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§1 Introduction

Throughout & will be a nonassociative algebra over a field k with chark # 2. ¥k =R
and ¢ is commutative, the quadratic differential equation % = X? where X & o and
X? is the square of X in a has been extensively studied (both [8] and [11] have extensive
bibliographies). These and other authors have shown that the algebraic properties of a
give a great deal of information sbout the golutions. In patticular the derivations o.f a
are useful in understanding the differential equation [8] where D & End 0 is a derivation
if D(zy) = D(z)y + a:D(y) for all @y € a. If there is & derivation whir':h i? diagonal,
writing the differential equation in terms of the eigenspaces of such.a derlv-atlon gives 'a
nice decomposition of the differential equation. Unfortunately, many mteresi.:mg quadratic
differential equations occur in simple algebras having no derivations and this seems to be
connected to the origin being a stable equilibrium point. Therefore, it is na.{:,uml to try to
find linear operators or @ which can. exist when the origin is stable and which have some

of the properties of derivations.

Example 1.1: For the quadratic differential equation
dx

!

(1.1.1) =Y +azy
TR Y.
a- T

a = R? with multiplication defined by
z] [e]_ yd+%xd+%iyc].
{y Nd| T | —zc~2zd - Fyc

-1 3

' .y = does satis
Tt is easy to check that o has no derivations. But D = 3 [ 3 _1] oes satisfy
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(1.1.2) D(XY) =~D(X) Y =X DY)

for all X,Y € a. i is an eigenvector of D of eigenvalue 1 and [__11] is an eigenvector of
D of eigenvalue —2. Relative to this new basis (1.1.1) has the nice form

(1.1.3) L

where z = ¢ +y and w = ¢ —y. From this we get z® + y? is constant for solutions of
(1.1.1) so the origin is stable.

Tt is clear thet 3 diagonal Iinear operator on a satisfying (1.1.2) will always give a nice
decomposition of % — X? in terms of its eigenspaces. Hence we say D € Endn is an
antiderivation of the algebra a if D(ay) = —D(x) -y —z - D(y) for all z,y € a. The set of
o)) antiderivations has no natural structure as an algebra, but the linear span of the sct of
derivations and antiderivations is & Lie algebrs, leading to the following definition.

Definition 1.2: (Dy,Ds) € End za x End ka is & generalized derivation of the algebra a
ifforallzy€a, 4,5=12, i%#j

(1.2.1) D;i(wy) = Dj(z) y +=z - D;(y).

Thus if D is & derivetion and E is an antiderivation of a, then (D + E,D—E) s 2
generalized derivation of a and conversely if (Dy, Dz) is 2 generalized derivation of @ then
D1 + Dy is & derivation and Dy — Dy is an antiderivation of a. Gender a will denote the

set of all generalized derivations of ¢. Gender a is 2 Lie algebra with the bracket defined
by

(1'3) [(Dlw D2)1 (E11 E2)] = ([Dh El]: [DQa Eﬁ])

Then ¢ iz an antomorphism of Gender a where
(1.4) (D1, D2)@ 1= (Dg, Dy).

Thus the derivation algebra Dera is isomorphic to the +1 eigenspace of ¢ and the —1
eigenspace of 8 is isomorphic to the set Antider n of all antiderivations of a, Thus Antider
a has the natural structure of a Lie friple system [3].

Perhaps more interesting to an algebraist is the fact that generalized derivations arise

in the study of some noncommutative Jordan algebras [1] and that at least one simple Lie
algebra has sntiderivations as the following example shows.

S.
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ol [z bz~ cy
Example 1.5: sl(2,k) & k% with the product defined by |b| |y | := | 22y~ 20
E c| |z 2ex — 20z
a b a s
where ¢ gl b |. Then it is easy to show that
| C
[~20 b ¢
Antider l(2,6) =< | 2% o d Ia,b,c,d,eek and
| 26 € a :

0 a b
Der sl(2,k) = -2 2¢ O |a,b,c,d,e €k ¢ so Gender sl(2,k) 2 sl(3,k).
2¢ 0 -2

Example 7 of [5] is another instance of a Lie algebra with antiderivations. However as will
be shown in Theorem 5.1 below, si(2,k) is the oxly simple Lie algebra with nonsingular
trace form having antiderivations if char & # 3,5,7.

