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ABSTRACT. We present an elementary heuristic reasoning based on Arnold’s theory of versal de-

formations in support of a straightforward algorithm for finding a correlation matrix near a given

symmetric one.

INTRODUCTION

Bankers are interested in correlations between time series associated with various financial

instruments (such as prices of stocks, options, futures and other derivatives, currency exchange

rates, etc.), presented in the form of the sample correlation matrix. As a bona fide correlation ma-

trix, it should be positive semidefinite. In practice, however, the computed matrix almost always

turns out to be not positive semidefinite. The main reason for this is twofold: methodological

errors (taking data for different instruments in different time ranges, inconsistent approach to

inventing missing data), and floating point rounding errors.

The computed correlation matrix is utilized, however, in further analysis, like evaluation of

various risks; for this, its positive semidefiniteness is crucial. As in the most cases it is impossible

to backtrack the origin of the problem due to shortage of time, the large amount of numerical

data (a typical scenario may involve daily computed correlation matrices reaching the size of ten

thousand by ten thousand), and complexity of the methods used in its retrieval, processing and

storage, one usually resorts on “correcting” the symmetric matrix at hand to make it positive

semidefinite.

Naturally, this “correction” should be as small as possible. So, a practical problem arises: for

a given symmetric matrix, find the nearest, in some sense, correlation matrix. A quick glance at

the literature (mentioned below) suggests that this problem arises not only in banking.

Not surprising then that this problem attracted a considerable attention. While no exact ex-

pression for the nearest correlation matrix is available, many papers – see [BH], [QXX] and

references therein – contain algorithms for its determination. These algorithms utilize methods

from convex analysis, semismooth optimization, and other sophisticated branches of numerical

mathematics. Earlier results in this direction are also surveyed in [Ge, §9.4.6]. In all these

works, “nearest” is understood in the sense of the Frobenius matrix norm, or some its (weighted)

variation.

In the real life, however, bankers tend to ignore all this wisdom and implement a very pedes-

trian approach to this problem (sometimes called “shrinking” and which can be found, with some

variations, in [DI], [QXX], [RM], [Ge, Exercise 9.14], and in many other places). Namely, in the

spectral decomposition A = BJB⊤ of a given n×n symmetric matrix A, where B is an orthogonal
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matrix of eigenvectors, and

(1) J =





λ1

λ2 0
0

. . .

λn





is a diagonal matrix of eigenvalues of A, replace all negative eigenvalues by some small positive

number ε:

λ̂i =

{
ε if λi < 0

λi if λi > 0,

for i = 1, . . . ,n (in practice, zero eigenvalues do not occur). The resulting matrix

(âi j)
n
i, j=1 = B





λ̂1

λ̂2 0
0

. . .

λ̂n




B⊤

is a positive definite covariance matrix, and its normalization

(2)
( âi j√

âii â j j

)n

i, j=1

is declared to be the requested correlation matrix, allegedly close to the initial matrix A.

This pedestrian approach turns out to be very efficient in practice (in all banking numerical

examples we have observed, the initial and corrected matrices were very close with respect to

the max norm†, and no discrepancies occurred utilizing the corrected matrix in the subsequent

analysis). In this note we offer an heuristic argument explaining this, perhaps, unreasonable

at the first glance, efficiency. The argument, presented in §2, is an easy application of Arnold’s

theory of versal deformation of matrices. A fragment of the theory needed for our purposes is

briefly recalled in §1. The last §3 contains an example.

1. ARNOLD’S THEORY OF VERSAL DEFORMATIONS

In 1971, Vladimir Arnold developed a theory of versal deformations of matrices, which trig-

gered a wake of subsequent work. The original paper [A] is still the best exposition of this theory.

The main result of this theory can be formulated in many different ways, one of them runs as

follows.

Let A be a complex n×n matrix with distinct eigenvalues λ1,λ2, . . . ,λk, and with the Jordan

normal form

J =





J
λ1
n11,...,n1m1

J
λ2
n21,...,n2m2 0

0
. . .

