Nova Journal of Mathematics, Game Theory, and Algebra Volume 5, Number 3, pp. 215-224, 1996

ISSN 1060-9881 © 1996 Nova Science Publishers, Inc.

Generalized Derivations of Nonassociative Algebras

by

Nora C. Hopkins

Department of Mathematics and Computer Science
Indiana State University
Terre Haute, IN 47809

§1 Introduction

Throughout a will be a nonassociative algebra over a field k with char $k \neq 2$. If $k = \mathbb{R}$ and a is commutative, the quadratic differential equation $\frac{dX}{dt} = X^2$ where $X \in \mathfrak{a}$ and X^2 is the square of X in a has been extensively studied (both [8] and [11] have extensive bibliographies). These and other authors have shown that the algebraic properties of a give a great deal of information about the solutions. In particular the derivations of a are useful in understanding the differential equation [8] where $D \in \operatorname{End}_k a$ is a derivation if D(xy) = D(x)y + xD(y) for all $x,y \in a$. If there is a derivation which is diagonal, writing the differential equation in terms of the eigenspaces of such a derivation gives a nice decomposition of the differential equation. Unfortunately, many interesting quadratic differential equations occur in simple algebras having no derivations and this seems to be connected to the origin being a stable equilibrium point. Therefore, it is natural to try to find linear operators on a which can exist when the origin is stable and which have some of the properties of derivations.

Example 1.1: For the quadratic differential equation

(1.1.1)
$$\frac{dx}{dt} = y^2 + xy$$

$$\frac{dy}{dt} = -x^2 - xy$$

 $a = \mathbb{R}^2$ with multiplication defined by

$$\begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} yd + \frac{1}{2}xd + \frac{1}{2}yc \\ -xc - \frac{1}{2}xd - \frac{1}{2}yc \end{bmatrix}.$$

It is easy to check that a has no derivations. But $D = \frac{1}{2} \begin{bmatrix} -1 & 3 \\ 3 & -1 \end{bmatrix}$ does satisfy

N.C. Hopkins

$$(1.1.2) D(XY) = -D(X) \cdot Y - X \cdot D(Y)$$

for all $X,Y \in \mathfrak{a}$. $\begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector of D of eigenvalue 1 and $\begin{bmatrix} 1\\-1 \end{bmatrix}$ is an eigenvector of D of eigenvalue -2. Relative to this new basis (1.1.1) has the nice form

(1.1.3)
$$\frac{dz}{dt} = -zw$$

$$\frac{dw}{dt} = z^2$$

where z = x + y and w = x - y. From this we get $x^2 + y^2$ is constant for solutions of (1.1.1) so the origin is stable.

It is clear that a diagonal linear operator on a satisfying (1.1.2) will always give a nice decomposition of $\frac{dX}{dt} = X^2$ in terms of its eigenspaces. Hence we say $D \in \operatorname{End}_k \mathfrak{a}$ is an antiderivation of the algebra \mathfrak{a} if $D(xy) = -D(x) \cdot y - x \cdot D(y)$ for all $x,y \in \mathfrak{a}$. The set of all antiderivations has no natural structure as an algebra, but the linear span of the set of derivations and antiderivations is a Lie algebra, leading to the following definition.

Definition 1.2: $(D_1, D_2) \in \operatorname{End}_k \mathfrak{a} \times \operatorname{End}_k \mathfrak{a}$ is a generalized derivation of the algebra \mathfrak{a} if for all $x, y \in \mathfrak{a}$, i, j = 1, 2, $i \neq j$

$$(1.2.1) D_i(xy) = D_j(x) \cdot y + x \cdot D_j(y).$$

Thus if D is a derivation and E is an antiderivation of \mathfrak{a} , then (D+E,D-E) is a generalized derivation of \mathfrak{a} and conversely if (D_1,D_2) is a generalized derivation of \mathfrak{a} then D_1+D_2 is a derivation and D_1-D_2 is an antiderivation of \mathfrak{a} . Gender \mathfrak{a} will denote the set of all generalized derivations of \mathfrak{a} . Gender \mathfrak{a} is a Lie algebra with the bracket defined by

$$[(D_1, D_2), (E_1, E_2)] := ([D_1, E_1], [D_2, E_2]).$$

Then θ is an automorphism of Gender a where

$$(1.4) (D_1, D_2)\theta := (D_2, D_1).$$

Thus the derivation algebra Der a is isomorphic to the +1 eigenspace of θ and the -1 eigenspace of θ is isomorphic to the set Antider a of all antiderivations of a, Thus Antider a has the natural structure of a Lie triple system [3].

