimensional ellipsoid generated by the kernel
of R−1, the inverse of R.

Proof. Observe that the right hand side of the equality RR−1R = R is a cor-
relation matrix, hence all diagonal elements equal one. That is diag(RR−1R) =
diag(R) = (1, 1, . . . , 1), which leads to (Ri)T R−1(Ri) = 1, i = 1, . . . , p, thus
completing the proof.

In general only the original proximity matrix D is of full rank, all subsequent
correlation matrices {R(n)}∞n=1 have ranks smaller than p. We can then substitute
R−1 in Theorem 3.1 with the generalized inverse R−. If the correlation matrix
is not orthogonal, usually the case, we have a rotated version of Theorem 3.1.

Corollary 3.1. Let the p-dimensional correlation matrix R have rank k, k <

p. Consider the spectral decomposition RQ = QΛ, where Λ is a k-dimensional
diagonal matrix with non-zero eigenvalues (λ1, λ2, . . . , λk) on the diagonal (λis
not necessarily distinct) so that Q contains the p×1 eigenvectors Q1, Q2, . . . , Qk.
All the principal components of R, (RQ)i, i = 1, . . . , p, fall on the k-dimensional
ellipsoid generated by the kernel of Λ−1.

Usually when one deals with the ellipsoid generated from the quadratic form
of a positive definite matrix like the correlation matrix, it is Corollary 3.2 that
is of interest and not Corollary 3.1.

Corollary 3.2. With the same setup as in Corollary 3.1, all p rows of Q, (QT )i,
i=1, . . . , p, fall on the k-dimensional ellipsoid generated by the kernel of Λ.

We have now shown that each correlation matrix in the sequence {R(n)}∞n=0

has an exact ρ(n)-dimensional ellipsoid embedded in it. Each time the rank
decreases, the ellipsoid collapses to a lower dimensional one.

4. The General Converging Patterns

With different types of structure embedded in the proximity matrix D there
are various types of R(∞) that occur, and two that are major: non-symmetry
and symmetry.
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4.1. The rank-one non-symmetry converged matrix

For practical statistical data analyses, only one kind of R(∞) can occur. That
is the rank-one correlation matrix with all elements equal to plus or minus one.
Here the ellipsoid has dimension one and all p vectors fall on two points. The
grouping pattern of the positive and negative ones in R(∞) can be used to split
the p variables (objects) into two groups. Such partition has some nice simulation
results with the splitting criterion, minΓ(p1,p2)

∑p
j=1 |

∑p1
i=1(dij − d̄j·)−

∑p2
i=1(dij −

d̄j·)|, where Γ(p1, p2) stands for all possible splitting of p objects into groups of
p1 and p2.

Example 4.1. Five hundred sets of 20 bivariate uniform (0,1) observations are
generated. The pair-wise 2-dimensional Euclidean distances for the 20 points are
calculated as the D matrix. For each set, all 220−1=524,288 possible partitions
are compared with the splitting correlation result and the frequencies of the num-
ber of partitions that performed better than the proposed method is calculated.
The correlation split method finds the best partition among all the 524,288 pos-
sible partitions in about 60% (298/500) of the simulations. In more than 90%
(456/500) of simulations, this correlation split stands at the first to sixth place
among all the 524,288 possible combinations. The worst case is a 446-th order,
which stands at 99.9149322 percentile. Section 5.1 shows how this splitting rule
can be recursively applied to the proximity matrix to grow a divisive hierarchical
clustering tree.

4.2. The symmetrical converging structure

The general form of R(∞) in the case of symmetry is



1 −1/(p − 1) · · · −1/(p − 1)
−1/(p − 1) 1 · · · −1/(p − 1)

...
...

. . .
...

−1/(p − 1) −1/(p − 1) · · · 1




.

It need not be that all C(p, 2) pairs of measurement are identical, but there still
exist structures wherein the p points cannot be divided into two groups. Figure
5 summarizes all the possible symmetry and non-symmetry structures with their
corresponding limits for p = 3 and p = 4. The number of possible limits is an
increasing function of p.

