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ABSTRACT. Motivated by the recent progress towards classification of simple finite-dimensional Lie
algebras over an algebraically closed field of characteristic 2, we investigate such 15-dimensional
Skryabin algebras.

INTRODUCTION

The classification of finite-dimensional simple Lie algebras over an algebraically closed field
has a long and interesting history. The characteristic zero case, due to Killing, Cartan, and
Dynkin, is nowadays a classic. The case of characteristic p > 3 was accomplished relatively
recently, due to the efforts of dozens of people, spread over more than 50 years and hundreds
of papers, and culminated in the three volumes by Strade, [St]. The cases of characteristics 2
and 3 remain open, although a lot of efforts were done recently to augment the classification
program by small characteristics specifics, in particular, to put Lie superalgebras into play (see,
for example, the monumental treatises [BGLLS] and [BLLS], and references therein).

In [GZ], we did a small step towards the classification of finite-dimensional simple Lie algebras
over an algebraically closed field of characteristic 2: it was proved that any such algebra of
absolute toral rank 2, and having a Cartan subalgebra of toral rank one, is 3-dimensional. In
this, we relied on the paper by Skryabin, [Sk], where it was proved, among other things, that in
characteristic 2 there are no simple Lie algebras of absolute toral rank 1, and simple Lie algebras
having a Cartan subalgebra of toral rank 1 were characterized as certain filtered deformations of
semisimple Lie algebras with the socle of the form S⊗O, where S is a simple Lie algebra either
of Zassenhaus or Hamiltonian type, and O is the algebra of truncated polynomials.

In the process of the proof of the main result of [GZ], we have constructed a 2-parameter
family L (β,δ) of 15-dimensional simple Lie algebras ([GZ, §6]). The algebra L (0,0) in this
family coincides with the smallest algebra in the series constructed by Skryabin ([Sk, Example
at pp. 691–692]).

The purpose of this paper is to study the family L (β,δ). Among other things, we prove that
all algebras within the family are isomorphic to the same algebra L (§1), and we determine the
absolute toral rank (§3), and the automorphism group of L (§4). In passing, we introduce the
notion of a thin decomposition of a simple Lie algebra with respect to a torus (§3.4) which, we
suggest, should play a role in classification efforts (see open questions in §7).

Throughout the paper, the ground field K is assumed to be perfect of characteristic 2, unless
stated otherwise. Although the initial problem assumes the ground field is algebraically closed,
for our purposes it will be enough to assume that square roots exist in K . This allows us to
include in our consideration the case K =GF(2); this can be useful in some circumstances (cf. §3
and §6).

Our terminology and notation is mostly standard: CL(X ) denotes the centralizer of a set X in
a Lie algebra L; the linear span of a set X is denoted either by K X or by 〈X 〉; the 2-envelope of
a Lie algebra L is denoted by L2; idL denotes the identity map on L. Other notation is explained
as soon as it is introduced in the text.
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1. THE 2-PARAMETER FAMILY L (β,δ)

1.1. Definition of the 2-parameter family. Recall the definition of the family L (β,δ), de-
pending of two parameters β,δ ∈ K , of 15-dimensional simple Lie algebras constructed in [GZ,
§6]. These algebras are filtered deformations of the semisimple Lie algebra of the form

(1) S⊗O1(2)+ g⊗〈1, x〉+∂,

where S is the 3-dimensional simple Lie algebra with the basis {e, f ,h} and multiplication table

(2) [e,h]= e, [ f ,h]= f , [e, f ]= h,

g = (ad f )2 is an outer derivation of S, O1(2) is the 4-dimensional divided power algebra with the
basis {1, x, x(2), x(3)}, with the multiplication given by

x(i)x( j) =
(

i+ j

i

)

x(i+ j),

and ∂ : x(i) 7→ x(i−1) is the special derivation of O1(2).
For our purpose, it will be convenient to relabel the basis elements of the algebras L (β,δ) as

follows:

b1 = e⊗1, c1 = e⊗ x(3),

b2 = f ⊗1, c2 = f ⊗ x(3),

b3 = h⊗1, c3 = h⊗ x(3),
b4 = e⊗ x, c4 = g⊗1,
b5 = f ⊗ x, c5 = g⊗ x,(3)
b6 = h⊗ x, d = ∂,

b7 = e⊗ x(2),

b8 = f ⊗ x(2),

b9 = h⊗ x(2).

In terms of this basis, the multiplication table of L (β,δ) (see [GZ, (5.4)]) reads:

(4)

b2 b3 b4 b5 b6 b7 b8 b9 c1 c2 c3 c4 c5 d

b1 b3 b1 βc5 b6 b4 δc4 b9 b7 δc5 +d c3 c1 b2 b5 βc2

b2 b2 b6 0 b5 b9 0 b8 c3 0 c2 0 0 0
b3 b4 b5 0 b7 b8 0 c1 c2 0 0 0 0
b4 0 0 δc5 +d c3 c1 b3 c4 b2 b5 0 b1

b5 0 c3 0 c2 c4 0 0 0 0 b2

b6 c1 c2 0 0 0 c4 0 0 b3

b7 0 0 b6 c5 b5 b8 c2 b4

b8 0 c5 0 0 0 0 b5

b9 0 0 c5 0 0 b6

c1 0 b8 c2 0 b7

c2 0 0 0 b8

c3 0 0 b9

c4 0 0
c5 c4
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1.2. Isomorphisms within the family.

Lemma 1.1. For any β,δ ∈ K , we have L (β,δ)≃L (β,0).

Proof. Let us consider a new basis

{b′
1,b2,b′

3,b′
4,b5,b6,b′

7,b8,b′
9, c′1, c2, c3, c4, c5,d′}

of the algebra L (β,δ), where

b′
1 = b1 +

p
δb6+δb8,

b′
3 = b3 +

p
δb5,

b′
4 = b4 +δc2,

b′
7 = b7 +

p
δc3,

b′
9 = b9 +

p
δc2,

c′1 = c1 +
p
δc4,

d′ = d+
p
δb2.

It is straightforward to check that in this basis the multiplication table coincides with the
multiplication table (4) with δ= 0. �

Lemma 1.2. For any β ∈ K , we have L (β,0)≃L (0,0).

Proof. Consider a new basis

{b′
1,b2,b′

3,b′
4,b5,b′

6,b7,b8,b9, c′1, c2, c3, c4, c5,d′}

of the algebra L (β,0), where

b′
1 = b1 +β2b9,

b′
3 = b3 +β2b8,

b′
4 = b4 +β2c3,

b′
6 = b6 +β2c2,

c′1 = b1 +β2c5,

d′ = d+β2b5.

