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B. Ju. VEISFEILER AND I. V. DOLGACEV

Abstract. In this paper we study families of unipotent algebraic groups over integral
rings. The main results relate to the geometry of such families. In particular, we prove
that, under some hypotheses, the space of such a family is isomorphic to an affine space
over the base. We give counterexamples showing that in the case of an arbitrary base ring
the basic facts of the theory of unipotent algebraic groups over a field cease to be true.
For a certain class of the group schemes that we consider we prove results on cohomology,
extensions and deformations.

Introduction

The present paper is devoted to the study of families of unipotent algebraic groups
parametrized by an affine integral scheme S (or, more precisely, to the study of unipo-
tent group schemes over 5 in the sense of (0.8)).* The general theory of group schemes
was established in the seminar of Grothendieck and Demazure [2] (SGAD), in which, in
addition, families of reductive groups were studied.

The theory of unipotent algebraic groups, and in particular that of commutative uni-
potent groups, over a field represents a beautifully complete theory (see, for example,
[7]). On the other hand, questions about families of unipotent groups arise naturally in
the theory of quasielliptic algebraic surfaces [ l l ] . Moreover, unipotent groups play an
important role in studying the structure of affine groups over a field, and the same role
can be expected of them over arbitrary schemes. It is curious to note also that the study
of unipotent group schemes leads to interesting questions in the geometry of affine vari-
eties (see §3-8.5 in particular).

The majority of the results of this paper are based on the assumption that the base
scheme is the spectrum of a discrete valuation ring. The examples of §6 show that uni-
potent group schemes over general integral rings have many pathological properties
(which, however, are not surprising in the light of the work of Raynaud [12]).

As is well known, the theory of unipotent groups over a field is only interesting in

AMS (MOS) subject classifications (1970). Primary 14L15; Secondary 14M20, 14F20.
* Translator's note. A study of unipotent algebraic groups by T. Kambayashi, M. Miyanishi

and M. Takeuchi has recently been published (Lecture Notes in Math., vol. 414, Springer-Verlag,
New York-Heidelberg-Berlin, 1974).
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positive characteristic. According to Raynaud's results this also holds in the general

case: over schemes of characteristic 0 the theory is trivial.

The main property of unipotent groups over a field consists of the existence of a

composition series of elementary groups (i.e. subgroups of the additive group of the

field). As the examples of §6 show, the only analogue of this property over general

integral rings is a theorem on linear unipotence (§ 1). If the ground ring is a discrete

valuation ring, then one can prove the stronger assertion about the extension of a com*

position series from the generic fiber to a flat series over the ring (cf. §4).

In § 2 we study the coordinate ring of a unipotent group scheme over a discrete

valuation ring. The results of this section play the basic role in studying the geometry

of such groups. Each such group, under some restrictions on the generic fiber, is given

as a complete intersection in affine space. If the ground ring is equicharacteristic and

the group is commutative and smooth of period p with connected fibers, then it becomes

A£ over some radical extension of the base (Theorem 3·5). This result generalizes

the well-known classical result. A discussion of some natural generalizations of this

result is given in §3.8.

In § 4 we show that smooth connected groups lift from a perfect field of character-

istic p to unipotent group schemes over rings of characteristic 0. There we also find

extensions of G by G f l. in §5, using a standard cohomological technique, we com-

pute the Grothendieck cohomology groups of commutative unipotent group schemes.

At the present time (i.e. a year after the present work was completed) we are cer-

tain that the ideas, methods and results of this paper can also be applied in studying

models of tori and semisimple groups. We have a number of examples of such models.

The fact that unipotent groups are essential here is clear, for example, for the follow-

ing reason: if G is a model of a torus (i.e. if G is a torus over the generic fiber), then

G degenerates to a unipotent group over some closed set. Preliminary considerations

show that the methods of §§ 2 and 4 can be applied to models of the group Gm and give

analogous results. Moreover, we have succeeded in computing extensions of some

models of G m by G f l (cf. §4.7) over equicharacteristic rings.

We thank V. I. Danilov for useful comments.

§0. Notation and review

0.1. Let 5 be a scheme and (Sch/S) the category of ^-schemes. A group object

of this category is called a group scheme over 5 ((SGAD), I, 2.1; see also [9], §11).

For any 5-scheme Τ and any S-group scheme G the set G(T) = Hom^T, G) is an ab-

stract group, called the group of T-points of G. The association Τ -» (7(7*) defines a

contravariant functor from the category Sch/S into the category of groups (Gr). This

functor is often identified with the group scheme G.

Group schemes over S form a subcategory of Sch/5, whose morphisms are homo-

morphisms of group schemes, defined in the natural way.

0.2. As is the case for every 5-scheme, the terminology of the theory of schemes

is applied for S-group schemes. In particular, one defines such concepts as affine,

flat and smooth 5-group schemes.
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0.3. We recall that if 5 = Spec A, where A is a field, then any S-scheme is flat.

But if A is a one-dimensional regular ring (for example, a discrete valuation ring), then

the condition that a scheme X of finite type over S be flat is equivalent to the follow-

ing ([6], Chapter I, §2.4, Proposition 3):

0.3.1. The Λ-algebra © χ χ is torsion-free for all χ € X.

In the general case, if the base scheme 5 is regular, then the condition that a

scheme X locally of finite type over S be flat is equivalent to the following:

0.3.2. The fibers X s , s e S, have the same dimension ((EGA) IV, 14.4.4, 15.4.2).

We note that the fibers of a flat morphism f: X -* S, where S is connected, have the

same dimension.

0.4. In case the base scheme S is locally noetherian, the condition that a scheme

X locally of finite type over S be smooth is as follows ((EGA), IV, 17.5.2): X is a

flat 5-scheme and for all s £ S the fiber Xs is a smooth scheme over the residue field

k{s) of the point s.

As is known, that a group scheme over a field k is smooth is equivalent to its be-

ing geometrically reduced ([7], Chapter II, §5, Theorem 2,1). By Carder's theorem

([7], Chapter II, §6, no. 1), if S is a scheme of characteristic zero (i.e. a Q-scheme),

then any flat S-group scheme is a smooth 5-scheme.

0.5. Let G be an affine S-group scheme. Assume that S = Spec A is an affine

scheme. Then G is also affine, i.e. G - Spec B, where Β is an A-algebra.

The ring Β = F(G, Qc) is denoted by A[G] and is called the coordinate ring of the

affine Α-group scheme G. The structure of a group scheme on a scheme G is equiva-

lent in this case to giving Β an Α-algebra structure. The latter is defined by giving

three Α-algebra homomorphisms:

μ : Β -*• Β ®AB (comukiplication),

ι : Β—*• Β (coinversion),

ε : β—*Α (coidentity),

for which the standard axioms hold ((SGAD), I, 4.2; see also [9]).

0.5.1 If / : G -» S is a flat S-group scheme of finite type over S and /+(GG) is a

flat ©^-module, then on G' = Spec (/*©G)) there exists a structure of an affine flat S·

group scheme for which the canonical homomorphism u : G -» G is a homomorphism-

The scheme G is called the affinization of the group scheme G. By the results of

Raynaud ([12], VII, 3.2), the affinization is defined in case S is regular and dim S <2.

Moreover, in this case, if G is quasi-affine, then the homomorphism u : G -» G is an

open immersion ([12], VII, 3.1).

0.5.2. By the results of Raynaud ([12], VII, 2.2), if S is a normal scheme and G

is a smooth S-group scheme with connected fibers, whose fibers over the maximal points

(generic points of the irreducible components of S) are affine, then G is quasi-affine.

0.6. Let G be a group scheme over a field k and G the connected component of

G containing the identity. Then G is geometrically connected ((SGAD), VI., 2.1.1).
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For any S-group scheme G we denote by G the subset of G that is the union of

the connected components of the fibers G°s for s e S. li G° is open (for example,

when G is smooth over S ((SGAD), VIA, 3.10), then the corresponding subscheme is

denoted by G and is called the connected component of the identity of G. It is an

S-group scheme, and for any 5-scheme Τ we have

= ( « e C ( 7 ) : V / 6 I 1 the image of u in GjLt) is contained in G°(t)}.

Obviously G = G if and only if the fibers of G ate connected.

0.7. We now recall some definitions and properties of unipotent algebraic groups

over a field (here by algebraic groups we mean group schemes of finite type over a

field; they are not necessarily smooth).

0.7.1. An algebraic group G over a field k is said to be unipotent if the following

equivalent conditions hold:

a) G is affine and in k[G] there exist generators t v ..., tn, such that μ(ί) =

ti ® 1 + 1 ® t. + Σα.. ® bip where a.., b{, € k[tv . . . , t._ j] (cf. [16], Chapter VII,

§1.6, Remark 2).

b) G possesses a composition series whose successive quotients are isomorphic

to the subgroups G e > (cf. (SGAD), XVII, 3-5, 1.5).

0.7.2. Examples, a) Ga k is the additive group;

k[Ga.k]=k[t],

b) & ., where q = pT, p = char k > 0;

k 10-i.k] = k \t\/{t\ μ (/) = t ® 1 + 1

c) {Z/pZ)k, ρ = char k > 0;

- 0.

d) Forms of G f l fc, p = char A > 0-

" = a0t2 + Λι/? + ... + ajf,

μ(/ί) =tt(g) 1 + 1®/,,

ι ( / , ) - — / i , e(//)=:0, t = l , 2.

According to [15] these equations give all the Α-forms of G f l fc. They are trivial if k

is perfect. If aQ = 1, then k(aP~n, . . · , a^n~
n) is a minimal (purely inseparable) de-

composition field for G.

e) Two'dimensional smooth connected groups. We write
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We put

Any unipotent two-dimensional connected smooth group is given by such formulas if k

is perfect ([16], Chapter VII, §2.7, Proposition 8).

f) If k is a field of characteristic 0 and G a unipotent group scheme over k,

then G is a smooth connected group. If 9 is its Lie algebra, then for any 4-algebra

A the group G(A) is identified with g(A) via mapping exp: g(A) -> G(A), where for χ

exp χ = 2 (ad*)'.(*irl

0

(this series terminates since g is nilpotent), and the multiplication is given by the

Campbell-Hausdorff formula ((SGAD), XVII, 3.9 ter). In particular, if G is commuta-

tive, then G 3? G" .

0.7.3- An affine unipotent algebraic group over the field k possesses the follow-

ing properties (see (SGAD), XVII, 3.9, 4.1.1, 4.1.3):

a) G has a central composition series whose successive quotients are isomorphic

to G , if k is of characteristic 0 (see 0.7.20) (respectively to one of the groups

G a fc or a. ky or to a k-ίοττα of the group (Z/pZ)r if char k = p > 0).

b) If G is connected, then there exists a composition series with quotients iso-

morphic to G , or to a., ..
r a,k P,k

c) If G is connected and smooth, then G possesses a central composition series

whose successive quotients are &-forms of G . In particular, the space G is a form of

the affine space A*. If k is perfect, these forms are trivial. In the general case the

forms of Gfl fe are isomorphic to Gfl k over a suitable radical extension.

0.8. Definitions. Let G be a flat group scheme of finite type over S. We say

that

a) G is unipotent if the fibers of G over each point s e S are unipotent algebraic

groups over k{s).

b) G is linearly unipotent if G is affine and there exist sections tχ, . . . , tn of

the ring 0s G such that

tn

μ (d) = ti ® 1 + 1 ® U -V 2 a'i ® bu,
I

where a.., b{. e© s [ i , , . . . . i ^ j ] .