Perhaps more interesting to an algebraist is the fact that generalized derivations arise in the study of some noncommutative Jordan algebras [1] and that at least one simple Lie algebra has antiderivations as the following example shows.

Example 1.5:
$$sl(2,k) \cong k^3$$
 with the product defined by $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} := \begin{bmatrix} bz - cy \\ 2ay + 2bx \\ 2cx - 2az \end{bmatrix}$ where $\begin{bmatrix} a & b \\ c & -a \end{bmatrix} \mapsto \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Then it is easy to show that

Antider $sl(2,k) = \left\{ \begin{bmatrix} -2a & b & c \\ 2c & a & d \\ 2b & e & a \end{bmatrix} \middle| a,b,c,d,e \in k \right\}$ and

Der $sl(2,k) = \left\{ \begin{bmatrix} 0 & a & b \\ -2b & 2c & 0 \\ 2a & 0 & -2c \end{bmatrix} \middle| a,b,c,d,e \in k \right\}$ so Gender $sl(2,k) \cong sl(3,k)$.

Example 7 of [5] is another instance of a Lie algebra with antiderivations. However as will be shown in Theorem 5.1 below, sl(2,k) is the only simple Lie algebra with nonsingular trace form having antiderivations if char $k \neq 3,5,7$.

Example 3.6 of [1] gives a whole class of anticommutative algebras having antiderivations by Lemma 4.4 of [1]. In fact, it is easy to generate new examples of algebras having antiderivations by the following construction. If a is an algebra and $A \in \operatorname{Aut} a$, the group of automorphisms of a, define a new algebra a_A on the vector space a with product \cdot_A by setting

$$(1.6) x \cdot_A y := A(xy).$$

Then if $A^2 = id$ and $D \in \text{Der } \mathfrak{a}$, $(D, ADA) \in \text{Gender } \mathfrak{a}_A$ so if $ADA \neq D$, D - ADA is an antiderivation of \mathfrak{a} . More generally, if $(D_1, D_2) \in \text{Gender } \mathfrak{a}_A$ then $(D_1, AD_2A), (D_2, AD_1A) \in \text{Gender } \mathfrak{a}_A$. Since $\mathfrak{a} = (\mathfrak{a}_A)_A$, Gender $\mathfrak{a} \cong \text{Gender } \mathfrak{a}_A$.

The next result shows that Gender a is a well behaved algebra invariant. Here $C_L(\mathfrak{a}) := \{x \in \mathfrak{a} \mid xy = 0 \ \forall y \in \mathfrak{a}\}$ is the left center of $\mathfrak{a}, C_R(\mathfrak{a}) = \{x \in \mathfrak{a} \mid yx = 0 \ \forall y \in \mathfrak{a}\}$ is the right center of $\mathfrak{a}, C(\mathfrak{a}) := C_L(\mathfrak{a}) \cap C_R(\mathfrak{a})$ is the center of $\mathfrak{a}, Z(\mathfrak{a}) := C(\mathfrak{a}^-)$ is the commutator of a, and $W(\mathfrak{a}) := C(\mathfrak{a}^+)$ is the anticommutator of a where \mathfrak{a}^- is a with the bracket product [x,y] := xy - yx and \mathfrak{a}^+ is a with the commutative product o defined by $x \circ y := \frac{1}{2}(xy + yx)$.

N.C. Hopkins

Proposition 1.7: Suppose a and b are algebras and $(D_1, D_2) \in Gender a$.

