
ON ANTICOMMUTATIVE ALGEBRAS FOR WHICH [Ra,Rb] IS A DERIVATION

IVAN KAYGORODOV AND PASHA ZUSMANOVICH

ABSTRACT. We study anticommutative algebras with the property that commutator of any two multipli-

cations is a derivation.

INTRODUCTION

Consider the following property of a (nonassociative) algebra: the commutator of two (say, right)

multiplications is a derivation of an algebra. Commutative algebras with this property were studied in

the literature under the names “Lie triple algebras” and “almost Jordan algebras”: see [B], [Dz], [HP],

[JR], [Si], and references therein. Jordan algebras are properly contained in this class.

It appears only natural to consider then the anticommutative analog: that is, anticommutative algebras

in which the commutator of any two multiplications is a derivation. Such algebras are dubbed, for no

better term, as CD algebras. It turns out that the variety of CD algebras lies between Lie algebras and

binary Lie algebras, both inclusions being strict, so it seems a class of algebras worth studying.

Earlier, low-dimensional nilpotent CD algebras were classified in [ACK], [ACF], [KK1], and [KK2],

and here we continue the study of CD algebras.

1. NOTATION, CONVENTIONS, PRELIMINARY FACTS

We consider (nonassociative) algebras over the ground field K, which is assumed to be arbitrary of

characteristic 6= 2,3. All algebras and varieties of algebras are assumed to be anticommutative, without

explicitly mentioning it. Thus, left and right multiplications differ only by sign, left and right ideals

coincide, etc.

The multiplication in algebras will be always denoted by juxtaposition, with the exception of §5,

where we deal with Lie algebras with multiplication denoted customarily by brackets [ · , · ].
Let A be an algebra. For an element a ∈ A, Ra : A → A denotes the linear map of right multiplication

on a: Ra(x) = xa. Der(A) denotes the Lie algebra of derivations of A, and gl(A) denotes the Lie algebra

of all linear maps A → A, subject to the usual commutator [ f ,g] = g◦ f − f ◦g (we always assume action

from the right, so g◦ f (a) = g( f (a))). For any algebra A, any a ∈ A, and any D ∈ Der(A), the following

identity in gl(A) holds:

(1) [D,Ra] = RD(a).

Z(A) denotes the center of A, i.e., the set of elements z ∈ A such that zA = Az = 0; this is obviously

an ideal of A.

The Jacobiator J(x,y,z) of elements x,y,z ∈ A is defined as

J(x,y,z) = (xy)z+(zx)y+(yz)x.

Thus, an algebra is a Lie algebra if and only if the Jacobiator on it is identically zero.

An algebra A is called a CD algebra if it satisfies the property that for any a,b ∈ A, the commutator

[Ra,Rb] is a derivation of A. This condition can be written as a homogeneous identity of degree 4

comprising 6 monomials:

(2) ((xy)a)b− ((xy)b)a− ((xa)b)y+((xb)a)y+((ya)b)x− ((yb)a)x = 0.
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2. IDENTITIES AND NON-IDENTITIES

Let us compare the variety of CD algebras with the other known varieties: Lie, binary Lie, Malcev,

and Sagle (for binary Lie and Malcev algebras, see, for example, [Sa1], [Sa2], [G], [AS], [ACK] and

references therein, and for Sagle algebras, see [F] and references therein). Let us briefly recall their

definitions. An algebra is called binary Lie if it satisfies the identity

J(xy,x,y) = 0.

Taking into account anticommutativity, the latter identity is equivalent to

(3) ((xy)x)y = ((xy)y)x.

This is also equivalent to the condition that any 2-generated subalgebra is Lie.

An algebra is called Malcev, if it satisfies the identity

J(x,y,xz) = J(x,y,z)x;

and an algebra is called Sagle, if it satisfies the identity

(4) J(x,y,z)w = J(w,z,xy)+ J(w,y,zx)+ J(w,x,yz).

There are the following well known strict inclusions between these varieties:

Malcev ⊂ Binary Lie

⊂
Lie

⊂

Sagle

How CD algebras fit into the picture? We are going to prove that

(5)

Binary Lie

⊂
Lie ⊂ Malcev∩Sagle ⊂ CD

⊂

Almost Lie

where all inclusions are, again, strict, and, moreover,

(6)
Malcev ∩ CD = Sagle ∩ CD = Malcev ∩ Sagle

Binary Lie ∩ Almost Lie = CD

(the graphically inclined reader may wish to draw Venn diagrams representing all this).