Remark. The second definition is extremely close to the definition over a field

(0.2.1). It is clear that b) =· a). Later on we shall show that for certain affine unipo-

tent S-groups G over integral affine bases these definitions are equivalent. The only

apparent difference between a) and b) is that in a) we do not require that G be affine

and S integral. Example 6.1 shows that over a ring with nilpotents these definitions

are not equivalent. On the other hand, Example 6.2 shows that over integral rings

there exist unipotent group schemes that are not affine.
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0.8.1. (Raynaud [12], XV, 3). Let S be a scheme of characteristic 0, G a uni-

potent S-group, and iF = Lie G the G^-Lie algebra of G. Then the exponential map

exp: W(iF) -> G is an isomorphism of ί-schemes. Moreover, if we equip W(?) with a

group law described by the Campbell-Hausdorff formula, then exp is a group isomorphism.

In particular, if S = Spec A, then G is linearly unipotent. Moreover, G is a form of

A£ in the Zariski topology (0.10.2).

We recall (SGAD) that for any coherent Oj-Module ? , W$) denotes the S-group

scheme representing the functor Τ -* Γ(7\ f ®QS0T). Since 5 is of characteristic 0,

the group scheme G is smooth and has connected fibers. In particular, jF = Lie G is

a locally free 0^-Module and W(5) is the vector bundle over S corresponding to 5

((SGAD), II.411).

0.8.2 According to Grothendieck ((SGAD), X, 8.7, p. 121) a smooth S-group G of

finite type is unipotent if and only if its maximal fibers are unipotent. This indicates

that the condition of smoothness is perhaps unnecessary.

0.9. Let S be an integral locally noetherian scheme, η its generic points and X

a scheme of finite type over η. A flat S-scheme of finite type extending X will be

called a model of X . In case X is a group scheme over η, a group model of X is

a flat S-group scheme G extending X .

0.9.1. Examples, a) Every flat S-scheme (respectively 5-group scheme) is a model

(a group model) of its generic fiber.

b) If S is the spectrum of a discrete valuation ring A and G^ an extension of an

abelian variety by a torus, then by the results of Ne*ron and Raynaud [13] there always

exists a group model for G_.

c) If A is the ring of integers of a local field K, then the parahoric subgroups of

a semisimple group over Κ are its smooth group models [19].

0.10. Let S be a scheme. By a Grothendieck topology on the scheme S we mean

an arbitrary topologized full subcategory Τ of the category Sch/5, whose topology is

given by the set Cov(T) of finite surjective families of morphisms \U{ —i5' i j € / , 5' €.

Ob(T), called covers of 5'. Here the finiteness means that the set of indices / is fi-

nite, and the surjectivity that U ; ^ / ^ . ) = S'.

0.10. L In what follows we shall come across the following topologies on a noether-

ian scheme S:

a) The Zariski topology Τ = 5 Z a f . It is formed by the open subschemes of the

scheme S, and Cov(S Z a r ) consists of the families \U{ —i 5 1, where φ. is an open

immersion.

b) The e"cale topology Τ = 5>t- It is formed by ^tale S-schemes, and Cov(5 ' )

consists of families \(J; —i S'\ in which φ. is an etale morphism.

c) The fppf-topology Τ = S{ ,. It is formed by flat separated quasifinite 5-schemes

of finite type, and Cov(Sf f) consists of families of flat morphisms.

Here a morphism is called quasifinite if its' fibers are finite ((EGA))·

d) The fpqc-copology Τ = S( . It is formed by flat quasicompact 5-schemes.

Cov(5 f ) consists of families of flat morphisms.
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e) The radical topology Γ = S r a d · It is formed by finite flat radical S-schemes.

Cov(5 t a d ) consists of families of flat morphisms.

Here a morphism /: X -» Υ of schemes is said to be radical if, for all y € V, / " (y)

consists of the single point χ and the corresponding extension of residue fields

k(x)/k(y) is radical (i.e. is purely inseparable) ((EGA), 1.3.5.8).

0.10.2. Let S be a scheme and Τ a Grothendieck topology on S. We will say that

an S-scheme X is an S-form of an S-scheme Υ relative to Τ if there exists a covering

such that for all ί € /

In particular, one can speak about forms in the Zariski topology, fppf-forms, ^tale forms,

radical forms, etc..

§ 1. Linear unipotence

1.0. This subsection is aimed at introducing the notation that will be used.

Let A be an integral ring, Κ its field of fractions, X an affine model of the affine

space A£ over A, and A[X] = Γ(Χ, 0 χ ) . Let φ: Α[Χ] •+ K[x] be the natural imbedding,

n

1.0.1. If x'j1 . . . x^" is a monomial, we shall sometimes write it in the form x',

interpreting / as the vector ( i j , . . . , * n ) . Let t <K m denote component-wise compari-

son of vectors (i.e. t. < mi for all i). If m = (m^), then T(m) = \t: t <K m\.

The signs > and < will denote lexicographic comparison of vectors (according to

the first different component from the right; in particular, (1,0, . . . , 0) is the minimal

vector with nonnegative integral coefficients); max is always taken relative to this

order.

We shall write / = deg x'. If / = Σα{χ
ι, then deg / = max {t-.a^ 0).

1.0.2. For / € A[X] we put deg / = deg φ[[). Let

Pi =

Then the following lemma is obvious.

Lemma, a) PtiP't
 and P, are finitely-generated torsion-free A-modules.

b) dim P t ® Κ = 1.

1.0.3· For each vector / we denote by Zj (, . . . , z ^ ^ ( the set of elements of

Ρt whose images in Ρ( are generators of Ρ(. Since X is of finite type, there exists

a vector τπ(Χ) = (mv ..., mj such that A[x] = A\z.., i = 1, . . . , K/), / e T(m{X))\.

1.0.4. Lemma, φ ® φ is an imbedding of A[x] ® A[X] into K[x] ® K[X].
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Proof. Consider the exact sequence of ^-modules

Since A[x] is a flat Λ-module, the sequence

0 _+ A [X] ® A [X] ^ Κ [Χ] ® A [X]

is exact. Now it suffices to note that

K[X]®A[X\=K[X]®K[Xl φ®1=φ®φ·

1.0.5. For / = Σα ® b e K[X] ® K[X] we set

deg / = max (deg a + deg b).

Then, in view of 1.0.4, the following lemma is obvious.

Lemma. Let f = la. ® b. e A[x] ® A[x]. Then

deg (φ (g) φ) (/) = max (degat + deg b,).

1.1. Theorem. Lei G be an affine group model over A of a unipotent group, where

the generic fiber of G is isomorphic to A" Then G is linearly unipotent.

1.1.1. Proof. We adopt the notation of 1.0 for X = G. We number the x. so that

xi will be primitive mod(xj, . . . , x._ j) (see 4.4 below or [7], Chapter IV, §4, Theorem

4.1). We have A[G] = A[z.., i e [ l , K/)], / e T(m(G))]. We number the z{p j € T(m(G)),

in succession and so that deg z( < deg ζ. = * / < / .

1.1.2. Lemma. Let y € A[G], deg y = t. Then

where a{, b. € A[G], deg a. < t, deg b{ < t and deg(2a(. ® 6;) < /.

Proof. Let y = 1djc\ d. € K. Then

y<E)l +

(because of the choice of the order on the x.). From a comparison of the formulas for

p(y) and (μ ® K)(y) it follows that la. ® ^^ e Ρ'( ® P f ' ® K, from which in view of

1.0.4 we get Σα. ® b{ € P't ® p't, and, in view of 1.0.5, deg (Σα. ® b.) < t.

1.1.3. We have /4[C] = Α[ζχ, ..., zN], where ζ > / -» deg z ; > deg z.. Since

μ (^ = 2,® i + 1 0 ^ +

deg an < deg z/f deg bti

it follows that
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al\ =

from which our assertion also follows.

1.1.4. Remark. Applications to the case of a discrete valuation ring are based on

the choice of the basis \ζλ ("reduced polynomials") and on Lemma 1.1.2.

1.2. Theorem. Let A be an integral ring, and G an affine group model of a com-

mutative group over A. Then G is a commutative group scheme.

Proof. Let σ: A[G] ® A[G] -* A[G] ® A[G] be the interchange of factors. We have

We know that the outer triangle is commutative as well as all the rectangles on its

sides. Since φ and φ ® φ are imbeddings (1.0.4), the inner triangle is commutative.

1.3.1. Remark. If 2 is invertible in A, we can symmetrize the formulas for

Namely, in view of 1.3,

Therefore

= Σ -γ
1.3.2. Corollary. Affine group models of commutative unipotent groups are com-

mutative group schemes.

1.3.3. Remark. If the ground ring R has nilpotents, then there exists a group

scheme G over R whose generic fiber is commutative, but which is itself not commu-

tative. For example, R = k[u]/u2, k a field, R[G] = R[x, y, z], x, y primitive, and

μ(ζ) = z ® l + l ® z + z / y ® x .

§2. Some technical theorems

2.0. The properties of affine unipotent groups over discrete valuation rings turn

out to be rather close to the properties of unipotent groups over fields. To prove the

corresponding assertions we need some explicit information about the generators of the

ring A[G], which is contained in Theorems 2.3.0, 2.4.0 and 2.5.0 proved below.

2.1. Let A be a discrete valuation ring, π its uniformizing parameter, k = Α/π

the residue field, p = char k, and Κ the field of fractions of A.

Let X be an affine model of A" over A. We adopt the notation and conventions

of 1.0.
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2.1.1. Since A is a principal ideal ring, in view of Lemma 1.0.2 we have that ~P

is a free Λ-module with a single generator (i.e. r(t) = 1 in the notation of 1.0.3). We

denote the corresponding element z. by ζ .

Definition. We set y^ = 2,j 0 0 · , and denote by y i + j the first ζ such that

deg z( > deg y. and zt / A[y v ..., y f ] .

2.1.2. We set

Ω, = ΩΓ - ΩΓ.,, ΩΓ = [ 1, tr+l - 1],

/ = { / ι = 1 . / , Μ, 7 =11, Ν] — /, N = tn+1-L

It t € il{, then we put ω{ί) = i.

Proposition, a) If t ε 1, then

yt = atxw{i) + P(ylt... , */,_,), ateAT, a< =^0.

b) i / / e /, r£e« there exists df e Ν

Proof. If t el, then y, e K[xv ..., x ^ , but y ( 4 K[*p . . . , * ω ( / ) _ j]· There-

fore deg yt = ( i , , . . . , ζ ω ( / ) , 0, . . . , 0), ( ω ( ( ) ^ 0. Since * β * ω ( ( ) e /lt<7] for sufficiently

large a, and since deg y{ > deg yt iot i > /, and y. € K[xv . . . , * ω ( / ) _ j] for ζ < /, it

follows that the images of παχω.{. and y t in P d e coincide, i.e. ^ / ^ = 1, which

proves a).

From a) it follows that /C[xj, . . . , * ω ( / ) ] = K[y j> · • · > y^. Therefore iot t e 1 we

have ?ray/ e 4̂[y j , . . . , y/_ j]. Choosing a to be minimal with this property, we obtain b).

2.2. In this subsection we introduce some notions and we will prove some assertions

that will allow us to establish the main results of this section.

2.2.1. Let ρ = char Α/π 4 0. Let S be an Λ-algebra with generators u., i e [ l , t\.

We assume that [l, t] = lul , 1 e /, and to each i € I we associate the number r(i). If

P(z/j, . . . , «p is a polynomial, then the written form Ρ = ΣαΜ1 will be said to be reduced

if for ζ = (z'j, · · · , it) {torn a{ φ 0 it follows that ia < p r ( a + 1 ) for all α e [ l , t - l]

such that α + 1 e / .