Example 8.6 of [1] gives a whole class of anticommutative algebras having antideriva-
tions by Lemma 4.4 of [1]. In fact, it is easy to generate new examples of algebras having
antiderivations by the following construction. Tf o is an algebra and 4 € Auta, the group
of automorphisms of g, define a new algebra a4 on the vector space ¢ with product -4 by
setting

(1.6) %4y = Alzy).

Then if A? — id and D & Der'a, (D, ADA) € Gender ay s0 if ADA # D, D—ADAissn
antiderivation of a, More generally, if (D1,D2) € Gender a4 then (D1;AD2A), (D2,AD14) €
. 5i = (a Gender a 2 Gender a4,
Gem'll‘e]];eun&im::s;t s,(h:v)v:,tha,t Gender o is a well behaved algebra invariant, Here
Ou(a) = {z € a|zy = 0 Vy &€ a} is the lef¢ center of 0,Cp(e) = {z € afyz = OHVy' Et;}
is the right center of a, C(4) := Cr(a) N Cr(n) is the center of a,Z(n) :f ‘C(u )'1;51 he
commutator of u, and W(a) = C(a*) Is the anticommutator of ; where ¢~ is @ w:e(l tbe
bracket product [z,y] = zy — yo and ot is o with the commutative product o defi y

Tog = %(:cy+ YI).




13, Feb. 2008 10:53 049 551 395014 Nr. 0744 S 5

218 N.C. Hopkins

Proposition 1.7: Suppose a and b are algebras and (Dy, Ds) € Gendera.

(i) ¥ a2 0b, then Gender o & Gender b
(1) ¥ I gawith I=1I? then D;(I) C T fori=12
(i) ¥z € Cr(a), then D;(z) € Cr(a) for i = 1,2,
(iv) ¥z € Cr(a), then D;(z) € Cr(e) for i =1,2,
(v) ¥z € C(n), then Di(z) € C(a) for i =12
(vi) (D1,D2) € Gender at and (Dy,Ds) € Gendera™.
(vi) If 2 € Z(a), then D;(z) € Z(n) for i = 1,2
(vil)) If z € W(a), then D;y(z) € W(a) for i = 1,2.

Proof: The proof is essentially the same as for derivations.

Example 1.8 SuPpose clllark = 0. For a € k. define a multiplication on a, = k? by
b .
[m] [a] = [3! + sazh+ 5%‘“}_ Asin Exsmple 1.1, Der np =0 for all a € &,

yl|b —26 — 53b — fya
dimGendera1=1,a.nﬁGen er i, =0 If o 5 1. Thus ay % a, for o 5 1.
Hence Gender a is a more discriminating invariant than Der a.

The next proposition is trivial to prove, but quite useful when doing computations.

Proposition 1.9: Suppose a is commutative and D & End a. Then D is an antideriva-
tion of o #f D(z?) = —22- Dz for all ¢ € a.

In §2 we show for a finite dimensional Gender (a) contains the semisimple and nilpotent
parts of its elements when k is algebraically closed (Theorem 2.4). In §3 we consider
algebras with identity and show (Proposition 3.1) that if char k # 3, such an algebra has no

~ antiderivations. In charactistic 3 we determine the antiderivations of algebras with identity
(Proposition 8.2). §4 deals with commutative associative algebras (without identity) where
chark # 3. We show in Theorem 4.1 that such en algebrs has no antiderivations if
C(a) =0 end a = o? and in Theorem 4.2 that every antiderivation is nilpotent if C(a) =0
and o is finite dimensional. In §5 we show that a central simple finite dimensional Lie
algebra of dimension > 4 having a nonsingular trace form on some representation has 1o
antiderivations if char k £ 8,5, 0r 7.