In general there are only three types of columns in a converged pattern
matrix: (i) columns with only plus and minus ones in a rank-1 matrix, patterns
3(3), 4(5), and 4(6) for example; (ii) columns with summation of elements equal
to zero (this type of matrix can be further divided into two subtypes- one for
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symmetry, patterns 3(1) and 4(1) for instance; the other for a circular matrix,
patterns 3(1), 4(2) and part of 4(3)); (iii) columns for symmetry center(s) with
zeroes to all other points, column B in pattern 3(2), column D in pattern 4(3),
and columns B/C in pattern 4(4) for example. Section 5.4 looks at possible
applications of symmetry patterns to study crystallographic structure.
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Figure 5. All possible symmetry and non-symmetry structures with the cor-
responding converged pattern matrices for p = 3 and 4. Segments with
identical // or / signs have equal lengths while segments with // signs are
longer than segments with / signs.
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5. Applications

In previous sections, we described convergence properties for the sequence of
iteratively formed correlation matrices. Various applications of these properties
are discussed in this section.

5.1. The hierarchical divisive clustering tree with rank one splitting
rule

Without perfect symmetry in the proximity matrix, one divides the p objects
(variables or subjects) into two groups. We can recursively apply this correlation
splitting rule to form a hierarchical divisive clustering tree. The clustering tree for
the correlation proximity matrix of the fifty symptoms is illustrated in Figure 6a.
This hierarchical divisive clustering tree with the correlation-splitting rule was
the major topic of studies conducted by McQuitty (1968) and Breiger, Boorman,
and Arabie (1975).

Figure 2c is reconstructed as Figure 6b, using the permutation of fifty symp-
toms from the order of terminal nodes of this clustering tree with a scheme to
flip the two branches at each intermediate node. The permutation method is the
first type of seriation developed here and is similar to the study by Gale and
Halperin (1984).

Next, Figure 6b is compared with Figure 2b to see if Figure 6b has recovered
the original structure embedded in Figure 2b from Figure 2c. It is seen that
Figure 6b has even more structural pattern than does Figure 2b. There are
five major groups along the main diagonal, the negative symptoms, the thought
process symptoms, the hallucination symptoms, the delusion symptoms, and the
mania symptoms.

5.2. The rank-two ellipse seriation technique

When the sequence reaches an iteration with rank two, the p objects fall on
an ellipse and have unique relative positions on the ellipse. There are p possible
cuts. The order on the two-dimensional ellipse can be combined with the one-
dimensional split to find two orders with the cuts at the two gaps between the
two converged groups. The elliptic seriation with the sorted correlation map is
given in Figure 6c and d. The symptom order in Figure 6d is different from that
in Figure 6b, but the major grouping patterns are identical.

Given a pre-Robinson matrix, the correlation matrix at the first iteration
shows a perfect half-ellipse structure with all p vectors falling on half of the
two-dimensional ellipse (see the web page for an example). It is possible to
combine the rank-1 splitting rule and the rank-2 elliptical seriation to form a
hybrid seriation for data sets with clustering structure. That is, one performs a
separate rank-2 seriation on each split sub-matrix.
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Figure 6. Seriation methods and the reconstructed correlation maps. (a)
Divisive clustering tree with the rank-1 splitting rule; (b) Correlation map
sorted by the tree seriation in (a); (c) Rank-two ellipse seriation at R(7); (d)
Correlation map sorted by the ellipse seriation in (c).

5.3. Comparison of seriation algorithms using Iris data

In this section, Iris data (Fisher 1936) is used to compare the performance
of the proposed seriations with several commonly used sorting algorithms. The
target proximity matrix is the Euclidean distance matrix of the 150 iris flowers on
four variables. Two conventional seriation algorithm sets, (a) farthest and nearest
insertion spanning tour and (b) single, complete, and average linkage clustering
trees, are compared with the proposed set (c) rank-2 ellipse, rank-1 tree, and
rank-1 and 2 double ellipse. We present only the result for the best algorithm
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from each of the two conventional sets, farthest insertion spanning, and average
linkage tree, with our proposed rank-1 tree and rank-1 and 2 double ellipse.
The conventional algorithms are discussed in Minnotte and West (1998). The
four permuted distance maps are displayed in Figure 7. A clear near Robinson
pattern can be identified in Figure 7d, using the proposed rank-1 and 2 algorithm.
On the other hand Figure 7a with farthest insertion spanning algorithm only
approximates the Robinson pattern in local regions. The performance of the
average clustering tree in Figure 7b stands in between the other two. Our web
page has result for comparison of all eight algorithms.