- (i) If $a \cong b$, then Gender $a \cong$ Gender b
- (ii) If $I \leq a$ with $I = I^2$, then $D_i(I) \subseteq I$ for i = 1,2.
- (iii) If $x \in C_L(\mathfrak{a})$, then $D_i(x) \in C_L(\mathfrak{a})$ for i = 1, 2.
- (iv) If $x \in C_R(\mathfrak{a})$, then $D_i(x) \in C_R(\mathfrak{a})$ for i = 1, 2.
- (v) If $x \in C(\mathfrak{a})$, then $D_i(x) \in C(\mathfrak{a})$ for i = 1,2.
- (vi) $(D_1,D_2) \in \text{Gender } \mathfrak{a}^+ \text{ and } (D_1,D_2) \in \text{Gender } \mathfrak{a}^-$.
- (vii) If $x \in Z(\mathfrak{a})$, then $D_i(x) \in Z(\mathfrak{a})$ for i = 1,2.
- (viii) If $x \in W(\mathfrak{a})$, then $D_i(x) \in W(\mathfrak{a})$ for i = 1, 2.

Proof: The proof is essentially the same as for derivations.

Example 1.8: Suppose char k=0. For $\alpha\in k$ define a multiplication on $\mathfrak{a}_{\alpha}=k^2$ by $\begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} := \begin{bmatrix} yb + \frac{1}{2}\alpha xb + \frac{1}{2}\alpha ya \\ -xa - \frac{1}{2}xb - \frac{1}{2}ya \end{bmatrix}$. As in Example 1.1, Der $\mathfrak{a}_{\alpha}=0$ for all $\alpha\in k$, dim Gender $\mathfrak{a}_1=1$, and Gender $\mathfrak{a}_{\alpha}=0$ if $\alpha\neq 1$. Thus $\mathfrak{a}_1\not\cong \mathfrak{a}_{\alpha}$ for $\alpha\neq 1$.

Hence Gender a is a more discriminating invariant than Der a.

The next proposition is trivial to prove, but quite useful when doing computations.

Proposition 1.9: Suppose \mathfrak{a} is commutative and $D \in \operatorname{End} \mathfrak{a}$. Then D is an antiderivation of \mathfrak{a} iff $D(x^2) = -2x \cdot Dx$ for all $x \in \mathfrak{a}$.

In §2 we show for a finite dimensional Gender (a) contains the semisimple and nilpotent parts of its elements when k is algebraically closed (Theorem 2.4). In §3 we consider algebras with identity and show (Proposition 3.1) that if char $k \neq 3$, such an algebra has no antiderivations. In charactistic 3 we determine the antiderivations of algebras with identity (Proposition 3.2). §4 deals with commutative associative algebras (without identity) where char $k \neq 3$. We show in Theorem 4.1 that such an algebra has no antiderivations if C(a) = 0 and $a = a^2$ and in Theorem 4.2 that every antiderivation is nilpotent if C(a) = 0 and a is finite dimensional. In §5 we show that a central simple finite dimensional Lie algebra of dimension ≥ 4 having a nonsingular trace form on some representation has no antiderivations if char $k \neq 3,5$, or 7.

Other authors have considered generalizations of algebra derivations, see for example [10] and [2], and the terms "antiderivation" and "generalized derivation" have appeared in the literature with meanings other than the ones given here.

§2 Gender (a) Is Almost Algebraic

Recall from [7] that a Lie algebra $\mathcal{L} \subseteq \operatorname{gl}(V)$ over an algebraically closed field is almost algebraic if \mathcal{L} contains the semisimple and nilpotent parts of all of its elements. To show that Gender (a) is almost algebraic, we need the following construction. Given an algebra a we define an algebra structure on $\mathcal{T}(\mathfrak{a}) := \mathfrak{a} \oplus \mathfrak{a}$ by defining

$$(2.1) (x,y)(z,w) := (yw,xz)$$

for $(x,y),(z,w)\in \mathcal{T}(\mathfrak{a})$. If $(D_1,D_2)\in \text{Gender }\mathfrak{a}$, then $(D_1,D_2)\in \text{Der }\mathcal{T}(\mathfrak{a})$ where for $(x,y)\in \mathcal{T}(\mathfrak{a})$

$$(2.2) (D_1, D_2)(x, y) := (D_1(x), D_2(y)).$$

Define $\sigma \in GL(T(\mathfrak{a}))$ by $\sigma(x,y)=(x,-y)$. The next lemma is straightforward.

Lemma 2.3: If $D \in \text{Der } \mathcal{T}(\mathfrak{a})$ and $\sigma D = D\sigma$, then $D = (D_1, D_2)$ for some $(D_1, D_2) \in \text{Gender } \mathfrak{a}$.

Theorem 2.4: Suppose k is algebraically closed and a is finite dimensional. (i) Gender a is almost algebraic.