Other suthors have considered generalizations of algebra derivations, see for example
(10] and [2], and the terms “antiderivation” and “generalized derivation” have appeared in
the literature with meanings other than the ones given here.
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§2 Gender (n) Is Almost Algebraic

Recall from [7] that a Lie algebra £ C gl(V) over an algebraically closed feld is almost
algebreic if L contains the semisimple and nilpotent parts of all of its elements. To show
that Gender («) is almost algebraic, we need the following construction. Given an algebra
a we define an algebra structure on 7'(a) t= a @ a by defining

(2.1) (=) (2w) = (ywiw2)

for (z,y), (z,w) € T(w), If (D1,D9) € Gender g, then (Dy,Dy) & Dexr7T(a) where for
(z.y) € T(a)

(22) (D1,D2)(a3) = (Da(2) D).

Define o € GL(T(a)) by o(z) = (z, ~ y). The next lemma is straightforward.

Lemmma 2.3: If D € Der7(a) and 0.D = Do, then D = (Dy,Ds) for some (Dy,D2) €
Gender o.

Theorem 2.4: Suppose k is algebraicelly closed and a is finite dimensional. (i) Gender a
is almost algebraic.

(i) If D is an antiderivation of a, then the semisimple and nilpotent paris of D are also
antiderivations.

Proof: (i) DerT(a) is slmost algebraic by Lemms 4.2b of 6] 50 if E is the semisim;-nle
part of (Dy,Dz) as an operator on T(n),E € Der T(a). Siuce (Dy,D2) commutes with
6, E commutes with o by Proposition 4.2b of [6] 5o E € Gender a by Lemma 2.3, Th‘e
nilpotent part of {(Dy,Ds) is (D1,D2) — B, 0 it is also in Gender a. Hence Gender a is
almost algebraic, . | |

(if) Let E = (E1,Bz) be the semisimple part of the antiderivation D= (D ,D:) €
Gender a 50 Dy = ~D;. For AcBnd (V) end A€k define Vj(A) 1= {v € V[(A~AM)"v =
0 for some n € Z*}. Then if B is the sernisimple part of A and v € Vi(4), B(v) = Av and
this property defines B. Thus, since T(@)A(D) = & (D) @ ax(D2) -='a,\(D1) Ef; a.:;(:,:)l)
we see Fp(x) = —\z = ~By(z) for 7 € ax(D)- Hence Ep = wEl so F is an antiderivation
of o. Then the nilpotent part D — E of D is alsc an antiderivation,

Hence if there are any nonnilpotent antiderivations of the comrutative algebra a orver
R, it 5 possible to get the kind of nice decomposition of the quadratic differential equation

% = X? found in Example 1.1 (after passing to C).
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In passing it is interesting to note that it is possible for Gender a # Der T(a) as the
next example shows.

Example 2.5: Suppose char k # 3. Let o = k? with algebra product defined by

z7 la
d Z] g’] = [%a]. Then 7(a) = k* with algebra product defined by Z l; =
L L w d
Ed
O |, Then Gender a = {([0 0],{0 OD a,bek} and
ra 0 a 0 b
L 0
0000
Der T(a) = g 8 8 g abe,de k¥ so dim Gender o = 2, dimDer 7(a) = 4, and
0 ¢ 0 d
Gender o # Der 7 ().

The following proposition is an eagy exercise.
Proposition 2.6: If o = a? or C(a) = 0, then Der 7(a) = Gender a.
§8 Algebras with Identity

Proposition 3.1 [10): Suppose chark s 3 and o has an identity, Then a has no ao-
tiderivations so Gender a = Dera,

Proof: Suppose D is an sntiderivation of a. Then D(1) = D(12) = —2-1-D(1) = —-2D(1)
50 D(1) = 0 since chark # 3. Now if 7 & a, we get D(z) = D(1-x) = —D(1) z—1.D(z) =
~D(z) so D(z) == 0 since cher k 5 2. Hence D = 0.

