
THE ALTERNATIVE OPERAD IS NOT KOSZUL

ASKAR DZHUMADIL’DAEV AND PASHA ZUSMANOVICH

In the online compendium [Lod], it is asked whether the alternative operad is Koszul. The purpose of

this note is to demonstrate that the answer to this question is negative. In doing so, we are helped with the

programs Albert [A1] and PARI/GP [P].

1. THE ALTERNATIVE OPERAD AND ITS KOSZUL DUAL

Recall that an algebra is called right-alternative if it satisfies the identity

(1) (xy)y = x(yy),

and left-alternative if it satisfies the identity

(2) (xx)y = x(xy).

An algebra which is both right-alternative and left-alternative is called alternative.

Linearizing identities (1) and (2), we get

(RA) (xy)z+(xz)y− x(yz)− x(zy) = 0

and

(LA) (xy)z+(yx)z− x(yz)− y(xz) = 0,

respectively. If the characteristic of the ground field is different from 2, these identities are equivalent to

the initial ones, and they define binary quadratic operads RAlt, LAlt and Alt (dubbed right-alternative,

left-alternative and alternative operads). In characteristic 2 things go berserk: identities (1) and (2) are not

equivalent to the corresponding linearized identities, so it is impossible to encode them with operads in a

straightforward manner. We will exclude this case from our considerations.

Right- and left-alternative algebras are opposite to each other, i.e., if A is a right-alternative algebra, then

the algebra defined on the same vector space A with multiplication x ◦ y = yx is a left-alternative algebra,

and vice versa. Hence all the statements below for left-alternative algebras automatically follow from the

corresponding statements for right-alternative ones, and in the proofs we will consider the right-alternative

case only. Most of these statements are trivial and/or have been considered previously in the literature, but

they provide a good warm-up before the more difficult alternative case.

Every associative algebra is alternative. An example of a non-associative alternative algebra is the oc-

tonion algebra, appearing prominently in mathematics and physics (see, for example, the excellent survey

[B]). Note also that free alternative algebras are much more difficult objects than, for example, their asso-

ciative or Lie counterparts, and are still not understood sufficiently well.

For the general operadic business, including important notions of Koszulity and Koszul duality, we refer

to the book [MSS] and the foundational paper [GiK]. However, to understand this note it is enough to adopt

an intuitive and primitive view on operads as polylinear parts of the corresponding free algebras, and to

accept the Ginzburg–Kapranov criterion for Koszulity, as described below, for granted.

Proposition. Each of the operads Koszul dual to the right-alternative, left-alternative and alternative op-

erad is defined by two identities: associativity and the identity

(RA!) xyz+ xzy = 0

in the right-alternative case,

xyz+ yxz = 0

in the left-alternative case, and

(A!) xyz+ yxz+ zxy+ xzy+ yzx+ zyx = 0.

in the alternative case.
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In the alternative case, this is stated in [Lod] without proof, so we will provide a simple (and pretty

much standard for such situations) proof for completeness. Following [Lod], we will call algebras over

the corresponding Koszul dual operads dual right-alternative, dual left-alternative and dual alternative,

respectively.

Proof. Let R be the space of quadratic relations of the alternative operad, i.e., the space generated by the

left-hand sides of identities (RA) and (LA), and R⊥ be the space of quadratic relations of the dual alternative

operad.

Identities (RA) and (LA) imply that we may take the images of the 7 monomials (xy)z, (yx)z, (xz)y, (zx)y,

(yz)x, (zy)x, z(xy) as the basis of Alt(3), with the remaining monomials expressed through them as follows:

z(yx) = (zx)y+(zy)x− z(xy)

y(zx) =−(zx)y+(yz)x+ z(xy)

y(xz) = (yx)z+(zx)y− z(xy)(3)

x(yz) = (xy)z− (zx)y+ z(xy)

x(zy) = (xz)y+(zx)y− z(xy).

In particular,

dimAlt(3) = dimR⊥ = 7

and

dimAlt!(3) = dimR = 3!C2 −7 = 5

(here and below, Cn =
(2n)!

n!(n+1)! denotes the nth Catalan number).

