# # file: skryabin.gap # # purpose: Defines the 15-dimensional simple Skryabin algebra # # created: Pasha Zusmanovich Oct 13 2014 # # latest revision history: # Mar 12 2021 added 2-envelope; "names" for the standard basis elements; # # the 2-parametric family of 15-dimensional Skryabin algebras in p=2, # as deformation of the corresponding semisimple algebra # K - base field, should be extenions of GF(2) SkryabinAlgebra := function (beta, delta, K) local T; T := EmptySCTable (15, Zero(K), "antisymmetric"); # 1 e \otimes 1 # 2 e \otimes x # 3 e \otimes x^2 # 4 e \otimes x^3 # 5 h \otimes 1 # 6 h \otimes x # 7 h \otimes x^2 # 8 h \otimes x^3 # 9 f \otimes 1 # 10 f \otimes x # 11 f \otimes x^2 # 12 f \otimes x^3 # 13 g \otimes 1 # 14 g \otimes x # 15 d # {e \otimes 1, e \otimes x} = beta g \otimes x SetEntrySCTable (T, 1, 2, [beta, 14]); # {e \otimes 1, e \otimes x^2} = delta g \otimes 1 SetEntrySCTable (T, 1, 3, [delta, 13]); # {e \otimes 1, e \otimes x^3} = delta g \otimes x + d SetEntrySCTable (T, 1, 4, [delta, 14, 1, 15]); # {e \otimes x, e \otimes x^2} = delta g \otimes x + d SetEntrySCTable (T, 2, 3, [delta, 14, 1, 15]); # {e \otimes x, e \otimes x^3} = h \otimes 1 SetEntrySCTable (T, 2, 4, [1, 5]); # {e \otimes x^2, e \otimes x^3} = h \otimes x SetEntrySCTable (T, 3, 4, [1, 6]); # {e \otimes 1, h \otimes 1} = e \otimes 1 SetEntrySCTable (T, 1, 5, [1, 1]); # {e \otimes 1, h \otimes x} = e \otimes x SetEntrySCTable (T, 1, 6, [1, 2]); # {e \otimes 1, h \otimes x^2} = e \otimes x^2 SetEntrySCTable (T, 1, 7, [1, 3]); # {e \otimes 1, h \otimes x^3} = e \otimes x^3 SetEntrySCTable (T, 1, 8, [1, 4]); # {e \otimes x, h \otimes 1} = e \otimes x SetEntrySCTable (T, 2, 5, [1, 2]); # {e \otimes x, h \otimes x} = 0 # {e \otimes x, h \otimes x^2} = e \otimes x^3 SetEntrySCTable (T, 2, 7, [1, 4]); # {e \otimes x, h \otimes x^3} = f \otimes 1 SetEntrySCTable (T, 2, 8, [1, 9]); # {e \otimes x^2, h \otimes 1} = e \otimes x^2 SetEntrySCTable (T, 3, 5, [1, 3]); # {e \otimes x^2, h \otimes x} = e \otimes x^3 SetEntrySCTable (T, 3, 6, [1, 4]); # {e \otimes x^2, h \otimes x^2} = 0 # {e \otimes x^2, h \otimes x^3} = f \otimes x SetEntrySCTable (T, 3, 8, [1, 10]); # {e \otimes x^3, h \otimes 1} = e \otimes x^3 SetEntrySCTable (T, 4, 5, [1, 4]); # {e \otimes x^3, h \otimes x} = 0 # {e \otimes x^3, h \otimes x^2} = 0 # {e \otimes x^3, h \otimes x^3} = f \otimes x^2 SetEntrySCTable (T, 4, 8, [1, 11]); # {e \otimes 1, f \otimes 1} = h \otimes 1 SetEntrySCTable (T, 1, 9, [1, 5]); # {e \otimes 1, f \otimes x} = h \otimes x SetEntrySCTable (T, 