Here the variety of “Almost Lie” (anticommutative) algebras is defined by the identity†

(7) J(x,y,z)w = 0.

Lemma 1. The variety Malcev ∩ Sagle coincides with the variety of almost Lie algebras which addi-

tionally satisfy the identity

(8) J(x,y,zw) = 0.

Proof. As proved in [Sa1, Lemma 2.10], any Malcev algebra satisfies the identity

(9) 3J(y,z,wx) = J(x,y,z)w− J(y,z,w)x−2J(z,w,x)y+2J(w,x,y)z.

Expressing via this identity all the summands on the right-hand side of (4), which are of the form

J(• , • , • •), through terms of the form J(• , • , •)• , we get the identity (7), i.e., any algebra which is both

Malcev and Sagle, is almost Lie. Then (9) implies that any algebra which is both Malcev and Sagle,

satisfies also the identity (8).

†There are other meanings of “almost Lie” one can encounter in the literature, but since neither of them seems to be

widespread and accepted, and since almost Lie algebras in our sense are already mentioned in a number of related papers –

for example [KK1] and [KK2] – we choose to keep this terminology.
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Conversely, any algebra satisfying both (7) and (8) is, obviously, both Malcev and Sagle. �

Lemma 2. Binary Lie ∩ Almost Lie ⊆ CD.

Proof. As proved in [Sa2, §3], any binary Lie algebra satisfies the identity

3(J(wx,y,z)+ J(yz,w,x)) =−J(x,y,z)w+ J(y,z,w)x− J(z,w,x)y+ J(w,x,y)z.

If the algebra is simultaneously almost Lie, the right-hand side of this identity vanishes, and we are

left with the identity

(10) J(wx,y,z)+ J(yz,w,x) = 0.

Using the last identity and anticommutativity, we get

(11) ((xz)w)y+((yw)z)x

= J(xz,w,y)+((xz)y)w− (wy)(xz)+ J(yw,z,x)+((yw)x)z− (zx)(yw)

= ((xz)y)w+((yw)x)z

for any elements x,y,z,w of an algebra which is simultaneously binary Lie and almost Lie.

Now transform the left-hand side of (2):

((xy)a)b− ((xy)b)a− ((xa)b)y+((xb)a)y+((ya)b)x− ((yb)a)x

= ((xy)a)b− ((xy)b)a− ((xa)y)b− ((yb)x)a+((xb)y)a+((ya)x)b

= J(x,y,a)b− J(x,y,b)a = 0,

where the first equality is obtained by applying the identity (11) twice, to the pairs formed by the 3rd

and 6th summands, and by the 4th and 5th summands. �

Proposition 1. All inclusions in the diagram (5) do indeed take place.

Proof. “Lie ⊂ Malcev ∩ Sagle”: Obvious. To see that the inclusion is strict (we do not need this in what

follows, but doing this for completeness), consider the free anticommutative algebra freely generated by

elements x,y,z, such that any product of any 4 elements vanishes. This 9-dimensional nilpotent algebra

satisfies any identity of degree 4, in particular, it is both Malcev and Sagle, but, obviously, not Lie, as

J(x,y,z) 6= 0.

“Malcev ∩ Sagle ⊂ CD”: By Lemma 1,

Malcev ∩ Sagle ⊆ Binary Lie ∩ Almost Lie,

and then apply Lemma 2.

To show that the inclusion is strict, on can take, for example, the one-parametric family of nilpotent

algebras Bα
6,1 from [ACK] (see Theorems 3 and 10 there). These are 6-dimensional algebras with the

basis {ei}i=1,...,6 and multiplication table

e1e2 = e4, e1e3 = e5, e2e3 = αe6, e4e5 = e6,

where α ∈ K; these algebras are CD, but not Malcev.

“CD ⊂ Binary Lie”: As noted in [ACK], substituting a = x and b = y in (2) yields (3). It is not

difficult to find examples of binary Lie algebras which are not CD; for nilpotent such algebras, see,

again, [ACK]. Another nice example is a 7-dimensional simple Malcev algebra (what follows from

Proposition 3 below).

“CD ⊂ Almost Lie”: Let A be a CD algebra. Write the Jacobi identity for elements of gl(A):

(12) [[Rx,Ry],Rz]+ [[Rz,Rx],Ry]+ [[Ry,Rz],Rx] = 0

for any a,b,c ∈ A.