It is straightforward to check that in this basis the multiplication table coincides with the
multiplication table (4) with β= δ= 0. �

An immediate corollary of these two lemmas is

Theorem 1.3. For any β,δ ∈ K , we have L (β,δ)≃L (0,0).

Since the algebra L = L (0,0) is isomorphic to the smallest 15-dimensional algebra in the
family of simple Lie algebras constructed by Skryabin in [Sk, pp.691–692], we will refer to it in
the rest of the paper as the Skryabin algebra. The rest of the paper is devoted to elucidation of
some properties, and computation of some invariants of the Skryabin algebra.

1.3. Note on cohomology and deformations. As explained in [GZ, §5], the algebras L (β,δ)
are obtained as a linear deformation of the algebra (1) by a linear combination of three 2-cocycles;
one of them has to enter the linear combination with nonzero coefficient (to ensure simplicity of
the deformed algebra) which can be normalized to be equal to 1, and the other two enter with
coefficients β and δ. In terms of the basis (3), these 2-cocycles are:

(5)
b1∧b4 7→ c5,
b1∧d 7→ c2
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and

(6)
b1∧b7 7→ c4,
b4∧b7 7→ c5,
b1∧ c1 7→ c5

(only nonzero values on all possible pairs of the basis elements are given).
Either direct calculations, or simple reasonings based on the relationship between cohomology

of the graded algebra (1) and its filtered deformation L (the Massey bracket between all the
involved 2-cocycles vanishes) show that the cocycles (5) and (6) are also cohomologically indepen-
dent 2-cocycles of the algebra L (note in passing that the computer calculation in GAP shows
that the dimension of the whole cohomology H2(L ,L ) is equal to 13). Thus, each L (β,δ) is
a deformation of the algebra L by a nontrivial 2-cocycle, which turns out to be isomorphic to
the original algebra L via ad-hoc isomorphism. Such deformations are dubbed in [BLLS] (see
also [BGLLS, §3.1.2], and references therein) as semitrivial. According to Lemmas 1.1 and 1.2,
the isomorphism between L (β,δ) and L is polynomial (actually, quadratic) in β and

p
δ; hence

by [BLLS, Lemma 2.2], each of the cocycles (5) and (6) is cohomologous to a cocycle of the form
x∧ y 7→ [D(x),D(y)] for some derivation D of L .

2. 2-ENVELOPE, DERIVATIONS, SANDWICH SUBALGEBRA

We continue to employ the basis {b1, . . . ,b9, c1, . . . , c5,d} of the Skryabin algebra L as given
by (3) (referred as the standard basis in what follows). The multiplication table is given by (4),
where β= δ= 0.

The Skryabin algebra is not a 2-algebra; its 2-envelope L2 has dimension 19, with additional
basis elements b[2]

1 ,b[2]
4 ,b[2]

7 , c[2]
3 , the 2-map:

b[2]
2 = c4, b[2]

3 = b3, c[2]
1 = b9, d[2] = b[2]

4 ,

b[2]
5 = b[2]

6 = b[2]
8 = b[2]

9 = c[2]
2 = c[2]

4 = c[2]
5 = 0,

b[4]
7 = b[2]

7 , b[4]
1 = b[4]

4 = c[4]
3 = 0,

and the multiplication:

b[2]
1 b[2]

4 b[2]
7 c[2]

3

b1 0 0 0 b8

b2 b1 0 0 0
b3 0 0 0 0
b4 0 0 b4 c2

b5 b4 0 b5 0
b6 0 0 b6 0
b7 0 b1 0 0
b8 b7 b2 0 0
b9 0 b3 0 0
c1 0 b4 c1 0
c2 c1 b5 c2 0
c3 d b6 c3 0
c4 b3 0 0 0
c5 b6 0 c5 0
d 0 0 d c5

b[2]
4 b[2]

7 c[2]
3

b[2]
1 0 0 b9

b[2]
4 0 c4

b[2]
7 0

In what follows, we will employ the following standard notation for arbitrary elements of L :

λ1b1 +·· ·+λ9b9+µ1c1 +·· ·+µ5c5 +ηd,
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and of L2:

λ1b1 +·· ·+λ9b9+µ1c1 +·· ·+µ5c5 +ηd+ξ1b[2]
1 +ξ4b[2]

4 +ξ7b[2]
7 +ξ3c[2]

3 ,(7)

where λ1, . . . ,λ9,µ1, . . . ,µ5,η,ξ1,ξ4,ξ7,ξ3 ∈ K .

Proposition 2.1. The derivation algebra of the Skryabin algebra coincides with its 2-envelope.

Proof. This is amenable to straightforward, though tedious, calculations. A short computer-
assisted proof can be utilized instead: we can check in GAP that the derivation algebra of the
Skryabin algebra over GF(2) is 19-dimensional. Since derivation algebra does not change under
field extensions, the same is true for the Skryabin algebra over an arbitrary field. For any Lie
algebra, its 2-envelope is contained in the derivation algebra. But the 2-envelope of the Skryabin
algebra is 19-dimensional, as specified above. Hence, the derivation algebra coincides with the
2-envelope.

Yet another, more conceptual, proof will be given below in §3.4; it utilizes a different realization
of the Skryabin algebra. �

Recall that an element x of a Lie algebra L is called a sandwich if (ad x)2 = 0 and [[L, x], [L, x]]=
0. (It is well-known – and easy to see – that if the characteristic of the ground field is different
from 2, then the second condition follows from the first one, but in characteristic 2 this is not
true). The set of all sandwiches is multiplicatively closed; this implies that the sandwich subal-

gebra, i.e., the subalgebra of L generated by all sandwiches, is just the linear span of sandwiches.
It follows from the result first proved by Kostrikin and Zelmanov, that a Lie algebra generated

by sandwiches is nilpotent. See [V-L1, §3.2] for details and further references.
More generally, we will call a derivation D of a Lie algebra L a sandwich derivation, if D2 = 0

and [D(L),D(L)] = 0.

Lemma 2.2. The set of elements x ∈L2 such that

(8) [[L , x], [L , x]]= 0

coincides with the linear span of elements c2, c4, c5, c[2]
3 .