To obtain identities defining the dual alternative operad, it is convenient to use the fact that if L is an

alternative algebra, and A is a dual alternative algebra, then their tensor product L⊗A equipped with the

bracket

[x⊗a,y⊗b] = xy⊗ab− yx⊗ba

for x,y ∈ L, a,b ∈ A, is a Lie algebra. Writing the Jacobi identity for triple x⊗a, y⊗b, z⊗ c for x,y,z ∈ L,

a,b,c ∈ A, substituting in it all equalities (3), and collecting similar terms, we get:

(xy)z⊗ ((ab)c−a(bc))

+(yx)z⊗ (b(ac)− (ba)c)

+(xz)y⊗ (a(cb)− (ac)b)

+(zx)y⊗ (a(bc)+a(cb)+b(ac)+b(ca)+(ca)b+ c(ba))

+(yz)x⊗ ((bc)a−b(ca))

+(zy)x⊗ (c(ba)− (cb)a)

− z(xy)⊗ (a(bc)+a(cb)+b(ac)+b(ca)+ c(ab)+ c(ba))

=0,

and the claimed identities follow.

Now it is straightforward to check that the so obtained relations are orthogonal to the alternative relations

R under the standard pairing (as defined in [GiK, §2.1.11]), so they really lie in R⊥. Under the action

of the symmetric group S3, the associativity gives 6 different relations, and the left-hand side of (A!) is

S3-invariant, so we get 7 relations in total. This shows that all relations are taken into account.

In the right-alternative case we have dimRAlt(3) = 9, and the computations are similar. �

Corollary.

(i) A dual right- or left-alternative algebra over a field of characteristic different from 2, is nilpotent

of degree 4.

(ii) A dual alternative algebra over a field of characteristic different from 2 and 3, is nilpotent of degree

6.

Proof. (i) We have, by subsequent application of associativity and (RA!):

(xyz)t =−(xzy)t =−x(zyt) = x(zty) = x(zt)y =−xy(zt).
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(ii) Substituting x= y= z in (A!), we get 6x3 = 0. The claim then follows from the results centered around

the classical Dubnov–Ivanov–Nagata–Higman Theorem about nilpotency of associative nil algebras (see,

for example, [Dr, §8.3]).

These claims also could be proved with the help of Albert. �

2. DIMENSION SEQUENCE

We are going to establish non-Koszulity using the well-known Ginzburg–Kapranov criterion [GiK, Propo-

sition 4.1.4(b)] which tells that if a finitely generated binary quadratic operad P over a field of characteristic

zero is Koszul, then

(4) gP(gP !(x)) = x,

where

gP(x) =
∞

∑
n=1

(−1)n dimP(n)

n!
xn

is the Poincaré series of the operad P , and P ! is the Koszul dual of P . For this, we need to know the

first few terms of the sequence dimP(n) for the corresponding operads and/or their Koszul duals. This is

achieved with the help of Albert.

Albert computes over a fixed prime field, and we are going to explain now how these computations imply

results valid in characteristic zero.

Representing an operad P as the quotient of the free (= magmatic) operad F by the ideal of relations,

and considering the corresponding arity n parts for a fixed n, we have

dimP(n)+ rk M = dimF(n) = n!Cn−1,

where M is a matrix consisting of coefficients of all linear relations in P between all nonassociative mul-

tilinear monomials in n variables. As coefficients of identities defining our operads are integers, M is an

integer matrix, and it is possible to consider its reduction Mp modulo a given prime p.

It is clear that rk M ≥ rk Mp. The question is how to ensure equality of these values. What follows is a

variation on the standard theme in numerical linear algebra – how to substitute rational or integer arithmetic

by modular one.

Let represent the matrix M in the Smith normal form, i.e., as a product

M = S diag(d1, . . . ,dr,0, . . . ,0)T,

where S and T are integer quadratic matrices with determinant equal to ±1, r = rk M, and d1, . . . ,dr are

nonzero integers such that di is divided by di+1. Reduction of this product modulo p will produce the

Smith normal form of Mp, i.e., Sp, Tp are still matrices with determinant ±1 over Z/pZ, and the number of

nonzero elements in the diagonal matrix

diag(d1(mod p), . . . ,dr(mod p),0, . . . ,0)

is equal to rk Mp.

If we pick primes p1, . . . , pk in such a way that

(5) p1 . . . pk > |d1 . . .dr|,

then

d1 . . .dr 6≡ 0(mod p1 . . . pk),

hence by the Chinese Remainder Theorem

d1 . . .dr 6≡ 0(mod pi),

and hence rk Mpi
= rk M for some pi. Consequently, if rk Mpi

= r for all i = 1, . . . ,k, then rk M = r.

