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ABSTRACT. We prove simplicity of algebras in the title, and compute their δ -derivations and symmetric

associative forms.

INTRODUCTION

We consider algebras of Hermitian and skew-Hermitian matrices over octonions. While such alge-

bras of matrices of low order are well researched and well understood (the algebra of 3× 3 Hermitian

matrices being the famous exceptional simple Jordan algebra), this is not so for higher orders; the case

of Hermitian matrices of order 4×4 appears in modern physics (string theory, M-theory).

Derivation algebras of algebras of Hermitian and skew-Hermitian matrices over octonions were re-

cently computed in [P], and here we continue to study these algebras. After the preliminary §1, where

we set notation and remind basic facts about algebras with involution, we prove simplicity of the alge-

bras in question (§2), and compute their δ -derivations (§3) and symmetric associative forms (§4). The

last §5 contains some further questions.

1. NOTATION, CONVENTIONS, PRELIMINARY REMARKS

1.1. The ground field K of characteristic 6= 2,3 is assumed to be arbitrary, unless stated otherwise; K

and Kq denote the algebraic and the quadratic closure of K, respectively. “Algebra” means an arbitrary

algebra over K, not necessary associative, or Lie, or Jordan, or satisfying any other distinguished iden-

tity, unless specified otherwise. If a is an element of an algebra A, then Ra denotes the linear operator

of the right multiplication by a. All unadorned tensor products and Hom’s are over the ground field K.

The symbol ∔ denotes the direct sum of vector spaces, while ⊕ denotes the direct sum of algebras or

modules.

1.2. Algebras with involution. An involution on a vector space V is a linear map j : V →V such that

j2 = idV . If j is an involution on V , define

S+(V, j) = {x ∈V | j(x) = x}

and

S−(V, j) = {x ∈V | j(x) =−x},

the subspaces of j-symmetric and j-skew-symmetric elements of V , respectively.

For an arbitrary vector space with involution j, we have the direct sum decomposition:

V = S+(V, j) ∔ S−(V, j).

An involution on an algebra A is a linear map j : A → A which is an involution on A as a vector space,

and, additionally, is an antiautomorphism of A, i.e., j(xy) = j(y) j(x) for any x,y ∈ A.

For an arbitrary algebra A with involution j, the subspace S+(A, j) is closed with respect to the half

of the anticommutator x ◦ y = 1
2
(xy+ yx), and thus forms a (commutative) algebra with respect to ◦.

The operation ◦ will be also frequently referred as the Jordan product, despite that the ensuing algebras
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are, generally, not Jordan. Similarly, the subspace S−(A, j) is closed with respect to the commutator

[x,y] = xy− yx, and thus forms an (anticommutative) algebra with respect to [ · , · ].
We have the following obvious inclusions:

S+(A, j)◦S+(A, j)⊆ S+(A, j)

S+(A, j)◦S−(A, j)⊆ S−(A, j)(1)

S−(A, j)◦S−(A, j)⊆ S+(A, j)

and

[S+(A, j),S+(A, j)]⊆ S−(A, j)

[S+(A, j),S−(A, j)]⊆ S+(A, j)(2)

[S−(A, j),S−(A, j)]⊆ S−(A, j).

If (A, j) and (B,k) are two vector spaces, respectively algebras, with involution, then their tensor

product (A⊗B, j⊗ k), is a vector space, respectively algebra, with involution. Here j⊗ k acts on A⊗B

in an obvious way:

( j⊗ k)(a⊗b) = j(a)⊗ k(b)

for any a ∈ A, b ∈ B.

1.3. Matrix algebras. Mn(K) denotes the (associative) algebra of n×n matrices with entries in K. The

matrix transposition, denoted by ⊤, is an involution on Mn(K). Tr(X) denotes the trace of a matrix X ,

and E denotes the unit matrix. We use the shorthand notation M+
n (K) = S+(Mn(K),⊤) and M−

n (K) =
S−(Mn(K),⊤) for the spaces of symmetric and skew-symmetric n×n matrices, respectively.

The algebra M+
n (K) with respect to the Jordan product is a simple Jordan algebra. The space M−

n (K)
is an irreducible Jordan module over M+

n (K) (see, for example, [Ja, Chapter VII, §3, Theorem 7]). In

particular, M+
n (K)◦M−

n (K) = M−
n (K).

The algebra M−
n (K) with respect to the commutator is the orthogonal Lie algebra, customarily denoted

by son(K). We have so1(K) = 0, and so2(K) ≃ K, the one-dimensional (abelian) Lie algebra. If n = 3

or n ≥ 5, the Lie algebra son(K) is simple; if n = 4, so4(K) is isomorphic to the direct sum of two

copies of the 3-dimensional simple Lie algebra with the basis {e1,e2,e3} and the multiplication table

[e1,e2] = e3, [e2,e3] = e1, [e3,e1] = e2, denoted by us as su2(K) (of course, isomorphic to sl2(K) if

K is algebraically closed). If n ≥ 3, the son(K)-module M+
n (K), being isomorphic to the symmetric

square of the tautological module, decomposes as the direct sum KE ⊕SMn(K), where KE is the trivial

1-dimensional module spanned by the unit matrix, and the vector space

SMn(K) = {X ∈ M+
n (K) | Tr(X) = 0}

forms the n2+n−2
2

-dimensional irreducible module. In the case n = 4, the latter su2(K)⊕su2(K)-module

is isomorphic to the tensor product su2(K)⊗su2(K) of two irreducible adjoint modules over two copies

of su2(K). (See, for example, [BBM, Lemma 3.1].) In particular, [M−
n (K),M+

n (K)] = SMn(K).

Lemma 1. If x ∈ M−
n (K) is such that x◦M−

n (K) = 0, then x = 0.

Proof. For n = 1 the statement is vacuous, so assume n ≥ 2. Considering this on the Lie algebra level,

we have xy+ yx = 0 for any y ∈ son(K). Taking the trace of the both sides of this equality, we have

Tr(xy) = 0. But the trace form (x,y) 7→ Tr(xy) is nondegenerate on son(K) (this can be verified directly,

or see, for example, [Kap, p. 66]), and, consequently, x = 0. �

Lemma 2. If m ∈ M+
n (K) is such that [m,M−

n (K)] = 0 or [m,M+
n (K)] = 0, then m is a multiple of E.

Proof. Case of [m,M−
n (K)] = 0 for n = 1,2 is verified immediately, and for n ≥ 3 the proof follows from

the above description of M+
n (K) as an son(K)-module.

