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ABSTRACT. We provide a variant of Baer’s theorem about isomorphism of endomorphism rings of vector

spaces over division rings, where the full endomorphism rings are replaced by some subrings of finitary maps.

By Baer’s theorem we mean the following result, formulated for the first time as Theorem 1 in [Baer,

Chapter V, §4]: if V and W are two (say, right) vector spaces over division rings D and F , respectively, then

an isomorphism of their endomorphism rings EndD(V ) and EndF(W ) implies a semilinear isomorphism of

V and W . Baer’s original proof uses properties of idempotents in the endomorphism ring; for a streamlined

and modern exposition see [KTT, Theorem 4.1]. Another proof offered in [W, Theorem 8.1] (Ph.D. thesis

under Baer) uses Jacobson’s density theorem. In [R] and [Bal] Baer’s theorem is extended to the cases of

super vector spaces and graded vector spaces over super division rings and graded division rings, respec-

tively. Later on Baer’s theorem was also extended to modules over large classes of abelian groups (the

so-called Baer–Kaplansky theorem); see [KTT] for a survey.

If V is infinite-dimensional over D, the ring EndD(V ) is huge, and one may wonder whether in the

formulation of Baer’s theorem it can be replaced by something smaller. Somewhat anachronistically, this

was done, with small variations, already before Baer, in the 1940s, in the works of Dieudonné, Jacobson, and

others; see [J2, Chapter IV, §11] or [J1, Chapter IX, §11, Theorem 7]: the condition involves isomorphism

of rings of finitary linear maps, and the proof uses again Jacobson’s density theorem. The origin of these

works seems to be in similar results established earlier in the analytic setting, for rings of bounded operators

on Banach or Hilbert spaces, or rings of continuous operators on normed spaces, by Eidelheit, Mackey, and

others; see historical references at [J2, p. 94].

Here we offer another variation on this topic. We retain a relatively narrow context of vector spaces over

division rings, and – similarly to Jacobson and others – instead of the full endomorphism ring, consider its

subrings of finitary linear maps. However, the rings we consider are, in the infinite-dimensional case, rather

“small”, significantly “smaller” even than the ring of all finitary maps, so this can be viewed as a substantial

extension of the original Baer theorem. Our rings are, generally, not dense, thus all the previous methods

of proofs of Baer’s theorem and its variants, based on consideration of idempotents or other structural

gadgets from ring theory, or on Jacobson’s density theorem, do not work. Instead, we use an elementary

linear-algebraic technique of “decomposing” conditions imposed on linear maps on tensor products, and

consideration of traces.

All rings in this note are assumed to be associative. For the standard linear algebra over a (noncommuta-

tive) division ring, we refer to [Baer] or [J1]. Some notation and terminology is also borrowed from [CO]

(where things are treated in the Lie-algebraic context).

Let D be a division ring with unit 1, and V a right vector space over D; then the dual V ∗ is a left vector

space over D. A linear map is called finitary if its kernel has finite codimension (or, what is equivalent, its

image has finite dimension). Finitary maps have traces, defined in the usual manner. The set of all finitary

linear maps forms a subring FEndD(V ) of the endomorphism ring EndD(V ), and is linearly spanned by

infinitesimal transvections tv, f : V → V , defined as tv, f (u) = v f (u), where v,u ∈ V and f ∈ V ∗ (infinitesi-

mal transvections are exactly linear maps whose image is one-dimensional). The trace of an infinitesimal

transvection is determined by the formula Tr(tv, f ) = f (v).
The ring FEndD(V ) is isomorphic to the ring V ⊗D V ∗, with multiplication given by

(1) (v⊗ f ) · (u⊗g) = v f (u)⊗g,

where v,u ∈V and f ,g ∈V ∗. The isomorphism is given by sending the infinitesimal transvection tv, f to the

decomposable tensor v⊗ f .

Now let Π be a D-subspace of V ∗. Then V ⊗D Π is still closed with respect to the multiplication (1), and

hence forms a subring of V ⊗D V ∗. Going back to EndD(V ) and its subrings, the ring V ⊗D Π is isomorphic
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to the subring FEndD(V,Π) of FEndD(V ) generated by all infinitesimal transvections tv, f with v ∈ V and

f ∈ Π.

Note that all the just mentioned rings, EndD(V ), FEndD(V ), and FEndD(V,Π), are also right vector spaces

over D, and hence have a structure of a right D-algebra.

Theorem. Let V,W be right vector spaces over a division ring D, Π a nonzero finite-dimensional subspace

of V ∗, Γ a finite-dimensional subspace of W ∗, and Φ : FEndD(V,Π) → FEndD(W,Γ) an isomorphism of

D-algebras. Then there is an isomorphism of D-vector spaces α : V →W such that

(2) Φ( f ) = α ◦ f ◦α−1

for any f ∈ FEndD(V,Π).