Furthermore, we require that the algebra Β be the quotient algebra of the polynomial

algebra /4[«., . . . , u] modulo the ideal generated by the relations

ViF"7 naiUi = u?T+ 2 aiiul f o r aH e A a n d a 1 1 ' e i " '

where

is in reduced written form, and m(s, d) = (0, . . . , 0, d, "0, . . . , 0). We write

P(.(z/j, . . . , K J . J ) for w _̂ j + Σα(Μ
}. We define now Ω(. and Ω^ in the following way:
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& = [ U , + 1 - 1 ] ,

where \ΙΓΙΏ,{\ = i, | /n[ l , ti+l\\ = i + 1 (by definition Ωκι = [l, r] and Ωο = 0), and

Ω< = Ω,—Ω/-!.

If i e [1, i], then we put ω(ζ) = r for i efl r > Further, we put m = |/ | .

2.2.2. Lemma. Let P(uv . . . , z/f) e β. TAen Ρ has a reduced written form.

Proof. Let P(uj, . . . , ut) = Σ« ;ΐί ! be some written form of the polynomial P. Let

λ(ζ) = Σζ'α. We construct an algorithm S, which transforms the given written form of

polynomials into another. An application of the algorithm Q to the monomial uT gives

the polynomial Σ^-w7, where

Moreover, if max(X(/) : d , 4 0) = A(r), then Άί,ιι*) = uT; and this happens if and only if

uT is reduced. In view of these remarks the algorithm described below stops after a

finite number of steps, and the final result is a reduced polynomial.

We now describe 3.. Let aj? ^ 0 be a term of highest degree r = {r^, . . . , r() for

which r does not satisfy the condition of being reduced. Let β be the least number for

which β + 1 e Γ, β + 1 < /, rg> p K ^ + 1 ) . We put

Μι-

α (4iO =α,α?. . . ^ r p . . . u/' · u ^-" r ( & t l > (**««,„ - P^ (uv .., up)).

The property of U mentioned above is obvious, and the lemma is proved.

2.2.3. We have ΪΙτ<Ίΐ = tf. We put vf - utr, r e [ l , TO]. For a polynomial

Q(i>j, . . . , fm) we denote by deg 0 its degree relative to jy^! (cf. 1.0.1).

Lemma, a) The subring A[v^, ..., i i j of the ring β is isomorphic to a polyno-

mial ring in m variables.

b) Let P(uj, . . „, u{) 6 β , and let Ρ = 'ΣΟΜ1 be reduced written form. Let ρ =

max (ζ: a . 4 0), ρ = (ρ j , . . . , ρ ). Then there exist an a e N and a polynomial

Q{vv . . . , vm) such that naP = Q. Here if deg Ο = (Sj, . . . , Sm),

*·= 2 fp°n
l

Proof, a) obviously follows from Definition 2.2. L

We shall prove b). We put d = 1α€γάα (cf. 2. 2 1). For the written form S i .a1',

»̂  € Κ, we put

y, — ms>i[yjia:bti=0\, σ = max (i:bt φ 0),

(7e7:ia = O Va<=[?+1, Π Π 0·
We now define an algorithm !# (in some sense a converse to the algorithm (Ϊ of the
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proof of Lemma 2.2.2), which acts on the written forms of polynomial of u.,..., u .

Namely, if ~£b.ul, b{ € A, is some written form, k = Κ(Έ,ΒΜ1) and q = rt£b .u'), then we

put

From the choice of k and d it follows that c. £ A. Furthermore, it is obvious that

' ) ) < Klbji'). Therefore $ stops after / - |/| steps, and the end result will be

a polynomial in the u^ i e /, i.e. in the v.. It remains to show that this will be a poly-

nomial of the indicated degree. This follows from the fact that

σ (S3 (u1)) = ( t l iq.r, t , . i + p * > / , , 0, i,+1,...),

and from the following simple fact: if

»' = ('Ι '/). / = (Λ l·)' h-i < ΡηΦ·

then σ(»(«')) > σ(ίΒ(β')).

In fact it is necessary to show that / , + p q^i. > ]' , + p* 9 ) / ' follows from
( V 1» z'^ > ( V i » V ' z

g - 1 < Ρ a n d /,- 1 < Ρ · B u t i f z , = V t h i s i s obvious.
And if / > ;' , this follows from the inequalities on i j and / j .

According to what was said above, a term of maximal degree will always remain a

term of maximal degree, from which assertion b) of the lemma follows.

2.2.4. Corollaries, a) B is a flat A-algebra.

b) B® K= Uvv . . . . vj.

c) The reduced written form is unique.

d) Nonproportional reduced monomials have different degree (in the ring

K[vJ, . . . , υ ] and relative to νj, . . . , νm).

Proof. All these assertions are direct consequences of 2.2.3b). For example, here

is a proof of a). We must show that β has no Λ-torsion. Let Ρ € Β, and let "Σαν1 be

its reduced written form. If πΡ = 0, this means, according to 2.2.3b), that σ(ΣαΜι) = 0

(in the notation of the proof of 2.2.3), i.e. Σ Λ Λ ' = 0, as was required.

2.2.5. Remark. If «' is a reduced monomial, then each monomial u', i « /, is

also reduced.

2.2.6. Lemma. Let v{ •* v'. = avi + Q^v^, · · · , v._ () be a change of generators

in the ring /C[fj, . . . , ν ] . // deg and deg' are the degree functions with respect to

the first and second systems of generators respectively, then for'each polynomial Ρ €

K[v J, . . . , fm] we have deg Ρ = deg' P.

The proof is obvious.
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2.2.7. Let

We will say that this written form is reduced if the nonzero monomials d^u' and d^u1

are reduced.

Lemma. Each polynomial Ρ € β ® Β ® Κ possesses a reduced written form, which

is then unique.

This written form will be denoted by u(P).

Proof. Let Ρ = Σ6.Λ 1 ® u' be an arbitrary written form. We define an algorithm

3 = Q. ® (2 by the formula 9(P) = lb..Q.(ui) ® Q.(u'), where 0. is the algorithm from the

proof of Lemma 2.2.2. As in the proof of Lemma 2.2.2, we obtain 3 (P) = CE (P) for

sufficiently large d, and then u (P) is a reduced written form.

If Ρ = Σ& ..ul ® κ' = Ί,ά.ιι1 ® HJ are two reduced written forms, then

0 = Σ(6«—d«)

Therefore it suffices to prove that 0 e β ® β ® Κ has a unique reduced written form.

Let 0 = ̂ d{.u
l ® u\ and let

/1=max {t:di7^=O}, tt = max {/: dtli φ 0}.

Then under the inclusion of β ® β ® Κ in Κΐνχ> . . . , t ^ ] ® Kffj, . . . , i^] the lead-

ing term of this expression will be of the form

and is not equal to zero, which contradicts the fact that this is a written form of zero.

2.3. The goal of this subsection is to prove that the generators y. of the ring

A[G], where G is an affine group model of a unipotent group with generic fiber isomor-

phic to AJl, possess the properties indicated in 2.2. We shall use these properties in

§§3 and 4.

We apply the notation of §2.1 for X = G. In addition we put

P°-i
η (χ) = μ (Χ) - χ ® 1 - 1 $ χ, φα (χ) = J - V CPaX

l®X°a-<

and let m(i, d) denote a vector of arbitrary length whose ith component is equal to d,

and the remaining ones to zero. We put h{i) = deg y..

2.3.0. Let G be an affine group model of a unipotent group over A whose generic

fiber is isomorphic to A£. Let K[G] = K[xy, . . . , x j , where we shall assume ([7],

Chapter IV, § 4 , Theorem 4 1) that x. is primitive modulo Κ[χχ, . . . , χ

{_ι\·

Theorem. Let p = char Α/π 4 0. We can choose y ., i e I (see 2.1), so that
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n<liyi — y?-i + Pi (J/V • · · » yi-\)>

where a) deg'p.(yv ..., y._ j) < p K 0 deg y ._ j , and b) π4ί\ρ.

2.3.0. L Remarks, a) The theorem can also be proved when char Α/π = 0. How-

ever, in this case, instead of assertion b) of the theorem, we have the condition nd'\p

for some prime p, from which it follows that 1=0 (cf. 0.8.1).

b) If char Κ = p, then assertion b) of the theorem is void, since p = 0 in K. This

gives us the possibility of proving more precise assertions in characteristic ρ (cf. 2.4,

2.5).

2.3.0.2. The proof of this theorem can be considered as a detailed carrying out of

the proof of the theorem on linear unipotence. We use in an essential way the possibil-

ity of canonically choosing a basis in /4[C]· The apparatus that gives this canonical

choice is the reduced polynomials of 2.2.

2.3.1. Before we proceed to the proof, we introduce some notation and definitions.

2.3.1.1. We shall say that y., i < t, are properly chosen generators if they satisfy

the conclusion of the theorem.

It is clear that the considerations of §2.2 are applicable to the subalgebra Β of

A[G] generated by the y{t i < t. In particular, one can define "reducedness", and as-

sertions 2.2.2—2.2.7 hold.

2.3.1.2. Lemma. Let y^, . . . , y{ be properly chosen generators, and let t + 1 e /

and n yt+i = Σ Λ ^ ' , a

i

 e A, where Σα;γ' is a reduced written form.

a) // a

mym

t

 a

m Φ 0, is the highest degree term in this written form, then we may

assume that a = 1 .m ,
b) If a~ e η ί + Μ, then we may assume that a. = 0.

Proof. Assume that a = nb, b e A. Then
m

and deg ζ < deg yt+1. Hence

But, in view of the flatness of y4[(j], this contradicts the condition on the choice of

dt + 1 (cf. 2.1.3). Therefore am e A*.

We put y,' + j = a~ y, + j· It is easy to see that y/ + j satisfies an analogous equa-

tion with am - 1.

Now if a. €ndt + lb, b e A, then we put yj + l = y< + J - by'. Then y't+l e A[G] and

7Γ ' + 1 y / + 1 = Σ β ^ α - a.y\ as was required.

2.3.1.3. Lemma. Let y1,...,yt be a properly chosen system of generators. Let

t + 1 € I, and let
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4- 2 toy1' °'> *<+« e '̂»

fee a reduced written form. If a. £ A, then we may assume that a. = 0.

Proof. Let ai £ A. Putting y(' + i = y (+i - a

iy
l we get our assertion.

2.3.2. Let Μ = Aid] ® A[G] and τ = (r x , . . . , rj. We denote by Alr the subspace

of ΑΙ ® Κ generated by elements a ® fc for which deg α + deg b < r. The function

deg a ® fc = deg β + deg b will be called the global degree.

2.3.2.1. We recall that, according to 1.1.2, for all y e A[G] we have

η {y) = ^ ^ ® &/' fl/· &/ S A [G],

deg a/ < deg y, deg by < deg y, deg a ; <g) b/ < deg i/.

We must make this assert ion more p r e c i s e .

2.3.2.2. Let y = lay', a. e K, be a reduced written form. Let Λ = \j:a. φ. 01. We

number the elements of Λ in increasing order, and write

L e t

be reduced written form.

Lemma. Let r = deg γλΐ~ι, and assume that b.. e A if deg y' ® y ; > r. For ?/(y)

e Λ1 ίί i s necessary that

η (ViA*1) + 2 biiyl ®y'^M + Mr-
deg y* ®y' =r

Proof. Reduced monomials form a basis of i4[G]. The reduced written form for

7^y) is precisely the expression of η{γ) by basis elements, which was used in 1.1 to

prove linear unipotence. The terms b^ a, a < q - 1, have smaller degree than
Xi~x (see 2.2.3, 2.2.6). Therefore

From this our assertion follows.