(a) (b)

0 71

(c) (d)

Figure 7. Permuted euclidean distance maps for iris data with conventional
and proposed seriation algorithms. (a) Farthest insertion spanning tour; (b)
Average linkage clustering; (c) Rank-1 tree; (d) Rank-1 and 2 double-ellipse.
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For a numerical comparison, three anti-Robinson loss functions (Streng,
(1978)) are calculated for each permuted matrix, D = [dij ], for the amount
of deviation from a Robinson form with distance-type poximity:

AR(i) =
p∑

i=1

[ ∑
j<k<i

I(dij < dik) +
∑

i<j<k

I(dij > dik)
]
,

AR(s) =
p∑

i=1

[ ∑
j<k<i

I(dij < dik) · |dij − dik| +
∑

i<j<k

I(dij > dik) · |dij − dik|
]
,

AR(w) =
p∑

i=1

[ ∑
j<k<i

I(dij <dik)|j−k||dij−dik|+
∑

i<j<k

I(dij >dik)|j−k||dij−dik|
]
.

AR(i) counts only the number of anti-Robinson events in the permuted matrix;
AR(s) sums the absolute value of anti-Robinson deviations; AR(w) is a weighted
version of AR(s) penalized by the difference of column indices of the two en-
tries. The results are summarized in Table 1. Clearly the proposed algorithms
outperforms conventional methods by a significant margin.

The last column in Table 1 displays the amount of minimal span loss function
for each permuted matrix, MS =

∑p−1
i=1 di,i+1. This is the object minimized in a

minimal spanning algorithm such as the traveling salesman problem. The idea
is to find a shortest path through all data points. The major concern is on
the optimization for local structures only, different from the search for global
structure in the Robinson setup. If only the local pattern is of concern then the
conventional methods are better than the proposed algorithms, but the difference
is not as significant as that in the Robinson setup.

Table 1. Anti-Robinson deviations for the permuted distance matrices for iris data.

Seriation Algorithm \ Loss Fun. AR(i) AR(s) AR(w) MS

Farthest Insertion Spanning 339,392 2,391,228.7 75,265,472.0 530.5
Average Linkage Clustering 148,950 381,679.8 4,576,913.2 558.8
Rank-1 Tree 86,367 166,953.6 1,613,008.1 625.5
Rank-1&2 Double Ellipse 83,217 146,115.5 1,602,892.1 789.5

5.4. The perfect symmetric structure in proximity matrix and the
crystallographic structure

For a proximity matrix D with some forms of perfect symmetry, the conver-
gence is to a matrix with a simpler structure that can be used to describe the
symmetry pattern in D. We usually do not encounter proximity matrices with
a perfect symmetric structure in a medical study of the sort looked at here, but
one can search for a proximity matrix with a symmetric structure in physics,
chemistry or molecular biology. An example is available on our web site.
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5.5. The elliptical structure with the eigenvalue decomposition of the
correlation matrices

We proved in Section 3.4 that every correlation matrix R(n) has all column
vectors falling on the ρ(n)-dimensional ellipsoid generated by the inverse or gen-
eralized inverse matrix of R(n). It is impossible for us to display the complete
ellipsoid structure for each correlation matrix in the sequence unless it reaches
the rank-two ellipse status. Instead, the leading two eigenvectors with their cor-
responding two-dimensional ellipse is plotted in Figure 1 for each iteration. Each
such plot can only explain (λ1 + λ2)/p × 100% of the total variation. If a data
point falls exactly on the ellipse, then these two eigenvectors carry 100% informa-
tion for that point at that iteration. This is seen in the negative symptom group
in Figure 1 at R(2) for example. When a data point falls well inside the ellipse,
the information for that point must be contained in the rest of the eigenvectors,
see TH4 in Figure 1 at R(2). At R(7), when the rank equals to two, all fifty
columns fall exactly on the ellipse and the plot carries 100% information for that
iteration. From R(8) to R(∞), these points move toward the two vertices along
the curve of the ellipse.

In order to compare the sequence of eigenvector plots to conventional di-
mension reduction methods, we performed an exploratory factor analysis and a
2-dimensional non-metric multidimensional scaling analysis. While R(0) of Fig-
ure 1 mimics the pattern of the first two factor loadings by definition, the relative
positions of points in R(1) is similar to the MDS configuration plot. The figures
for factor analysis and MDS are available on our web site.

5.6. The sorted colored maps for the converging sequence of correla-
tion matrices

It is of interest to visualize the formation of the clusters step by step when
investigating a clustering problem. Both the eigenvector-plot and the colored
map of the converging sequence provide users with this kind of information.
There are some observations to be noted in this.