J
λk
nk1,...,nkmk





†In §2, at a certain place we use submultiplicativity (i.e., ‖AB‖ ≤ ‖A‖‖B‖ for any two matrices A, B) of the matrix

norm ‖ · ‖ measuring the “nearness”. The max norm is not submultiplicative, so, formally, it does not fit those argu-

ments. This can be remedied, however, by a minor (and well-known) fix: the max norm becomes submultiplicative

when multiplied by the matrix size (see, for example, [HJ, p. 292]). Even taking into account this factor (< 105 in

practice), the absolute values of differences between the corresponding elements of the initial and corrected matrices

remained very small in all real-life examples we have seen.
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where

Jλ
ℓ =





λ 1

λ 0
. . .

0 λ 1

λ





is one Jordan block of size ℓ×ℓ, and

Jλ
n1,...,nm

=





Jλ
n1

Jλ
n2 0

0
. . .

Jλ
nm





consists of all Jordan blocks of sizes n1 ×n1,n2 ×n2, . . . ,nm ×nm, arranged in the non-increasing

order (i.e., n1 ≥ n2 ≥ ·· · ≥ nm), corresponding to a single eigenvalue λ with algebraic multiplicity

n1+n2+·· ·+nm.

Let us define a parametric deformation

J(ξ11,ξ12, . . . ,ξ1N1
,ξ21,ξ22, . . . ,ξ2N2

, . . . ,ξk1,ξk2, . . . ,ξkNk
)

of J, with complex parameters ξ11, . . . ,ξkNk
, where

Ni = ni1+3ni2+5ni3+·· ·+ (2mi −1)nimi

for i = 1, . . . ,k.

First, all blocks corresponding to different eigenvalues are deformed independently:




J
λ1
n11,...,n1m1

(ξ11, . . . ,ξ1N1
)

J
λ2
n21,...,n2m2

(ξ21, . . . ,ξ2N2
) 0

0
. . .

J
λk
nk1,...,nkmk

(ξk1, . . . ,ξkNk
)




.

Second, a single Jordan block Jλ
ℓ

is deformed as follows:

Jλ
ℓ (χ1, . . . ,χl)=





λ 1 0
0 λ
...

...
. . .

0 0 . . . λ 1

χ1 χ2 . . . χl−1 λ+χl





and, finally, the deformation Jλ
n1,n2,...,nm

(χ1, . . . ,χn1+3n2+···+(2m−1)nm
) of all blocks corresponding to

a single eigenvalue λ is defined in the following recursive way:




λ 1

0 λ 0
...

...
. . .

0 0 . . . λ 1

χ1 χ2 . . . χn1−1 λ+χn1
χn1+1 χn1+2 . . . χn1+n2+···+nm−1 χn1+n2+···+nm

χn1+n2+···+nm+1

χn1+n2+···+nm+2
... 0 Jλ

n2,...,nm

(
χn1+2n2+···+2nm+1, . . . ,χn1+3n2+···+(2m−1)nm

)

χn1+2n2+···+2nm−1

χn1+2n2+···+2nm





.
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Then, according to [A, Theorem 4.4], any smooth family of complex n×n matrices containing A,

and parametrized by several complex variables t= (t1, t2, . . . ), can be represented, in a sufficiently

small neighborhood of 0= (0,0, . . . ), as the product

(3) B(ξ1(t), . . . ,ξN (t)) J(ξ1(t), . . . ,ξN (t)) B(ξ1(t), . . . ,ξN (t))−1,

where N =
∑k

i=1
Ni, all ξi ’s are smooth functions of their arguments vanishing at 0, B(ξ1, . . . ,ξN )

is a smooth family of invertible matrices, and

A = A(0)= B(0) J(0) B(0)−1.

If the spectrum of A is simple, then this picture is significantly streamlined. The total number

N of parameterizing functions in (3) is equal to n, the size of the matrix, and the deformation

family of the diagonal matrix (1) itself consists of diagonal matrices:

J(ξ1(t), . . . ,ξn(t))=





λ1 +ξ1(t)

λ2 +ξ2(t) 0
0

. . .

λn +ξn(t)





where ξi(0)= 0, i = 1, . . . ,n.

There are corresponding results for matrices with real coefficients [Ga] and symmetric matri-

ces [PR] (as well as for many other situations in which a Lie group acts on a manifold, see [S]),

which are technically more complicated. However, for our purpose it suffices to use Arnold’s orig-

inal setting. Just note that as we are interested solely in symmetric matrices which are brought

to the diagonal form (1) by an orthogonal transformation, the combination of results of [A] and

[PR] shows that in the decomposition (3) we may assume that all matrices in the family B are

orthogonal, i.e.