2.3.2.3. The preceding assertion is used in the following form.

Corollary. We adopt the conditions of 2.3.2.2. // deg y 1 ® y' = m(t{j, pa'i) for

bry' ® y7 4 Ai + A1r, then either λ _ j = m(.t, pa), or r^b _ ,y X «- J ) e Λ1 + M r.

Proof. We assume that rf{bq_ xy
X"~ ·) e Μ + ΛίΓ. Then 2.3.2.2 yields r = m(/, p"

The assertion now follows from 2.2.3 and 2.2.6.

2.3.3. We recall some properties of binomial coefficients and the expressions

Φβ(χ).
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2.3.3.1. Let d=pa.b. Then p"~a\C^ if p a + 1

2-3·3·2. CΛ,αΑ ^ ^rf mod p.

2.3.3.3. GCDa€[i.^i\Cj = I U d4 pa, Ρ prime; and G C D e e [ l f r f _ , ] C ^ - p if
d = p", p prime.

2.3.3.4. Φα(χ) € Z[x] ® Z[x], and Φ^χΡ 6 ) = Φ β + 6 ( * ) π κ ^ p Z[x] ® ZW.

2.3.4. Now suppose that y v ..., yt are properly chosen generators.

2.3.4.1. If i el, then

tifi/OsOmodMAw.

η (yfOb) = 5) CJiif"0 <g> t/f°( "° mod pM + MHW
σ—ι

for β > 1, and η(γρ.α) m ρΦ^"'1) mod p2M +. )

2.3.4.2. Lemma. Let i ej,m = p"b, b > 1, p { b, γ = m(i, ρ"), δ = m(i, m - p"),

and

where ya ® y^ are reduced monomials for ^ m I - a «^0· Then

Proof. Let

η (yd = 2 ^«P^0 ® ̂ β m

where deg i» ia/gya® y^ = A(z'), deg b.afy
a < h{i), and deg biafp

P < h(i) for Βίαβ 4 0.

Then

η (y?) ~ (yt® 1 + 1

m-i

- 1 ® yT = Σ Ο Γ β ® ί/f + 2 d^ya® y* mod M

We note that either y a or χ contains y •, j < i, for deg da0/a$, y ^ = m/>(«) and α, ^

5̂  m{i, d). If after putting such a monomial in reduced form we have a term of the form

yf ® y^, a + β = m, then this will be the term of highest degree and thus its coeffi-

cient will be a multiple of n, from which our assertion follows.

"2.3.4.3. Lemma. Let i e I and m = p" , a > 0. Let y, δ aW bm .y j 6e as in

2.3.4.2. TAew i>m . y S = C^° mod ^p.

Proof. For η(γ™) we write the same expressions as in the proof of 2.3.4.2. The

same method as in the proof of 2.3.4.2 establishes that the terms da$
a ® y , which

after reduction give the term y* ® y with a coefficient that does not lie in np, are

contained in the sum
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(since the remaining terms contain the coefficient p and after reduction they again give

n).

Assume that bm

ia/$!ma ® γτηβ after reduction gives dyp." ® yp."(p~ l). Then for a

suitable b we must have

deg yma = deg y^ = tn (ω (i), pb).

Consequently

deg ya = m (ω (i), P6-0"1)

and, in view of 2.2.3, y α = y? and p · deg y a = deg y{. But then, since the written form

for 7/(y.) is reduced, from the proof of 2.3.4.2 we will find

y»a-=d'yi + Q (...), degQ<degt/,.

From this it follows that ya = y ^ j , and hence

y* = y?THp-i).
We assume that the coefficient of such a term lies in n~ *pA. Then

( W ® i/p)p e= (π-"'ρ)ρ (^0 ρ Λί + ΜρΗ*

from which our assertion follows.

The proof that ί>ζ·α« έ π~ 'pA is carried out by induction. Let o>(z) = r, ι = /̂  + ;.

If / = 0, our assertion is contained in 2.3.4.1. We assume that i·. n> nue for / — 1 and

prove it for ;. We have

η («/.·-,) = π-"'-ιΡ άΦχ (i/f-T'1'"') + ..., d e A,

η (Ui) = π""·' (ft ® 1 + 1 ® # + K"d'
-d. pr(i) -rrf. pr(/)

— n'yf — π Ί ® ΐ / ? .

Terms of the form y^ ®yf of degree deg y f are obtained by different methods, but by

virtue of the induction hypothesis and in view of the fact that enough factors of π show

up under reduction, we get our assertion.

2.3-5. We proceed to the proof of the theorem. We use induction on i. Assume we

have proved that yj, . . . , y( are properly chosen. We shall show that y/ + 1 can be cho-

sen properly. If / + 1 e /, there is nothing to prove (cf. 2.3.1.3). So assume t + I € / .

2.3.5.1. Let π i + 1 y,+i = ̂ -e,y,· t>e reduced written form, a. e A. Let m =

max(i:e t.^0). By 2.3.1.2, am = 1. By 2.3.2.2,
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We shall show that m = m{t, p") and π ί + 1 | ρ follow from this.

2.3.5.2. We note that if m = (nzj, . . . , m^ 0, . . . , 0), then mt 4 0.

In fact, if m = 0, then, by the reducedness (see 2.2), we will have deg y + 1 <

deg yt, which contradicts the fact that y t + 1 has been properly chosen.

2.3.5.3· Assume that πι{ 40 for i < t. Then η(γ( + ι) contains the term

π '"ι/ί ® y

which, by 2.3.4, is the unique reduced term of such a form in η(γ(+1) that does not lie

in pM. From this it follows that this case is impossible, i.e. m{ = 0 for all i 4 t.

2.3.5.4. Now let m. = 0, i 4 t, mt = d, d=pab, p \b and b4 1. By 2.3.4.2 it

follows from this that π < + 1 | C £ , o. = 1, . . . , b — 1. However, this is not possible for

2.3.5.5. Thus mf = p", and w; = 0 for all i 4 t. By 2.3.4.3 we must then have

ndt+l[C* for all α e [l, p - l ] . From this it follows that ff'/'+1|p, which, together with

the proof of 3.1, which again allows us to use 2.2, completes the induction step.

2.4. Now suppose char Κ = p. Let K[G] = K[xj, . . . , * nJ. Assume that [ l , n] =

Ua=i/a» /αΠ/β = 0 tot a 4 β, and we have that ζ > j lor ο. > β for all ζ e / a and

all / e/ο. Assume further that for i e / a we have

η (χ,) = 0 mod Klxj, i e U ̂ p] ® /C [*/, / e U ^1-
β<α α<β

Such a partitioning corresponds to the normal series whose quotients are isomorphic to

α,Κ"
We put

= U Ωί. Ωβ = Ωί — Ωα, l'

If i e Q a , we put ω(ζ') = a.

2.4.0. Theorem. Let char K = ρ > 0. We ca« choose y., i e [ l , Λ/] (c/. 2.1),

for i € I we have

/or ζ e / u/e

+ 2 2
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Here, setting KO =max(a : a. ._ j a4 0) for i el, we have;

a> « i . i - l . K i ) " 1 & ί_€*ϊ· and

b) aija = 0 if / + 1 € / W α > Κ; + 1).

2.4.0.1. Remark. Assertion a) is contained in 2.3.0. Assertion b) means simply

that we consider things in reduced written form.

2.4.0.2. The proof of Theorem 2.4.0 is in essence that of Theorem 2.3.0 using the

property ρ = 0.

2.4.1. We will now say that y j , . . . , y t are chosen properly if they satisfy the con-

clusion of Theorem 2.4.0. It is clear that all the properties of proper generators that

were considered in 2.3 are also preserved in the present situation.

2.4.2. Now let ylt ..., yt be properly chosen generators. We assume everywhere

below that d. = 0 for i e /. Put

Ri« Μ + Κ [yi, j e Οίκο!!® Κ Ιί//. /

2.4.2.1. For all £ e [ l , /]

η (yt) = 0 mod Rlt

r\(yfb) = Σ dyfa®yf(b-a) mod/?,.
α=ι

In particular, rjiy? ) =0 mod J?̂ .

2.4.3. Proof of the theorem. Induction on i. We assume we have shown that ylt

y are chosen properly. We shall show that we can choose y. + j properly.

2.4.41. Let

where X(+i = 0 if i € / , Σ β ^ 1 is reduced written form, a. € Κ and

deg Σa^yi<άeg xait+i)

for ί € I. We apply the notation of 2.3.3.2 to y = S^.y*. In particular, Λ = \i; ai ^ 0}·

having enumerated the elements of Λ in increasing order, we have

If λ α = m{i, d)t we put p(a.) = /.

2.4.4.2. Secondary descending induction on the elements of Λ. Assume that for

α > q we have shown that λ α = m(p(a), pv°). Put

By 2.4.3.1 we have. η(ζ) = 0 mod Rt + V

2.44.3. Put λ ρ _ χ = m = (m,, . . . , mN) and y m 4 K[yf, i ^ a ( ( t i ) - l ' · W e s h a 1 1

show that if m Φ m(i, p ), then b χ e A, and then we apply 2.4.1.1 or 2.3.1.2. By



7 8 0 Β. Ju. VEISFEILER AND I. V. DOLGACEV

2.4.2.1 and the property η(ζ) = 0 mod Λ,+j we have

η Φι-iy") =. o mod (/?/+1 + M + Mkg „-*).

„<*However, in view of 2.3.2.3 for m 4 m(i, p ) it follows from this that & j € A, as was

required (for tn = ι«(ι, p ) we obtain the condition 0 · b j £ A, which cannot occur).

This proves the theorem.

2.5. Corollary. Under the assumptions of Theorem 2.4.0, if the generic fiber of G

is G" K, then y., i e [l, N], can be chosen as in Theorem 2.4.0, where Ρ. = 0 for all

i e[l,N] (since J1 = [l, N] in this case).

2.6. Corollary. Under the hypothesis of Corollary 2.5 there exists an exact se-

quence of groups over A;

- - i

Proof. We put F{ = nd'Y,- - Ρ/Υν . . . . V,·. j). ' « Γ. . Since the P ; are ^-polyno-

mials, the mapping φ: A[Xjf i £ I ] -» /4[Vj, ..., YN], given by the formula

ψ(Χ0~ΛΡΊ Υ Ν),

defines a homomoφhism G ^ -• G'1 ' (if we assume X ; and y^ to be primitive), whose

kernel i s the coordinate ring of the group G. It is obviously an epimorphism.

2.7. Remark. Apparently, the proof of Theorem 2.4.0 can be extended to the case

when the Ja are chosen so that

η (*/) = Σ Σ «//«Φ* (*/)mod Κ [*ι, i e U /β] ® f I*/. / e U /rf.
/</ m " < α Ρ < α

(This corresponds to a series whose factors are commutative.) For this it would be

necessary to change the order of the vectors deg y', to prove an analogue of 1.1.2 for

this new order and to adapt 2.2 to the new situation.

Such a generalization of 2.4 would allow us to prove Theorem 3.5 in the following

guise for arbitrary commutative groups: smooth models of unipotent groups with connec-

ted fibers over a discrete valuation ring with -field of fractions of characteristic ρ are

forms of A£ in the radical topology.

§ 3 . The geometry of unipolent groups

3.0.0. In this section A denotes a discrete valuation ring, Κ its field of fractions,

7Γ the uniformizing parameter of A, k = Α/π the residue field, and p the characteristic

of k.