Proof. It is a matter of straightforward verification that any linear span of elements c2, c4, c5,
c[2]

3 satisfies the condition (8).
Conversely, let x be an arbitrary element (7) of L2 satisfying this condition. We perform the

following calculations:

• Collecting in the equality [[x,b8], [x, c5]] = 0 the terms containing c1 and c2, we get, respec-
tively, ξ2

1 = 0 and λ2
1 +ξ1ξ7 = 0, whence ξ1 = 0 and λ1 = 0.

• Collecting in the equality [[x,b6], [x, c4]] = 0 the terms containing c5, we get λ2
7 = 0, whence

λ7 = 0.
• Collecting in the equality [[x,b1], [x, c4]] = 0 the terms containing b8, we get µ2

1 = 0, whence
µ1 = 0.

• Collecting in the equality [[x,b6], [x, c2]] = 0 the terms containing b8, we get η2 = 0, whence
η= 0.

• Collecting in the equality [[x,b8], [x, c3]] = 0 the terms containing b5 and c2, we get, respec-
tively, ξ2

4 = 0 and λ2
4 +λ3ξ4 = 0, whence ξ4 = 0 and λ4 = 0.

• Collecting in the equality [[x,b1], [x,b8]] = 0 the terms containing b9 and c4, we get, respec-
tively, λ2

3 = 0 and λ2
6 = 0, whence λ3 = 0 and λ6 = 0.

• Collecting in the equality [[x,b4], [x, c2]] = 0 the terms containing c4, we get ξ2
7 = 0, whence

ξ7 = 0.
• Collecting in the equality [[x,b1], [x,b6]] = 0 the terms containing b5 and c2, we get, respec-

tively, λ2
2 = 0 and µ2

3 = 0, whence λ2 = 0 and µ3 = 0.
• Collecting in the equality [[x,b1], [x, c3]] = 0 the terms containing c2, we get λ2

9 = 0, whence
λ9 = 0.
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• Collecting in the equality [[x,b1], [x,b4]] = 0 the terms containing c5, we get λ2
8 = 0, whence

λ8 = 0.
• Collecting in the equality [[x,b1], [x,b7]] = 0 the terms containing c4, we get λ2

5 = 0, whence
λ5 = 0.

We are left with a linear combination of c2, c4, c5, c[2]
3 . �

As an immediate corollary of this lemma, we have

Proposition 2.3.

(i) The sandwich subalgebra of L is 3-dimensional abelian, linearly spanned by elements c2,

c4, c5.

(ii) The set of sandwich derivations of L forms a 4-dimensional abelian subalgebra of L2

spanned by the inner derivations ad c2, ad c4, ad c5, and by the outer derivation ad c[2]
3 .

Proof. (i) By Lemma 2.2, the sandwich subalgebra of L lies in the linear span of c2, c4, c5. Since
these elements pairwise commute, they span the 3-dimensional abelian subalgebra of L , and

(µ1c2 +µ4c4 +µ5c5)[2] =µ2
1c[2]

2 +µ2
4c[2]

4 +µ2
5c[2]

5 = 0,

so any element x in this 3-dimensional subalgebra satisfies the condition (ad x)2 = 0.
(ii) By Proposition 2.1, any derivation is an element of L2. Apply Lemma 2.2 and reason as

above. �

Note that from Lemma 2.2 and Proposition 2.3 it follows that in the Skryabin algebra L , the
condition [[L , x], [L , x]] = 0 implies [[L , x], x] = 0. In general, this is, of course, not true: take,
for example, any metabelian non-nilpotent Lie algebra.

3. COMPUTATIONS OVER GF(2), THE ABSOLUTE TORAL RANK, THIN DECOMPOSITION

3.1. Some numerology. In this section we report on computations over GF(2), performed on
the computer in GAP, [G]†. A brute-force search on the computer shows that in the 2-envelope of
the Skryabin algebra L over GF(2) there are 384 toral elements, 6144 2-dimensional tori, 21504
3-dimensional tori, 26880 4-dimensional tori, and no 5-dimensional tori (no attempt was made to
determine their conjugacy classes with respect to the automorphism group).

The centralizer in L of each of the 384 toral elements is 7-dimensional, and for 240 toral el-
ements the centralizer is (central) simple. Among these 240 simple algebras, 48 have absolute
toral rank 2, and 192 have absolute toral rank 3. As proved in [V-L2, Theorem 1] (and confirmed
by computations in [E]), over GF(2) there exist two simple 7-dimensional Lie algebras. These
algebras are identified as (forms) of the Zassenhaus algebra W ′

1(3), and the Hamiltonian algebra

H′′
2

(

(2,1), (1+x
(3)
1 x2)dx1∧dx2

)

, denoted by us here simply as W and H, respectively (see [GG] and
[GGA] for further info, including explicit multiplication tables of these algebras, and their iden-
tification with some other simple 7-dimensional Lie algebras from the literature). Both algebras
have absolute toral rank 3 over an algebraically closed field, but over GF(2), the algebra W has
absolute toral rank 2, while the algebra H has absolute toral rank 3; thus the absolute toral rank
can be used to distinguish them as subalgebras of the Skryabin algebra in our computations.

3.2. Some examples. Let us exhibit explicitly one of the maximal tori, and one of the 7-dimen-
sional simple subalgebras mentioned in the previous subsection.

Here is just one of the 4-dimensional tori, linearly spanned by the toral elements

(9) b1 +b3+b[2]
1 , b2 +b3+ c4 +b[2]

7 , b4+b6+b[2]
4 +b[2]

7 , b8+b9+ c1 + c3 +b[2]
7 + c[2]

3 .

Now take the first toral element in this torus, h = b1 + b3 + b[2]
1 . Its centralizer CL (h) has the

basis
b1 +b3, b2+ c3 + c4, b4+b6, b5+b6+ c5, b7+b9, c1 + c3, d.

†The GAP code is available at https://web.osu.cz/∼Zusmanovich/papers/15dim/ .
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It is straightforward to check that in this basis the multiplication table of CL (h) coincides
with the multiplication table of the simple 7-dimensional Hamiltonian algebra H (see [GG, §3]
or [GGA, §1]) via the identification

V0 ↔ b5+b6+ c5, V1 ↔ c1 + c3, E1 ↔ b7+b9, E0 ↔ b2+ c3 + c4,
F1 ↔ b4+b6, F0 ↔ d, G ↔ b1 +b3.

3.3. The absolute toral rank. The computer calculation in §3.1 shows that the absolute toral
rank of the Skryabin algebra over GF(2) is equal to 4. However, a bit of additional work allows to
establish this result over an arbitrary field.

Theorem 3.1. The absolute toral rank of the Skryabin algebra is equal to 4.