Write the identity (1) for the derivation [Rx,Ry]:

[[Rx,Ry],Rz] = R[Rx,Ry](z)
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for any x,y,z ∈ A. Taking the last identity into account, the identity (12) can be rewritten as

[Rx,Ry](z)+ [Rz,Rx](y)+ [Ry,Rz](x) ∈ Z(A).

Due to anticommutativity of A and the fact that the characteristic of the ground field is different from

2, the left-hand side in the last inclusion is nothing but the Jacobiator J(x,y,z), whence the statement.

Examples of almost Lie algebras which are not CD can be constructed by considering central exten-

sions of Lie algebras in the suitable variety; this is deferred to §5†. �

Proposition 2. All equalities in (6) do indeed take place.

Proof. “Binary Lie ∩ Almost Lie = CD”: The inclusion “CD ⊆ Binary Lie ∩ Almost Lie” follows

from (5), and the inverse inclusion is proved in Lemma 2.

“Malcev ∩ CD = Malcev ∩ Sagle”: By Lemma 1, the variety Malcev ∩ Sagle coincides with the

variety of almost Lie algebras which, additionally, satisfy the identity (8).

On the other hand, by just proved,

Malcev ∩ CD = Malcev ∩ Binary Lie ∩ Almost Lie = Malcev ∩ Almost Lie.

But by (9), any Malcev algebra which is simultaneously almost Lie, satisfies (8), what shows that

Malcev ∩ Almost Lie = Malcev ∩ Sagle.

“Sagle ∩ CD = Malcev ∩ Sagle”: The inclusion Malcev ∩ Sagle ⊆ Sagle ∩ CD follows from (5),

so let us prove the inverse inclusion.

By the already proved, we have

Sagle ∩ CD = Sagle ∩ Binary Lie ∩ Almost Lie.

The algebra which is simultaneously binary Lie and almost Lie, satisfies (10), and by (4), the algebra

which is simultaneously Sagle and almost Lie, satisfies the identity

J(w,z,xy)+ J(w,y,zx)+ J(w,x,yz) = 0.

Permuting in the last identity z and w, and using (10), we get

−J(w,z,xy)+ J(w,x,yz)+ J(w,y,zx) = 0.

The last two identities yield the identity (8), and thus, by Lemma 1,

Sagle ∩ Binary Lie ∩ Almost Lie ⊆ Malcev ∩ Sagle.

�

Perhaps, the most important among all these multiple relations is the inclusion

(13) CD ⊂ Almost Lie

which shows that, after all, CD algebras are not that far from the Lie ones.

An immediate corollary of this inclusion is

Proposition 3. For any CD algebra A, the quotient A/Z(A) is a Lie algebra. In particular, any centerless

(and, in particular, simple) CD algebra is a Lie algebra.

Thus, CD algebras are, essentially, central extensions, in the suitable variety, of Lie algebras. As

central extensions should be described by second degree cohomology, this suggests that there should

be a “CD cohomology”, extending the usual Chevalley–Eilenberg cohomology, responsible for such

central extensions. And indeed, such cohomology is constructed in §4.

It is natural to ask whether any simple binary Lie algebra is Malcev (and hence is either Lie, or is

a 7-dimensional simple Malcev algebra). For finite-dimensional algebras over a field of characteristic

†An alternative method would be to use Albert [A] to construct explicitly the multiplication table of a suitable finite-

dimensional homomorphic image of a free almost Lie algebra, and then verify in some other general-purpose computer

algebra system like GAP, that this homomorphic image is not CD. A similar procedure – for another set of identities – is

described more thoroughly in [Z, §4].
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zero the question was answered in affirmative in [G], while the cases of positive characteristic, and of

infinite-dimensional algebras remain open (see, e.g., [Dn, Problems 2.33 and 3.87] and [AS, p. 263]).

Proposition 3 shows that in the narrower class of CD algebras the answer is also affirmative.

Note also that Proposition 3 implies that CD non-Lie algebras of dimension ≤ 5 listed in [ACF]

actually exhaust all CD non-Lie algebras in those dimensions.