Case of [m,M+
n (K)] = 0. It is easy to check that this condition implies

(m,s, t) = (s,m, t) = (s, t,m) = 0
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for any s, t ∈ M+
n (K), where (x,y,z) = (x ◦ y) ◦ z− x ◦ (y ◦ z) is the Jordan associator, i.e., m lies in the

center of the simple Jordan algebra (M+
n (K),◦), which coincides with KE. �

1.4. Octonion algebras. Octonion algebras over an arbitrary field K form the 3-parametric family

Oµ(K), where µ = (µ1,µ2,µ3) is a triple of nonzero elements of K. Let us recall its multiplication table

in the standard basis {1,e1, . . . ,e7} (by abuse of notation, the basis element 1 is the unit of the algebra):

e1 e2 e3 e4 e5 e6 e7

e1 µ11 −e3 −µ1e2 −e5 −µ1e4 e7 µ1e6

e2 e3 µ21 µ2e1 −e6 −e7 −µ2e4 −µ2e5

e3 µ1e2 −µ2e1 −µ1µ21 −e7 −µ1e6 µ2e5 µ1µ2e4

e4 e5 e6 e7 µ31 µ3e1 µ3e2 µ3e3

e5 µ1e4 e7 µ1e6 −µ3e1 −µ1µ31 −µ3e3 −µ1µ3e2

e6 −e7 µ2e4 −µ2e5 −µ3e2 µ3e3 −µ2µ31 µ2µ3e1

e7 −µ1e6 µ2e5 −µ1µ2e4 −µ3e3 µ1µ3e2 −µ2µ3e1 µ1µ2µ31

(the table, up to obvious notational changes, is reproduced from [Sch, p. 5]). Over some fields, there are

isomorphisms within this family; for example, if the field is algebraically closed or finite, all octonion

algebras are isomorphic to each other. As explained below, in the proofs of our main results we may

assume the ground field to be algebraically closed, so we are free to choose any form of an octonion

algebra we wish. The two most natural candidates would be O(−1,−1,−1)(K) (for example, over R this

is the single octonion division algebra), or the split octonion algebra O(−1,−1,1)(K).
We have decided that for our calculations the most convenient will be the algebra O(−1,−1,−1)(K),

denoted just by O(K) in the sequel†. A quick glance at the multiplication table reveals the follow-

ing properties of the basis elements we will need: e2
i = −1, eie j = −e jei, and, denoting by Bi the

6-dimensional linear span of all the basis elements except for 1 and ei, we have eiBi = Biei = Bi, for any

i = 1, . . . ,7. By

∗ : {1, . . . ,7}×{1, . . . ,7}→ {1, . . . ,7}

we denote the partial binary operation such that eie j =−e jei =±ei∗ j for any i 6= j.

Extending the base field K to its algebraic closure K, we have an isomorphism of K-algebras

(3) Oµ(K)⊗K K ≃O(K).

The standard conjugation in Oµ(K), denoted by , and defined by 1 = 1, ei =−ei, turns Oµ(K) into

an algebra with involution. We have S+(Oµ(K), ) = K1, and S−(Oµ(K), ) is the 7-dimensional sub-

space of imaginary octonions, linearly spanned by e1, . . . ,e7. The latter subspace forms a 7-dimensional

simple Malcev algebra with respect to the commutator. We will use the shorthand notation O−
µ (K) =

S−(Oµ(K), ) and O−(K) = S−(O(K), ).
Since for any a ∈ Oµ(K), the elements a+ a and aa belong to K1, we can define the linear map

T : Oµ(K)→ K and the quadratic map N : Oµ(K)→ K by T (a) = a+a and N(a) = aa, called the trace

and norm, respectively. Any element a ∈Oµ(K) satisfies the quadratic equality

(4) a2 −T (a)a+N(a)1 = 0

(see, for example, [Sch, Chapter III, §4] or [Ja, p. 233, Exercise 1]).

For any two elements a,b ∈ O−
µ (K), writing the equality (4) for the element a+ b, subtracting from

it the same equalities for a and for b, and taking into account that T (a) = T (b) = 0, yields

(5) ab+ba =−N(a,b)1,

where

N(a,b) = N(a+b)−N(a)−N(b).

†Of course, it is also possible to perform all our calculations in the case of generic 3-parametric octonion algebra Oµ(K),

but then they will be somewhat more cumbersome.
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1.5. Algebras of Hermitian and skew-Hermitian matrices over octonions. Our main characters, the

algebras of Hermitian and skew-Hermitian matrices over octonions, are defined as S+(Mn(Oµ(K)),J)
and S−(Mn(Oµ(K)),J) respectively, where Mn(Oµ(K)) is the algebra of n×n matrices with entries in

Oµ(K). The involution on Mn(Oµ(K)) is defined as J : (ai j) 7→ (a ji), i.e., the matrix is transposed and

each entry is conjugated, simultaneously.

The algebras S+(Mn(Oµ(K)),J) contain the unit matrix, so they are unital. These algebras for small

n’s are Jordan algebras, well-known from the literature: for n = 1, this is nothing but the ground field

K; for n = 2, they are 10-dimensional simple Jordan algebras of symmetric nondegenerate bilinear form

(see, for example, [KMRT, Chapter IX, Exercise 4] and [R, §6]); and for n = 3, they are the famous

27-dimensional exceptional simple Jordan algebras. For n ≥ 4, they are no longer Jordan algebras.

Interestingly enough, the algebras S+(M4(Oµ(K)),J) were considered already in a little-known dis-

sertation [R] (for a more accessible exposition, see [LRH, §5]), under the direction of Hel Braun and

Pascual Jordan. More recently, the algebra S+(M4(O(R)),J) appeared in [LT, §4] under the name

“octonionic M-algebra”, where it was suggested as an alternative to the standard M-algebra (a sort of

generalization of the Poincaré algebra of spacetime symmetries). This algebra features some M-theory

numerology (lesser number of real bosonic generators, equivalence between supermembrane and super-

five-brane sectors) which, as suggested in [LT], could make this algebra a better alternative.

The algebras S−(Mn(Oµ(K),J) are less prominent: for n = 1 these are the 7-dimensional simple

Malcev algebras O−
µ (K); it seems that the only place where they appeared in the literature in the case of

(small) n > 1 is [BH], where identities of these algebras were studied.

Due to the isomorphism of algebras

Mn(Oµ(K))≃ Mn(K)⊗Oµ(K),

the algebra with involution (Mn(Oµ(K)),J) can be represented as the tensor product of two algebras

with involution: (Mn(K),⊤), the associative algebra of n×n matrices over K with involution defined by

the matrix transposition, and (Oµ(K), ).

Finally, due to isomorphism (3), we have an isomorphism of K-algebras:

(6) S±(Mn(Oµ(K),J))⊗K K ≃ S±(Mn(O(K)),J).

2. SIMPLICITY

We start with rewriting our matrix algebras as the vector space direct sums of certain tensor products,

which appears to be more convenient for computations. For this, we need the following simple lemma

of linear algebra.