Proof. As we want to establish this result over an arbitrary field K , we will distinguish the
Skryabin algebra L =L ⊗GF(2) K over K , and its GF(2)-form L .

A direct computer verification shows that each of the 26880 4-dimensional tori T in L2 co-
incides with its normalizer, i.e., is a Cartan subalgebra of L2. Consequently, T = T ⊗GF(2) K is

a Cartan subalgebra of L2 = (L )2. By [P, Theorem 2(ii)], T is a torus of the maximal possible
dimension in L2, and hence the absolute toral rank of L is equal to 4.

Alternatively, a direct simple proof free from reference to the computer can be provided by
just looking at one of the 4-dimensional tori, for example, at (9). Indeed, a direct calculation
shows that (9) coincides with its normalizer in the 2-envelope of the Skryabin algebra L over
an arbitrary ground field K , and hence by the same reference to [P] is a torus of the maximal
possible dimension. �

3.4. Thin decomposition. Let us consider the following situation. Assume that a Lie algebra
L has dimension 2n −1, the absolute toral rank of L is n, T is a torus in the 2-envelope of L of
(the maximal) dimension n, and T ∩L = 0. Assume further that the roots of the action of T on
L are exactly nonzero tuples in GF(2)n (in particular, the centralizer of T in L is zero), and each
root space is one-dimensional. Thus, the root space decomposition is of the form

(10) L =
⊕

α∈GF(2)n

α 6=(0,...,0)

K eα

for some elements eα ∈ L. In particular, the multiplication table of L in the basis { eα |α ∈
GF(2)n\(0, . . . ,0) } has the following form: either [eα, eβ]= eα+β, or [eα, eβ]= 0.

In such a situation, we will call the decomposition (10) thin. We suggest that this is an im-
portant property of simple Lie algebras which should be taken into account in the classification
efforts.

A direct computer verification shows that the Skryabin algebra admits a thin decomposition
with respect to each of the 26880 4-dimensional tori in its 2-envelope. We will explicitly provide
one of them, corresponding to the torus (9).
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The corresponding generators of the one-dimensional root spaces are:

e0001 = b2 +b3+b4+b6+ c4

e0010 = b2 +b3+ c1 + c3 + c4

e0011 = b2 +b3+b4+b6+ c1 + c3 + c4

e0100 = b1 +b3+b7+b9+d

e0101 = b7 +b9+d

e0110 = b1 +b3+b5+b6+ c5 +d

e0111 = b5 +b6+ c5

e1000 = b2 +b3+b8+b9+ c1 + c2 + c3

e1001 = b2 +b3+b4+b5+b6

e1010 = b2 +b3+ c1 + c2 + c3

e1011 = b2 +b3+b4+b5+b6+ c1 + c2 + c3

e1100 = b1 +b2+b3+b7+b8+b9+ c2 + c3 +d

e1101 = b5 +b6+b7+b8+b9+ c2 + c3 +d

e1110 = b1 +b2+b3+b5+b6+ c2 + c3 +d

e1111 = b5 +b6

and the corresponding multiplication table of L reads:

e0010 e0011 e0100 e0101 e0110 e0111 e1000 e1001 e1010 e1011 e1100 e1101 e1110 e1111

e0001 e0011 e0010 e0101 e0100 0 0 e1001 0 e1011 e1010 e1101 e1100 e1111 0
e0010 e0001 e0110 e0111 e0100 0 0 e1011 0 e1001 e1110 e1111 e1100 0
e0011 e0111 e0110 e0101 0 e1011 e1010 e1001 0 0 e1110 e1101 0
e0100 0 e0010 e0011 e1100 e1101 e1110 0 e1000 e1001 0 e1011

e0101 e0011 e0010 0 e1100 e1111 e1110 0 e1000 e1011 e1010

e0110 e0001 e1110 e1111 e1100 e1101 0 0 e1000 e1001

e0111 0 0 0 0 e1011 e1010 e1001 0
e1000 e0001 0 e0011 e0100 0 e0110 0
e1001 e0011 e0010 e0101 e0100 0 0
e1010 e0001 e0110 e0111 e0100 0
e1011 e0111 e0110 e0101 0
e1100 e0001 e0010 e0011

e1101 0 e0010

e1110 e0001

Using this realization of the Skryabin algebra, it is possible to provide an alternative proof of
the fact that its derivation algebra coincides with its 2-envelope, not utilizing computer or tedious
calculations.

Another proof of Proposition 2.1. Consider the torus T, and the corresponding thin decomposi-
tion of L as above. We shall prove that the derivation algebra of L is isomorphic to the semidi-
rect sum T⋉L .

As follows, for example, from [F, Proposition 1.2], any derivation of L can be represented as
a sum of a derivation D preserving the thin decomposition, and an inner derivation. We have
D(eα) = λαeα for any nonzero α ∈ GF(2)4, and some λα ∈ K . Writing the derivation condition for
each pair of basic elements eα, eβ, we have

(11) λα+β =λα+λβ if [eα, eβ] 6= 0.

Let us denote by h1,h2,h3,h4 the respective basis elements of T (listed in (9)). Modifying D by
the action of the toral element ad

(

λ0001h1+λ0010h2+λ0100h3+λ1000h4
)

, we may assume that

(12) λ0001 =λ0010 =λ0100 =λ1000 = 0.
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Now, looking at the multiplication table above, and using the conditions (11) and (12), it is easy
to see that λα = 0 for any nonzero α ∈GF(2)4, i.e., D = 0. �

Other examples of simple Lie algebras admitting a thin decomposition include the 7-dimensio-
nal algebra H (as shown in [GG]; but not the other 7-dimensional algebra W =W1(3)′, see below),
and certain 15-dimensional Hamiltonian algebras and algebras constructed by Eick, see §6.

Recall that the well-known Zassenhaus algebra W1(n)′ of dimension 2n −1 has a realization
in the basis { eα |α ∈ GF(2n)× } with multiplication [eα, eβ] = (α+β)eα+β. The grading W1(n)′ =
⊕

α∈GF(2n)× K eα has most of the properties of a thin decomposition: it is the root space decomposi-

tion with respect to the maximal n-dimensional torus 〈e0, e[2]
0 , . . . , e[2n−1]

0 〉, and the root spaces are
one-dimensional. However, it fails to be a thin decomposition: the roots lie in GF(2n), and not in
GF(2)n.