3. FURTHER RELATIONS WITH LIE ALGEBRAS

Let A be a CD algebra. Consider the subspace R(A), spanned by all maps Ra, a∈A, and the subalgebra

Der(A) in the Lie algebra gl(A) of all linear maps on A (subject to the usual commutator of linear

maps), and consider their formal direct sum R(A)⊕Der(A) (“formal”, as they may intersect, so the

sum R(A)+Der(A), considered as the linear subspace of gl(A), is not necessarily direct; more on that

below). As A is a CD algebra, we have [R(A),R(A)] ⊆ Der(A). Moreover, because of (1), it holds

[Der(A),R(A)] ⊆ R(A). Thus R(A)⊕Der(A) is a Lie algebra with respect to the usual commutator,

actually a semidirect sum with Der(A) acting on R(A).
This construction is completely analogous to those in the commutative case (cf., e.g., [B, Definition

II.1.4]), and similar to the construction of the structure algebra of a Jordan algebra used in the Kantor–

Koecher–Tits construction (cf., e.g., [J, Chapter VIII, §4]); the construction of the holomorph of a Lie

algebra (i.e., the semidirect sum L ⊕ Der(L) for a Lie algebra L) is somewhat similar in spirit, but

different, as in the holomorph we have [L,L]⊆ L.

This construction can be modified in several ways. For example, instead of the linear space R(A)
we may consider the Lie multiplication algebra M(A) (again subject to the commutator). As M(A) is

generated by R(A), the commutation relations in the Lie algebra R(A)⊕Der(A) can serve as defining

relations in the Lie algebra M(A)⊕Der(A).
Another possibility is to consider not formal, but “real” direct sum, i.e., the Lie subalgebra of gl(A),

spanned by R(A) and Der(A). To consider this variant more thoroughly, define the Lie center of A,

denoted by LZ(A), as the set of all elements z ∈ A such that J(a,b,z) = 0 for any a,b ∈ A. Obviously,

the Lie center is always a vector subspace of A, and LZ(A) = A if and only if A is a Lie algebra. In a

sense, it serves as a measure of “non-Lieness” of an algebra.

In what follows, it will be convenient to identify elements of A with the corresponding multiplications

in R(A), up to the center. Namely, the kernel of the linear map A → R(A), a 7→ Ra coincides with Z(A);
hence we have the isomorphism of vector spaces

(14) A/Z(A)
∼
−→ R(A).

Due to Proposition 3, this is also an isomorphism of Lie algebras.

Lemma 3. For any CD algebra A, there is isomorphism of Lie algebras

LZ(A)/Z(A)≃ R(A)∩Der(A).

Proof. It is obvious that Z(A)⊆ LZ(A). The condition z ∈ LZ(A) is equivalent, taking into account the

anticommutativity of A, to the condition Rz ∈Der(A). Hence the image of LZ(A) under the isomorphism

(14) coincides with R(A)∩Der(A). �

Lemma 4. For any CD algebra A, LZ(A) is an ideal of A.

Proof. Let z ∈ LZ(A), and x ∈ A. By Lemma 3, we have Rz ∈ Der(A), and then by (1) we have [Rz,Rx] =
RRz(x) = Rxz. Then, since A is a CD algebra, Rxz ∈ Der(A), and hence, again by Lemma 3, xz ∈ LZ(A).

�

Thus, identifying R(A) with A/Z(A) via isomorphism (14), the intersection between R(A) and Der(A)
is identified with LZ(A)/Z(A) by Lemma 4, and (generally, non-direct) sum R(A) +Der(A) can be

identified with the direct sum A/LZ(A)⊕Der(A), the Lie subalgebra of gl(A).
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4. “NAIVE” COHOMOLOGY

The goal of this section is to construct cohomology theory of CD algebras. The standard approach

to construct cohomology in a variety of algebras is an operadic one: provided that the corresponding

operad P is quadratic and Koszul, there is a small explicit cochain complex built out of the Koszul

dual cooperad P¡. However, this works only for quadratic Koszul operads. The operad defined by

the identity (2) is cubic. The standard trick, employed, for example, in the case of the Jordan operad,

is to pass to triple systems; the corresponding category of triple systems should be equivalent (say, in

representation-theoretic sense) to the initial category of binary algebras, and the corresponding operad

will be (ternary) quadratic. However, it is not immediately clear which triple systems should correspond

to CD algebras, and whether the corresponding operad will be Koszul (we believe it will be not).

Thus we rely on the “naive” approach to cohomology. Under this, we mean an attempt to construct

(the beginning of) the corresponding cochain complex by utilizing the low-degree structural interpre-

tations of cohomology in the given variety: derivations, central extension, deformations, etc. We take

cohomology of Lie algebras as a model.