1, 10, [1, 6]); # {e \otimes 1, f \otimes x^2} = h \otimes x^2 SetEntrySCTable (T, 1, 11, [1, 7]); # {e \otimes 1, f \otimes x^3} = h \otimes x^3 SetEntrySCTable (T, 1, 12, [1, 8]); # {e \otimes x, f \otimes 1} = h \otimes x SetEntrySCTable (T, 2, 9, [1, 6]); # {e \otimes x, f \otimes x} = 0 # {e \otimes x, f \otimes x^2} = h \otimes x^3 SetEntrySCTable (T, 2, 11, [1, 8]); # {e \otimes x, f \otimes x^3} = g \otimes 1 SetEntrySCTable (T, 2, 12, [1, 13]); # {e \otimes x^2, f \otimes 1} = h \otimes x^2 SetEntrySCTable (T, 3, 9, [1, 7]); # {e \otimes x^2, f \otimes x} = h \otimes x^3 SetEntrySCTable (T, 3, 10, [1, 8]); # {e \otimes x^2, f \otimes x^2} = 0 # {e \otimes x^2, f \otimes x^3} = g \otimes x SetEntrySCTable (T, 3, 12, [1, 14]); # {e \otimes x^3, f \otimes 1} = h \otimes x^3 SetEntrySCTable (T, 4, 9, [1, 8]); # {e \otimes x^3, f \otimes x} = g \otimes 1 SetEntrySCTable (T, 4, 10, [1, 13]); # {e \otimes x^3, f \otimes x^2} = g \otimes x SetEntrySCTable (T, 4, 11, [1, 14]); # {e \otimes x^3, f \otimes x^3} = 0 # {e \otimes 1, g \otimes 1} = f \otimes 1 SetEntrySCTable (T, 1, 13, [1, 9]); # {e \otimes 1, g \otimes x} = f \otimes x SetEntrySCTable (T, 1, 14, [1, 10]); # {e \otimes x, g \otimes 1} = f \otimes x SetEntrySCTable (T, 2, 13, [1, 10]); # {e \otimes x, g \otimes x} = 0 # {e \otimes x^2, g \otimes 1} = f \otimes x^2 SetEntrySCTable (T, 3, 13, [1, 11]); # {e \otimes x^2, g \otimes x} = f \otimes x^3 SetEntrySCTable (T, 3, 14, [1, 12]); # {e \otimes x^3, g \otimes 1} = f \otimes x^3 SetEntrySCTable (T, 4, 13, [1, 12]); # {e \otimes x^3, g \otimes x} = 0 # {h \otimes 1, h \otimes x} = 0 # {h \otimes 1, h \otimes x^2} = 0 # {h \otimes 1, h \otimes x^3} = 0 # {h \otimes x, h \otimes x^2} = 0 # {h \otimes x, h \otimes x^3} = g \otimes 1 SetEntrySCTable (T, 6, 8, [1, 13]); # {h \otimes x^2, h \otimes x^3} = g \otimes x SetEntrySCTable (T, 7, 8, [1, 14]); # {h \otimes 1, f \otimes 1} = f \otimes 1 SetEntrySCTable (T, 5, 9, [1, 9]); # {h \otimes 1, f \otimes x} = f \otimes x SetEntrySCTable (T, 5, 10, [1, 10]); # {h \otimes 1, f \otimes x^2} = f \otimes x^2 SetEntrySCTable (T, 5, 11, [1, 11]); # {h \otimes 1, f \otimes x^3} = f \otimes x^3 SetEntrySCTable (T, 5, 12, [1, 12]); # {h \otimes x, f \otimes 1} = f \otimes x SetEntrySCTable (T, 6, 9, [1, 10]); # {h \otimes x, f \otimes x} = 0 # {h \otimes x, f \otimes x^2} = f \otimes x^3 SetEntrySCTable (T, 6, 11, [1, 12]); # {h \otimes x, f \otimes x^3} = 0 # {h \otimes x^2, f \otimes 1} = f \otimes x^2 SetEntrySCTable (T, 7, 9, [1, 11]); # {h \otimes x^2, f \otimes