It remains to estimate p1 . . . pk to ensure inequality (5). The product d1 . . .dr is equal, up to sign, to the

determinant of a certain minor Q of M of size r× r. As the identities defining our operads have coefficients

1 or −1, all nonzero elements of the matrix M could be chosen to be equal to 1 or −1, so the usual estimate

in such situations is provided by the Hadamard inequality: |det(Q)| ≤ r
r
2 (see, for example, [HJ, §7.8.2]).

To summarize: if there are primes p1, . . . , pk such that Albert produces the same value

(6) dimP(n) = m
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modulo these primes, and

(7) p1 . . . pk > r
r
2 , where r = n!Cn−1 −m,

then (6) holds over integers, and, consequently, over any field of characteristic zero.

Albert allows to compute over a prime field Z/pZ with p ≤ 251. We have modified Albert [A2] to

allow primes up to the largest possible value of the largest signed integer type, which is 263 − 1 on the

standard modern computer architectures, both 32-bit and 64-bit. We also have modified it to facilitate batch

processing.

As the time of Albert computations turns out not to depend significantly on the value of prime, to min-

imize the overall computation time, we are minimizing the number of Albert runs at the expense of larger

primes, i.e., when choosing primes in the given range satisfying the condition (7), we are choosing as large

primes as possible. This could be done with the help of PARI/GP.

Using all this, we establish:

Lemma 1. Over a field of characteristic zero, the first 5 terms of the sequence dimRAlt(n) are:

1, 2, 9, 60, 530.

Proof. Over any field, the first two values are obvious, and the third could be established by hand (in fact,

we already did it in the proof of Proposition in §1).

The are 3 primes < 263 satisfying the inequality (7) for r = 4!C3 −60 = 60:

263 −259, 263 −165, 263 −25.

With all these 3 primes, Albert produces dimRAlt(4) = 60.

Similarly, the number of largest possible primes < 263 satisfying the inequality (7) for r = 5!C4 −530 =
1150, is 93, and Albert produces dimRAlt(5) = 530 for all these 93 primes. �

We have also computed dimRAlt(6) = 5820 for a few random primes†.

Lemma 2. Over a field of characteristic zero, the first 6 terms of the sequence dimAlt(n) are:

1, 2, 7, 32, 175, 1080‡.

Proof. We follow the same scheme as in the proof of Lemma 1. The corresponding number of primes is

5 for n = 4, 127 for n = 5, and 3433 for n = 6, and Albert produces the expected answers for all these

primes. �

The first 5 terms in Lemma 2 were already specified in [Lod], but the case n = 6 is crucial. It requires the

only time-consuming Albert computations among all computations mentioned in this note. We found that

the optimal setting in this case was to add first the left-alternative identity, and then the right-alternative one,

and use the static (as opposed to the sparse) matrix structure. The whole computation was finished in about

a week running in parallel on a number of CPUs ranging from 2GHz single-core to 3.2GHz dual-core. The

average execution time was less than 1 hour per prime.

3. NON-KOSZULITY

Theorem. The right-alternative, left-alternative and alternative operads over a field of characteristic zero

are not Koszul.

Proof. The statement for the right(left)-alternative case is known (and easy), but it will be instructive to

look on it first and to compare it with the more difficult alternative case.

By Proposition and Corollary (i) in §1, dimRAlt!(3) = 3 and RAlt!(n) vanishes for n ≥ 4, so the

corresponding Poincaré series is:

gRAlt!(x) =−x+ x2 −
1

2
x3.

On the other hand, by Lemma 1,

gRAlt(x) =−x+ x2 −
3

2
x3 +

5

2
x4 −

53

12
x5 +O(x6),

†The corresponding sequence was submitted to [OEIS] as A161391.
‡This sequence was submitted to [OEIS] as A161392.
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and

gRAlt(gRAlt!(x)) = x+
1

6
x5 +O(x6),

what contradicts Koszulity.

But, in fact, we can establish the same without appealing to Lemma 1! Indeed, the beginning terms of

the inverse to the polynomial gRAlt!(x) are:

−x+ x2 −
3

2
x3 +

5

2
x4 −

17

4
x5 +7x6 −

21

2
x7 +

99

8
x8 −

55

16
x9 −

715

16
x10 +O(x11).