For that, we need first to define what is a module over a CD algebra is. We follow a nowadays standard

approach which goes back to Eilenberg (see, for example, [J, Chapter II, §5]). Namely, for an algebra A

in a given variety, a vector space M with an A-action on it, is declared a module over A, if the semidirect

sum A⊕M, where multiplication between elements of A and M is determined by the given action, and

multiplication on M is zero, belongs to the same variety. According to this approach, a vector space

M with a (left) action of a CD algebra A, denoted by a •m, is called a module over A, if the following

equality holds:

(xy)a•m+a• ((xy)•m)− x• ((ya)•m)+ y• ((xa)•m)− x• (a• (y•m))+ y• (a• (x•m)) = 0.

for any x,y,a ∈ A and m ∈V .

As in the Lie case, A, considered as a (left) module over itself, is called the adjoint module.

As we are interested in central extensions and deformations of CD algebras, we start with the second

cohomology. The second cohomology is interpreted as equivalence classes of square-zero extensions.

Namely, let A be a CD algebra and M an A-module, and consider the CD algebra structure on the direct

sum of vector space A⊕M, where multiplication on A is given by the formula x ∗ y = xy+ϕ(x,y) for

some bilinear map ϕ : A×A → M, multiplication between A and M is given by action of A on M, and

multiplication on M is zero. Then ϕ is skew-symmetric, and

(15) ϕ((xy)a,b)−ϕ((xy)b,a)−ϕ((xa)b,y)+ϕ((xb)a,y)+ϕ((ya)b,x)−ϕ((yb)a,x)

+a•ϕ(xy,b)−b•ϕ(xy,a)− x•ϕ(ya,b)+ x•ϕ(yb,a)+ y•ϕ(xa,b)− y•ϕ(xb,a)

−a•(b•ϕ(x,y))+b•(a•ϕ(x,y))−x•(a•ϕ(y,b))+x•(b•ϕ(y,a))−y•(b•ϕ(x,a))+y•(a•ϕ(x,b))

= 0

for any x,y,a,b ∈ A.

The usual notion of equivalence of square-zero extensions 0 → M → ·→ A → 0 leads to the notion

of trivial, or split, extension, which corresponds to a cocycle of the form

(16) ϕ(x,y) = ψ(xy)− x•ψ(y)+ y•ψ(x)

for any x,y ∈ A and some linear map ψ : A → M. Thus the right-hand side of this equality suggests the

definition of the first order cocycles, what confirms the standard interpretation of the first cohomology

as outer derivations.

The inner derivations of A, according to the general approach devised by Schafer (see, for example,

[Sch, Chapter II, §3]), are defined as derivations lying in the Lie multiplication algebra M(A). Since

[Ra,Rb] ∈ Der(A) and due to (1), M(A) is linearly spanned by linear maps of the form Ra and [Ra,Rb]
for a,b ∈ A. On the other hand, by Lemma 3, Ra is a derivation of A if and only if a ∈ LZ(A). Thus any

inner derivation of A is of the form Rz +∑i[Rai
,Rbi

] for some z ∈ LZ(A) and ai,bi ∈ A.
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Another interpretation of the second cohomology with coefficients in the adjoint module is equiva-

lence classes of infinitesimal deformations of an algebra. Thus, following nowadays standard approach

by Gerstenhaber, for a CD algebra A consider a deformed algebra over the ring K[[t]], with multiplication

x∗ y = xy+ϕ1(x,y)t +ϕ2(x,y)t
2 + . . .

That the deformed algebra is also CD algebra, is equivalent to an (infinite) series of equalities, obtained

by collecting coefficients by powers of t in the CD identity (2) for the multiplication ∗. The zeroth of

these equalities (coefficients by t0) coincides with the CD identity for the original multiplication in A,

and thus gives nothing new. The first of these equalities (coefficients by t1) is obtained by ignoring all

terms with powers of t higher than 1, and thus is equivalent to the CD identity in the algebra A⊕At,

where At is the adjoint module over A with trivial multiplication. Hence it is equivalent to the identity

(15) with M = A and • being multiplication in the algebra. The further equalities (coefficients by

t2 and higher degrees) involve Massey brackets of ϕi’s which can be interpreted as obstructions of

prolongations of an infinitesimal deformation to a global one, and lie in the third cohomology of A with

coefficients in the adjoint module. But as it leads to cumbersome formulae, and our primary interest is

in the second cohomology, we will not pursue this further.