Lemma 3 ([Z, Lemma 1.1]). Let V,W be two vector spaces, ϕ,ϕ ′ ∈ Hom(V, · ), ψ,ψ ′ ∈ Hom(W, · ).
Then

Ker(ϕ ⊗ψ)∩Ker(ϕ ′⊗ψ ′)

≃ (Kerϕ ∩Kerϕ ′)⊗W +Kerϕ ⊗Kerψ ′+Kerϕ ′⊗Kerψ +V ⊗ (Kerψ ∩Kerψ ′).

Proposition 4. For any two vector spaces with involution (V, j) and (W,k), there are isomorphisms of

vector spaces

S+(V ⊗W, j⊗ k)≃ S+(V, j)⊗S+(W,k) ∔ S−(V, j)⊗S−(W,k)

S−(V ⊗W, j⊗ k)≃ S+(V, j)⊗S−(W,k) ∔ S−(V, j)⊗S+(W,k).

Proof. Let us prove the first isomorphism, the proof of the second one is completely similar. By defini-

tion, an element ∑i∈I vi ⊗wi of V ⊗W , where I is a set of indices, belongs to S+(V ⊗W, j⊗ k), if and

only if

∑
i∈I

(
j(vi)⊗ k(wi)− vi ⊗wi

)
= 0.
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Applying to this equality the linear maps (idV + j)⊗ idW and (idV − j)⊗ idW , we get respectively:

∑
i∈I

( j(vi)+ vi)⊗ (k(wi)−wi) = 0

and

∑
i∈I

( j(vi)− vi)⊗ (k(wi)+wi) = 0.

Applying Lemma 3 to the last two equalities, we can replace vi’s and wi’s by their linear combinations

in such a way that the index set splits into the disjoint union I= I11 ∪ I12 ∪ I21 ∪ I22, where

vi ∈S−(V, j), vi ∈S+(V, j) for i ∈ I11,

vi ∈S−(V, j), wi ∈S−(W,k) for i ∈ I12,

vi ∈S+(V, j), wi ∈S+(W,k) for i ∈ I21,

wi∈S+(W,k),wi ∈S−(W,k) for i ∈ I22.

All elements with indices from I11 and I22 vanish, and we are done. �

In the particular case (V, j) = (Mn(K),⊤) and (W,k) = (Oµ(K), ), denoting J = ⊤⊗ , and taking

into account that S+(Oµ(K), ) = K1, we get:

(7) S+(Mn(Oµ(K)),J)≃ M+
n (K)⊗1 ∔ M−

n (K)⊗O−
µ (K).

(In the case where n= 3 and K is algebraically closed and of characteristic zero, and so S+(M3(Oµ(K),J))
is the 27-dimensional exceptional simple Jordan algebra, this decomposition was noted in [DM, §3.3].)

In particular,

dimS+(Mn(Oµ(K),J)) =
n(n+1)

2
+7 ·

n(n−1)

2
= 4n2 −3n.

For any m,s ∈ M+
n (K), we have

(m⊗1)◦ (s⊗1) = (m◦ s)⊗1,

what implies that M+
n (K)⊗ 1 is a (Jordan) subalgebra of S+(Mn(Oµ(K),J)). Moreover, for any x,y ∈

M−
n (K), and a ∈O−

µ (K), we have:

(m⊗1)◦ (x⊗a)= (m◦ x)⊗a,

(x⊗a) ◦ (y⊗a)=−N(a) (x◦ y)⊗1.

It follows that M+
n (K)⊗ 1∔M−

n (K)⊗ a is a subalgebra of S+(Mn(Oµ(K),J)); let us denote this

subalgebra by L +(a). If N(a) 6= 0, we have an isomorphism of Jordan algebras L +(a)⊗K Kq ≃

Mn(K
q); the isomorphism is provided by sending m⊗1 to m for m ∈ M+

n (Kq), and x⊗a to
√
−N(a)x

for x ∈ M−
n (Kq).

Further,

(M+
n (K)⊗1)◦ (M−

n (K)⊗O−
µ (K)) = M−

n (K)⊗O−
µ (K).

On the other hand, the subspace M−
n (K)⊗O−

µ (K) is not a subalgebra. The formula for multiplication

in this subspace in terms of the decomposition (7) is obtained using (5): for any x,y ∈ M−
n (K) and

a,b ∈O−
µ (K), we have

(x⊗a)◦ (y⊗b) =
1

2
(xy⊗ab+ yx⊗ba) =

1

4
(xy+ yx)⊗ (ab+ba)+

1

4
(xy− yx)⊗ (ab−ba)

=−
N(a,b)

2
(x◦ y)⊗1+

1

4
[x,y]⊗ [a,b].

Similarly, we have

(8) S−(Mn(Oµ(K)),J)≃ M−
n (K)⊗1 ∔ M+

n (K)⊗O−
µ (K),
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and

dimS−(Mn(Oµ(K)),J) =
n(n−1)

2
+7 ·

n(n+1)

2
= 4n2 +3n.

For any x,y ∈ M−
n (K), m,s ∈ M+

n (K), and a ∈O−
µ (K), we have:

[x⊗1,y⊗1] = [x,y] ⊗1

[x⊗1,m⊗a]= [x,m]⊗a

[m⊗a,s⊗a] =N(a)[s,m]⊗1.

It follows that both M−
n (K)⊗1 and

L
−(a) = M−

n (K)⊗1∔M+
n (K)⊗a

are Lie subalgebras of S−(Mn(Oµ(K)),J), isomorphic to son(K), and, provided N(a) 6= 0, to a form of

gln(K
q), respectively; the isomorphisms are defined by sending x⊗1 to x for x ∈ M−

n (K), and m⊗a to√
−N(a)m for m ∈ M+

n (Kq).
Moreover,

[M−
n (K)⊗1,M+

n (K)⊗O−
µ (K)] = SMn(K)⊗O−

µ (K)⊂ M+
n (K)⊗O−

µ (K).

The subspace M+
n (K)⊗O−

µ (K) is not a subalgebra: for any m,s ∈ M+
n (K), a,b ∈O−

µ (K), we have

(9) [m⊗a,s⊗b]

=
1

2
(ms− sm)⊗ (ab+ba)+

1

2
(ms+ sm)⊗ (ab−ba) =−

N(a,b)

2
[m,s]⊗1+(m◦ s)⊗ [a,b].

Theorem 5. The algebras S+(Mn(Oµ(K)),J) and S−(Mn(Oµ(K)),J) are simple for any n ≥ 1.

Before we plunge into the proof, a few remarks are in order:

(i) The cases of S+(Mn(Oµ(K)),J) for n = 1,2,3, and of S−(Mn(Oµ(K)),J) for n = 1 are well-

known, due to the known structure of the algebras in question in these cases (see §1); however, our

proofs, uniform for all n, appear to be new. The case of S+(M4(Oµ(K)),J) is stated without proof

in [R, Satz 8.1].