For any algébra a we define operators Ly, Ry € Enda for 2,y € n by Lz(y) =2y and
Ry(z) = zv.

Proposition 3.2: Suppose chark = 3 and o has an identity. Then
Antider a = {L,| for sll y,2 € u z(y2) = —(2y)2 - y(z2)}.

Proof: Suppose D € Antider a and D(1) = . Then for all y € a D(y) = ~D(1)y ~
1-D(y) = —zy — D(y) so 2D(y) = —zy = 23y so D(y) = zy, ie. D = Lz Then

La(yz) = —(Lazy)z — y(Lz2). Conversely if = € o with L, (yz) = —(L2y)z — y(Ls2) then
L, € Antidera,
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Corollary 3.3: Suppose chark = 3, a has an identity, and L. is an antiderivation of

6. Then z € Z(a). Hence if Z(a) = {1}, then a has no antiderivations other than id and
Gendera & Dera & k id.

Proof Since L, is an antiderivation of 4, for all y € @, zy = Li(y) = L(y-1) =
~La(y) - 1 —y - Ly(l) = —zy — yz 80 2zy = —yx, ie. zy = yx since chark = 3. Thus
z € Z(a). The rest of the comllary follows from Proposition 3.2.

Recall from [9] that o is alternative if (2,2,3) = 0 = (y,%,2) for 8ll 2,y € a where
(29, 2) = w{yz) — ()=

Corollary 3.4: Suppose chark = 3 end a is a commutative algebra. Then L is an
antiderivation of o for all z € a iff ¢ is alternative.

Proof If a is alternative, then #(yz) — (zy)z = ~y(zz) + (y2)2, Le.

zlyz) = ~y(zz) + 2(zy)z sinee a is commutative
= —(zy)z ~ y(22) since char k =3
g0 I € Antidera for all z € o. Conversely, if L, € Antidera for all z € o, then z(zz) =
—2%7 — r(z7) implies x{w2) = #22 50 « is left alternative and hence alternative since it is

commutative.
We see from Corollary 3.4 that Corollary b of [10] is false,
§4 Commutative Associative Algebras

We determined Gender a for a commutative associative with identity in characteristic
3 in Corollary 3.4. Example 2.5 shows there are commutative associative algebras in other
characteristics which have antiderivations. The next theorem limits this behavior.

;.I‘heorem 4.1; Suppose k is infinite, chark 5 3, and a 5 2 commutative associative
algebra. I C(a) = 0 and a = u?, then ¢ has 10 antiderivations.

Proof Suppose D is an antiderivation of a. Then Die(ys)) = ~Dxlyz) + z(Dy - 2) +
4(y - D) = D[(zy)d) = (Dz - y)z+ (& Dy)z— (zy)- Dz 50

(41.2) 2(y - D) = D+ (42)
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forallz,y,z €0 Nowforallz€a
D(z%) = D(z?s?) = —22*D(s?) = —20*(—2z - Dz) = 4z° - Dz
= D(z%) = D(z  &°) = ~Dz - 2° — z - D(22?) |
= —g®Dg — 2[-Dz - 2* — £D(z?)]

= 23 Dz +2%- Dz + 2?D(2?) = a?(—22 - D) = ~2z° . Dg
.Hence 6z° - Dz = 0 so since char k # 2,3,

(4.1.2) 23 Dr =0
for all 2 € a. Thus (z + 2)* - (Dz + D2) = 0 implies

(4.1.3) x%%. Dz = ~22%. Dz
for all z, #z € a. Hence _
—g? . D(#%) = —gz(z - D(z%)) = ~Dz - (z2°) by (4.1.1)
=—zz2 Dr = (z’2)- Dz by (4.1.8)
= --]'2-52(~2z Dz) = _%_,52 - D(#%)

50 £2D(2%) = 0 for 2l 7,7 € a. Thus (z 4 y)2D(7%) = 0 implies xy - D(2*) = 0 for all
%,1,% € a. Since u = o2, this gives D(z?) € C(a) s0 D(z%) = 0. Thus D((z +w)?) =0
implies D(2w) = 0 so D = 0 since o = u?,

Theorem. 4.2: Suppose k is an algebraically closed field of characteristic zero and a I8
finite dimensional, commutive, and associative with C(r) = 0. Then every antiderivation is
s nilpotent endomorphism of g and the subalgebra of Gender ¢ generated by antiderivations
is nilpotent.