3.0.1. In this section we shall prove that affine unipotent groups over A, since

they are models of A£, are complete intersections in A^. Moreover, if the equations

defining such a group G are written as p-polynomials (see 3.3.0) (we then say that G

is a p-polynomial group), and if the fibers of G are smooth and connected, then GA' =

GA ® Λ A' = A^' for some quasi-radical extension A' D A (see 3.3.2).

In particular, if Λ I? F , then each smooth commutative group G with GK =" G^

with connected fibers is p-polynomial, and by the same token we can apply the asser-

tion given above to such a G.
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3.0.2. The question of whether every affine unipotent group model of A^ is p-

polynomial remains open.

3.0.3· We observe that the assumption that our unipotent Α-group scheme is affine

is not very restrictive. According to the result announced by Raynaud (cfs [12], IX,

2.2), every flat separable Α-group scheme of finite type with affine generic fiber is af-

fine. The condition of separatedness holds for any flat group scheme of finite type

with connected fibers ((SGAD), ν ΐ β , 5.5).

We observe that, without using the result of Raynaud mentioned above, we can find

that unipotent quasi-affine Α-group schemes are affine, if we use [12], VII, 3.1.3.2. In

particular, this is true if G is smooth with connected fibers (since in this case G is

quasi-affine (see [12], VII, 2.1)).

3.1. Theorem. Let G be an affine unipotent group that is a model of A* over A.

Let y , , , . , , y N be generators of the algebra A[G\. constructed according to 2.1, and

set

i^yi = Pc{yv •·> yi-i)> * e T ,

where Ρ. is a polynomial of the form indicated in Theorem 2.3.0. Then the relations

indicated above are the only relations in A[G].

Proof. We have shown in 2.2.4 that the algebra Β constructed by the generators

and relations indicated in the theorem is flat. Let φ: Β -» A[d] be the projection of Β

onto A[G]. We have a commutative diagram

Β * — - * A[G]

K[Ut, l 6 / ] - > / ( [ ! / i , f e / ] = K [ * i , . · . , Xn\.

Since the bottom arrow is an isomorphism, and the vertical arrows are inclusions, it

follows that φ is an isomorphism, which proves the assertion of the theorem.

3.2. Corollary. Let G be an affine unipotent group over A, which is a model of

A£. Then G is a complete intersection in A^.

Proof. We retain the notation of Theorem 3.1. Let / = {z'j, . . . , z'r!, where r = Ν

- η (cf. 2.1. 2) and ij < · · · < if. Putif.

Fm=ndl>"Yim-Pim(Y1, . . ..VV,).

By Theorem 3.1 the scheme G is given by the ideal 7 = ( F , , ..., F ) in A^ =

Spec AfYj, . . . , YN]' We must show that the sequence F j , . · . , Fτ is regular, i.e.,

setting Bm = AtVj, . . . , YfliAFi, . . . , Fm_ j), we must show that Fm is not a zero

divisor in β . By 3.1.1 the algebra Β . is flat. Therefore β is included in β ® Κ.
m • ' *·* t τη τη

We have

Bm®K = κ [Yh / e (/ η [i. fm — η) η Vm, NH
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Let / be an ideal in Bm® Κ generated by Υ;., j e I nil, i'm - l] . If Fm is a zero divi-

sor in Bm, then Fm is a zero divisor in S m ® K, and hence Fm is a zero divisor in

Bm ® /C//. However, Bm <8> K// = K[yy, / e [ i m , ft]], and the image of Fm in Bm ® K//

is 7Γ tmYim» Since y,m is not a zero divisor in K[V., / e [z'm, w]], our assertion is

proved.

3.3. We will say that an affine scheme G over A is p-polynomial if A[G] =

^[y ρ . . . , yN], [ l , Λί] = / υ / , / η / = 0 and (7 is given in, A^ by the equation

π lyi = Έ 2 atlayf* Οι/α e A, nl \ p,
/<«" α

fl/ M r(«) = 1. r (/) = max (a: a,· ,·_, a ψ. Ο) for i e /.

It is obvious that a p-polynomial Λ-scheme G is a model of A£.

The goal of this subsection is a proof of the following result.

Theorem. Let G be a smooth p-polynomial scheme over A with connected fibers

of dimension n. Then there exists an unramified extension A' D A such that the corre-

sponding extension of residue fields is radical and GA' = GA ®A A' = \A>.

3.3.0. Definition. A polynomial of the form

p(xv ..., xn) = Σ*ιΧ? e A [X, Xn]
i.i

is called a p-polynomial.

A mapping /: /4[Xj, . . . , Xn] -» /4[Tj, . . . , T^] is called a p-polynomial homomor-

phism if f(X!) = Rf(7*j, . . . , Tn) is a p-polynomial for all i e [ l , «].

If, moreover, / is an ΐεοΓηοφΗΙεπι and f~ is a p-polynomial homomorphism, then

/ is called a p-polynomial isomorphism,

3.3.1. Lemma. // /: A[Xlt . . . , Xn] -» /4[Tj, . . . , Tn] w a p-polynomial homomor-

phism, then for any p-polynomial P(X^, . . . , X )

' = P'(TV . . . , Γπ) ζ5 α p-polynomial.

3.3.2. Definition. A discrete valuation ring Λ containing 4 , with uniformizing

parameter n' and residue field k' = Α'/π', is called a quasi-radical extension of Λ

if 7Γ/4' = W'A' and k /k is a radical field extension.

We note that if A D F., then the morphism Spec A' -» Spec λ is radical in the

sense of 0.10. le).

3.3·3» Lemma. Por «ny invertible element a € A and any η > 0 there exists a

quasi-radical extension ADA containing an element a €A such thai a Pn — a € nA .

Proof. Let a be the image of a under the natural homomorphism A -» k. We choose

a radical extension k' = k(\/~a") and some finite quasi-radical extension A' D A

with residue field k' (this can be done because of (EGA), 0 Ι Π , 10.3.2). Let a' € A be
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ρ η
mapped into \JW under the natural homomorphism φ: Α' -* Α'/π = k'', Obviously

φ (a'"") — φ (α) = φ (α'ρ" — α) = 0

and by the same token α>{> - a e πΑ', as required.

3.3.4. Lemma. Lei Ρ e A[Xj, . . . , X ] fee a p-pclynomial that is irreducible mod-

ulo π and has invertible nonzero coefficients. There exist a quasi-radical extension

A' D A and a p-polynomial isomorphism f; A'[X l t . . . , X ] -» A'[T v . . . , Τ ] such that

f{P)-TlepA\Tv . . . , r n ) .

Proof. Let

<=o

We apply induction on the maximum of the m . with flym . ̂  0. Without loss of general-

ity we may assume that m^ = max(my: aim. 4- 0). Assume that ml = 0. Then, setting

i = 2 n,

. (7Ί, · · . , TB) = αΓο11 Γχ - S a /o r / -

we find that P{Rlt . . . . /?n) = Τj . The homomoφhism Xf -» R{{TV . . . , Tn) obviously

defines a p-polynomial isomorphism A[X^, . . . , X ] ·* A[T^, . . . , Τ ]. Now let m. > 0.

If all the ajm. = 0 for / > 2, then the polynomial Ρ ( Χ ρ . . . . Xj = ̂ •m}QaliX\1 is not

irreducible mod n. Thus we may assume that, say, «2m j ^ " · ^y assumption TOJ > n?2.

By 3.3.3 there exists a quasi-radical extension Λ1 3 Λ containing the elements

( / ) p ~ m 2

 y Put

i?i = Tit i > 3,

^2 — 1 2 — °πν ι — • · · — °mxl ι

The homomoφhism / : X(. -» R^Tj, . . . , Tn) obviously defines a p-polynomial isomor-

phism A'[XV . . . , Xj - Λ'[Τι, . . . , Tj. We have

= «2mi (X2 + *«Λ + .. . + 6miXf'""Υ"" + pf (Xlt X2)

and thus

"Ί-Ι m,

ρ' = ρ (/?! /?„) = 2 αυτί + 2 t
ί=0 ί=0
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Since / is an isomoφhism, the polynomial P'(TV ..., Tn) is irreducible. If τηχ > τη-,

we lower maxifflj, . . . , i»w) and we can use the induction hypothesis. But if τη. = m.,

then we must apply the preceding argument, interchanging T1 and T2, and again lower

« 2 · The proof i s complete.

3.3.5. Lemma. Let F = ndXn+l - P(XV ..., Xn) e A[XV ..., Xn+1l and let Ρ

have the form Ρ = PQ + πΡi + ... + ndPd, where P. € A[XV . . . , Xj, i = 0, . . . , d.

Put

, Xm K, Yd],

i = l , . . . . d, Ko = 0.

Then there exists an isomorphism

f: A[Xt Xn+i]/(F) — A[Xlt . . . , Xn. Y» •••, YAI(F[ F'd).

Proof. We define a homomoφhism / : /4[Xj, . . . , ̂ n + i ] -» A[Xlt ..., X , Vj,

Yj] by setting

X) Xt for i = l n,

i)=*Yd + P4(Xu . . · , Xn).
We have

7(F (Χχ Xn+i)) = 7 ί η"^η+ι - 2

d

n"Pd

d-\ d

Therefore / defines a homonu^hism

f: A[XV . . . . X«+,l/(f)-^i4[X1 Xn, Ylt .... YiV(F[ F'd).

The fact that / is an ϊβοίηοφηΐβπι follows easily from the construction of / .

3.3.6. Lemma. Let F = nXnn - P U j , . . . , Xj -ττ&Χν . . . . Xj eA[Xv . . . , Xn+,],

where Ρ = P(Xj, . . . , X ) is a moan irreducible p-polynomial. Then there exists a

quasi-radical extension A' D A and an isomorphism f: Α'[Χν ..., Xn + l]/(F) -»

A'[YV ..., Yj such that
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Υν . . . , Yn),

where the R . are p-polynomials.

Proof. We may obviously assume that the nonzero coefficients of the polynomial Ρ

ate invertible. Applying Lemma 3.3.4, we find a quasi-radical extension A' D A and a

p-polynomial isomorphism

/x: A' [Xlt . . . , X n + 1] -»- A' [Tlt . . . , Tn, Xn+il

such that / 1(F) = i7Xn + 1 - T 1 - i 7 Q ' ( T 1 , . . . , Tn).

We write the polynomial Q' in the form

Q'(7\, . . . . Tn) = Q[(T2 T^ + T^T, Tn)

and consider the ίεοίηοφΗίΒΓη

h •• Α' [Τλ Tn, Xn+1) -v A' [T, Tn, S],

defined by the following formula:

= Tit £ = 1, 2 n,

MX^^S-TUFV . . . , τη).
We have

hof1(F) = n(S-Q[1{Tv ..., Tn))-Tv

from which, by passing to the quotient ring, we obtain an isomorphism

/,: A' [X, Xn+l]/(F) - A' [7\ Tn, Sy(n (S - Q[ (TV . . . . Tn)) -

Taking the composition of this isomorphism with the isomorphism

A'lT, rn,Sl/(n(S-Q;<T2 Tn))-TJ-+A'[Y,, . . . . Yn],

that is defined by the formulas

i-u i = 2, . . . . n,

7\»— π ^ π — nQi (V^ Yn~i),

we find an isomorphism /: A [X,, . · . , X n + 1 ]/(F) -» A [Y^, . . . , Y^]

From the construction of / it easily follows that

where the RfiYi, . · · , ̂ n ) a « p-polynomials.