(ii) In [St] it is proved that ideals of the tensor product A⊗B of two algebras A and B, where A is central

(i.e., its centroid coincides with the ground field) and simple, and B satisfies some other conditions

(like having a unit), are of the form A⊗ I, where I is an ideal of B. In particular, the tensor product

of two central simple algebras, for example, Mn(K)⊗Oµ(K), is simple. Our method of proof of

Theorem 5, based on application of the (version of) Jacobson density theorem, resembles those in

[St].

(iii) Another related result about simplicity of nonassociative algebras is established in [R, Satz 5.1]:

the matrix algebra over a composition algebra with respect to the Jordan product ◦, is simple; a

particular case is the algebra (Mn(Oµ(K)),◦).

We will need the following version of the Jacobson density theorem.

Proposition 6. † Let R be an associative algebra with unit, and M1, . . . ,Mn pairwise non isomorphic

right irreducible R-modules. Then for any linearly independent elements x
(i)
1 , . . . ,x

(i)
ki

∈ Mi, and any

elements y
(i)
1 , . . . ,y

(i)
ki

∈ Mi, i = 1, . . . ,n, there is an element a ∈ R such that x
(i)
j • a = y

(i)
j for any i =

1, . . . ,n, j = 1, . . . ,ki.

(Here • denotes the right action of A on its modules).

†Added March 27, 2022: As stated, the statement of the proposition is wrong. Like in the classical Jacobson density

theorem, one needs to require that the module elements are independent over the ring of R-module endomorphisms of M,

and not just over the ground field. Alternatively, one may require that the ground field is algebraically closed, as it is enough

for our purposes. Thanks to are due Alberto Elduque for spotting this mistake.
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Proof. This is, essentially, the Jacobson density theorem formulated for a completely reducible module

M = M1 ⊕ ·· · ⊕Mn. Perhaps, the easiest way to derive it in our formulation is the following. First,

apply the classical Jacobson density theorem to each irreducible R-module Mi to get elements ai ∈ R

such that x
(i)
j •ai = y

(i)
j for any i = 1, . . . ,n, j = 1, . . . ,ki. By [L, Chapter XVII, Theorem 3.7] (which is

a consequence of the Jacobson density theorem for semisimple modules formulated in terms of bicom-

mutants of modules, see [L, Chapter XVII, Theorem 3.2]), there are elements ei ∈ R such that ei acts as

the identity on Mi, and M j • ei = 0 for j 6= i. Then a = e1a1 + · · ·+ enan is the required element. �

We now specialize this to our situation. Let A be an algebra, and M a right A-module. By the

multiplication algebra M(A,M) we mean the unital subalgebra in the associative algebra of all linear

transformations of M, generated by actions of all elements of A on M. If A acts on itself via right

multiplications, i.e., M = A, then M(A,A) is called the multiplication algebra of A.

Lemma 7.

(i) For any linearly independent elements m1, . . . ,mk ∈ M+
n (K), x1, . . . ,xℓ ∈ M−

n (K), and any ele-

ments m′
1, . . . ,m

′
k ∈ M+

n (K), x′1, . . . ,x
′
ℓ ∈ M−

n (K), there is a map R ∈M(M+
n (K),Mn(K)) such that

R(mi) = m′
i for i = 1, . . . ,k, and R(xi) = x′i for i = 1, . . . , ℓ.

(ii) Let n 6= 4. For any linearly independent elements m1, . . . ,mk ∈ SMn(K), x1, . . . ,xℓ ∈ M−
n (K), and

any elements m′
1, . . . ,m

′
k ∈ SMn(K), x′1, . . . ,x

′
ℓ ∈ M−

n (K), there is a map R ∈ M(son(K),Mn(K))
such that R(mi) = m′

i for i = 1, . . . ,k, and R(xi) = x′i for i = 1, . . . , ℓ.

(Here the Jordan algebra M+
n (K), respectively the Lie algebra son(K), acts via Jordan multiplications,

respectively commutators, on its ambient algebra Mn(K).)

Proof. (i) As follows from §1.3, Mn(K) is decomposed, as an M+
n (K)-module, into the direct sum of

two irreducible non isomorphic Jordan modules: Mn(K) = M+
n (K)⊕M−

n (K). Apply Proposition 6 to

R =M(M+
n (K),Mn(K)), and M1 = M+

n (K), M2 = M−
n (K).

(ii) The statement is vacuous for n = 1, and easily verified directly for n = 2, so assume n ≥ 3.

As follows from §1.3, Mn(K) is decomposed, as an son(K)-module, into the direct sum of three non-

isomorphic modules:

Mn(K) = KE ⊕SMn(K)⊕M−
n (K).

Apply Proposition 6 to

R =M
(
son(K),Mn(K)

)
=M

(
son(K),SMn(K)⊕M−

n (K)
)
,

and M1 = SMn(K), M2 = M−
n (K). �

Note that the restriction n 6= 4 in Lemma 7(ii) is essential. As noted in §1.3, the adjoint module of

so4(K) decomposes into the direct sum of two irreducible isomorphic modules, so Proposition 6 is not

applicable as is. It is possible to devise more sophisticated versions of Proposition 6 and Lemma 7

which are trying to take account of this, but we found it easier to treat the case n = 4 below in a different

way, avoiding more sophisticated versions of the Jacobson density theorem.

Proof of Theorem 5. As a form of a simple algebra is simple, it is enough to prove the theorem when the

ground field K is algebraically closed. In this case, due to isomorphism (6), we may assume Oµ(K) =
O(K).

Case of S+(Mn(O(K)),J). Let I be an ideal of S+(Mn(O(K)),J). We argue in terms of the decom-

position (7). Assume first that I ⊆ M−
n (K)⊗O−(K). Consider an element

7

∑
i=1

xi ⊗ ei ∈ I,
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where xi ∈ M−
n (K), and e1, . . . ,e7 are elements of the standard basis of O(K), as described in §1.4. For

any y ∈ M−
n (K), and any k = 1, . . . ,7, we have

(y⊗ ek)◦ (
7

∑
i=1

xi ⊗ ei) =−(xk ◦ y)⊗1+ terms lying in M−
n (K)⊗O−(K).

Hence, xk ◦ y = 0 for any y ∈ M−
n (K), and by Lemma 1, xk = 0. This shows that I = 0, and we may

assume I * M−
n (K)⊗O−(K).

