THE IRREDUCIBLES OF THE EXTERIOR POWER OF THE SPACE OF MATRICES

ARKADY ONISHCHIK

Abstract

The exterior power of the space of $r \times s$-matrices is decomposed into irreducibles. The decomposition is known, but its simple deduction here is new. Besides, the highest weight vectors of the irreducibles are explicitly given.

Let ρ_{1} and ρ_{2} be the tautological linear representations of the Lie groups $\mathrm{GL}(r)$ and $\mathrm{GL}(s)$ in V and W, respectively. The decomposition of $\Lambda\left(\rho_{1} \otimes \rho_{2}^{*}\right)$ into irreducible $\mathrm{GL}(r) \times \mathrm{GL}(s)$-modules is known, see H$]$. I offer a simple deduction of this decomposition, and explicitly describe the highest weight vectors of the irreducibles.

We can assume that $\rho:=\rho_{1} \otimes \rho_{2}^{*}$ acts on the space $\operatorname{Mat}(r, s)$ of $r \times s$-matrices with r rows and s columns:
$\rho_{A, B}(X):=A X B^{-1}$ for any $A \in \mathrm{GL}(r), B \in \mathrm{GL}(s)$ and $X \in \operatorname{Mat}(r, s)$.
Let $e_{i j}, E_{i j}, F_{i j}$ denote the elements of the standard bases (matrix units) in the spaces $\operatorname{Mat}(r, s), \mathfrak{g l}(r)$, and $\mathfrak{g l}(s)$, respectively. In $\mathfrak{g l}(r)$ and $\mathfrak{g l}(s)$, take maximal tori consisting of diagonal matrices. Let λ_{i} for $1 \leq i \leq r$ and μ_{k} for $1 \leq k \leq s$ be the weights of ρ_{1} and ρ_{2}, respectively. The roots $\lambda_{i}-\lambda_{j}$ for $i<j$ and $\mu_{k}-\mu_{l}$ for $k<l$ will be considered positive.

Obviously, any monomial

$$
\begin{equation*}
v=c e_{i_{1} j_{1}} \wedge \cdots \wedge e_{i_{d} j_{d}} \in \Lambda^{d}(\operatorname{Mat}(r, s)), \text { where } c \in \mathbb{C}^{\times} \tag{1}
\end{equation*}
$$

is a weight vector of $\Lambda^{d} \rho$ of weight

$$
\Lambda=\lambda_{i_{1}}+\cdots+\lambda_{i_{d}}-\mu_{j_{1}}-\cdots-\mu_{j_{d}} .
$$

The monomial v will be called normal if it is of the form
$c e_{1, s-p_{1}+1} \wedge \cdots \wedge e_{1, s} \wedge e_{2, s-p_{2}+1} \wedge \cdots \wedge e_{2, s} \wedge \cdots \wedge e_{r, s-p_{r}+1} \wedge \cdots \wedge e_{r, s}$,

[^0]where $s \geq p_{1} \geq \cdots \geq p_{r} \geq 0$. Then, $d=\sum_{1 \leq i \leq r} p_{i}$.
It is convenient to encode the monomial (1) by a diagram of the Young tableau type, the $\left(i_{k}, j_{k}\right)$ th cells of the $r \times s$-table corresponding to $e_{i_{k}, j_{k}}$ for $k=1, \ldots, d$. Any normal monomial corresponds to the diagram whose i th row contains p_{i} cells (several last cells can be empty), and the last cells of all rows are in the s th column. Let q_{j} be the tally of cells in the j th column of the diagram; then, $0 \leq q_{1} \leq \cdots \leq s \leq r$. Obviously, the weight of a given normal monomial is of the form
\[

$$
\begin{equation*}
\Lambda=p_{1} \lambda_{1}+\cdots+p_{r} \lambda_{r}-q_{1} \mu_{1}-\cdots-q_{s} \mu_{s} \tag{2}
\end{equation*}
$$

\]

and its degree is equal to $d=\sum_{1 \leq i \leq r} p_{i}=\sum_{1 \leq j \leq s} q_{j}$. Clearly, the normal monomial is uniquely (up to a proportionality) determined by its weight.