Proof. Write the rings FEndD(V,Π) and FEndD(W,Γ) in the isomorphic form as the tensor products V ⊗D Π
and W ⊗D Γ as above, and, by abuse of notation, denote by the same symbol Φ the isomorphism of D-

algebras Φ : V ⊗D Π →W ⊗D Γ. Due to finite-dimensionality of Π, we have isomorphism of vector spaces

over D:

HomD(V ⊗D Π,W ⊗D Γ)≃ HomD(V,W )⊗D HomD(Π,Γ),

and hence we can write Φ in the form

(3) Φ(v⊗ f ) = ∑
i∈I

αi(v)⊗βi( f ),

where αi : V → W and βi : Π → Γ are two linearly independent families of D-linear maps, indexed by a

finite set I. The condition that Φ is a homomorphism, written for a pair of decomposable tensors v⊗ f and

u⊗g, where v,u ∈V and f ,g ∈ Π, is equivalent to

∑
i∈I

(

αi(v) f (u)−∑
j∈I

α j(v)β j( f )(αi(u))
)

⊗βi(g) = 0.

Since the family {βi}i∈I is linearly independent over D, each first tensor factor in the external sum

vanishes, i.e.,

αi(v) f (u)−∑
j∈I

α j(v)β j( f )(αi(u)) = 0

for any i ∈ I, v,u ∈V , and f ∈ Π. This can be rewritten as

αi(v)
(

f (u)−βi( f )(αi(u))
)

−∑
j∈I
j 6=i

α j(v)β j( f )(αi(u)) = 0.

Since the family {αi}i∈I is linearly independent over D, each coefficient from D in the last sum vanishes;

in particular,

(4) βi( f )(αi(u)) = f (u)

for any u ∈V, f ∈ Π, and i ∈ I.

This implies

Tr
(

Φ(u⊗ f )
)

= Tr
(

∑
i∈I

αi(u)⊗βi( f )
)

= ∑
i∈I

Tr
(

αi(u)⊗βi( f )
)

= ∑
i∈I

βi( f )(αi(u)) = ∑
i∈I

f (u) = |I| f (u) = |I|Tr(u⊗ f ).

As the ring V ⊗D Π is linearly spanned by decomposable tensors, we have

(5) Tr(Φ(ξ )) = |I|Tr(ξ )

for any ξ ∈V ⊗D Π.

Now consider the inverse isomorphism Φ−1 : W ⊗D Γ →V ⊗D Π, with decomposition similar to (3) with

the index set J. By the same reasoning as in the case of Φ, we have

(6) Tr(Φ−1(η)) = |J|Tr(η)

for any η ∈W ⊗D Γ. Combining (5) and (6), we have

(7) Tr(ξ ) = |I||J|Tr(ξ )
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for any ξ ∈V ⊗D Π.

Since for any nonzero f ∈V ∗ there is v ∈V such that f (v) 6= 0 (actually, we can choose f (v) to be equal

to 1), FEndD(V,Π) always contains elements of nonzero trace† . Picking such an element ξ in (7), we have

|I|= |J|= 1, i.e., Φ preserves traces and can be represented as a decomposable linear map: Φ = α ⊗β for

some α : V →W and β : Π → Γ. The system of equalities (4) reduces to the single equality

(8) β ( f )◦α = f

for any f ∈ Π. As Φ is invertible, α and β are invertible with Φ−1 = α−1 ⊗β−1, so (8) can be rewritten as

β ( f )= f ◦α−1, and hence Φ(v⊗ f )=α(v)⊗( f ◦α−1). Rewriting the last equality in terms of FEndD(V,Π)
for an infinitesimal transvection tv, f , and expanding by linearity, we get (2). �

A couple of final remarks concerning possible extensions of the theorem:

(i) We require the base ring D to be a division ring in order to ensure that all D-modules are free. We can

merely require that all the modules appearing in the formulation of the theorem, i.e., V , W , Π, Γ, as

well as all the modules appearing in the course of the proof, are free, without imposing any conditions

on D, but this will just lead to a cumbersome formulation without changing the essence of the things.

(ii) The theorem can be easily extended to the graded case (thus providing a “finitary” analog of results

from [R] and [Bal]), with essentially the same proof which will keep track of the maps on each graded

component separately. This is left as an exercise to the reader.

Thanks are due to the anonymous referee for indicating an erroneous remark in the previous version of

the manuscript.
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†This is a trivial, albeit a crucial point in our reasoning. Compare with the condition of so-called totality in [J1, Chapter IX,

§11, Theorem 7], which, in our notation, amounts to saying, in a sense, a dual thing: for any nonzero v ∈V there is f ∈ Π such

that f (v) 6= 0. The latter condition is equivalent to the density of rings under consideration, and allows one to use Jacobson’s

density theorem.