B(ξ1(t), . . . ,ξN (t))−1
= B(ξ1(t), . . . ,ξN (t))⊤

for all t from an appropriate neighborhood of zero.

Arnold’s theory can be considered as one of the instances of the algebro-geometric deformation

theory of various kinds of algebraic objects, along with deformation theory of algebras, of modules

over algebras, and of morphisms between algebras, see [FO] for overview of those theories from

a unifying viewpoint.

2. JUST GETTING RID OF NEGATIVE EIGENVALUES IS ENOUGH

It is well-known that the set of the correlation matrices coincides with the set of (real) positive

semidefinite matrices with units on the main diagonal (see, for example, [F, Chapter III, §6,

Theorem 4]), so we will use these two notions interchangeably.

Suppose A is a symmetric n×n matrix with units on the main diagonal. As the set of matrices

with simple spectrum is Zariski-dense in the set of all real n×n matrices, we may assume that

A has simple spectrum (a more down-to-earth incarnation of this fact is that all correlation

matrices appearing in banking practice, and, more generally, correlation matrices based on a

sufficiently large amount of real-world data, have simple spectrum; in fact, the reasonings below

could be modified for the case of arbitrary spectrum, but technically they would become more

complicated). Let (1) be its Jordan normal form, all λi ’s being pairwise distinct (and some of

them are negative, of small absolute value).

Suppose further that there exists a correlation matrix C “near” A, and that A and C are

members of a smooth family of matrices. The latter assumption is justified both from theoretical

(correlation matrix is a smooth function of time series it correlates between) and practical (the

financial processes a correlation matrix is trying to capture, are assumed to be satisfactorily

modelled by smooth functions) viewpoints.
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According to the theory presented in §1, in a sufficiently small neighborhood U of A = A(0),

we may write this smooth family in the following parametric form:

(4) A(t)= B(t)





λ1 +ξ1(t)

λ2 +ξ2(t) 0
0

. . .

λn +ξn(t)



B(t)⊤

for some smooth functions ξi such that ξi(0) = 0 for all i = 1, . . . ,n, and a smooth family B(t) =(
bi j(t)

)n

i, j=1
of orthogonal matrices. In particular, C, being a member of the family, is represented

in the form (4) for some value t= t0.

The condition of positive definiteness of a member of the family A(t) is equivalent to

(5) ξi(t)>−λi

for all i = 1, . . . ,n, and the condition of having units on the main diagonal is equivalent to

(6) B◦2(t)





λ1 +ξ1(t)

λ2 +ξ2(t)
...

λn +ξn(t)



=





1

1
...

1



 ,

where B◦2(t) =
(
bi j(t)2

)n

i, j=1
is the Hadamard square of B(t). The set of solutions of (6) contains

at least two points, 0 and t0, hence it forms a nonempty variety H in the space of parameters,

and the intersection of this variety with the neighborhood U and the open domain defined by

conditions (5), defines a certain neighborhood U ′ of C = A(t0) in H .

In terms of the procedure described in the introduction, getting C from A amounts to “adjust-

ing” eigenvalues, i.e., adding to each eigenvalue λi in the diagonal form (1) a small correction

ξi(t0), and subsequent “normalization” (2); all this corresponds to getting back correlation matrix

B(t0)





λ1 +ξ1(t0)

λ2 +ξ2(t0) 0
0

. . .

λn +ξn(t0)



B(t0)⊤

from the covariance matrix

B(0)





λ1 +ξ1(t0)

λ2 +ξ2(t0) 0
0

. . .

λn +ξn(t0)



B(0)⊤.

Assuming that the neighborhood U ′ is small enough, any matrix from it will do, but what will

be the best choice? As mentioned in the introduction, this is, generally, a difficult problem not

admitting a closed-form solution. Intuitively, there is no need to adjust the positive eigenvalues,

but only the negative ones, and the following imprecise reasoning supports this.