x} = f \otimes x^3 SetEntrySCTable (T, 7, 10, [1, 12]); # {h \otimes x^2, f \otimes x^2} = 0 # {h \otimes x^2, f \otimes x^3} = 0 # {h \otimes x^3, f \otimes 1} = f \otimes x^3 SetEntrySCTable (T, 8, 9, [1, 12]); # {h \otimes x^3, f \otimes x} = 0 # {h \otimes x^3, f \otimes x^2} = 0 # {h \otimes x^3, f \otimes x^3} = 0 # {h \otimes 1, g \otimes 1} = 0 # {h \otimes 1, g \otimes x} = 0 # {h \otimes x, g \otimes 1} = 0 # {h \otimes x, g \otimes x} = 0 # {h \otimes x^2, g \otimes 1} = 0 # {h \otimes x^2, g \otimes x} = 0 # {h \otimes x^3, g \otimes 1} = 0 # {h \otimes x^3, g \otimes x} = 0 # {f \otimes 1, f \otimes x} = 0 # {f \otimes 1, f \otimes x^2} = 0 # {f \otimes 1, f \otimes x^3} = 0 # {f \otimes x, f \otimes x^2} = 0 # {f \otimes x, f \otimes x^3} = 0 # {f \otimes x^2, f \otimes x^3} = 0 # {f \otimes 1, g \otimes 1} = 0 # {f \otimes 1, g \otimes x} = 0 # {f \otimes x, g \otimes 1} = 0 # {f \otimes x, g \otimes x} = 0 # {f \otimes x^2, g \otimes 1} = 0 # {f \otimes x^2, g \otimes x} = 0 # {f \otimes x^3, g \otimes 1} = 0 # {f \otimes x^3, g \otimes x} = 0 # {g \otimes 1, g \otimes x} = 0 # {e \otimes 1, d} = beta f \otimes x^3 SetEntrySCTable (T, 1, 15, [beta, 12]); # {e \otimes x, d} = e \otimes 1 SetEntrySCTable (T, 2, 15, [1, 1]); # {e \otimes x^2, d} = e \otimes x SetEntrySCTable (T, 3, 15, [1, 2]); # {e \otimes x^3, d} = e \otimes x^2 SetEntrySCTable (T, 4, 15, [1, 3]); # {h \otimes 1, d} = 0 # {h \otimes x, d} = h \otimes 1 SetEntrySCTable (T, 6, 15, [1, 5]); # {h \otimes x^2, d} = h \otimes x SetEntrySCTable (T, 7, 15, [1, 6]); # {h \otimes x^3, d} = h \otimes x^2 SetEntrySCTable (T, 8, 15, [1, 7]); # {f \otimes 1, d} = 0 # {f \otimes x, d} = f \otimes 1 SetEntrySCTable (T, 10, 15, [1, 9]); # {f \otimes x^2, d} = f \otimes x SetEntrySCTable (T, 11, 15, [1, 10]); # {f \otimes x^3, d} = f \otimes x^2 SetEntrySCTable (T, 12, 15, [1, 11]); # {g \otimes 1, d} = 0 # {g \otimes x, d} = g \otimes 1 SetEntrySCTable (T, 14, 15, [1, 13]); return (LieAlgebraByStructureConstants (K, T)); end; # defines the 19-dimensional 2-envelope of the Skryabin algebra, # as given by multiplication in the standard basis # K - base field of characteristic 2 2EnvelopeSkryabinAlgebra := function (K) local T; T := EmptySCTable (19, Zero(K), "antisymmetric"); # 1 b1 # 2 b2 # 3 b3 # 4 b4 # 5 b5 # 6 b6 # 7 b7 # 8 b8 # 9 b9 # 10 c1 # 11 c2 # 12 c3 # 13 c4 # 14 c5 # 15 d # 16 b1^2 # 17 b4^2 # 18 b7^2 # 19 c3^2 # nonzero multiplications in the standard basis # [b1,b2] = b3 SetEntrySCTable (T, 1, 2, [1,3]); # [b1,b3] = b1 SetEntrySCTable (T, 1, 3, [1,1]); # [b1,b5] = b6 SetEntrySCTable (T, 1, 5, [1,6]); # [b1,b6] = b4 SetEntrySCTable (T, 1, 6, [1,4]); # [b1,b8] = b9 SetEntrySCTable (T, 1, 8, [1,9]); # [b1,b9] = b7 SetEntrySCTable (T, 1, 9, [1,7]); # [b1,c1] = d SetEntrySCTable (T, 1, 10, [1,15]); # [b1,c2] = c3 SetEntrySCTable (T, 1, 11, [1,12]); # [b1,c3] = c1 SetEntrySCTable (T, 1, 12, [1,10]); # [b1,c4] = b2 SetEntrySCTable (T, 1, 13, [1,2]); # [b1,c5] = b5 SetEntrySCTable (T, 1, 14, [1,5]); # [b2,b3] = b2 SetEntrySCTable (T, 2, 3, [1,2]); # [b2,b4] = b6 SetEntrySCTable (T, 2, 4, [1,6]); # [b2,b6] = b5 SetEntrySCTable (T, 2, 6, [1,5]); # [b2,b7] = b9 SetEntrySCTable (T, 2, 7, [1,9]); # [b2,b9] = b8 SetEntrySCTable (T, 2, 9, [1,8]); # [b2,c1] = c3 SetEntrySCTable (T, 2, 10, [1,12]); # [b2,c3] = c2 SetEntrySCTable (T, 2, 12, [1,11]); # [b3,b4] = b4 SetEntrySCTable (T, 3, 4, [1,4]); # [b3,b5] = b5 SetEntrySCTable (T, 3, 5, [1,5]); # [b3,b7] = b7 SetEntrySCTable (T, 3, 7, [1,7]); # [b3,b8] = b8 SetEntrySCTable (T, 3, 8, [1,8]); # [b3,c1] = c1 SetEntrySCTable (T, 3, 10, [1,10]); # [b3,c2] = c2 SetEntrySCTable (T, 3, 11, [1,11]); # [b4,b7] = d SetEntrySCTable (T, 4, 7, [1,15]); # [b4,b8] = c3 SetEntrySCTable (T, 4, 8, [1,12]); # [b4,b9] = c1 SetEntrySCTable (T, 4, 9, [1,10]); # [b4,c1] = b3 SetEntrySCTable (T, 4, 10, [1,3]); # [b4,c2] = c4 SetEntrySCTable (T, 4, 11, [1,13]); # [b4,c3] = b2 SetEntrySCTable (T, 4, 12, [1,2]); # [b4,c4] = b5 SetEntrySCTable (T, 4, 13, [1,5]); # [b4,d] = b1 SetEntrySCTable (T, 4, 15, [1,1]); # [b5,b7] = c3 SetEntrySCTable (T, 5, 7, [1,12]); # [b5,b9] = c2 SetEntrySCTable (T, 5, 9, [1,11]); # [b5,c1] = c4 SetEntrySCTable (T, 5, 10, [1,13]); # [b5,d] = b2 SetEntrySCTable (T, 5, 15, [1,2]); # [b6,b7] = c1 SetEntrySCTable (T, 6, 7, [1,10]); # [b6,b8] = c2 SetEntrySCTable (T, 6, 8, [1,11]); # [b6,c3] = c4 SetEntrySCTable (T, 6, 12, [1,13]); # [b6,d] = b3 SetEntrySCTable (T, 6, 15, [1,3]); # [b7,c1] = b6 SetEntrySCTable (T, 7, 10, [1,6]); # [b7,c2] = c5 SetEntrySCTable (T, 7, 11, [1,14]); # [b7,c3] = b5 SetEntrySCTable (T, 7, 12, [1,5]); # [b7,c4] = b8 SetEntrySCTable (T, 7, 13, [1,8]); # [b7,c5] = c2 SetEntrySCTable (T, 7, 14, [1,11]); # [b7,d] = b4 SetEntrySCTable (T, 7, 15, [1,4]); # [b8,c1] = c5 SetEntrySCTable (T, 8, 10, [1,14]); # [b8,d] = b5 SetEntrySCTable (T, 8, 15, [1,5]); # [b9,c3] = c5 SetEntrySCTable (T, 9, 12, [1,14]); # [b9,d] = b6 SetEntrySCTable (T, 9, 15, [1,6]); # [c1,c3] = b8 SetEntrySCTable (T, 10, 12, [1,8]); # [c1,c4] = c2 SetEntrySCTable (T, 10, 13, [1,11]); # [c1,d] = b7 SetEntrySCTable (T, 10, 