3.3.7. Proof of Theorem 3.3. By definition there exists a subset / = h'j, . . . ,

iN_J C [1, N] such that A[d] = A[XV ..., XN\/(Fl FN-J* w h e r e Fi " ^^ij

- Ρ lxv ..., X,;._ i), / = 1, . . . , Ν - n, the P;. are p-polynomials, and η >\p.
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a) ( R e d u c t i o n to the c a s e when d. = 1, and the nonzero c o e f f i c i e n t s of the po lyno-

m i a l s P. are invert ib le . ) We represent the po lynomia l Ρ ^Χχ, . . . , X,-j_i) in the form

px = Pf + πΡί1' + ... + π*-1/»?'-1' 4- n?'Pld>\

where the Ρ γ' (i = 0, . . . , dl - 1) are /(-polynomials with invertible nonzero coeffi-

cients. Applying Lemma 3·3·5, we obtain a homomorphism

fx: A [Xv . . . . XN] -*• A [Ylf . . . , Ytt-i, K,·,, . . . . Yil+<tt. · · » · YN+dt]

Xt *-*• Υι+ds h <

Xu»— Υιχ*Λι - P?rl) (Yi

inducing an isomorphism

where

Since /j is a p-polynomial homomoφhismϊ we have

7l (̂ 2) = ̂ i = «rf'^,+rf, - P* <Yi Yt++rJ - PQ <Yv · · ·. Ywr-i

where P2 is a p-polynomial. We represent Fj ^n f0

/ · ; = * f . y f c + A - Pi0} - πΡ^ 1 } - . . . -

where the nonzero coefficients of the P2 (0 < i: < ̂ 2 ~ *) a r e invertible. Applying

Lemma 3·3·5 to F j , we obtain an isomorphism

/,: A[XV . . . . XnV{Flt

A \ZX ZN+di
X i M

wnere

F f = πΖ/,^-χ - Z/1+/_ - Pf"1' (Zx Z,,.,),

= «Z/1+*, - P^o) (Z, Z/^.. ,),

Ζ?' 1 ' (2i. · · · , Ζ/,+rf,-!), 2

Continuing this process, we eventually obtain an isomorphism
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where d = άχ + .,. + <?N_ n, and for some subset / ' = { i p . . . , iN_n+^ c U» W] we

have that F' = «Τ,· · - Ρ (Tj, . . . , Τ,·._ 0 and the P. are p-polynomials whose nonzero

coefficients are invertible. Therefore we may assume that d. = 1 and the nonzero coef-

ficients of Ρ . are invertible.

b) Since the closed fiber GQ of the scheme G is integral, the fc-algebra &[GQ] is

also integral. We have

= fe[Xi Xsyipt pN_),

where the Ρ. are the images of the polynomials P f under the reduction homomorphism

/4[Xj, . . . , X^] -» λ[Χ j , . . . , X^]· In particular, the polynomials Pt.(Xj, . . . , XN) are

irreducible.

c) (end of the proof). Let

Bi = AlXt XtjWi Ft), j= 1, . . . . ff — n.

By Lemma 3.3.6 there exists a quasi-radical extension A' D A and an isomorphism

h · B'i = Si ®A A' -+ A' [Y, Yl}rl]

such that

/?, (Ylt . . . . y i t .o + «Φι (Kt y^.0, ι < f < f1P

where the R ;(yj, . . . , Yi i- i ) are p-polynomials. We extend the isomorphism /j to an

isomorphism

7 i : B\ = Ba <gu A' = Si [X/l+1, . . . . Xity{nXit - P% (Xv . . . .

-+A'[YV . . . , Κ,,-χ, Vi,

by setting

Ίι(Χι) = h

Obviously Pj CV ι» · · ·> ^ 2 - 2 ) >s a n irreducible p-polynomial. Thus we can again ap-

ply Lemma 3.3.6 and continue with an analogous argument. Finally, we obtain for some

quasi-radical extension ADA the desired isomorphism

/: A[G] = BN.n <SUK+ A[ZX Zn]

and thus we have proved Theorem 3.3.

3.4. Corollary. Under the hypotheses of Theorem 3.3 »e assume that the residue

field k is perfect. Then G = \%.

In fact, since k is perfect, the extension A 3 A of the assertion of Theorem 3.3

necessarily coincides with A.
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3.5. The application of Theorem 3.3 to unipotent groups is based on 2.4.0 and 3.L

Theorem. Let S be a locally noetherian regular integral scheme of dimension < 1

over a field k of characteristic p. Let G be a commutative smooth unipotent S-group

scheme with generic fiber of period p and with connected fibers of dimension n. Then

G is a form of AJ relative to the radical topology (cf. 0.10.2).

Proof. If dim S = 0, the assertion is well known (0.7.3c)). Assume that dim S = 1.

Using the standard technique of passing to the projective limit ((EGA), IV.8.5), we may

assume that S = Spec A, where Λ is a discrete valuation ring. Let Κ be the field of

fractions of A. In view of 0.7.3c) there exists a radical extension Κ /Κ such that

GK Φ ^ Κ S* G^ K'· Let S be the normalization of S in Κ . Then S = Spec A , where

A i s a discrete valuation ring, and the canonical morphism Spec A -» Spec A is radi-

cal. Now taking instead of G the group scheme G = G xA S , we find ourselves, be-

cause of 0.7.3c), in the situation of Z5. Therefore G is a ^-polynomial A -scheme.

Since the conditions of smoothness and connectedness of the fibers are preserved under

flat base change, we can apply Theorem 3.3 to G . As a result we obtain a quasi-radi-

cal extension A" DA' such that G' 0 ^ ' A" S' A^«. Since A' D F , the morphism

Spec A" -» Spec A' is radical (cf. 3.3-2), and therefore the composition S" = Spec A "

-» Spec A' -» Spec A is also radical.

3.6. Corollary. In addition to thehypothesesof Theorem 3.5 assume that the gene-

eric fiber G is isomorphic to G^ and that the residue fields of the closed points of

S are perfect. Then G is a form of G^ s in the Zariski topology.

This follows immediately from 3-4 and the proof of 3.5.

3.7. Proposition. Let S be a locally noetherian regular integral scheme of dimen-

sion < 1. Every smooth group model of G f l over S with connected fibers is a form of

Gfl £ in the Zariski topology.

The proof of this proposition is precisely analogous to the proof of Theorem 3·5 and

Corollary 3.6, in which instead of Theorem 3.3 we use the following

Lemma. Let G be a smooth model of Ga K over A with connected fibers. Then

Proof. According to 2.3.0, A[G] = A[y^, ..., yNl, where / = [2, N] in our case.

We shall show that 1=0.

Assume that I 4 0. Then A\G\ is given by the relations

nlyt = i/f-Ί + Pi (yv . . . . #,_,), t = 2 N,

where deg P{ < degy ; . We consider k[G] = k[yx, ..., yN],

yf-x+Pi^x y/-i) = o r / = 2 N.

We put Β = k[y j , y2] C k[G]. The inclusion Β -* k[G] defines an epimorphism G -> Spec B.
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(That Spec S has a group structure follows from the linear unipotence of G.) From this

we see that Spec Β must be a one-dimensional smooth connected unipotent group scheme.

However,

β = HXlt X 2]/(Xf r ( 2 ) - P ^ ) ) , degPjiX,) < p*U\

and is not a geometrically integral ring. Therefore 1=0 and A[G] = ^[yj], as required.

3.8. In this subsection we offer some comments on the results of this section.

3.8.1. The proof of Theorem 3-3 is considerably simpler if the ring A is equichar-

acter is t ic . In fact, Lemma 3·3.1 shows that the image of a p-polynomial with respect

to a p-polynomial homomorphism is again a ^-polynomial. This fact allows us to con-

siderably simplify Lemma 3.3.6, and along with this yields a proof of the theorem.

3.8.2 It appears that Corollary 3.4 can be strengthened if instead of requiring that

the residue field be perfect we require the existence of the isomorphism GQ 2" A£ for

the closed fiber. For this it is necessary to show that Lemma 3.3.4 holds in this case,

with A' = A.

3.8.3. The results of Ζ3.0 and 3.3—3.6 make the following conjecture plausible.

Conjecture 1. Let S be a normal locally noetherian integral scheme and G a

smooth ajjine unipotent S'group scheme with connected fibers. Then G is a form of

A? with respect to the fppf'topology. If in addition S is an equicharacteristic scheme,

then the same is true with respect to the radical topology.

We observe that the condition of affineness in Conjecture 1 is essential (cf. Ex-

ample 6.2). If S is a scheme of characteristic zero, then Conjecture 1 is true by vir-

tue of 0.8.1.

3.8.4. If dim 5 = 1 , the preceding conjecture would follow from Theorem 3.3 and

the following conjecture.

Conjecture 2. Let A be a discrete valuation ring. Every unipotent group model

of affine space is a p-polynomial A-scheme.

3.8.5. Conjecture 1 is obviously a special case of an assertion of the following

form:

Let S be as in Conjecture 1, and X an affine S-scheme such that the fiber X =

\" for all s e S. Then X is a form of A£ in the Zariski topology.

It has been shown by V. I. Danilov (unpublished) that this assertion is true if η =

1 (cf. 3.7). The preceding assertion is closely connected with a result of Bryftski [5].

§4. Composition series

The notation is the same as in 3.0.0.

4.1. Theorem. Let G be a unipotent group model of A£ over A. Let Η be a

normal subgroup of the group GK; Η is isomorphic to A^. Then there exists an affine

group model H, normal in G, such that Η^ = H. The quotient G/H exists and is a

group model of the group GK/H.

Proof. Let K[G] = K t * . . . . . . χ ] and KlG^/Tf] = K[x., . . . . χ A (here we

have used a theorem from [7], IV, §4, 4. 1). We will moreover assume that x. i s
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primitive modulo x., . . . , x. . (see [7], IV, §4, 4.1). Put Β = A[G] nK[x1t . . . , χ . ] .

The kernel of the homomorphism G -» Spec Β has the ring i4[C]/(y., ζ e Ω j) as its

ring (cf. 2.2.1). The kernel is flat by 2.2.4a); denote it by H. By the above G, Spec B,

Η and the homomorphisms Η -* G and G -* Spec Β are flat. By construction //„ = H,

as required.

4.2. Let G be as in 4.1. The series of group models

is called a model of the series GK = GQ K 3 ^ j χ 2 · · · 2 **· κ — * " ' ' ^ t * i e quotients

G / G f + ; e x i s t '

Theorem. Let G be a unipotent group model of A" over A. Then G contains

models of the following series:

a) the composition series whose quotients are G f l K;

b) the upper and lower central series;

c) the characteristic composition series whose quotients are models of G^ K.

The proof is achieved by applying Theorem 4.1, taking into account [7], Chapter

IV, §4, Theorem 4 1 and also 0.7.3c).

4.2.1. Examples 6.3 and 6.7.5 show that a smooth unipotent group model with con-

nected fibers may not have a series of smooth group schemes with connected fibers.

4.3. Theorem 4.2 is a special case of the following general assertion, whose proof

is based on the deep results of Raynaud and Anantharaman on the existence of quotients

of flat group schemes over one-dimensional bases ([4], [14]).

Theorem. Let G be a flat S-group scheme of finite type over a locally noetherian

one-dimensional regular integral scheme S. Let η be a generic point of S, and let

G = Ο. D G, D · · · 2 η = ® be a composition series of the generic fiber G . Then

there exists a composition series of the group G which is a model of this series.

Proof. By (EGA), IV.2.8.5, the scheme-theoretic closures G. of the subgroups G.

will be flat 5-group schemes. It remains to use the results of [4] on the existence and

those of [18] on the affineness of the quotients G{/Gi+1.