The condition of triviality of such deformation, i.e., the equivalence to the initial algebra with respect

to a homomorphism of the form

ψ(x) = x+ψ1(x)t +ψ2(x)t
2 + . . .

leads to an infinite series of equalities, the first of which is

ϕ1(x,y) = ψ1(xy)−ψ1(x)y− xψ1(y),

what is the partial case of (16) in the case of the adjoint module.

Putting all this together, we define the initial terms of the cochain complex associated to a CD algebra

A and an A-module M:

(17) 0 → LZ(M)⊕ (A⊗M)
d0

−→ C1(A,M)
d1

−→ C2(A,M)
d2

−→ C4(A,M).

Here LZ(M) is a “Lie center” of M defined as

LZ(M) = {m ∈ M | xy•m− x• (y•m)+ y• (x•m) = 0 for any x,y ∈ M},

and Cn(A,M) for n ≥ 1 is a linear space of skew-symmetric linear maps A×·· ·×A︸ ︷︷ ︸
n

→ M. The differen-

tials are defined as follows:

d0(m)(b) = b•m

for b ∈ A, m ∈ LZ(M),

d0(a⊗m)(b) = a• (b•m)−b• (a•m)

for a,b ∈ A, m ∈ M. The “LZ(M)” component of d0 is similar to the zeroth differential in the Chevalley–

Eilenberg complex computing the Lie algebra cohomology, and the “A⊗M” component is similar to the

zeroth differential in the complex computing cohomology of quadratic Jordan algebras defined in [M,

§I.3].

Further,

d1(ϕ)(x,y) = ϕ(xy)− x•ϕ(y)+ y•ϕ(x)

for ϕ ∈ C1(A,M), x,y ∈ A, and

(18) d2(ϕ)(x,y,a,b)

= ϕ((xy)a,b)−ϕ((xy)b,a)−ϕ((xa)b,y)+ϕ((xb)a,y)+ϕ((ya)b,x)−ϕ((yb)a,x)

+a•ϕ(xy,b)−b•ϕ(xy,a)− x•ϕ(ya,b)+ x•ϕ(yb,a)+ y•ϕ(xa,b)− y•ϕ(xb,a)

−a•(b•ϕ(x,y))+b•(a•ϕ(x,y))−x•(a•ϕ(y,b))+x•(b•ϕ(y,a))−y•(b•ϕ(x,a))+y•(a•ϕ(x,b))

for ϕ ∈ C2(A,M), x,y,a,b ∈ A.
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The equalities d1 ◦d0 = 0 and d2 ◦d1 = 0 are verified in a straightforward, if not a bit cumbersome

way, or just follow from the structural interpretations described above.

This is not the only sensible way to define cohomology of CD algebras. For example, one may argue

that a proper notion of derivation in this context is the following: a linear map D : A → A such that the

semidirect sum A⊕KD, where multiplication between A and D is determined by action of D on A. In

the variety of Lie algebras, this leads to the usual notion of derivation, but in the variety of CD algebras,

this leads to what might be called a CD derivation of a CD algebra A: a linear map D : A → A such that

D((xy)a)−D(xy)a−D(xa)y+D(ya)x+(D(x)a)y− (D(y)a)x = 0

for any x,y,a ∈ A. An inner derivation in this context is, as in the variety of Lie algebras, just a multipli-

cation Ra, a ∈ A. Accordingly, one may define the initial terms of the cochain complex responsible for

cohomology of a CD algebra A with coefficients in an A-module M, as

0 → M
d0

−→ C1(A,M)
d1

−→ C3(A,M),

where

d0(m)(x) = x•m

for m ∈ M and x ∈ A, and

(19) d1(ϕ)(x,y,a) = ϕ((xy)a)−a•ϕ(xy)− y•ϕ(xa)+ x•ϕ(ya)+ y• (a•ϕ(x))− x• (a•ϕ(y))

for ϕ ∈ C1(A,M) and x,y,a ∈ A.

One cannot say which variant of these cochain complexes is “better”. In that respect, the situation

resembles those with cohomology of so-called mock-Lie algebras (commutative algebras satisfying the

Jacobi identity), where also one cannot define a low-degree cohomology in a canonical and coherent

way, basing on structural interpretations (cf. [Z, §1]). However, as we are interested in central extensions

and deformations, we adopt the first variant of the cochain complex, and define the second degree

cohomology of a CD algebra A with coefficients in an A-module M as H2
CD(A,M) = Kerd2 / Imd1,

where d1 and d2 are as in (17).