15, [1,7]); # [c2,d] = b8 SetEntrySCTable (T, 11, 15, [1,8]); # [c3,d] = b9 SetEntrySCTable (T, 12, 15, [1,9]); # [c5,d] = c4 SetEntrySCTable (T, 14, 15, [1,13]); # [b1,c_3^2] = b8 SetEntrySCTable (T, 1, 19, [1,8]); # [b2,b1^2] = b1 SetEntrySCTable (T, 2, 16, [1,1]); # [b4,b7^2] = b4 SetEntrySCTable (T, 4, 18, [1,4]); # [b4,c3^2] = c2 SetEntrySCTable (T, 4, 19, [1,11]); # [b5,b1^2] = b4 SetEntrySCTable (T, 5, 16, [1,4]); # [b5,b7^2] = b5 SetEntrySCTable (T, 5, 18, [1,5]); # [b6,b7^2] = b6 SetEntrySCTable (T, 6, 18, [1,6]); # [b7,b4^2] = b1 SetEntrySCTable (T, 7, 17, [1,1]); # [b8,b1^2] = b7 SetEntrySCTable (T, 8, 16, [1,7]); # [b8,b4^2] = b2 SetEntrySCTable (T, 8, 17, [1,2]); # [b9,b4^2] = b3 SetEntrySCTable (T, 9, 17, [1,3]); # [c1,b4^2] = b4 SetEntrySCTable (T, 10, 17, [1,4]); # [c1,b7^2] = c1 SetEntrySCTable (T, 10, 18, [1,10]); # [c2,b1^2] = c1 SetEntrySCTable (T, 11, 16, [1,10]); # [c2,b4^2] = b5 SetEntrySCTable (T, 11, 17, [1,5]); # [c2,b7^2] = c2 SetEntrySCTable (T, 11, 18, [1,11]); # [c3,b1^2] = d SetEntrySCTable (T, 12, 16, [1,15]); # [c3,b4^2] = b6 SetEntrySCTable (T, 12, 17, [1,6]); # [c3,b7^2] = c3 SetEntrySCTable (T, 12, 18, [1,12]); # [c4,b1^2] = b3 SetEntrySCTable (T, 13, 16, [1,3]); # [c5,b1^2] = b6 SetEntrySCTable (T, 14, 16, [1,6]); # [c5,b7^2] = c5 SetEntrySCTable (T, 14, 18, [1,14]); # [d,b7^2] = d SetEntrySCTable (T, 15, 18, [1,15]); # [d,c3^2] = c5 SetEntrySCTable (T, 15, 19, [1,14]); # [b1^2,c3^2] = b9 SetEntrySCTable (T, 16, 19, [1,9]); # [b4^2,c3^2] = c4 SetEntrySCTable (T, 17, 19, [1,13]); return (LieAlgebraByStructureConstants (K, T)); end; # now we define: # L: the Skryabin algebra over the given field K of char. 2 # L2: the 2-envelope of the Skryabin algebra # bas: the standard basis of L2 # b1,...,b9,c1,...c5,d, b12, b42, b72, c32: elements of the standard basis K := GF(2); #K := GF(2^2); #K := GF(2^4); L2 := 2EnvelopeSkryabinAlgebra (K); bas := CanonicalBasis (L2); b1 := bas[1]; b2 := bas[2]; b3 := bas[3]; b4 := bas[4]; b5 := bas[5]; b6 := bas[6]; b7 := bas[7]; b8 := bas[8]; b9 := bas[9]; c1 := bas[10]; c2 := bas[11]; c3 := bas[12]; c4 := bas[13]; c5 := bas[14]; d := bas[15]; b12 := bas[16]; # b1^2 b42 := bas[17]; # b4^2 b72 := bas[18]; # b7^2 c32 := bas[19]; # c3^2 L := Subalgebra (L2, [b1, b2, b3, b4, b5, b6, b7, b8, b9, c1, c2, c3, c4, c5, d], "basis"); # names for the standard basis elements in L2 # used to display results in a human-friendly form basis_names := ["b1", "b2", "b3", "b4", "b5", "b6", "b7", "b8", "b9", "c1", "c2", "c3", "c4", "c5", "d", "b1^2", "b4^2", "b7^2", "c3^2"]; # eof