4. THE AUTOMORPHISM GROUP

The goal of this section is to determine the automorphism group of the Skryabin algebra. First,
we define three types of automorphisms – exponential automorphisms, certain explicitly defined
three one-parameter families, and diagonal automorphisms, determine the group generated by
them, and then prove that they exhaust the whole automorphism group.

4.1. Exponential automorphisms. If D is a sandwich derivation of a Lie algebra L, then
exp(D) = 1+D is an automorphism of L, called an exponential automorphism. Since exp(D)2 =
exp(2D) = 1, exponential automorphisms are of order 2, and generate a unipotent subgroup of
exponent 2, denoted by Exp(L), of the automorphism group Aut(L). Note also that if D1,D2 ∈ L

are two commuting sandwich derivations, then the corresponding automorphisms also commute:
exp(D1)◦exp(D2)= exp(D2)◦exp(D1).

According to Proposition 2.3(ii), the group Exp(L ) is 4-dimensional abelian, isomorphic to the
additive group K4 = K ⊕K ⊕K ⊕K . Let us write down its one-parameter generators explicitly
(here and below we indicate only those basis elements on which the automorphism acts non-
identically):

exp(adαc2) :

b1 7→ b1+αc3

b3 7→ b3+αc2

b4 7→ b4+αc4

b7 7→ b7+αc5

d 7→ d+αb8

exp(adαc4) :

b1 7→ b1+αb2

b4 7→ b4+αb5

b7 7→ b7+αb8

c1 7→ c1 +αc2

exp(adαc5) :
b1 7→ b1+αb5

b7 7→ b7+αc2

d 7→ d+αc4

exp(adαc[2]
3 ) :

b1 7→ b1+αb8

b4 7→ b4+αc2

d 7→ d+αc5.

Here α ∈ K is a parameter.
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4.2. On exp(adαc4). For a moment, let us return to the realization of L as a filtered deforma-
tion of the semisimple Lie algebra (1). The exponential automorphisms exp(adαc4) are the only
automorphisms of L which are “lifted” from automorphisms of the algebra (1). Using the re-
sults about automorphisms of the tensor product of a simple Lie algebra and a divided power
algebra (see, for example, [W, §2.2]), it is not difficult to describe the automorphism group of (1)
(roughly, those are automorphisms of S⊗O1(2) invariant under the action of g and of ∂). Automor-
phisms which are preserved by the cocycles defining the deformation, are also automorphisms
of L . Among the automorphisms of (1), the only automorphisms satisfying this condition, are
automorphisms acting on S⊗O1(2) as φ(α)⊗ idO1(2), where φ(α) is an automorphism of S of the
form

e 7→ e+α f , f 7→ f , h 7→ h,

and leaving g ⊗ 〈1, x〉 and ∂ invariant. In terms of the standard basis of L , this is exactly
exp(adαc4). In general, the automorphism group of the algebra (1) is much smaller than the
automorphism group of its deformation L , which shows that, generally, there is no strong rela-
tionship between automorphisms of a Lie algebra and of its deformation.

4.3. Automorphisms Φ, Ψ, and Θ. Consider the following three one-parameter families of lin-
ear maps on L , depending on the parameter α ∈ K :

Φ(α) :

b1 7→ b1+αb4

b2 7→ b2+αb5

b7 7→ b7+α2b2+α3b5+αc1

b8 7→ b8+αc2

b9 7→ b9+α2c4

c1 7→ c1 +α2b5

c3 7→ c3 +αc4

d 7→ d+αb3+α2b6

Ψ(α) :

b1 7→ b1+αb6+αc1 +α2c4

b2 7→ b2+αc2

b3 7→ b3+αb5

b4 7→ b4+αb2+α2c2

b6 7→ b6+αc4

b7 7→ b7+αb5+αc3

b9 7→ b9+αc2 +αc5

c1 7→ c1 +αb8+αc4

d 7→ d+αb2+αb9+α2c2 +α2c5

Θ(α) :

b1 7→ b1 +αb7+α3b8+α2b9

b2 7→ b2 +αb8

b3 7→ b3 +α2b8

b4 7→ b4 +α2b5 +αc1 +α2c3 +α3c5

b5 7→ b5 +αc2

b6 7→ b6 +α2c2 +α2c5

c1 7→ c1 +α2c2 +α2c5

c3 7→ c3 +αc5

d 7→ d+α2b5 +αb6+α3c2 +α2c3

Direct calculations show that all of them are automorphisms of L , and

Φ(α) ◦ Φ(α′) =Φ(α+α′)

Ψ(α) ◦ Ψ(α′)=Ψ(α+α′) ◦ exp
(

adαα′c[2]
3

)

(13)

Θ(α) ◦ Θ(α′) =Θ(α+α′) ◦ exp
(

ad(α2α′+αα′2)c[2]
3

)
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for any α,α′ ∈ K . In particular, the automorphisms Φ(α) and Θ(α) are of order 2, and the auto-
morphisms Ψ(α) are of order 4.

4.4. Diagonal automorphisms. Let L be a Lie algebra with a basis B. We will call an auto-
morphism of L diagonal with respect to B (or just diagonal if it is clear which basis B is meant),
if it leaves invariant each one-dimensional subspace Kx, where x ∈ B.

Lemma 4.1. Each diagonal automorphism of L with respect to the standard basis is of the form

b1 7→λ−2b1 c1 7→λc1

b2 7→λ2b2 c2 7→λ5c2

b3 7→ b3 c3 7→λ3c3

b4 7→λ−1b4 c4 7→λ4c4

∆(λ) : b5 7→λ3b5 c5 7→λ5c5(14)

b6 7→λb6 d 7→λ−1d

b7 7→ b7

b8 7→λ4b8

b9 7→λ2b9

where λ ∈ K×.

Proof. Let x 7→ α(x)x, where x is an element in the standard basis, be a diagonal automorphism
of L . Denote α(b4)=λ−1.

We perform the following calculations:

• α(b3) = α(b1)α(b2), α(b1) = α(b1)α(b3), and α(b2) = α(b2)α(b3) imply α(b2) = α(b1)−1 and
α(b3)= 1.