Fifty symptoms are arranged using the rank-2 elliptical seriation before plot-
ting the sequence of correlation maps in Figure 8. For the original correlation
map (top-left) in Figure 8, each individual column keeps its own characteristics,
although several potential groups are forming at this early stage. From R(0) to
R(∞) is a dynamic grouping process. The problem is how to utilize the visual in-
formation in the sequence of eigenvector-plots and correlation maps for studying
this process.

There is no rigorous rule but we do have the following suggestions. It is
important to pay attention to both the within-group structure and the between-
group difference while searching for a clustering pattern. For example, in Figure
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8 at R(4), it may be seen that the within-group (main diagonal) correlations are
high and homogeneous (dark red) while the between-group (off diagonal) struc-
tures all come with sharp edges. Usually this mature status can be identified with
the help of the plot of the summations of squared eigenvalues at each iteration,
as in Figure 9.
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Figure 8. Sorted (by the rank-2 ellipse order) maps for the converging se-
quence of correlation matrices at selected iterations (0, 1, 4, 6, 8, 12) for the
fifty symptoms.

The sequence of summations of squared eigenvalues generally has an increas-
ing trend. We look for the iterations where this trend of increasing slows down
(excluding the iterations just before convergence). At these iterations individual
coefficients do not change much, which means the centering and product steps
have no effect on them. This occurs when the process reaches a near station-
ary status where the formation of groups is mature. It is similar to the trap
of a perfect symmetry structure. In Figure 9, this occurs at iterations 4 and 5.
Started from iteration 7, this balanced status is broken and the process converges
to the two winners and is trapped there. There are five major groups with minor
substructure in Figure 8 at R(4). They are named V1 (TH3-BE2) for thought
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disorder symptoms, V2 (NA6-ND2) for negative symptoms, V3 (DL1-DL8) for
auditory hallucination symptoms, V4 (AH4-AH5) for loss of ego boundary symp-
toms, and V5 (DL5-TH7) for mania symptoms, respectively.
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Figure 9. Plot of the sequence of summations of squared eigenvalues for each
iteration for the fifty symptoms.

6. More Features of GAP

We have shown that the converging sequence has useful properties that can
be applied in different areas of multivariate statistical analysis. In this section,
We use the psychosis disorder data with 95 patients on 50 symptoms to illustrate
the framework of a complete GAP analysis, in Figure 10. GAP integrates the
following four major steps to extract and summarize information embedded in a
multivariate data set with n subjects and p variables.

6.1. Raw data and proximity matrix maps with suitable color
projection

The raw data matrix is denoted as Da. A gray spectrum is applied to project
ordinal numbers into gray dots with different intensities. The correlation matrix
is calculated as the proximity matrix Va for the 50 symptoms. For the 95 patients,
the correlation matrix is also used as the proximity matrix Sa (We tried the Eu-
clidean (standardized) distance as well). The diverging blue-red color scheme is
used to represent the bi-directional property of the correlation coefficients. For a
data profile with various variable scales, variables can be transformed (standard-
ized) and projected through a suitable color spectrum to represent the charac-
teristics of the scales. The covariance matrix with the Euclidean (standardized)
distance matrix can also be calculated as Va and Sa.
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Figure 10. Complete GAP procedure for the psychosis disorder data set with
ninety-five patients and fifty symptoms.

6.2. Sorted matrix maps with the concept of relativity

The next step is to form the sequences of correlation matrices for Va and Sa to
identify the ellipses EV and ES at iterations 7 and 5 respectively. The elliptical
seriations for the patients and the symptoms are then applied to arrange the
two correlation matrices Va and Sa into Vb and Sb. The same seriations are
also used to reshape the raw data matrix Da into Db. The difference between
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Va and Vb is not much since Va is already grouped by the SAPS and SANS
symptom tables. However, there is a dramatic change from Sa to Sb since the
patients are admitted in a random order. There is a clear latent structure in
Db. A band of dark gray dots moves from the upper right corner to the lower
left corner. Since the seriations for Db are identical to those for Vb and Sb, these
three maps are closely related to each other and should be cross-examined to
find the information embedded in the raw data matrix and the two proximity
matrices. We have succeeded in using the geometric information captured by the
converging ellipse to guide the matrix sorting process so that similar objects are
placed closer to each other.

We shall call this concept of placing similar (distinct) objects at positions
close to (far away from) each other in a plot for representing the association
structure the concept of relativity of a statistical graph.