Proof: By Theorem 2.4(i) Gendera is almost algebraic so if any antiderivation is not
nilpotent, Gender a has a semisimple antiderivation. Suppose BWOC that D is a semisim-
ple antiderivation of n and for A € k define ay = {¢ € a|Dzx = Az} so a = Y oaek Oa- Since
D is an antiderivation, axa, C w.(ayu). Asin the proof of Theorem 4.1, z(y - Dz) =
Dx(yz) = x(Dy - z) since a is commutative, Hence if y € 0y and # € @, for X # p, we get
z(yz) = 0 for all z € a, i.e. yz € C(0n). Thusfor A# p axg, = 0 since C(a) = 0. Hence
if there is a A & k such that ax 5 0 and d-g), = 0, then a € O(q). Hence ax # 0 implies
t-gx 7 0, bub this means ay = 0 for A # 0 since {A € k|ay % 0} must be finite. Thus
D =0 50 a has no semisimple antiderivations, i.e. 2ll antiderivations are nilpotent. The
other conclusion follows from Corollary 5.8 and Lemma 5.4 of [4],

- Note that Example 2.5 shows that a commutative associative’ glgebra a may have
semisimple antiderivations if C(a) 5 0.

g
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§6 Lie Algebras and Lie-Admissible Algebras
Theorem 5.1: Suppose cherk # 8,5 or 7 and £ Is & central simple finite dimensional

Lie algebra with dim £ > 4 and B is & nonsingular trace form of £ on some representation.
Then £ has no antiderivations so Gender £ 24 £.

Proof: Thoerem 3 of [5] gives that £ has no antiderivations which satisfy B(Dz,y) =
B(z,Dy) for all z,y € L. The rest of the proof here will be to show that the step in the
proof of Theorem 3 of (5] using this hypothesis can in fact be done without resorting to it.

Hence suppose k is algebraically closed and £ = H@® ¥4 Lo, is 3 Cartan decompo-
sition of £. Suppose further that D is an antiderivation of £ such that

(5.1.1) o{P)Dlew) =~ 3a(Dh)ea

fralla €@, h e H, eq € La (this is (3.8) of [5]). Thus since & # 0, D(ea) = Gata for
s0Mme ay € k. Now for some ey € Lo, €ea € Lo, ha = [€ay6—a] 50 Dhy = —(Dea,e_a) =
[cai De'&] = ‘-(ala + a_a)ha 50 by 5-1.1

1
0 (he)aata = alhe)D(ea) = -——Ea(Dha)ea

= %(aa + G—g )0 ho) o

Since a(f) # 0, to = 3(0a + 0—a) 80 G = 6—a. Thus Dhy = —205fa forsll @ € $.
Now for o, f € @, using (5.1.1) again gives

1
aa(hg)ea = a(hg)D(ea) = -Ea(Dhg)ea = ago(hg)ea:
Thus a = ag if afhg) = (0,0) # 0. Since the Dynkin diagram of £ is connected,
0q = ag = o for all 0,5 €@,

Corollary 5.2; Suppose chark = 0, n is a finite dimensional algebra with dima > 4 and
0~ is a semisimple Lie algebra, Then o has no antiderivations.

Proof This follows from Theorem 5.2 and Proposition 17(vi) and (i).
Lie algebra is a Lie admissible algebra

An algebrs. with the property that o™ is a
Obviously associative algebras ave Lie admissible. -
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