Now take an element

m⊗1+∑
i∈I

xi ⊗ai ∈ I,

where m ∈ M+
n (K), m 6= 0, xi ∈ M−

n (K), i ∈ I are linearly independent, and ai ∈O−(K). By Lemma 7(i),

for any m′ ∈ M+
n (K) there is a linear map R : Mn(K)→ Mn(K), represented as the sum of products of

the form Rs1
. . .Rsℓ , where each si belongs to M+

n (K), and Rs is the Jordan multiplication by the element

s, such that R(m) = m′ and R(xi) = 0 for any i = 1, . . . ,7. We form the corresponding map R̃ from the

multiplication algebra of S+(Mn(O(K)),J) by replacing each Rsi
by Rsi⊗1. Then R̃(m⊗1) = m′⊗1 and

R̃(xi ⊗ai) = 0. Consequently, m′⊗1 ∈ I, and I contains M+
n (K)⊗1. This, in its turn, implies

M−
n (K)⊗O−(K) = (M+

n (K)⊗1)◦ (M−
n (K)⊗O−(K))⊆ I,

and hence I coincides with the whole algebra S+(Mn(O(K)),J).
Case of S−(Mn(O(K)),J). The proof goes largely along the same route as in the previous case, but

with some complications and modifications, notably in the case n = 4. If n = 1, the algebra in question

is isomorphic to the 7-dimensional Malcev algebra O−(K), whose simplicity is well known (and can be

established by an easy modification of some of the reasonings below), so assume n ≥ 2.

Let I be an ideal of S−(Mn(O(K)),J). Assume first I ⊆ M+
n (K)⊗O−(K). Consider an element

7

∑
i=1

mi ⊗ ei ∈ I,

where mi ∈ M+
n (K). For any s ∈ M+

n (K), and any k = 1, . . . ,7, we have

[s⊗ ek,
7

∑
i=1

mi ⊗ ei] = [mk,s]⊗1+ terms lying in M+
n (K)⊗O−(K).

Hence, [mk,s] = 0 for any s ∈ M+
n (K), and by Lemma 2, mk = λkE for some λk ∈ K. Therefore, any

element of I is of the form ∑7
i=1 λiE ⊗ ek ∈ E ⊗O−(K), and I = E ⊗S for some subspace S ⊆ O−(K).

But then

[M+
n (K)⊗O−(K),E ⊗S] = M+

n (K)⊗ [O−(K),S]⊆ E ⊗S,

this can happen only if [O−(K),S] = 0, hence S = 0 and I = 0. Therefore, we may assume I * M+
n (K)⊗

O−(K).
Consider an element

(10) x⊗1+∑
i∈I

mi ⊗ai ∈ I,

where x ∈ M−
n (K) is non-zero, mi ∈ M+

n (K) for i ∈ I are linearly independent, and ai ∈ O−(K) are

non-zero. Taking the commutator of this element with an element y⊗1, where y ∈ M−
n (K) is such that

[x,y] 6= 0, we may assume that mi ∈ SMn(K).
Assume n 6= 4. By Lemma 7(ii), for any x′ ∈ M−

n (K) there is a linear map R : Mn(K)→ Mn(K) of the

form

(11) R = λ id+R′,

where λ ∈ K, and R′ is the sum of products of the form ady1 . . .adyℓ, where each yi belongs to M−
n (K),

and ady denotes the commutator with y, such that R(x) = x′, and R(mi) = 0 for each i = 1, . . . ,7. (Note

that the term λ id in (11) occurs from the necessity to adjoin the unit to the multiplication algebra
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generated by commutators with elements of son(K); this term does not occur in the previous case,

where the multiplication algebra was formed by Jordan multiplications by elements of M+
n (K), as the

latter already contains the unit: the Jordan product with the unit matrix.)

We have R′(x) = x′ − λx, and R′(mi) = −λmi. Replacing in R′ each adyi by ad(yi ⊗ 1), we get

the map R̃ in the multiplication algebra of S−(Mn(O(K)),J) such that R̃(x⊗ 1) = (x′ − λx)⊗ 1 and

R̃(mi ⊗ai) =−λmi ⊗ai, and thus

R̃ (x⊗1+
7

∑
i=1

mi ⊗ai) = (x′−λx)⊗1−λ
7

∑
i=1

mi ⊗ai ∈ I.

Adding to this element the element (10) multiplied by λ , we get x′⊗ 1 ∈ I for any x′ ∈ M−
n (K), i.e., I

contains M−
n (K)⊗1. Hence,

SMn(K)⊗O−(K) = [M−
n (K)⊗1,M+

n (K)⊗O−(K)]⊆ I.

The formula (9), in its turn, implies

[m⊗ ei,s⊗ e j] =±2(m◦ s)⊗ ei∗ j,

for any m,s ∈ SMn(K), and i, j = 1, . . . ,7. Since SMn(K)◦SMn(K) = M+
n (K), and i∗ j runs through all

the range 1, . . . ,7, we conclude that I contains M+
n (K)⊗O−(K), and hence coincides with the whole

algebra S−(Mn(O(K)),J).
Now consider the case n = 4. Consider an element of I of the form (10), where mi ∈ SM4(K) for any

i ∈ I. By the (classical) Jacobson density theorem for the case of an irreducible module (or, equivalently,

by Lemma 7(ii) in the case n = 4 where the “M−
n (K) part” is ignored), for any m ∈ SM4(K), and any

k ∈ I, there is a map of the form (11), where R′ is formed by the commutators with elements of M−
4 (K),

such that R(mk) = m, and R(mi) = 0, i 6= k. Deriving from this the map R̃ in the multiplication algebra

of S−(M4(O(K)),J) as above, we get:

R̃(M−
4 (K)⊗1)⊆ M−

4 (K)⊗1

R̃(mk ⊗ak) = (m−λmk)⊗ak

R̃(mi ⊗ai) =−λmi ⊗ai , i 6= k.

Consequently, R̃, being applied to the element (10), produces the element

x′⊗1+(m−λmk)⊗ak −λ ∑
i∈I\{k}

mi ⊗ai ∈ I,

where x′ ∈ M−
4 (K). Adding to this element the element (10) multiplied by λ , we get the element

x′′⊗1+m⊗ak ∈ I,

where x′′ ∈ M−
4 (K).

To summarize: for any a ∈ O−(K) which appears as one of ai’s in the decomposition (10) of some

nonzero element of I, and any m ∈ SM4(K), there is an element x ∈ M−
4 (K) such that x⊗1+m⊗a ∈ I.

Fixing here a and varying m, we also vary x, but since

dimSM4(K) = 9 > dimM−
4 (K) = 6,

we will get nonzero elements with vanishing x, i.e., of the form m⊗a. Now taking commutators of such

an element with elements from M−
4 (K)⊗1, we get the whole SM4(K)⊗a ⊆ I.