(ii) If D is an antiderivation of a, then the semisimple and nilpotent parts of D are also antiderivations.

Proof: (i) Der $\mathcal{T}(\mathfrak{a})$ is almost algebraic by Lemma 4.2b of [6] so if E is the semisimple part of (D_1,D_2) as an operator on $\mathcal{T}(\mathfrak{a}), E \in \text{Der } \mathcal{T}(\mathfrak{a})$. Since (D_1,D_2) commutes with σ , E commutes with σ by Proposition 4.2b of [6] so $E \in \text{Gender } \mathfrak{a}$ by Lemma 2.3. The nilpotent part of (D_1,D_2) is $(D_1,D_2)-E$, so it is also in Gender \mathfrak{a} . Hence Gender \mathfrak{a} is almost algebraic.

(ii) Let $E=(E_1,E_2)$ be the semisimple part of the antiderivation $D=(D_1,D_2)\in G$ Gender a so $D_2=-D_1$. For $A\in End(V)$ and $\lambda\in k$ define $V_\lambda(A):=\{v\in V|(A-\lambda I)^nv=0\}$ for some $n\in \mathbb{Z}^+$. Then if B is the semisimple part of A and $v\in V_\lambda(A)$, $B(v)=\lambda v$ and this property defines B. Thus, since $T(a)_\lambda(D)=a_\lambda(D_1)\oplus a_\lambda(D_2)=a_\lambda(D_1)\oplus a_{-\lambda}(D_1)$ we see $E_2(x)=-\lambda x=-E_1(x)$ for $x\in a_\lambda(D_1)$. Hence $E_2=-E_1$ so E is an antiderivation of a. Then the nilpotent part D-E of D is also an antiderivation.

Hence if there are any nonnilpotent antiderivations of the commutative algebra \mathfrak{a} over \mathbb{R} , it is possible to get the kind of nice decomposition of the quadratic differential equation $\frac{dX}{dt} = X^2$ found in Example 1.1 (after passing to \mathbb{C}).

N.C. Hopkins

In passing it is interesting to note that it is possible for Gender $a \neq \text{Der } \mathcal{T}(a)$ as the next example shows.

Example 2.5: Suppose char $k \neq 3$. Let $a = k^2$ with algebra product defined by

$$\begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} := \begin{bmatrix} xa \\ 0 \end{bmatrix}. \text{ Then } \mathcal{T}(\mathfrak{a}) = k^4 \text{ with algebra product defined by } \begin{bmatrix} x \\ y \\ z \\ d \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} :=$$

$$\begin{bmatrix} zc \\ 0 \\ xa \\ 0 \end{bmatrix}. \text{ Then Gender } \mathfrak{a} = \left\{ \left(\begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix} \right) \middle| a,b \in k \right\} \text{ and }$$

$$\operatorname{Der} \mathcal{T}(\mathfrak{a}) = \left\{ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & a & 0 & b \\ 0 & 0 & 0 & 0 \\ 0 & c & 0 & d \end{bmatrix} \middle| a,b,c,d \in k \right\} \text{ so dim Gender } \mathfrak{a} = 2, \dim \operatorname{Der} \mathcal{T}(\mathfrak{a}) = 4, \text{ and }$$

$$\operatorname{Gender} \mathfrak{a} \neq \operatorname{Der} \mathcal{T}(\mathfrak{a}).$$

The following proposition is an easy exercise.

Proposition 2.6: If $a = a^2$ or C(a) = 0, then Der T(a) = Gender a.

§3 Algebras with Identity

Proposition 3.1 [10]: Suppose char $k \neq 3$ and a has an identity. Then a has no antiderivations so Gender $a = \operatorname{Der} a$.

Proof: Suppose D is an antiderivation of \mathfrak{a} . Then $D(1) = D(1^2) = -2 \cdot 1 \cdot D(1) = -2D(1)$ so D(1) = 0 since char $k \neq 3$. Now if $x \in \mathfrak{a}$, we get $D(x) = D(1 \cdot x) = -D(1) \cdot x - 1 \cdot D(x) = -D(x)$ so D(x) = 0 since char $k \neq 2$. Hence $D \equiv 0$.