• α(b1)=α(b4)α(d) and α(d)=α(b1)α(c1) imply α(c1)=λ.
• α(b7)=α(c1)α(d)=α(b1)λ2.
• b[4]

7 = b[2]
7 implies α(b7)4 = α(b7)2, thus α(b7)2 = 1 and α(b7) = 1, α(b1) = λ−2, α(b2) = λ2, and

α(d)=λ−1.
• α(c3)=α(b1)α(c2)=α(c2)λ−2.
• α(c1)=α(b1)α(c3) implies λ=α(c2)λ−4, thus α(c2)=λ5, and α(c3)=λ3.
• α(b2)=α(b1)α(c4) implies α(c4)=λ4.
• α(b9)=α(b2)α(b7)=λ2.
• α(b8)=α(b2)α(b9)=λ4.
• α(c2)=α(b7)α(c5) implies α(c5)=λ5.
• α(b5)=α(b4)α(c4)=λ3.
• α(b6)=α(b1)α(b5)=λ.

�

Conversely, it is straightforward to verify that each map of the form (14) is an automorphism
of L . Therefore, the group of diagonal automorphisms Diag(L ) is isomorphic to K×, the multi-
plicative group of K .

4.5. Putting all these automorphisms together. Denote by Aut0(L ) the group generated by
all automorphisms of L we have defined so far: exponential, Φ, Ψ, Θ, and diagonal.

Direct calculations show that for each α,γ ∈ K , any of Φ(α), Ψ(α), and Θ(α) commutes with any
of exp(adγc2), exp(adγc4), exp(adγc5), and exp(adγc[2]

3 ). Additionally,

Ψ(γ)◦Φ(α)=Φ(α) ◦ Ψ(γ) ◦ exp
(

adαγc4
)

Θ(γ) ◦Φ(α)=Φ(α) ◦ Θ(γ) ◦ exp
(

adαγ2c2
)

◦ exp
(

adα2γc4
)

◦ exp
(

adαγ2c5
)

◦ exp
(

adα2γ2c[2]
3

)

Θ(γ) ◦Ψ(α)=Ψ(α) ◦ Θ(γ) ◦ exp
(

adαγc2
)

◦ exp
(

adαγc5
)

.
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Together with (13) this implies that the group N generated by the exponential automorphisms,
and automorphisms Φ, Ψ and Θ, is a 7-dimensional unipotent algebraic group. Further, taking
into account that ∆(λ)−1 =∆(λ−1), we have:

exp(adαc2)∆(λ) = exp(adλ−5αc2)

exp(adαc4)∆(λ) = exp(adλ−4αc4)

exp(adαc5)∆(λ) = exp(adλ−5αc5)

exp(adαc[2]
3 )∆(λ)= exp(adλ−6αc[2]

3 )(15)

Φ(α)∆(λ) =Φ(λ−1α)

Ψ(α)∆(λ) =Ψ(λ−3α)

Θ(α)∆(λ) =Θ(λ−2α).

(here the superscript denotes the group conjugation: ϕψ =ψ−1 ◦ϕ◦ψ).
Therefore, N is a normal subgroup in Aut0(L ), and Aut0(L ) is isomorphic to the semidirect

product K×
⋉N , with the action of K× on N defined by (15).

4.6. Invariant subspaces. Now we are going to prove that the automorphisms constructed in
the previous subsections exhaust all automorphisms of L . To this aim, we determine certain
invariant subspaces in the Skryabin algebra.

Proposition 4.2. The Skryabin algebra L has the following Aut(L )-invariant subspaces:

〈c2〉 〈c4〉 〈c5〉
〈b5, c2〉 〈b8, c2〉

V4 = 〈b2,b5,b8, c2〉
V5 = 〈b8, c2, c3, c4, c5〉

V6 = 〈b2,b3,b5,b8, c2, c4〉 V ′
6 = 〈b5,b6,b8, c2, c4, c5〉 V ′′

6 = 〈b5,b8,b9, c2, c4, c5〉
V7 = 〈b5,b6,b8,b9, c2, c4, c5〉 V ′

7 = 〈b5,b8,b9, c2, c3, c4, c5〉
V8 = 〈b2,b3,b5,b6,b8, c2, c4, c5〉 V ′

8 = 〈b2,b5,b6,b8,b9, c2, c4, c5〉 V ′′
8 = 〈b2,b5,b6,b8, c2, c3, c4, c5〉

V9 = 〈b2,b3,b5,b6,b8,b9, c2, c4, c5〉 V ′
9 = 〈b2,b5,b6,b8,b9, c2, c3, c4, c5〉

V11 = 〈b2,b3,b4,b5,b6,b8, c1, . . . , c5〉 V ′
11 = 〈b2,b3,b5,b6,b8,b9, c1, . . . , c5〉

V ′′
11 = 〈b2,b3,b5,b6,b8,b9, c2, c3, c4, c5,d〉
V12 = 〈b2,b3,b4,b5,b6,b8,b9, c1, . . . , c5〉

Proof. By Proposition 2.3(i), the sandwich subalgebra S of L coincides with 〈c2, c4, c5〉. Starting
from this, rewrite the specified subspaces in invariant terms:

• 〈c5〉 = { x ∈ S | dim[L , x]≤ 3 };
• 〈c4, c5〉 is the subspace (actually, the abelian subalgebra) linearly spanned by elements x ∈ S

such that dim[L , x]≤ 4;
• 〈c4〉 = [L , c5]∩〈c4, c5〉;
• V4 = [L , c4];
• 〈c2〉 = S∩V4;
• V5 = [L , c2];
• 〈b8, c2〉 =V4∩V5;
• V ′

7 = [L ,〈b8, c2〉]
• V ′

9 = { x ∈L | [x,S]= 0 };
• 〈b5, c2〉 = [L , c5]∩V4 ∩ [V ′

9,V ′
9];

• V ′
8 = { x ∈V ′

9 | x
[2] ∈L };

• V ′′
8 = [L ,〈b5, c2〉];
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• Note that V ′
8 is a subalgebra of L with the center S. The subspace V7 (actually, a subalgebra)

coincides with the set of elements x ∈ V ′
8 such that the induced adjoint map ad x : V ′

8/S → V ′
8/S

has rank ≤ 1;
• V ′

6 =V7∩V ′′
8 ;

• V ′′
6 =V7 ∩V ′

7;
• V ′

11 = { x ∈L | [x,S]⊆ S };
• V ′′

11 = CL (c4);
• V9 = [V ′′

11,V ′′
11];

• V12 = { x ∈L | [x,V ′
11]⊆V ′

11+Kx };
• V11 = [V12,V12];
• V8 =V9∩V11;
• V6 is a linear span of elements x[2], where x ∈V8;

All these items are verified by straightforward computations. �

Many more Aut(L )-invariant subspaces of L can be produced in a similar fashion, here we
confine ourselves only to those which will be needed in the sequel.