One may try to generalize the formulae for differentials above as follows. Let n > 0, and

d : Cn(A,M)→ Cn+2(A,M) is given by

d(ϕ)(x,y,a1, . . . ,an)

=
n

∑
i=1

(−1)i
(

ϕ((xy)ai,a1, . . . , âi, . . . ,an)+ai •ϕ(xy,a1, . . . , âi, . . . ,an)

− x•ϕ(yai,a1, . . . , âi, . . . ,an)+ y•ϕ(xai,a1, . . . , âi, . . . ,an)

− x• (ai •ϕ(y,a1, . . . , âi, . . . ,an))+ y• (ai •ϕ(x,a1, . . . , âi, . . . ,an))
)

+ ∑
1≤i< j≤n

(−1)i+ j+n+1
(

ϕ((xai)a j,y,a1, . . . , âi, . . . , â j, . . . ,an)−ϕ((xa j)ai,y,a1, . . . , âi, . . . , â j, . . . ,an)

−ϕ((yai)a j,x,a1, . . . , âi, . . . , â j, . . . ,an)+ϕ((ya j)ai,x,a1, . . . , âi, . . . , â j, . . . ,an)

+ai•(a j•ϕ(x,y,a1, . . . , âi, . . . , â j, . . . ,an))−a j•(ai•ϕ(x,y,a1, . . . , âi, . . . , â j, . . . ,an))
)

for ϕ ∈ Cn(A,M), and x,y,a1, . . . ,an ∈ A.

One can prove, in the absence of analogs of Cartan formulas in the Chevalley–Eilenberg complex

(are there ones?), by direct verification if not without some pain, that d◦d = 0, so we get, in fact, two

complexes, which lead to what may be called “odd” and “even” CD cohomology respectively:

C1(A,M)
d
→ C3(A,M)

d
→ C5(A,M)

d
→ . . .

C2(A,M)
d
→ C4(A,M)

d
→ C6(A,M)

d
→ . . .
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The differential d : C1(A,M)→ C3(A,M) here coincides with differential (19), and the differential d :

C2(A,M)→ C4(A,M) coincides with differential (18).

However, we will not pursue this topic further and in the subsequent section will work exclusively

with H2
CD(A,M) as defined above.

5. CENTRAL CD EXTENSIONS OF LIE ALGEBRAS

In this section we discuss central CD extensions, or, in other words, H2
CD(L,K), for various Lie algeb-

ras L with coefficients in the trivial module K. According to the definition, the vector space H2
CD(L,K)

is a quotient of CD 2-cocycles by 2-coboundaries:

H2
CD(L,K) =

Z2
CD(L,K)

B2(L,K)
.

The space Z2
CD(L,K) of CD 2-cocycles consists of skew-symmetric bilinear maps ϕ : L× L → K

satisfying the condition

(20)

ϕ([[x,y],a],b)−ϕ([[x,y],b],a)−ϕ([[x,a],b],y)+ϕ([[x,b],a],y)+ϕ([[y,a],b],x)−ϕ([[y,b],a],x) = 0

for any x,y,a,b ∈ L, and the space of 2-coboundaries B2(L,K) consists, as in the Lie case, of bilinear

maps of the form ϕ(x,y) = ψ([x,y]) for some linear map ψ : L → K.

Note that for any Lie algebra L, the usual Chevalley–Eilenberg cohomology H2(L,K) is a subspace

in the CD cohomology H2
CD(L,K).

Our first goal is to obtain examples of an almost Lie algebra which is not CD, promised at the end

of the proof of Proposition 1, by considering one-dimensional central extensions of a Lie algebra L.

Such central extensions can be written as the vector space direct sum L⊕Kz, where multiplication in

L is twisted by a 2-cocycle ϕ : L×L → K, {x,y} = [x,y] +ϕ(x,y)z, and z is a central element. Such

an algebra is almost Lie for any skew-symmetric ϕ , while it is a CD algebra if and only if ϕ is CD

2-cocycle. Thus any Lie algebra L whose second CD cohomology H2
CD(L,K) is strictly larger then

its second Chevalley–Eilenberg cohomology H2(L,K), will lead, by extending L by any CD 2-cocycle

which is not a Chevalley–Eilenberg cocycle, to an example of a CD algebra which is not Lie. Similarly,

a Lie algebra L, for which H2
CD(L,K) is strictly smaller than the space C2(L,K)/B2(L,K) – which can

be considered as the “2nd almost Lie cohomology” – will lead to an example of an almost Lie algebra

which is not CD.