For any algebra \mathfrak{a} we define operators $L_x, R_y \in \text{End } \mathfrak{a}$ for $x, y \in \mathfrak{a}$ by $L_x(y) := xy$ and $R_y(x) := xy$.

Proposition 3.2: Suppose char k=3 and a has an identity. Then Antider $a=\{L_x|\text{ for all }y,z\in a\ x(yz)=-(xy)z-y(xz)\}.$

Proof: Suppose $D \in \text{Antider } \mathfrak{a}$ and D(1) = x. Then for all $y \in \mathfrak{a}$ $D(y) = -D(1)y - 1 \cdot D(y) = -xy - D(y)$ so 2D(y) = -xy = 2xy so D(y) = xy, i.e. $D = L_x$. Then $L_x(yz) = -(L_xy)z - y(L_xz)$. Conversely if $x \in \mathfrak{a}$ with $L_x(yz) = -(L_xy)z - y(L_xz)$ then $L_x \in \text{Antider } \mathfrak{a}$.

Corollary 3.3: Suppose char k=3, a has an identity, and L_x is an antiderivation of a. Then $x \in Z(a)$. Hence if $Z(a) = \{1\}$, then a has no antiderivations other than id and Gender $a \cong \operatorname{Der} a \oplus k$ id.

Proof: Since L_x is an antiderivation of a, for all $y \in a$, $xy = L_x(y) = L_x(y \cdot 1) = -L_x(y) \cdot 1 - y \cdot L_x(1) = -xy - yx$ so 2xy = -yx, i.e. xy = yx since char k = 3. Thus $x \in Z(a)$. The rest of the corollary follows from Proposition 3.2.

Recall from [9] that a is alternative if (x, x, y) = 0 = (y, x, x) for all $x, y \in a$ where (x, y, z) := x(yz) - (xy)z.

Corollary 3.4: Suppose char k=3 and a is a commutative algebra. Then L_x is an antiderivation of a for all $x \in a$ iff a is alternative.

Proof: If a is alternative, then x(yz) - (xy)z = -y(xz) + (yx)z, i.e.

$$x(yx) = -y(xz) + 2(xy)z$$
 since a is commutative
= $-(xy)z - y(xz)$ since char $k = 3$

so $L_x \in \text{Antider } \mathfrak{a}$ for all $x \in \mathfrak{a}$. Conversely, if $L_x \in \text{Antider } \mathfrak{a}$ for all $x \in \mathfrak{a}$, then $x(xz) = -x^2z - x(xz)$ implies $x(xz) = x^2z$ so \mathfrak{a} is left alternative and hence alternative since it is commutative.

We see from Corollary 3.4 that Corollary 5 of [10] is false.

§4 Commutative Associative Algebras

We determined Gender a for a commutative associative with identity in characteristic 3 in Corollary 3.4. Example 2.5 shows there are commutative associative algebras in other characteristics which have antiderivations. The next theorem limits this behavior.

Theorem 4.1: Suppose k is infinite, char $k \neq 3$, and a is a commutative associative algebra. If C(a) = 0 and $a = a^2$, then a has no antiderivations.

Proof: Suppose D is an antiderivation of a. Then $D[x(yz)] = -Dx(yz) + x(Dy \cdot z) + x(y \cdot Dz) = D[(xy)z] = (Dx \cdot y)z + (x \cdot Dy)z - (xy) \cdot Dz$ so

$$(4.1.1) x(y \cdot Dz) = Dx \cdot (yz)$$

N.C. Hopkins

for all $x, y, z \in \mathfrak{a}$. Now for all $x \in \mathfrak{a}$

$$D(x^4) = D(x^2x^2) = -2x^2D(x^2) = -2x^2(-2x \cdot Dx) = 4x^3 \cdot Dx$$

$$= D(x^4) = D(x \cdot x^3) = -Dx \cdot x^3 - x \cdot D(xx^2)$$

$$= -x^3Dx - x[-Dx \cdot x^2 - xD(x^2)]$$

$$= -x^3 \cdot Dx + x^3 \cdot Dx + x^2D(x^2) = x^2(-2x \cdot Dx) = -2x^3 \cdot Dx$$