4.7. No other automorphisms.

Theorem 4.3. Assume that any quadratic equation with coefficients in the ground field K has a

solution in K . Then Aut(L )=Aut0(L ).

Proof. Let ϕ be an automorphism of L . Our strategy is to consecutively “twist” ϕ by taking
compositions with various automorphisms from Aut0(L ), and eventually arrive at the conclusion
ϕ= idL .

By Proposition 4.2, ϕ(b3) lies in V6 and does not lie in V4 +〈c4〉, i.e., is of the form

ϕ(b3)=λ2b2+λ3b3 +λ5b5+λ8b8+µ2c2 +µ4c4,

where λ3 6= 0. As b3 is toral, ϕ(b3) is toral, and the equality ϕ(b3) = ϕ(b3)[2] is equivalent to the
following quadratic system:

λ2 =λ2λ3

λ3 =λ2
3

λ5 =λ3λ5

λ8 =λ3λ8

µ2 =λ3µ2

µ4 =λ2
2.

Consequently,

(16) ϕ(b3)=λ2b2 +b3+λ5b5+λ8b8 +µ2c2 +λ2
2c4.

Assume that λ2 6= 0. Applying to both sides of the equality (16) the automorphism

exp
(

ad
(

λ
− 3

2
2 λ5 +λ

− 5
2

2 µ2
)

c2

)

◦ Θ(α) ◦ Φ
(

λ
− 3

2
2 λ5

)

◦ ∆
(

λ
1
2
2

)

,

where α satisfies the quadratic equation α2+α+λ−2
2 λ8 = 0 (this is the only place were we need the

assumption that any quadratic equation with coefficients in K has a solution), we may assume
that

ϕ(b3)= b2+b3+ c4.

The automorphism ϕ maps the subalgebra CL (b3) to the subalgebra CL (b2+b3+c4). We have

CL (b3)= 〈b3,b6,b9, c3, c4, c5,d〉

and
CL (b2 +b3+ c4)= 〈b2 +b3+ c4,b5 +b6,b8 +b9, c2 + c3, c4, c5,d〉.
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By Proposition 4.2, ϕ(b6) lies in V ′
6, so does not contain terms with b2+b3+ c4, b8+b9, c2+ c3,

and d. Similarly, ϕ(b9) lies in V ′′
6 , so does not contain terms with b2+b3+ c4, b5+b6, c2+ c3, and

d. Therefore, we can write

ϕ(b6)=α6(b5+b6)+α4c4 +α5c5

ϕ(b9)=β9(b8+b9)+β4c4 +β5c5

ϕ(d) =γ3(b2 +b3+ c4)+γ6(b5+b6)+γ9(b8 +b9)+δ3(c2 + c3)+δ4c4 +δ5c5 +γd

for certain αi,βi,γi,δi,γ ∈ K . Then, the equalities [ϕ(b6),ϕ(d)] = ϕ(b3) and [ϕ(b9),ϕ(d)] = ϕ(b6)
are equivalent to

α6γ= 1(17)
α6δ3+α5γ= 1(18)

and

β9γ=α6(19)
β5γ=α4(20)
β9δ3 =α5(21)

respectively. It is easy to see that the system (17)–(21) is contradictory: for example, multiplying
(21) by α6, and taking into account (18), we get β9 +α5β9γ = α5α6, which, in its turn, together
with (19) gives β9 = 0, hence α5 =α6 = 0, contradicting condition (18).

Therefore, λ2 = 0. Applying to both sides of (16) the automorphism

Ψ(λ5) ◦ exp
(

ad
(

λ5

√

λ8 +µ2
)

c2

)

◦ Θ
(
√

λ8
)

,

we may assume that ϕ(b3) = b3. Consequently, the eigenspace 〈b1,b2,b4,b5,b7,b8, c1, c2〉 corre-
sponding to the eigenvalue 1 of adb3, is invariant under ϕ, and we may write

ϕ(b1)=λ1b1+λ2b2+λ4b4 +λ5b5+λ7b7+λ8b8+µ1c1 +µ2c2.

Applying to both sides of this equality the automorphism

exp
(

ad
(

λ
1
2
1λ2λ4 +λ

− 3
2

1 λ3
4λ7 +λ

− 1
2

1 λ2
4µ1 +λ

3
2
1λ5

)

c5

)

◦ exp
(

ad
(

λ1λ2λ7 +λ−1
1 λ4λ

2
7 +λ2

1λ8
)

c[2]
3

)

◦ exp
(

ad
(

λ1λ2 +λ−1
1 λ4λ7

)

c4

)

◦Φ
(

λ
− 1

2
1 λ4

)

◦∆
(

λ
− 1

2
1

)

,

we may assume that λ1 = 1 and λ2 =λ4 =λ5 =λ8 = 0.
Then we have

0=ϕ(b[4]
1 )=ϕ(b1)[4] =µ2

1b[2]
4 +λ4

7b[2]
7 +µ2

2c[2]
3 + (terms lying in L ),

which implies λ7 =µ1 =µ2 = 0, and ϕ(b1)= b1. Further:

• ϕ(c4) ∈ 〈c4〉 by Proposition 4.2;
• ϕ(b2)= [ϕ(b1),ϕ(c4)] ∈ [b1,〈c4〉]= 〈b2〉;
• ϕ(c2) ∈ 〈c2〉 by Proposition 4.2;
• ϕ(c3)= [ϕ(b1),ϕ(c2)] ∈ [b1,〈c2〉]= 〈c3〉;
• ϕ(c1)= [ϕ(b1),ϕ(c3)] ∈ [b1,〈c3〉]= 〈c1〉;
• ϕ(c5) ∈ 〈c5〉 by Proposition 4.2;
• ϕ(b5)= [ϕ(b1),ϕ(c5)] ∈ [b1,〈c5〉]= 〈b5〉;
• ϕ(b6)= [ϕ(b1),ϕ(b5)] ∈ [b1,〈b5〉]= 〈b6〉;
• ϕ(d)= [ϕ(b1),ϕ(c1)] ∈ [b1,〈c1〉]= 〈d〉;
• ϕ(b7)= [ϕ(c1),ϕ(d)] ∈ [〈c1〉,〈d〉]= 〈b7〉;
• ϕ(b4)= [ϕ(b7),ϕ(d)] ∈ [〈b7〉,〈d〉]= 〈b4〉;
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• ϕ(b8)= [ϕ(c2),ϕ(d)] ∈ [〈c2〉,〈d〉]= 〈b8〉;
• ϕ(b9)= [ϕ(c3),ϕ(d)] ∈ [〈c3〉,〈d〉]= 〈b9〉.