The signs alternation is violated at the 10th term, hence this series cannot be the Poincaré series of any

operad, so by the Ginzburg–Kapranov criterion RAlt! is not Koszul, and hence RAlt is not Koszul. More-

over, the dimension sequence of RAlt! coincides with the dimension sequence of the operad Prelie•N il

(Prelie is the operad defined by a binary operation satisfying the pre-Lie (=right symmetric) identity, N il

is the operad defined by a skew-symmetric binary operation with vanishing compositions, and • is Manin’s

black product), and the corresponding computation establishing its non-Koszulity was already performed

in [V, §4.5].

Now consider the alternative case. By Corollary (ii) in §1, Alt!(n) vanishes for n≥ 6. Either computation

with Albert, or reference to [Lop, Propositions 1 and 2] provides dimensions of these spaces for small n,

which allows us to write down the Poincaré series of the operad Alt!:

(8) gAlt!(x) =−x+ x2 −
5

6
x3 +

1

2
x4 −

1

8
x5.

On the other hand, by Lemma 2,

gAlt(x) =−x+ x2 −
7

6
x3 +

4

3
x4 −

35

24
x5 +

3

2
x6 +O(x7),

and

gAlt(gAlt!(x)) = x−
11

72
x6 +O(x7),

what contradicts Koszulity.

Note that in the alternative case we really need to compute dimension sequence of the alternative operad

up to 6th term (i.e., to utilize Lemma 2). A mere look at the inverse to the polynomial gAlt!(x) does not

seem to work: we have checked with PARI/GP that the inverse has alternating signs up to degree 1000. On

the other hand, as noted in [GR2, §4.2], the beginning terms of the inverse to gAlt(x) are:

−x+ x2 −
5

6
x3 +

1

2
x4 −

1

8
x5 −

11

72
x6 +O(x7),

what provides an alternative proof of non-Koszulity of Alt without appealing to gAlt!(x). �

Sometimes in the literature one sees expressed the viewpoint that non-Koszulity is a rather pathological

property, and all “natural”, “occuring in the real life” algebras should be algebras over a Koszul operad

(see, for example, Remarks 3.98 and 3.131 in [MSS]). As we see, alternative algebras provide a “real life”

example violating this principle (another, albeit probably less “real life” contender is presented in [Dz2]).

4. POSITIVE CHARACTERISTIC

The original Ginzburg–Kapranov operadic theory involves representation theory of the symmetric group

peculiar to characteristic zero case. While extensions of the operadic theory to the case of positive charac-

teristic exist, none of them, to our knowledge, includes an analog of the Ginzburg–Kapranov criterion for

Koszulity of a quadratic operad in terms of Poincaré series.

While, therefore, checking the validity of equation (4) in positive characteristic does not make much

sense, the question of computing the dimension sequence dimP(n) for various operads P is still of inter-

est. In this section we collect a few remarks and computational results concerning this question for the

alternative and right-alternative operads and their Koszul duals.

For the Koszul dual operads, the corresponding dimension sequences terminate at low terms as indicated

in the proof of the theorem in §3, the same way for zero and positive characteristics, except for the case of

the dual alternative operad over a field of characteristic 3.

Conjecture. Over a field of characteristic 3, dimAlt!(n) = 2n −n.
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For n ≤ 8 the claim could be proved with the aid of Albert. We will outline the main idea of a possible

proof in the general case, whose full implementation appears to be long and somewhat cumbersome, and

will drive us far away from the main question considered in this note. We came up with this idea by

inspecting the corresponding entry A000325 in [OEIS].

Sketch of a possible proof. For associative algebras, the identity (A!) is equivalent to the identity

[[x,y],y] = 0.

In other words, an associative algebra over a field of characteristic 3 is dual alternative if and only if its

associated Lie algebra is 2-Engel. It is well-known that 2-Engel Lie algebras are nilpotent of order 4. Free

associative algebras which are Lie-nilpotent of order 4 were studied in the recent paper [EKM]. It is possible

to extend some of the results of that paper to the case of characteristic 3, and, in particular, to construct a

presentation of such algebras. From this, by adding more relations, one may construct a presentation of

free dual alternative algebras, and using Composition (=Diamond) Lemma, to get a description of a basis

of such algebras in combinatorial terms. For elements of the basis containing each free generator in the first

degree, these combinatorial terms are expressed as the so-called Grassmann permutations, i.e. Alt!(n) has

a basis consisting of associative monomials of the form ai1 . . .ain such that the permutation (i1 . . . in) has

exactly one descent. The number of such permutations is 2n −n. �

The case of characteristic 3 is also exceptional for the alternative operad: in this case, the first 5 terms of

dimAlt(n) are the same as in Lemma 2, while the 6th term is equal, surprisingly, to 1081†.