Hence $6x^3 \cdot Dx = 0$ so since char $k \neq 2, 3$,

$$(4.1.2) x^3 \cdot Dx = 0$$

for all $x \in \mathfrak{a}$. Thus $(x+z)^3 \cdot (Dx+Dz) = 0$ implies

$$(4.1.3) x^2z \cdot Dz = -xz^2 \cdot Dx$$

for all $x, z \in \mathfrak{a}$. Hence

$$-x^{2} \cdot D(z^{2}) = -x(x \cdot D(z^{2})) = -Dx \cdot (xz^{2}) \text{ by } (4.1.1)$$

$$= -xz^{2} \cdot Dx = (x^{2}z) \cdot Dz \text{ by } (4.1.3)$$

$$= -\frac{1}{2}x^{2}(-2z \cdot Dz) = -\frac{1}{2}x^{2} \cdot D(z^{2})$$

so $x^2D(z^2)=0$ for all $x,z\in\mathfrak{a}$. Thus $(x+y)^2D(z^2)=0$ implies $xy\cdot D(z^2)=0$ for all $x,y,z\in\mathfrak{a}$. Since $\mathfrak{a}=\mathfrak{a}^2$, this gives $D(z^2)\in C(\mathfrak{a})$ so $D(z^2)=0$. Thus $D((z+w)^2)=0$ implies D(zw)=0 so $D\equiv 0$ since $\mathfrak{a}=\mathfrak{a}^2$.

Theorem 4.2: Suppose k is an algebraically closed field of characteristic zero and \mathfrak{a} is finite dimensional, commutive, and associative with $C(\mathfrak{a}) = 0$. Then every antiderivation is a nilpotent endomorphism of \mathfrak{a} and the subalgebra of Gender \mathfrak{a} generated by antiderivations is nilpotent.

Proof: By Theorem 2.4(i) Gender a is almost algebraic so if any antiderivation is not nilpotent, Gender a has a semisimple antiderivation. Suppose BWOC that D is a semisimple antiderivation of a and for $\lambda \in k$ define $a_{\lambda} = \{x \in a | Dx = \lambda x\}$ so $a = \sum_{\lambda \in k} a_{\lambda}$. Since D is an antiderivation, $a_{\lambda}a_{\mu} \subseteq a_{-(\lambda+\mu)}$. As in the proof of Theorem 4.1, $x(y \cdot Dz) = Dx(yz) = x(Dy \cdot z)$ since a is commutative. Hence if $y \in a_{\lambda}$ and $z \in a_{\mu}$ for $\lambda \neq \mu$, we get x(yz) = 0 for all $x \in a$, i.e. $yz \in C(a)$. Thus for $\lambda \neq \mu$ $a_{\lambda}a_{\mu} = 0$ since C(a) = 0. Hence if there is a $\lambda \in k$ such that $a_{\lambda} \neq 0$ and $a_{-2\lambda} = 0$, then $a_{\lambda} \subseteq C(a)$. Hence $a_{\lambda} \neq 0$ implies $a_{-2\lambda} \neq 0$, but this means $a_{\lambda} = 0$ for $\lambda \neq 0$ since $\{\lambda \in k | a_{\lambda} \neq 0\}$ must be finite. Thus D = 0 so a has no semisimple antiderivations, i.e. all antiderivations are nilpotent. The other conclusion follows from Corollary 5.8 and Lemma 5.4 of [4].

Note that Example 2.5 shows that a commutative associative algebra \mathfrak{a} may have semisimple antiderivations if $C(\mathfrak{a}) \neq 0$.

§5 Lie Algebras and Lie-Admissible Algebras

Theorem 5.1: Suppose char $k \neq 3, 5$ or 7 and $\mathcal L$ is a central simple finite dimensional Lie algebra with $\dim \mathcal L \geq 4$ and B is a nonsingular trace form of $\mathcal L$ on some representation. Then $\mathcal L$ has no antiderivations so Gender $\mathcal L \cong \mathcal L$.

Proof: Theorem 3 of [5] gives that \mathcal{L} has no antiderivations which satisfy B(Dx, y) = B(x, Dy) for all $x, y \in \mathcal{L}$. The rest of the proof here will be to show that the step in the proof of Theorem 3 of [5] using this hypothesis can in fact be done without resorting to it.