Obviously, abelian Lie algebras do not qualify for such examples, so let us look at nonabelian Lie

algebras of low dimension. Elementary calculations show that the two-dimensional nonabelian Lie

algebra, and the 3-dimensional nilpotent Lie algebra do not qualify either, as for these algebras

H2(L,K) = H2
CD(L,K) =

C2(L,K)

B2(L,K)

(all these three spaces vanish in the case where L is two-dimensional nonabelian, and are of dimension

2 in the case where L is 3-dimensional nilpotent), but the direct sum of the two-dimensional nonabelian

and the one-dimensional algebra does qualify, as for this algebra we have

H2(L,K) = H2
CD(L,K)(

C2(L,K)

B2(L,K)

(the corresponding spaces being of dimensions 1 and 2).

Further low-dimensional solvable and nilpotent Lie algebras of dimension 3 and higher could provide

a plethora of such examples (including the cases where H2(L,K) and H2
CD(L,K) do not coincide).

On the other hand, for simple Lie algebras we have

Theorem (“Second CD Whitehead lemma”). For any simple finite-dimensional Lie algebra L over a

field of characteristic zero, and any finite-dimensional L-module M, H2
CD(L,M) = 0.
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Proof. This follows at once from [G, Theorem 6]. Indeed, it is proved there that any solvable (and hence

abelian) extension of L in the variety of binary Lie algebras (and hence in the variety of CD algebras)

splits. �

In the positive characteristic, we merely have a

Conjecture. For any simple finite-dimensional Lie algebra L over a field of characteristic 6= 2,3,

H2
CD(L,K) = H2(L,K).

The conjecture is supported by computer calculations for algebras of small dimension.

6. FURTHER QUESTIONS

1) How “far” a CD algebra can be from Lie algebras? To start with, describe CD algebras A with the

Lie center “as small as possible”, i.e., satisfying the condition LZ(A) = Z(A).

2) Which “interesting” Lie algebras can be realized as constructions described in §3?

3) Study free CD algebras. Are they central extensions of free Lie algebras?

4) For an algebra A, its minus-algebra A(−) is an algebra defined on the same underlying vector

space A subject to multiplication given by the commutator [x,y] = xy− yx. If the minus-algebra of an

algebra A belongs to a (necessary anticommutative) variety V , then A is called V-admissible. Most of

the distinguished varieties of algebras have they “admissible” counterparts: thus, associative algebras

are Lie-admissible, alternative algebras are Malcev-admissible, and binary Lie algebras are assocyclic-

admissible, where the variety of assocyclic algebras is defined by the identity

(x,y,z) = (z,x,y),

(x,y,z) = (xy)z− x(yz) being the associator of elements x,y,z.

In such situation arises the question whether each algebra in an anticommutative variety V is spe-

cial, i.e., can be embedded into an algebra of the form A(−), where A is V-admissible algebra. Thus,

Lie algebras are special due to the celebrated Poincaré–Birkhoff–Witt theorem; the speciality of Mal-

cev algebras was a long-standing problem whose negative solution was announced recently by Ivan

Shestakov; and binary Lie algebras are not necessarily special either, see [AS].

What would be a natural variety of CD admissible algebras? (One possible general approach in

operadic language to such sort of questions is described in [K]). Would CD algebras be special with

respect to that variety?

5) Study representations of CD algebras. Does an analog of the Ado theorem hold, i.e., whether each

finite-dimensional CD algebra admits a faithful finite-dimensional representation?

6) The classical Lie theory establishes correspondence between Lie groups and Lie algebras. This

correspondence has been generalized to Malcev algebras, Bol algebras, Lie triple systems, Sabinin al-

gebras, etc. (see, for example, [GP] and references therein). In these “generalized Lie” correspondences

Lie groups are replaced by various kinds of analytic loops; thus, binary Lie algebras correspond to

diassociative loops (i.e., the subloop generated by any two elements is a group). Which loops would

correspond to CD algebras? One of the possible approaches to this question would be to find the class

of loops corresponding to almost Lie algebras, and then, according to (6), take the intersection of that

class with the class of diassociative loops.

7) Let us drop the commutativity and anticommutativity conditions altogether, and consider the vari-

ety of algebras defined just by the properties that the commutator of any two left or right multiplications

is a derivation (i.e., taking all possible combinations of left/right multiplications, we get 3 defining iden-

tities, see, for example, [KK1, §1]). Is this variety of algebras amenable to study? Low-dimensional

nilpotent algebras in this variety were classified in [KK1] and [KK2].
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