Example. The diagram | x | x | x |
| :---: | :---: | :---: |
| | x | x |
| | x | x | represents the normal monomial

$$
v=e_{1,2} \wedge e_{1,3} \wedge e_{1,4} \wedge e_{2,3} \wedge e_{2,4} \wedge e_{3,3} \wedge e_{3,4} \in \Lambda^{7}(\operatorname{Mat}(3,4))
$$

of weight $\Lambda=3 \lambda_{1}+2 \lambda_{2}+2 \lambda_{3}-\mu_{2}-3 \mu_{3}-3 \mu_{4}$.
As is known (e.g., see [H]), to every partition $d=\sum_{1 \leq i \leq r} a_{i}$, where $a_{1} \geq \cdots \geq a_{r} \geq 0$ an irreducible representation ρ_{1}^{d} corresponds; we denote it $\rho_{1}\left(a_{1}, \ldots, a_{r}\right)$.

Similarly, let $\rho_{2}\left(b_{1}, \ldots, b_{s}\right)$, where $b_{1} \geq \cdots \geq b_{s} \geq 0$, denote the irreducible representation ρ_{2}^{d} corresponding to the partition $d=\sum_{1 \leq j \leq s} b_{j}$.

Then, the weight (2) of a normal monomial is the highest weight of an irreducible subrepresentation $\rho_{1}\left(a_{1}, \ldots, a_{r}\right) \otimes \rho_{2}\left(b_{1}, \ldots, b_{s}\right)^{*}$ of the representation $\left(\rho_{1}\right)^{d} \otimes\left(\rho_{2}^{*}\right)^{d}$ of $\mathfrak{g l}(r) \oplus \mathfrak{g l}(s)$ in the space $T^{d}(V) \otimes T^{d}\left(W^{*}\right)$. Let us prove that the irreducibles of $\Lambda^{d}(\rho)$ are isomorphic to these representations.
Lemma. The element $v \in \Lambda^{d}(\operatorname{Mat}(r, s))$ is a highest weight vector of the representation $\Lambda^{d}(\rho)$ if and only if v is normal.
Proof. The element v is a highest weight vector if and only if

$$
d \rho\left(E_{i j}\right) v=d \rho\left(F_{l k}\right) v=0 \text { for any } i<j \text { and } k<l .
$$

Then,

$$
d \rho\left(E_{i j}\right) e_{j k}=E_{i j} e_{j k}=e_{i k} ; \quad d \rho\left(F_{l k}\right) e_{t k}=-e_{t k} F_{l k}=-e_{t l}
$$

whereas the images of the other basis vectors vanish. Cleary, this shows that every normal monomial is a highest weight vector.

To prove the converse statement, let us show that every highest weight vector v contains a normal monomial v_{0} (as a factor). This would imply that $v=v_{0}$.
Indeed, if $v-v_{0} \neq 0$, then $v-v_{0}$ is also a highest weight vector, and hence contains a normal monomial v_{1} of the same weight as v_{0}, and hence is proportional to v_{0}. This is a contradiction.

Let $v \in \Lambda^{d}(\operatorname{Mat}(r, s))$ be a highest weight vector. Then, v contains factors $e_{1 j}$. Indeed, assume that v contains factors $e_{t j}$, but does not contain factors $e_{i j}$ with $i<t$. Then,

$$
v=\sum_{j_{1}<\cdots<j_{k}} e_{t j_{1}} \wedge \cdots \wedge e_{t j_{k}} \wedge w_{j_{1} \ldots j_{k}}
$$

where the $w_{j_{1} \ldots j_{k}}$ are polynomials in $e_{i j}$, not all of which vanish. If $t>1$, then

$$
0=d \rho\left(E_{1 t}\right) v=\sum_{j_{1}<\cdots<j_{k}} \sum_{\alpha} e_{t j_{1}} \wedge \cdots \wedge e_{t j_{\alpha}} \wedge \cdots \wedge e_{t j_{k}} \wedge w_{j_{1} \ldots j_{k}}
$$

which is a contradiction.
Let now α_{1} be such that v contains $e_{1 \alpha_{1}}$, but does not contain $e_{1 j}$ with $j<\alpha_{1}$. Then, $v=e_{1 \alpha_{1}} \wedge v_{1}+w$, where v_{1} and w do not contain $e_{1 j}$ with $j \leq \alpha_{1}$. For any $j>\alpha_{1}$, we have