Hence suppose k is algebraically closed and $\mathcal{L} = H \oplus \sum_{\alpha \in \Phi} \mathcal{L}_{\alpha}$ is a Cartan decomposition of \mathcal{L} . Suppose further that D is an antiderivation of \mathcal{L} such that

(5.1.1)
$$\alpha(h)D(e_{\alpha}) = -\frac{1}{2}\alpha(Dh)e_{\alpha}$$

for all $\alpha \in \Phi$, $h \in H$, $e_{\alpha} \in \mathcal{L}_{\alpha}$ (this is (3.3) of [5]). Thus since $\alpha \not\equiv 0$, $D(e_{\alpha}) = a_{\alpha}e_{\alpha}$ for some $a_{\alpha} \in k$. Now for some $e_{\alpha} \in \mathcal{L}_{\alpha}$, $e_{-\alpha} \in \mathcal{L}_{-\alpha}$, $h_{\alpha} = [e_{\alpha}, e_{-\alpha}]$ so $Dh_{\alpha} = -[De_{\alpha}, e_{-\alpha}] - [e_{\alpha}, De_{-\alpha}] = -(a_{\alpha} + a_{-\alpha})h_{\alpha}$ so by 5.1.1

$$\alpha(h_{\alpha})a_{\alpha}e_{\alpha} = \alpha(h_{\alpha})D(e_{\alpha}) = -\frac{1}{2}\alpha(Dh_{\alpha})e_{\alpha}$$
$$= \frac{1}{2}(a_{\alpha} + a_{-\alpha})\alpha(h_{\alpha})e_{\alpha}.$$

Since $\alpha(h_{\alpha}) \neq 0$, $a_{\alpha} = \frac{1}{2}(a_{\alpha} + a_{-\alpha})$ so $a_{\alpha} = a_{-\alpha}$. Thus $Dh_{\alpha} = -2a_{\alpha}h_{\alpha}$ for all $\alpha \in \Phi$. Now for $\alpha, \beta \in \Phi$, using (5.1.1) again gives

$$a_{\alpha}\alpha(h_{\beta})e_{\alpha}=\alpha(h_{\beta})D(e_{\alpha})=-rac{1}{2}\alpha(Dh_{\beta})e_{\alpha}=a_{\beta}\alpha(h_{\beta})e_{\alpha}.$$

Thus $a_{\alpha} = a_{\beta}$ if $\alpha(h_{\beta}) = \langle \alpha, \beta \rangle \neq 0$. Since the Dynkin diagram of \mathcal{L} is connected, $a_{\alpha} = a_{\beta} = a$ for all $\alpha, \beta \in \Phi$.

Corollary 5.2: Suppose char k=0, α is a finite dimensional algebra with dim $\alpha \geq 4$ and α^- is a semisimple Lie algebra. Then α has no antiderivations.

Proof: This follows from Theorem 5.2 and Proposition 1.7(vi) and (ii).

An algebra with the property that \mathfrak{a}^- is a Lie algebra is a Lie admissible algebra. Obviously associative algebras are Lie admissible.

N.C. Hopkins

REFERENCES

- 1. R.B. Brown and N.C. Hopkins, Noncommutative matrix Jordan algebras, *Trans. Amer. Math. Soc.* 333 (1992), 137–155.
- · 2. J.C. Chang, A note on (α,β) -derivations, Chinese J. Math. 19 (1991), 277–285.
 - 3. J.R. Faulkner, Dynkin diagrams for Lie triple systems, J. Alg. 62 (1980), 384-392.
 - 4. N.C. Hopkins, Nilpotent ideals in Lie and anti-Lie triple systems, preprint.
 - 5. ______, Noncommutative matrix Jordan algebras from Lie algebras, Comm. Alg. 19 (1991), 2231-2237.
 - 6. J.E. Humphreys, "Introduction to Lie Algebras and Representation Theory," Second Printing, Revised, Springer-Verlag, 1972.
 - 7. N. Jacobson, "Lie Algebras," Dover, 1979.
 - 8. M. Kinyon and A.A. Sagle, Automorphisms and derivations of differential equations and algebras, *Rocky Mountain J. Math.* 24 (1993), 135–154.
 - 9. R. D. Schafer, "An Introduction to Nonassociative Algebras," Academic Press, 1966.
- 10. F. Söler, δ -derivations d'algèbres, Publicationes Mathematicae (Debrecen) 20 (1973), 207-214.
- 11. S. Walcher, "Algebras and Differential Equations," Hadronic Press, Palm Harbor, 1991.