Assuming that the matrix norm ‖ · ‖ measuring the “nearness” is submultiplicative and is

invariant under transposition (the latter assumption is not essential but slightly simplifies the
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expressions below), we have:

‖A(t)− A(0)‖

= ‖B(t)diag
(
λ1 +ξ1(t), . . . ,λn +ξn(t)

)
B(t)⊤−B(0)diag

(
λ1, . . . ,λn

)
B(0)⊤‖

≤ ‖diag
(
ξ1(t), . . . ,ξn(t)

)
‖‖B(t)−B(0)‖2

+2‖diag
(
ξ1(t), . . . ,ξn(t)

)
‖‖B(t)−B(0)‖‖B(0)‖(7)

+ ‖diag
(
ξ1(t), . . . ,ξn(t)

)
‖‖B(0)‖2

+ ‖B(t)−B(0)‖2
‖diag

(
λ1, . . . ,λn

)
‖

+2‖B(t)−B(0)‖‖B(0)‖‖diag
(
λ1, . . . ,λn

)
‖.

Both theoretical considerations in [A], and computational procedures developed in [M] suggest

that matrix entries of the parametric family B(t) providing the transformation to the canonical

form (4) of the versal deformation, have, as power series of the parameter t, the same order of

magnitude as matrix entries of the canonical form itself. In particular, in a sufficiently small

neighborhood of zero, which can be assumed lying inside U , we have

‖B(t)−B(0)‖ ≤α‖diag
(
ξ1(t), . . . ,ξn(t)

)
‖

for some (positive) constant α. This, together with (7), implies that ‖A(t)− A(0)‖ is bounded by

a cubic polynomial in ‖diag
(
ξ1(t), . . . ,ξn(t)

)
‖ with positive coefficients. The latter polynomial is a

monotonic function, so to minimize ‖A(t)−A(0)‖ one may wish to minimize ‖diag
(
ξ1(t), . . . ,ξn(t)

)
‖

instead. Subject to restriction (5), for all matrix norms appearing in practice, this amounts to

setting ξi(t) to a positive value “just a little bit” bigger than −λi if λi is negative, and to zero

otherwise.

We emphasize that these are merely non-rigorous, heuristic, arguments, and by no means

they can substitute a rigorous analysis given in [BH], [QXX] and similar papers. However, these

arguments perfectly suit the practical nature of the problem: one knows a priori that a very

close correlation matrix exists. In such a situation, Arnold’s theory guarantees existence of such

matrix in the simple form (4). Though it is not guaranteed that this will be the nearest correlation

matrix, it certainly will be a near one, and this suffices in practice.

Of course, arguments of this sort can be used in other similar situations – for example, to jus-

tify adjusting (“cutoff”) of some unwanted, from the physical perspective, eigenvalues of (valid)

correlation matrices arising in lattice gauge theory (see [YJJL] and references therein), or cor-

recting the degenerate covariance matrix from an insufficient amount of data in the situation

when the number of observations is much smaller then the number of variables (see [TW] and

references therein).

3. AN EXAMPLE

Here we present a “toy” example illustrating the procedure described above. Being a toy one,

this example, however, adequately reflects what is happening in the “real life” in banks. Other

examples may be found in [DI] and [RM].

Let us take the close price of 4 stocks traded at Euronext Amsterdam: Galapagos, Heineken,

TomTom, Wolters Kluwer, as well as Euro/US dollar rate, for 6 consecutive business days during

the period from July 26 till August 2, 2013 (available at the time of writing at http://www.aex.nl/):

Jul 26 Jul 29 Jul 30 Jul 31 Aug 1 Aug 2

Galapagos 16.08 16.15 16.13 16.25 16.25 16.23

Heineken 50.69 50.88 51.66 52.8 53.8 53.9

TomTom 4.286 4.3 4.363 4.38 4.497 4.525

Wolters Kluwer 18.09 18.005 18.095 18.145 18.5 18.515

Euro/US dollar 1.3279 1.3263 1.3266 1.3300 1.3212 1.328
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Let us compute now the corresponding correlation matrix. Assume, however, that, when com-

puting correlation between Wolters Kluwer and Euro/US dollar, the last day data for one of these

instruments was lost, and the correlation was computed for the first 5 days only. That leads to

the following “distorted” correlation matrix:




1 0.896 0.785 0.684 −0.179

1 0.970 0.914 −0.275

1 0.961 −0.359

1 −0.767

1




.

This matrix, unlike the “real” correlation matrix, is not positive definite, with the smallest eigen-

value equal to −0.089.

Applying the procedure described in the Introduction to this distorted matrix, with ε= 0.001,

we get a positive definite matrix




1 0.888 0.779 0.672 −0.175

1 0.970 0.860 −0.284

1 0.909 −0.366

1 −0.716

1




,

which is “close enough” to the distorted one.
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