This means that the ideal I is homogeneous with respect to the decomposition (8), i.e., is of the form

I = T ⊗1∔S1 ⊗ e1 ∔ · · ·∔S7 ⊗ e7,

where T is a nonzero linear subspace of M−
4 (K), and each of the linear subspaces Si ⊆ M+

4 (K) is either

zero, or contains SM4(K). Taking commutators of elements from T ⊗1 with elements from M+
4 (K)⊗ei,

we see that each Si is nonzero. Now,

[SM+
4 (K)⊗ ei,SM+

4 (K)⊗ ei] = [SM+
4 (K),SM+

4 (K)]⊗1 = M−
4 (K)⊗1;
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thus, T = M−
4 (K). Finally, according to (9), for any i 6= j, we have

[SM4(K)⊗ ei,SM4(K)⊗ e j] = (SM4(K)◦SM4(K))⊗ ei∗ j = M+
4 (K)⊗ ei∗ j;

thus, Si = M+
4 (K) for each i, and I coincides with the whole algebra S−(M4(O(K)),J). �

3. δ -DERIVATIONS

In [P], derivations of the algebras S+(Mn(Oµ(K)),J) and S−(Mn(Oµ(K)),J) were computed. Here

we extend this result by computing δ -derivations of these algebras. Recall that a δ -derivation of an

algebra A is a linear map D : A → A such that

(12) D(xy) = δD(x)y+δxD(y)

for any x,y ∈ A and some fixed δ ∈ K. This notion generalizes simultaneously the notions of derivation

and of centroid (any element of the centroid is, obviously, a 1
2
-derivation).

The set of δ -derivations of an algebra A, denoted by Derδ (A), is a vector space. Moreover, as noted,

for example, in [F2, §1],

[Derδ (A),Derδ ′(A)]⊆ Derδδ ′(A),

so the vector space ∆(A) linearly spanned by all δ -derivations, for all possible values of δ , is a Lie

algebra, an extension of the Lie algebra Der(A) of (the ordinary) derivations of A.

Theorem 8. Let D be a nonzero δ -derivation of the algebra S+(Mn(Oµ(K)),J) or S−(Mn(Oµ(K)),J).

Then either δ = 1 (i.e., D is a derivation), or δ = 1
2

and D is a multiple of the identity map.

Note that δ -derivations do not change under field extensions. Namely, an obvious argument, the same

as in the case of ordinary derivations, cocycles, or any other “linear” structures, shows that

Derδ (A)⊗K K ≃ Derδ (A⊗K K)

for any K-algebra A, and δ ∈ K. In view of this, it is enough to prove the theorem in the case when K is

algebraically closed, and Oµ(K) =O(K).
The case of S+(Mn(O(K)),J) is easier, as the algebra contains a unit, and δ -derivations of algebras

with unit are tackled by the simple

Lemma 9. Let D be a δ -derivation of a commutative algebra A with unit. Then either δ = 1 (i.e., D is

a derivation), or δ = 1
2

and D = Ra for some a ∈ A such that

(13) 2(xy)a− (xa)y− (ya)x = 0

for any pair of elements x,y ∈ A.

Proof. This is, essentially, [Kay, Theorem 2.1] with a bit more (trivial) details. Repeatedly substituting

the unit 1 in the equality (12) gives that either δ = 1 and D(1) = 0, or δ = 1
2

and D(x) = xD(1) for any

x ∈ A. In the latter case, denoting D(1) = a, the condition (12) is equivalent to (13). �

Proof of Theorem 8 in the case of S+(Mn(O(K)),J). Due to Lemma 9, it amounts to description of the

algebra elements satisfying the condition (13). Let

a = m⊗1+
7

∑
i=1

xi ⊗ ei

be such an element, where m ∈ M+
n (K), xi ∈ M−

n (K). Writing the condition (13) for the pair of elements

s⊗1, t ⊗1 where s, t ∈ M+
n (K), and collecting terms lying in M+

n (K)⊗1, we get

2(s◦ t)◦m− (s◦m)◦ t − (t ◦m)◦ s = 0

for any s, t ∈ M+
n (K). The latter condition means that Rm is a 1

2
-derivation of the Jordan algebra M+

n (K),
and by [Kay, Theorem 2.5], m = λE for some λ ∈ K. Since the set of elements satisfying the condition

(13) forms a vector space (as, generally, the set of 1
2
-derivations does), by subtracting from a the element

λE ⊗1, we get an element still satisfying the condition (13), so we may assume λ = 0.
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Now writing the condition (13) for a = ∑7
i=1 xi ⊗ ei, and the pair x⊗ ek, y⊗ eℓ, where x,y ∈ M−

n (K)
and k, ℓ= 1, . . . ,7, k 6= ℓ, and again collecting terms lying in M+

n (K)⊗1, we get [x,y]◦ xk∗ℓ = 0. Since

[M−
n (K),M−

n (K)] = M−
n (K), and the values of k ∗ ℓ run over all 1, . . . ,7, we see that M−

n (K)◦ xi = 0 for

any i = 1, . . . ,7. By Lemma 1, xi = 0, which shows that any element a ∈ S+(Mn(O(K),J)) satisfying

(13), is a multiple of the unit. �

Before turning to the proof of the S−(Mn(O(K)),J) case, we need a couple of auxiliary lemmas.

Lemma 10. Let n > 2.

(i) If δ 6= 1, 1
2
, then the vector space Derδ (gln(K)) is 1-dimensional, and each δ -derivation is a mul-

tiple of the map ξ vanishing on sln(K), and sending E to itself.

(ii) The vector space Der 1
2
(gln(K)) is 2-dimensional, with a basis consisting of the two maps: the map

ξ from part (i), and the map coinciding with the identity map on sln(K), and vanishing on E.

Proof. This follows immediately from the fact that gln(K) is the split central extension of sln(K):
gln(K) = sln(K)⊕KE, and the fact, established in numerous places, that each nonzero δ -derivation

of sln(K), n > 2, is either an ordinary derivation (δ = 1), or an element of the centroid (δ = 1
2
) (see, for

example, [LL, Corollary 4.16] or [F2]). �

Lemma 11. Let D : M+
n (K)→ M+

n (K) be a linear map such that

(14) D([x,m]) = δ [x,D(m)]

for any x ∈ M−
n (K), m ∈ M+

n (K), and some fixed δ ∈ K, δ 6= 0,1. Then the image of D lies in the

one-dimensional linear space spanned by E.

Proof. Replacing in the equality (14) x by [x,y], where x,y ∈ M−
n (K), and using the Jacobi identity, we

get:

D([x, [y,m]])−D([y, [x,m]]) = δ [[x,y],D(m)].