4.4. We put

Note that in characteristic p we have

Lemma. Let L be a field of characteristic ρ and G a commutative unipotent

group that is isomorphic as a scheme to A£. Then we can choose generators x ] t . . . ,

χ of the ring L[G] such that
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i<t a

Proof. By [7], Chapter IV, §4, Theorem 4.1, the group G has a composition series

of the groups G f l L . By [7], Chapter II, § 3 , 4.6 and Chapter III, §4, Corollary 6.6, G

is given by such formulas if η - 2. Apply induction on n. We assume that the asser-

tion is true for η < t and prove it for η = t + 1. We have

dim Η = r, L[H] = L[xj, ...» * t ] , and formula (*) holds for η(χ{), i < t. Put tfj =

Spec L[xj, . . . , χ j]. Then we have the exact sequence

where ff2 = G a ·

The group G i s determined by a cocycle α e W2(Ga, H) (cf. [7], Π, § 3 , 4.6). We

have

# 2 (G., Ηύ ^ ff1 (Gu, H) **· fl1 (Go, ί/χ)

(exact at the middle term), φJ,CL) corresponds to fonnulas of the form (*) by the induc-

tion hypothesis, so we may assume that φ£<ζ) = 0. But then α elm φ^ and hence α

is again given by fonnulas of the form (*), as required.

4.5· Theorem. Let G be a unipotent group over k = Α/π, isomorphic to A?. Then

there exists an unipotent group scheme G over A such that G, =" G, and also G 2"

A^. In particular, if the field is perfect, then any smooth connected group over this

field lifts to characteristic 0.

Proof. Let k[G] = &[*,, · - · , χ ] and

η (*<·) = Σ Σ «/αΦβ {χι), «/α e k.
i<i α

W e a l s o c h o o s e a

i a

 e Λ s u c h t h a t t h e r e d u c t i o n o f a

i a i s e q u a l t o a\.a. W e p u t

A[G] = A[yv .. . , yn] and

/«• α

It is clear that then the reduction of A[G] is G, and it is only necessary to check

that these fonnulas give a group law. It is also clear that it suffices to check these

formulas for η = 2, ^(yj) = 0 and ij(y2) = Φ ^ ι ) · This is immediate.

4.6. Remark. The hypotheses of Theorem 4.5 are essential. For example, non-

trivial forms of the group GQ (see 0.7.2d) if Α/π is not perfect) do not lift to unipo-

tent groups in characteristic 0.

In fact, if char Κ = 0 and dim G = 1, then GK S* Gfl K and thus Proposition 3.7

is applicable.

4.7. Theorem. Extensions of G f l ^ by G ^ over the ring A have coordinate ring



792 Β. Ju. VEISFEILER AND I. V. DOLGACEV

y 2 ] with the composition law

η (yd = °· Ά (yd = Σ a&t (ft)»

/« particular, the set of extensions is isomorphic to a free module over the noncommuta·

five ring (A/p)[F], where F is the Frobenius operator (in A/p).

Proof. We shall first show that the second assertion of the theorem follows from

the first. In fact, >Ί"»>Ί»>'2">^2 + ^V ΐ) a r e £ ^ e o n * v c n a n g e s oi coordinates that do

not change the extension (in case it is nontrivial). For such changes to preserve the

shape of our formulas it is necessary that P(yj) be a p-polynomial, P(yj)

But then in the new coordinates we have

η (yd = 0, η (yj = 2 (a, + pbi) Φ,· (yd.

Since, moreover, Φ.+ iy) = (Φ.(y))P} in A/p, our assertion is proved.

Let G be an extension of G f l A by G^ A. Then G = Aj , i.e. A[G] = A[yj, y 2 ] .

We may assume that the imbedding ^[yj] -» A[G] corresponds to a projection of our ex-

tension. Then we have η(γ^ = 0. Automatically η(.γ2) 6 A[y^\ ® /4[yj].

We consider the cases char Κ = 0 and char Κ •= p> Ό separately.

4.7.1. First suppose that char Κ = 0. Then K[G] = K[xj, * 2 ] and ^(xj) = η(χ2) =

0. We may assume that χj = y j . In this case y 2 = Q(x^t *2)» and in view of the condi-

tions 77(y2) e Aly^] ® /4[y j] and η{χχ) = η^Χ^ί = 0 we have y 2 = bx2 + Ρ(χχ). We will

show that by admissible changes of variables P{xj) reduces to the form P(xj) = Sr.xP1

and pr. € A. The assertion of the theorem will follow from this with a. = pr{. Let P(xj)

= Hbix'l. Assume that for i > q we have proved that pb{ € A and that we may assume

the validity of the equality

We shall show that if deg b j * *~ i 4 p", then bq_ j e A; then, applying 2.3.1.3,

we may assume that b , = 0. In fact, setting ζ = 1.^qbjc\, we have

Applying 2.3.3 to τ/(&?_ JXJ 9 " ' ) , we find that ί>β_ jC^_ χ e Λ for all ζ e [ l , q - 2].

If ? - 1 4 p", it follows from this that b j e A, as required. If 9 — 1 = p a , then

from 2.3.3.3 we find b _i'p £A, which completes the induction step.

4.7.2. Now if char Κ = ρ, then K[G] = K[xv x2], χ χ = y,, τ/(χ2) = Σ Λ \ Φ . ( Χ , ) and

Λ. e /C (cf. [7], Chapter II, §3.4.6 and Chapter III, §4, Corollary 6.6). We have y 2 =

bx2 + Ib^. Replacing x 2 by 2»x2, we obtain b = 1 and »/(x2) = Έ.αΦ.{χ^. Carrying

out the induction as above, we find that (cf. 2.3.2.3) ^ , · * Ί = ̂ i·**** whence η(γ2) =

Sa/b.ixJ, as required.

4.7.3· Remark. The proof of 4.7.1 actually does not use the condition that A is
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an equicharacteristic discrete valuation ring. Namely, let Λ be a local ring and Κ its

field of fractions, char Κ = 0. Let Β be the integral closure of Ζ in A. Then β is

a discrete valuation ring. Let π be the uniformizing parameter of Β, ρ = char Β/π, and

D = A ® Q, and let G be an extension of G a A by G f l A. Then, according to 0.8.1,
GD=GID- Since A[G] = A[y 1 ,y 2 ] ,7^y 1 )=O and 7/(y2) € A[y χ] ® A[yj], we have y 2

= fcx2 + PUj), where b e Q and Ρ(χ χ ) € D[xj]. In particular, TTP(XJ) e 4 * , l for suit-

able a.

After these remarks, the proof of 4.7.1 goes through without change and leads to

the following result.

Theorem. Let A be a local integral ring with field of fractions of characteristic

0 and residue field of characteristic p > 0. The conclusions of Theorem 47 holdover A.

§5 . Gohomology of commutative unipotent groups

5.0. The notation is that of 3.0.0. In addition, let 5 = Spec A, and let η be the

generic point of A and s the closed point of A. In this section we compute the coho-

mology of commutative unipotent groups G over A. The cohomology H'a{X, G) is con-

sidered with respect to the fpqc-topology (a = l), the fppf-topology (a = 2), and the

itale topology (a = 3) on the scheme X.

All the group schemes considered in this section are assumed to be commutative.

5.1. The following results relate to the "comparison theorems" 'for cohomology

with respect to the various topologies:

5.1.1 (Grothendieck [8]). If G is a smooth group scheme over an arbitrary scheme

X, then f/2(X, G) = H\(X, G), i > 0.

5.1.2 (Miyanishi [10]). For any X-group scheme G, H\(X, G) = H\(X, G).

5.2. We recall the standard computation of the cohomology of "elementary" uni-

potent groups over a field k of characteristic p > 0.

5.2.0. The following exact sequences are basic for these computations:

+G e -^G f l -*0. (**)

Here F :x -» xp and Ίρ:χ -» xp -+ x. The first of these sequences is exact only in

the fpqc- and fppf-topologies: the second is also exact in the itale topology.

5.2.1. By 5.1.1 and (SGAA), IX.4.3, for any affine base X

H1 (X, Gfl,x) = 0, i > 0 :

5.2.2. Applying the exact sequences of cohomology groups to sequence (*) of

5.2.0, from 5.2.1 we obtain

0, ίφ\ <α=1,2).

Since the restriction of the sheaf cc. to S* equals zero, then
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5.2.3. Analogously, using 5.2.1 and the sequence (**) of 5.2.0, we find that

( Z/pZ, i = 0,
H'a(k,(Z/pZ)k) = \ k V v { k % i = l

[ 0, / > i

(a = 1, 2, 3).
By Witt's theorem (cf. [17], p. 447), if k is a local field, then

k+/p (k+) s Ho τι (k*!k*p, Q/Z).

5.2.4. Now if G is an itale £-form of (Z/pZ)^, then it is trivialized on some sep-

arable extension k Ik of degree dividing p — 1. By (SGAA), IX, 5.2, it follows from this

that

0 = Hi (k\ {Zip Z)k.) => Hi (k, G) = 0.

Since G is smooth, H'Jik, G) = H'3(k, G) for α = 1, 2.

5.2.5. Collecting together the results of 5.2.1-5-2.4, we obtain the following as-

sertion:

Lemma. Let G = C χ, ο. or an Stale k-form of Zi/pZ. Then for a. = 1, 2 and 3

we have H'a(k, G) = 0 for i > 2. Furthermore, if G is connected and k is perfect, then

H\(k, G) = 0 for i> 1 (a = 1, 2, 3).

5.3. The computation of the cohomology of arbitrary unipotent groups over k is

based on the existence of a composition series of elementary groups (0.7.3) for such

groups.

In particular, we obtain the following

Proposition. Let G be a unipotent k'group. Then H'J^k, G) = 0 for i > 2 (a = 1,

2, 3). //, in addition, G is connected and k is perfect, then H'a(k, G) = 0 for i> 1

(a = 1, 2, 3). // G is connected, then H'Ak, G) = 0, i > 1, for any field k. Moreover,

if k is algebraically closed, then H'a(k, G) = 0 for i > 1 and a = 1, 2, 3.

5.4. In this subsection we shall prove the following result.

Theorem. Let G be a unipotent S-group. Assume that S is equicharacteristic and

Gv - A^. Then H^iS, G) = 0 for i > 2 and a = 1, 2, 3. // k is algebraically closed,

then this is also true for i > 1.

Proof. By 4.3 it suffices to prove the theorem while assuming that G is a group

model of G . Applying Lemma 2.6 and 5.2.1, we obtain H'a(S, G) = 0 for i > 2 and

all a. Moreover, Ηa(S, G) is the cokemel of the homomorphism A -» A defined

by the formula

(σα, . . . , aN) -v (F2 (a,, a j , . . . . />/ («i. · · · . oN)),

where the F{ are the ^-polynomials of 2.6. If k is algebraically closed, this mapping

is obviously surjective. Thus in this case Ηa(S, G) = 0, as required.
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5.5. Corollary. Let G be a unipotent S-group scheme. Assume that char Κ = p > 0

and that the generic fiber G is smooth and connected. Then for a = 3 we have

H'a(5, G) = 0 for i > 2. This is also true for a = 1 and 2 if G is smooth.

Proof. Let K'/K be a radical extension such that Gv® K' = A"K> (0.7), and let

S' be the normalization of 5 in Κ . Then 5 -» S is a radical integral surjective mor-

phism, from which it follows that H^S, G) = H\{S', Gs<) for i > 0 (SGAA, VIII, 1.2).

It remains to apply Theorem 5.4 and Assertion 5.1.1.