6.3. Partitioned matrix maps with near stationary iterations

In Section 5.6, Figure 8 at R(4) partitions the correlation matrix of the fifty
symptoms into five major groups. In this section we take a look at the possible
patient-clusters and the general behavior of patient-clusters on symptom-groups.
It seems that there is no clear patient-cluster structure in Sb except the negative
between-group correlations in the off-diagonal area. It takes nine iterations for
Sb to converge and to split all 95 patients into two groups. The first group is a
mixed group of 26 bipolar-disorder patients with 12 schizophrenia patients, the
second is a pure group with 57 schizophrenia patients.

In Figure 10c at R(3)(= Sc), a coherent group in the upper left corner is easily
identified. This group, to be denoted as S0, consists of all 26 bipolar-disorder
patients and only 4 schizophrenia patients. At the lower right corner there is a
large group, S1, of pure schizophrenia patients, but the structure is not as tight
as that of S0. Between S1 and S0 is a group of pure schizophrenia patients, but
the between group relationships for this group with S1 and S0 are about equal.
We use S01 to denote this group of patients.

We then plot the two-way sorted raw data map with the sorted correlation
maps for patients at R(3) and for symptoms at R(4) attached to it, in Figure 10c.
The green lines represent the partitions for symptom groups and for patient-
clusters. The general behavior of patient-clusters on the symptom-groups can be
easily identified in Dc.

6.4. The sufficient graph with three multivariate linkages

In order to extract and summarize the information in Figure 10b, we can
put these matrix maps into a simplified version with the partitions in Figure
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10c. Illustrated in Figure 10d are the mean-structure maps of the three matri-
ces for raw data and proximities. Original proximity matrices for variables and
subjects are represented by squares with different mean intensities on the diag-
onal for within-group structure, and rectangles off-diagonal for between-group
relationship. The double sorted raw data matrix map is also represented by
rectangles with various mean-gray intensities to express the interaction effect be-
tween each subject-cluster on every variable group. These three mosaic-displays
in Figure 10d contain the principal structural information embedded in the origi-
nal data set. The mean function in Figure 10d can be replaced with any statistic
for displaying desired information structure. We name these three mosaic dis-
plays the sufficient graph for a multivariate data set. The sufficient graph is
then used to answer the three multivariate problems raised by the psychiatrist.
Fifty symptoms are divided into five symptom-groups with different within- and
between-group structure. Ninety-five patients are also grouped into three clus-
ters. The general behavior of these three patient clusters on each of the five
symptom groups can now be easily comprehended. One can always go back to
consult the three original sorted matrix maps (Figure 10b) for fear of losing too
much information.

7. Discussion

Many useful properties of the converging sequence of iteratively computed
correlation matrices given a proximity matrix have been introduced. Eigenvector
structures of correlation matrices in earlier iterations mimic the effects in dimen-
sion reduction techniques such as factor analysis and multidimensional scaling.
Near stationary iterations with the sorted colored maps can be employed to
identify structural (clustering) information embedded in the data. A rank-two
iteration finds the Robinson seriation in the proximity matrix while the converged
rank-one structure splits a proximity matrix into two sets with the divisive clus-
tering tree and the rank-one tree seriation. A non-rank-one converged pattern
matrix can also be used to study the symmetry pattern that exists in the proxim-
ity matrix. With the aid of eigenvector projections with ellipse and correlation
matrix maps, the convergent process is a powerful and dynamic visualization
environment for the many faces of high-dimensional statistical data analyses.

The original purpose of this study was to investigate the general behavior of
patient-clusters on symptom-groups for the psychosis disorder data set. Instead
of using many of the available multivariate analysis methods, we have used the
generalized association plots (GAP) for information visualization.

Our goal is partially accomplished. Through careful examination of the dou-
ble sorted raw data matrix map with the sufficient graphs and the sequence of
correlation maps for both the symptoms and the patients, we gain understanding
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of the symptom groups and the patient clusters. However, this is only the be-
ginning of an effort to understand the whole process of development of psychosis
disorder disease. The fifty SAPS and SANS symptoms used in this study are only
a part of the many rating scales in the MPGRP project. The complete data base
comes with different rating scales (nominal, ordinal, and continuous) at different
time points, with biological background information and genetic marker profile
of each patient in the study. It is an extremely difficult challenge to develop mul-
tiphase longitudinal and categorical versions of GAP to help in understanding
this kind of large-scale study.
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