Hence, ϕ is a diagonal automorphism, and by Lemma 4.1 we have ϕ=∆(λ), where λ−2 = 1. But
then λ= 1 and ϕ= idL . �

5. GRADINGS

Having a supply of automorphisms of L at hand, and using the known correspondence be-
tween automorphisms and group gradings (formulated in full generality in the language of affine
group schemes – see, for example, [EK, Proposition 1.36]), we may try to construct group gradings
of L .

In practice, this is achieved by extending the ground field K to a suitable commutative ring
R (not necessary a field – we are dealing with the group scheme R → AutR(L ⊗K R)), extending
an automorphism ϕ of L to the automorphism ϕ of L = L ⊗K R via ϕ(x⊗ r) = ϕ(x)⊗ r, and
considering eigenspaces L λ = { x ∈L |ϕ(x)=λx }. For a suitable choice of ϕ and R, and a suitable
homomorphism χ from the group generated by all eigenvalues λ ∈ R to a group G, the eigenspaces
are “rational”: L λ = Lχ(λ) ⊗K R. The ensued grading L =

⊕

χ(λ) Lχ(λ) is a grading of L by G,
even in the case where the eigenvalues λ do not necessarily belong to the ground field.

For example, the diagonal automorphism ∆(λ) for the “generic” value of λ (or, which is the
same, for λ ∈ K such that the order of λ in the multiplicative group K× is > 7) produces a Z-
grading

−2 −1 0 1 2 3 4 5

L = 〈b1〉⊕〈b4,d〉⊕〈b3,b7〉⊕〈b6, c1〉⊕〈b2,b9〉⊕〈b5, c3〉⊕〈b8, c4〉⊕〈c2, c5〉.(22)

Specializing the automorphism ∆(λ) to the cases λn = 1, n ≤ 7, we obtain a Z/nZ-grading of L .
As the product of any two elements from the standard basis is either zero, or again an element

from the standard basis, the decomposition of L into one-dimensional subspaces spanned by
the basis element is a grading. This is a group grading, and its universal group ([EK, §1.2]) is
isomorphic to the (additive) abelian group with generators x, y (corresponding to elements b1, b4

respectively), and the relation 2x = 4y, which is clearly isomorphic to the direct sum Z⊕Z/2Z. On
the other hand, the thin decomposition exhibited in §3.4 is a (Z/2Z)4-grading.

In general, it seems to be a difficult task to classify all group gradings of the Skryabin algebra.
Even to determine whether the automorphisms of order 2 (exponential, Φ, and Θ) lead to Z/2Z-
gradings seems to be far from trivial. Perhaps, it could be approached with the method of [KL].

6. COMPARISON OF THE SKRYABIN ALGEBRA WITH ALGEBRAS FROM THE EICK LIST. A BIT

MORE NUMEROLOGY

In [E], a computer-generated list of simple Lie algebras over GF(2) of dimension ≤ 20 is pre-
sented. The Skryabin algebra (defined over GF(2)) is not isomorphic to any of the 15-dimensional
algebras in the list.

One way to see this, using data from [E], is to look at automorphisms, either at the group
of exponential automorphisms Exp(L ), or at the whole group Aut(L ). As the ground field is
GF(2), Exp(L ) is isomorphic to the additive group GF(2)⊕GF(2)⊕GF(2)⊕GF(2), thus having
order 16, which is different from all the 15-dimensional algebras in the list (including the new
ones, number 7 and 8, dubbed by us here as Eick7 and Eick8) except for the non-alternating
Hamiltonian algebra P(2,1,1) (number 4). The order of Aut(L ) is 27 = 128 (over GF(2), there are
no nontrivial diagonal automorphisms), which is, again, different from all the 15-dimensional
algebras in the list.

Another way to distinguish between all these algebras, is to repeat for them the same pedes-
trian, but informative computations concerning tori and the sandwich subalgebra, as in §3.1 and
§2. The following table accumulates some information about the 15-dimensional central simple
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algebras from the Eick list, whose derivation algebra is 19-dimensional (and coincides in all the
cases with the 2-envelope). Here TR denotes the absolute toral rank of the algebra, N1 and Nm

denote, respectively, the number of toral elements, and of tori of the maximal dimension TR in
the 2-envelope, and S is the dimension of the sandwich subalgebra. We keep Eick’s notation for
algebras; in particular, W(4) is, in a more common notation, the Zassenhaus algebra W1(4)′.

algebra TR N1 Nm S

W(4) 2 256 1,536 10
P(2,1,1) 4 448 43,680 1
P(3,1) 3 384 10,752 5
P(2,2) 4 384 13,440 3
Eick7 4 464 87,360 1
Eick8 4 464 67,200 1

Interestingly enough, all of these algebras which are of absolute toral rank 4, i.e., P(2,1,1),
P(2,2), Eick7, and Eick8, also admit thin decompositions with respect to a lot (conjecturally
with respect to all) of the 4-dimensional tori.

Non-alternating Hamiltonian algebras in characteristic 2 were investigated in depth in the re-
cent interesting preprints [KKC] and [K]. We believe that over GF(2) all 15-dimensional algebras
from [K] are isomorphic to P(3,1), but have not ventured into proving it.

7. OPEN QUESTIONS

1. Is it true that two toral elements h and h′ in L are conjugate with respect to the automor-
phism group, if and only if CL (h)≃ CL (h′) ?

2. Describe all gradings of the Skryabin algebra.

3. Conjecture. Let L be a simple Lie algebra admitting a thin decomposition with respect to a
torus T. Then the derivation algebra of L is isomorphic to the semidirect sum T⋉L.

The conjecture is true for the Skryabin algebra, as shown in §3.4. It is easy to see that the
condition of simplicity is essential here: for example, the 3-dimensional nilpotent Lie algebra
admits a thin decomposition, but not satisfies the conclusion of the conjecture.

4. Conjecture. Any simple Lie algebra of dimension > 3 over a field of characteristic 2 admitting
a thin decomposition has:
a) a proper simple graded subalgebra (with respect to this decomposition);
b) a graded subalgebra isomorphic either to W or to H.

5. Classify simple finite-dimensional Lie algebras over an algebraically closed field of charac-
teristic 2, admitting a thin decomposition.

6. Classify simple finite-dimensional Z-graded Lie algebras over an algebraically closed field
of characteristic 2, such that all homogeneous components are of dimension < 3. (Note that the
Skryabin algebra belongs to this class, due to (22)).
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