§6. Examples and counterexamples

In this section we give examples, mostly showing the limits at which one or an-

other .classical assertion or an assertion of the present paper ceases to be true. We

also have examples showing that the conditions imposed in the definitions and theorems

are essential.

Below Ζ denotes the ring of p-adic integers, Ζ [tH the ring of formal power se-

ries over Ζ . If A is a ring, then Κ is its field of fractions.

We let
p'-i

η(α) = μ(α)— 1®α — α ® 1 , Φ({α) = - ^ <y«a ® a"'"0.
a=i

6.1. An example of a group that is unipotent but not linearly unipotent over a non-

reduced ring. Let A = Z2[u]/u2, A[G] = A[x], η(χ) = ux ® x, i(x) = - χ + ux2 and e(x) =

0. The unique fiber of this group is unipotent. In order to get rid of the term ux ® x,

we can only use the substitution χ -» ax + uP(x), a e A*. However, such substitutions

have no influence over ux ®x, i.e. the group is not linearly unipotent.

6.2. An example of a unipotent group over Z.H/J that is quasi-affine but not af-

fine (due to Raynaud [12], VII, 3). Let A = Zplt^, A[G] = A[x, y, z]/pz = ty + χ + xp,

7y(x) = Tj(y) = 0 and η(ζ) = <£>j(x). Then G is a smooth Α-group. Over Α.. = Q Ail it

is isomorphic to G^ = Spec A. Sx, y] (cf. 0.7.20). Over Α.. it is isomorphic to

Spec A..[x, z] (since y = (pz - x? - x)/t) and is an extension of Gfl = Spec Α.^[χ, y]/(x)

by Ga = SpecA ( t )[x].

Let s = {p, t). We have Gs = Spec F [x, y, ζ\/{χρ + χ). In particular, Gs is not

connected. The connected component G of the identity of G is a smooth quasi-affine

group ((SGAD), VIB, 3.10) with connected fibers. Since profc_co(C) = 2, it follows

that T(G) -. H e 0 ) is bijective (cf. [12], VII.3), and since G ^ G°, G° is not affine.

We note that here all the fibers of G° are affine spaces A2.

6.3. An example of a smooth group with connected fibers over Z 2 that does not

have a composition series consisting of smooth connected group schemes. Take

A = Z2, A [G] = A [x, y, z]/2z = x* + y* + y,

η (x) = η (</) = 0, η (ζ) = Φ 2 (χ) + Φ, ((/).

We have F2[G] = F2[v, ιυ], where ν = χ + χ + y, u> = ζ + vb, η(ν) = 0 and t](w) = Φ2(ν).

From this we see that for G to be an extension of GQ by Gfl over Z2 it is necessary

that A[G] contain an element U = χ + χ + y mod 2· A[G] such that 57 = αχ + βγ. But
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such an element does not exist and thus G does not have a series of G f l ' s (cf. 4 7 ,

6.7.5).

However, the embedding A[x] -» A[G] defines a homomoiphism whose kernel is

Spec A[y, z]/(2z = y + y). It is nonconnected, although it is smooth. On the other

hand, the embedding A[y] -* A[G] defines a homomorphism whose kernel is

SpecA{x, z]/2z=xi.

Its fibers are connected, but it is not smooth.

6.4. An example of a smooth affine unipotent group with connected fibers over

A = Z 2 [/J, for which there does not exist a model (cf. 42) of the upper and lower central

series. Take

A[G] = A[x, y, z, u]/2u = tz2 -f x2 + y,

η (*) = η (i/) = 0, η(2) = 2χ®ΐ/,

η (u) = tz <g) ζ + 2tx (g>zy + 2tzx ® y + 2tx2 <g>y2 + x(g)x.

G is a connected smooth A-gtoup, and G ® Q is isomoφhic to the group of unipo-

tent matrices of order three. The imbedding K[x, y] -» K[G] defines a homomorphism of

G ® Κ into G a K (quotient modulo the center).

We will show that a model of the lower (upper) central series of G (cf. 4.2) con-

tains no flat groups. In fact, such a series must be defined by the embedding K[x, y] ο

A[G] -» A[G]. The kernel of the corresponding homomorphism is Spec A[z, u]/(,2u = tz2).

This group is not flat (on the line ί = 0) (see 0.3.2).

6.5. An example of a flat affine commutative unipotent group over the ring A =

F 2 H , which does not have a composition series consisting of flat one-dimensional

groups. We take

A [G] = A [x, y, z\ltxz = t^ + x2 + ax,

η(*)=0, η(|0=ίιΦι(*), η(2)=ΊΦΐΜ·

This group is flat. It is smooth (but not connected) for β = I, and its fibers are con-

nected for a = 0. Over F2H<2K(ij)) it is isomorphic to a Witt group. Every homomor-

phism of the Witt group GK in Gfl K is given by an embedding K[/{x)] -> K[G] = K[x, y],

where /(x) is a p-polynomial. The kernel of this homomorphism is Spec K[x, y]A/{x)).

Assume that G has a composition series of one-dimensional groups over A. Then,

by what has been mentioned above, the projection of this series is given by an embed-

ding A[G] ® K[/[x)] -» A[G]. The kernel of this homomorphism is

A[x, y, z]/(f(x), tiz—tty
2—x2—ax).

This last scheme has dimension 2 at the point (/,, t2) and thus is not flat (see 0.3.2).

6.6. An example of a smooth connected affine commutative unipotent group over

A = Z2[\/2]([/]] that does not have a composition series consisting of flat groups. We

take
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A [G] = A [x, y, 2, u]//22= χ + ty\ Y2u= y + ti\

*1 (*) = η (#) = 0. η (?) = V2ty®y,

η (u) = γ2ίζ ® ζ+ 2/2zy <g> y + 2tly ®zy + /2>V ® ι/2.

Over Κ the homomorphism of projection is definedby an embedding of K[ax + by]

into Kiel = K[x, y], a, b € K. Therefore over A the homomorphism of projection must

be defined by an embedding of Μ = K[ax + by] Γ» A[G] in A[G]. We may obviously as-

sume that «, b € A.

We assert that over the line / = 0 the kernel of any such homomorphism is not flat.

In fact, A/(t)[G] = A[z, u], χ = 2z, y = 2u. Therefore Μ ® A/{t) C 2A/{t)[G], from which

it follows that the kernel is not flat (see 0.3.2).

6.7. Some models of Ga over a discrete valuation ring A with field of fractions

of characteristic zero. We consider affine group models of G e over A, where A is a

discrete valuation ring, char Κ = 0 and char Α/π = ρ 4 0· We have

A [G] = A [x, y,

η (ζ) - π-"-» · ρ Γ J α,Φ, (*) +
Ι

2 b&, (ί/) 1
ί=1 J

The set of such groups is denoted by ®. We will call the numbers d, a. for ί e

[0, m] and b. for j € [0, n] the parameters of the group G.

6.7.1. Let Ad = A/n , and let ^^[F] be the additive group of noncommutative

polynomials of F whose coefficients lie in A ,, where Fa = a^F, a € Α..

Furthermore, let Π^ = (d, Aj_F]). We associate a set of parameters d, {a), (b)

to an element of Π^ according to the rule: let a ; be a vector with coordinates (a{, b),

taken mod π . Then to our set we associate {d, Έ,αΡ1) e Π^.

Lemma. // \d, (a), {b)\ and \d, (a'.), (b')\ are two sets of parameters that cor-

respond to the same element of the set Π ., then these sets yield isomorphic A-groups.

Proof. We have a'{ = a{ + CJT + 1 and b'. = b. + d{n
d*1. The substitution

2-* 2 — 2 ^

takes one group into the other.

We will denote by Gω, where ω e Π^, any Λ-group whose parameters are reduced

in ω.

6.7.2. The group § ^ = GLj(/4^) χ GL2(/4rf) acts on Π^ according to the formula
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(λ, D) (d, 2Γ^) = {d' ΣXDpiri ?l

(GLj acts on the left and GL2 on the right).

Lemma. Let φ, ω ε Π ^ The groups ΰω and C, are isomorphic if and only if g<y

= φ for suitable g € § »

Proof. The Λ-module Ax + Ay is uniquely isolated in A[G] as the j4-module of

primitive elements. Therefore * and y are determined up to the substitution χ -* ax +

βγ, y -* γχ + Sy, deti^jV € A*. We denote this matrix by D. Since π \ρ, and since

(a* + tyf = «"W VYmoip,

(yx + 6y)"a = (γ^ + 6^) mod p,

in view of Lemma 6.7.1 we pan define an action of GL2{Ad) on Π^ that agrees with

the one described above.

In order to preserve the shape of the formulas, we can only admit for ζ the substi-

tution

which in view of Lemma 6.7.1 reduces to replacing the parameters a. and b. (modulo

π ) by λα. and \b.. This gives an action of GLj which coincides with the one de-

scribed above.

Now if two groups ΰω and G J are isomorphic, then by what was mentioned above

there must exist a substitution

that takes one set of parameters into the other, which proves our assertion.

6.7.3. Let Kj be the group of automorphisms of the group G^ over Ad. Krf is

generated by transformations from GL2(/4^) and transformations of D:

(where dQ = 0 if d = 0; dQ = 1 if d 4 0).

Put Κ • = GLj χ Κ , and define an action of D on Π^ by the formula

where

Γι = (fh η), 7ι = (ri, 7]), ~ή =
α+β=;
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This action extends to an action of Krf on Π^.

Lemma. Let φ, ω € Π^ The groups Gω® Ad and G. ® A^ are isomorphic over

A d if and only if h(i> = φ for suitable h e K^.

The proof is different from the proof of the preceding assertion only in that the mod-

ule of primitive elements now consists of the p-polynomials ~2.d. xP1 + Έ.ά". yP1 in χ and

y; and Hr f is precisely the group that preserves this module.

6.7.4. Corollary. Let ω e Π .̂ The isomorphism classes over A of the A-groups

belonging to G which over Ad are isomorphic to ΰω®Α^ are parametrized by the ho-

mogeneous space GL2(A^)\K^. In particular, this set is infinite (and even infinite-

dimensional).

6.7.5. Corollary. Let the field k = AQ be perfect, and let nm = p. Then for each

smooth connected group over k there exist CL2(k)\Km l nonisomorphic Α-groups that

reduce to the same group. Only one of these groups (up to isomorphism) admits a smooth

composition series.

Proof. It suffices to construct such a group. It is given by one of the sets d= m

- 1, aQ = 1, a. = 0, ι > 0, bi € A (cf. 4.7). Now apply the preceding assertion.

6.7.6. Suppose k is not perfect. The forms of Gfl over k ate enumerated in

0.7.2d).

Corollary. For any k-form G of the group G , there exist infinitely many smooth

affine group models of G K with connected fibers over A, which over k have the series

0 •-• G 0 , Α - * G ® fe-> G - * 0 .

// p is ramified in A, then there exist an infinite number of models of G „ over A such

that Gv £ G „ χ G.

Proof. That there are infinitely many follows from 6.7.4. Suppose G is given by

the equation

j /

m

P"= 2

(cf. 0.7.2d)). Put ω = (0, £r.F'), where r. = (a., 0) for i 4 n, r = Q , - l) and £. =
z i i η η ι

a. mod π-. Then ω € Π^ and

Gtti* - Spec k lx, y, z\l[yn - 2 a'x"') ·

T h e m a p p i n g k[x, y]/(yP" - "ΣαχΡ1) -» k[Gji d e f i n e s a h o m o m o r p h i s m G ω k-*G. I t s
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kernel i s Spec k[z] = G ,. If n~ lp 4 A*, then G , = ο χ G . (in view of formula

6.7).
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