Using the fact that [x,m], [y,m]∈M+
n (K), applying again (14) to each term at the left-hand side twice, and

using the Jacobi identity, we get [[x,y],D(m)] = 0. Since [M−
n (K),M−

n (K)] = M−
n (K), the latter equality

is equivalent to [M−
n (K),D(m)] = 0. By Lemma 2, D(m) is a multiple of E for any m ∈ M+

n (K). �

When considering restrictions of δ -derivations to subalgebras, we arrive naturally at the necessity

to consider a more general notion of δ -derivations with values in not necessary the algebra itself, but

in a module over the algebra. Generally, this require to consider bimodules, but as we will need this

generalization only in the case of anticommutative (in fact, Lie) algebras, we confine ourselves here

with the following definition. Let A be an anticommutative algebra, and M a left A-module, with the

action of A on M denoted by •. A δ -derivation of A with values in M is a linear map D : A → M such

that

D(xy) =−δy•D(x)+δx•D(y)

for any x,y ∈ A.

Proof of Theorem 8 in the case of S−(Mn(O(K)),J). If n = 1, the algebra in question is the 7-dimensi-

onal simple Malcev algebra O−(K), and the result is covered by [F3, Lemma 3].

Let n > 2 and δ 6= 1. We may write

D(x⊗1) =d(x)⊗1 +
7

∑
i=1

di(x)⊗ ei

D(m⊗ ek)= fk(m)⊗1+
7

∑
i=1

fki(m)⊗ ei

for any x∈M−
n (K), m∈M+

n (K), k = 1, . . . ,7, and some linear maps d : M−
n (K)→M−

n (K), di : M−
n (K)→

M+
n (K), fk : M+

n (K)→ M−
n (K), and fki : M+

n (K)→ M+
n (K).
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For a fixed k = 1, . . . ,7, consider the Lie subalgebra

L
−(ek) = M−

n (K)⊗1 ∔ M+
n (K)⊗ ek

of S−(Mn(O),J), isomorphic, as noted in §2, to gln(K) (remember that K is algebraically, and, in

particular, quadratically, closed). According to decomposition (8), S−(Mn(O(K)),J) is decomposed, as

an L −(ek)-module, into the direct sum of the adjoint module L −(ek), and the module M+
n (K)⊗Bk

(note, however, that the latter is not a Lie module). This implies that the restriction of D to L −(ek),
being composed with the canonical projection S−(Mn(O(K)),J)→ L −(ek), i.e., the map

x⊗1 7→d(x)⊗1 +dk(x)⊗ ek

m⊗ ek 7→ fk(m)⊗1+ fkk(m)⊗ ek,

is a δ -derivation of L −(ek) (with values in the adjoint module).

By Lemma 10, either δ 6= 1
2
, and each such map is of the form

x⊗1 7→ 0

m⊗ ek 7→ 0, m ∈ SMn(K)

E ⊗ ek 7→ µkE ⊗ ek

for some µk ∈ K; or δ = 1
2
, and each such map is of the form

x⊗1 7→ λkx ⊗1

m⊗ ek 7→ λkm⊗ ek, m ∈ SMn(K)

E ⊗ ek 7→ µkE ⊗ ek

for some λk,µk ∈ K. (Recall from §1.3, that SMn(K) denotes the space of matrices from M+
n (K) with

trace zero.) Taking into account that one of these alternatives holds uniformly for all values of k, we

arrive at the following two cases:

Case 1. δ 6= 1, 1
2
, and D(M−

n (K)⊗1) = 0.

Case 2. δ = 1
2
, and D(x⊗1) = λx⊗1 for any x ∈ M−

n (K) and some fixed λ ∈ K.

Moreover, in both cases

D
(
M+

n (K)⊗O−(K)
)
⊆ M+

n (K)⊗O−(K).

We will handle these two cases together, keeping in mind that λ = 0 if δ 6= 1
2
.

Consider now the restriction of D to M+
n (K)⊗O−(K). Since

Hom
(
M+

n (K)⊗O−(K),M+
n (K)⊗O−(K)

)
≃ Hom

(
M+

n (K),M+
n (K)

)
⊗Hom

(
O−(K),O−(K)

)
,

we may write

D(m⊗a) = ∑
i∈I

di(m)⊗αi(a)

for any m∈M+
n (K), a∈O−(K), some index set I, and linear maps di : M+

n (K)→M+
n (K), αi :O−(K)→

O−(K), i ∈ I. Writing the condition of δ -derivation (12) for the pair x⊗ 1, m⊗ a, where x ∈ M−
n (K),

m ∈ M+
n (K), a ∈O−(K), we get

(15) ∑
i∈I

(
di([x,m])−δ [x,di(m)]

)
⊗αi(a) = δλ [x,m]⊗a.

In Case 1 the right-hand side of (15) vanishes, and hence we may assume di([x,m]) = δ [x,di(m)]
for any x ∈ M−

n (K), m ∈ M+
n (K), and any i ∈ I. By Lemma 11, each di(m) is a multiple of E, and

hence D(M+
n (K)⊗O−(K))⊆ E ⊗O−(K). But then writing (12) for the pair m⊗a, s⊗b, where m,s ∈

M+
n (K), a,b ∈O−(K), and taking into account (9), we get D((m◦ s)⊗ [a,b]) = 0. Since (Mn(K),◦) and

(O−(K), [ · , · ]) are perfect (in fact, simple) algebras, the latter equality implies vanishing of D on the

whole M+
n (K)⊗O−(K), and thus on the whole S−(Mn(O(K)),J), a contradiction.
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Hence, we are in Case 2, and δ = 1
2
. Setting in this case d⋆ = −λ idM+

n (K), and α⋆ = idO−(K), the

equality (15) can be rewritten as

∑
i∈I∪{⋆}

(
di([x,m])−

1

2
[x,di(m)]

)
⊗αi(a) = 0.

As in the previous case, this means that there are new linear maps d̃i, α̃i which are linear combinations

of di and αi, respectively, and such that

(16) ∑
i∈I∪{⋆}

d̃i ⊗ α̃i = ∑
i∈I∪{⋆}

di ⊗αi,

and d̃i([x,m]) = 1
2
[x, d̃i(m)]. Lemma 11 tells us, as previously, that each d̃i(m) is a multiple of E, and

hence the image of the map in the left-hand side of (16) lies in E ⊗O−(K). Since the right-hand side of

(16) is equal to D+d⋆⊗α⋆, we have

D(m⊗a) = λm⊗a+E ⊗β (m,a)

for any m ∈ M+
n (K), a ∈ O−(K), and some bilinear map β : M+

n (K)×O−(K) → O−(K). Replacing

D by the 1
2
-derivation D−λ id, we arrive at the situation as in the previous case: a δ -derivation (with

δ = 1
2
) vanishing on M−

n (K)⊗1, and taking values in E ⊗O−(K) on M+
n (K)⊗O−(K). Hence, D−λ id

vanishes on the whole S−(Mn(O(K)),J), and D = λ id, as claimed.