Note also that the scheme of computations presented in §2 is insufficient to deduce the validity of (6) over

all prime fields. Either by the standard ultraproduct argument, or observing, by the same argument as in §2,

that the equality (6) in characteristic zero implies the same equality in characteristic p for all p > r
r
2 , we

may deduce that it is valid for all but a finite number of characteristics. So, in principle, we could establish

the validity of (6) in all characteristics by verifying it modulo all primes ≤ r
r
2 and for one prime > r

r
2 . This

is, however, computationally infeasible in almost all practical cases.

To be able to establish the equality (6) in all characteristics, apparently other methods are needed. For

example, one may try to use the capability of Albert to produce multiplication table between elements of

P(n) up to the given degree. It seems that the scheme, based on the Chinese Remainder Theorem and

similar to those presented in §2, but utilizing the multiplication table instead of just dimensions of the

corresponding spaces of multilinear monomials, could be used for that, provided that all coefficients in

the computed multiplication tables are rational numbers with relatively small numerators and denominators

modulo the respective primes. According to a few Albert computations we have performed for Alt(6), the

latter seems to be the case for the alternative operad.

5. QUESTIONS

In addition for an already mentioned in §3 example from [V], there are several other proofs in the liter-

ature of non-Koszulity of various operads using the Ginzburg–Kapranov criterion or its n-ary analogs: in

[GeK, footnote to §3.9(d)] for the so-called mock-Lie and mock commutative operads (which are Koszul

dual to each other and are cyclic quadratic operads with one generator); in [MSS, Remark 3.98] for asso-

ciative anticommutative algebras (and, dually, for “commutative Lie algebras”); in [GR1, Proposition 2.3]

for certain Lie-admissible operads dubbed G4-Ass and G5-Ass; in [GR2, §3.4,3.6] for certain third power

associative operads dubbed Gi-p3Ass; in [Dz1, Theorem 10.1] for a certain skew-symmetric operad dubbed

left-Alia; in [Dz2] for the Novikov operad; and in [MR, Example 16 and Proposition 17] for certain operads

with n-ary operation dubbed tAssn
d . In each of these cases, it was enough to check Poincaré series up to a

relatively low degree term. It is interesting whether there exists a bound on the degree of Poincaré series

such that the validity of the identity (4) for a binary quadratic operad P up to this degree guarantees its

validity in all degrees.

It is also interesting to give a concrete example of a binary quadratic operad which is not Koszul but for

which the equality (4) holds (such examples exist for associative quadratic algebras – see [PP, §3.5] and

references therein).

Is it true that all terms of the inverse of the polynomial (8) have alternating signs? If yes, what combina-

torial interpretation this may have? (Question asked by Vladimir Dotsenko). A similar question about an

†The corresponding sequence was submitted to [OEIS] as A161393.
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innocently-looking polynomial of degree 15 and with only 3 nonzero terms was asked in [MR]. Somewhat

surprisingly, such questions seem to be difficult.

Note also that it remains a challenging problem to compute the Poincaré series of Alt.

And, finally, we are taking the opportunity to advertise some new classes of algebras. In [Dz1, Theorem

5.1], all possible skew-symmetric identities of degree 3 are classified. This classification has a symmetric

analog: namely, every symmetric identity of degree 3 could be reduced to one of the following identities:

[{x,y},z]+ [{y,z},x]+ [{z,x},y] = 0

{{x,y},z}+{{y,z},x}+{{z,x},y}= 0

{x,y}z+{y,z}x+{z,x}y = 0,

where [x,y] = xy− yx and {x,y} = xy+ yx. Any right- or left-alternative algebra satisfies the first of these

identities, and the second identity is exactly (A!) (with appropriately inserted left-normed brackets, as asso-

ciativity is no longer assumed). It appears to be interesting to study algebras satisfying these identities, in

particular, describe free and simple algebras in these classes, and to look at the corresponding operads.
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