$$
0=d \rho\left(F_{\alpha_{1}, j}\right) v=-e_{1 j} \wedge v_{1}-e_{1 \alpha_{1}} \wedge d \rho\left(F_{\alpha_{1}, j}\right) v_{1}+d \rho\left(F_{\alpha_{1}, j}\right) w
$$

where $d \rho\left(F_{\alpha_{1}, j}\right) v_{1}$ and $d \rho\left(F_{\alpha_{1}, j}\right) w$ do not contain $e_{1 j}$.
Hence, $e_{1 j} \wedge v_{1}=0$ for all $j>\alpha_{1}$, and $v_{1}=e_{1, \alpha_{1}+1} \wedge \cdots \wedge e_{1, s} \wedge v_{2}$, where v_{2} does not contain the elements $e_{1 j}$.

If v contains elements $e_{i j}$ with $i>1$, then, as at the beginning of the proof, we show that v contains $e_{2 j}$. Let v_{2} contain elements $e_{2, \alpha_{2}}$, but does not contain $e_{2, j}$ with $j<\alpha_{2}$. Then, $\alpha_{2} \geq \alpha_{1}$.

Indeed, assume that $\alpha_{2}<\alpha_{1}$ and consider the part u of v of the form

$$
u=e_{1, \alpha_{1}} \wedge \cdots \wedge e_{1, s} \wedge e_{2, \alpha_{2}} \wedge e_{2, l_{1}} \wedge \cdots \wedge e_{2, l_{m}} \wedge \ldots
$$

where $\alpha_{2}<l_{1}, \cdots<l_{m}$. Then,

$$
\begin{aligned}
& d \rho\left(E_{12}\right) u=e_{1, \alpha_{1}} \wedge \cdots \wedge e_{1, s} \wedge \\
& \left(e_{1, \alpha_{2}} \wedge e_{2, l_{1}} \wedge \cdots \wedge e_{2, l_{m}}+e_{2, \alpha_{2}} \wedge \sum_{l} e_{2, l_{1}} \wedge \cdots \wedge e_{1, l_{t}} \wedge \cdots \wedge e_{2, l_{m}}\right) \wedge \ldots
\end{aligned}
$$

since $d \rho\left(E_{12}\right) v=0$, the element v must contain a factor containing $e_{1, \alpha_{2}}$; this is impossible.

The same arguments as above easily show that

$$
v_{2}=e_{2, \alpha_{2}} \wedge \cdots \wedge e_{2, s} \wedge v_{3}
$$

where v_{3} does not contain $e_{1, j}$ and $e_{2, j}$. Repeate this argument several times to construct a normal monomial entering v.

This lemma immediately implies the following
Theorem. For any positive integer d, there is the following decomposition into the direct sum of irreducibles of multiplicity 1 :

$$
\Lambda^{d}\left(\rho_{1} \otimes \rho_{2}^{*}\right) \simeq \oplus \rho_{1}\left(p_{1}, \ldots, p_{r}\right) \otimes \rho_{2}\left(q_{s}, \ldots, q_{1}\right)^{*}
$$

where the sum runs over all partitions $d=\sum p_{i}$ for $p_{1} \geq \cdots \geq p_{r} \geq 0$ and q_{j} is the tally of cells in the jth column of the normal polynomial serving as the highest weight vector of the corresponding irreducible component.
The decomposition into irreducibles of $\Lambda^{d}\left(\rho_{1} \otimes \rho_{2}\right)$ is similarly described. For the analog of this result for the representation $S^{d}\left(\rho_{1} \otimes \rho_{2}\right)$, see [Zh, Th. 3 of Ch.8].

References

[H] Howe R., Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (1989), no. 2, 539-570: Erratum to: "Remarks on classical invariant theory". Trans. Amer. Math. Soc. 318 (1990), no. 2, 823
[Zh] Z̆elobenko, D. P., Compact Lie groups and their representations. Translated from the Russian by Israel Program for Scientific Translations. Translations of Mathematical Monographs, Vol. 40. American Mathematical Society, Providence, R.I., 1973. viii+448 pp.

[^0]: 2010 Mathematics Subject Classification. Primary 22E46, 22E70; Secondary 81S99, 51P05.

 Key words and phrases. Decomposition into irreducibles, exterior power of the matrix representation.