Finally, consider the case n = 2. In this case Lemma 10 is not applicable: in addition to the cases

described in Lemma, there is the 5-dimensional space of (−1)-derivations of sl2(K), and thus the cor-

responding 6-dimensional space of (−1)-derivations of gl2(K) (see [H, Example 1.5] or [F1, Example

in §3]). In view of this, to proceed like in the proof of the case n > 2, considering δ -derivations of the

Lie subalgebras L −(ek), would be too cumbersome, and we are taking a somewhat alternative route.

Denote by H =

(
0 1

−1 0

)
the basis element of the 1-dimensional space M−

2 (K). Consider the

subalgebra E ⊗O−(K) of S+(M2(O(K)),J), isomorphic to the 7-dimensional simple Malcev algebra

O−(K). As an E ⊗O−(K)-module, S+(M2(O(K)),J) decomposes into the direct sum of the trivial

1-dimensional module KH ⊗1, and the module M+
2 (K)⊗O−(K) which is isomorphic to the direct sum

of 3 copies of the adjoint module (O−(K) acting on itself). Thus D, being restricted to E ⊗O−(K),
is equal to the sum of a δ -derivation with values in the trivial module, which is obviously zero, and 3

δ -derivations of O−(K). By the result mentioned at the beginning of this proof, the latter δ -derivations

are zero if δ 6= 1, 1
2
, and are multiples of the identity map if δ = 1

2
. Consequently, D(E ⊗ a) = m0 ⊗ a

for any a ∈O−(K), and some fixed m0 ∈ M+
2 (K).

Now write

D(H ⊗1) = λH ⊗1+
7

∑
i=1

mi ⊗ ei

for some λ ∈ K, and mi ∈ M+
2 (K). Writing the condition of δ -derivation (12) for the pair H ⊗1, E ⊗ek,

where k = 1, . . . ,7, we get

2 ∑
1≤i≤7,i 6=k

(±mi ⊗ ei∗k)+ [H,m0]⊗ ek = 0.

It follows that mi = 0 for each i = 1, . . . ,7, and D(H ⊗1) = λH ⊗1.

Now let

D(m⊗a) = β (m,a)H ⊗1+ terms lying in M+
2 (K)⊗O−(K)

for any m ∈ M+
2 (K), a ∈O−(K), and some bilinear map β : M+

2 (K)⊗O−(K)→ K. Writing the condi-

tion of δ -derivation for the pair H ⊗1, m⊗a, and collecting terms which are multiples of H ⊗1, we see

that β (m,a)H ⊗1 = 0. Thus,

D
(
M+

2 (K)⊗O−(K)
)
⊆ M+

2 (K)⊗O−(K),

and we may proceed as in the generic case n > 2 above. �
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Note that it is also possible to pursue the case δ = 1 along the same lines; this would give us an

alternative proof of the results of [P], as well as of the classical result that derivation algebra of the

27-dimensional exceptional simple Jordan algebra is isomorphic to the simple Lie algebra of type F4.

There is a vast literature devoted to δ -derivations of algebras and related notions (for a small, but rep-

resentative sample, see [H], [F1]–[F3], [Kay], [LL]). Our strategy to prove Theorem 8 was to identify

certain Lie subalgebras of the algebra S−(Mn(O(K)),J), and consider δ -derivations of those subalge-

bras with values in the whole S−(Mn(O(K)),J). Developing further the methods of the above-cited

papers, it is possible to prove that δ -derivations of semisimple Lie algebras of classical type with co-

efficients in finite-dimensional modules are either (inner) derivations, or multiples of the identity map

on irreducible constituents of the module isomorphic to the adjoint module of the algebra, or, in the

case of the direct summands in the algebra isomorphic to sl2(K), (−1)-derivations with values in the

irreducible constituents isomorphic to the adjoint sl2(K)-modules. This general fact would allow us to

further simplify the proof of Theorem 8, but establishing it would require considerable (though pretty

much straightforward) efforts, and would lead us far away from the topic of this paper. We hope to

return to this elsewhere.

Since by [P], both Der(S+(Mn(Oµ(K)),J)) for n ≥ 4, and Der(S−(Mn(Oµ(K)),J)) for any n are iso-

morphic to the Lie algebra G2 ⊕ son(K), then by Theorem 8, both ∆(S+(Mn(Oµ(K)),J)) and

∆(S−(Mn(Oµ(K)),J)) are isomorphic to the one-dimensional trivial central extension of G2 ⊕ son(K).
Finally, note an important

Corollary. The algebras S+(Mn(Oµ(K)),J) and S−(Mn(Oµ(K)),J) are central simple.

Proof. By Theorem 5, these algebras are simple, and by Theorem 8 their centroid coincides with the

ground field. �

4. SYMMETRIC ASSOCIATIVE FORMS

Let A be an algebra. A bilinear symmetric form ϕ : A×A → K is called associative, if

(17) ϕ(xy,z) = ϕ(x,yz)

for any x,y,z ∈ A. (In the context of Lie algebras, associative forms are usually called invariant, because

in that case the condition (17) is equivalent to invariance of the form ϕ with respect to the standard

action of the underlying Lie algebra on the space of symmetric bilinear forms.)

For a matrix X = (ai j) from Mn(Oµ(K)), by X we will understand the matrix (ai j), obtained by

element-wise application of conjugation in Oµ(K).

Theorem 12. Any bilinear symmetric associative form on S+(Mn(Oµ(K)),J), or on S−(Mn(Oµ(K)),J),
is a scalar multiple of the form

(18) (X ,Y ) 7→ Tr(XY +X Y ).

The form (18) is reminiscent of the Killing form on simple Lie algebras of classical type, and of

the generic trace form on simple Jordan algebras (and is such a form when restricted from the algebra

S+(Mn(Oµ(K)),J) to its Jordan subalgebra Mn(K), and from the algebra S−(Mn(Oµ(K)),J) to its Lie

subalgebra son(K), see below).

Proof. According to Corollary in §3, both algebras are central simple. The standard linear algebra

arguments show that any bilinear symmetric associative form on a simple algebra is nondegenerate,

and that any two nondegenerate symmetric associative forms on a finite-dimensional central algebra

differ from each other by a scalar (see, e.g., [Kap, pp. 30–31, Exercise 15(b)]). Thus, the vector space

of bilinear symmetric associative forms on a finite-dimensional central simple algebra is either 0- or

1-dimensional.

Now it remains to observe that in both cases this space is 1-dimensional by verifying that the form

(18) is indeed associative. The most convenient way to do this is, perhaps, to rewrite the form in terms
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of decompositions (7) or (8). On the algebra S+(Mn(Oµ(K)),J) we obtain

(m⊗1,s⊗1) 7→ 2Tr(ms)

(m⊗1,x⊗a) 7→ 0

(x⊗a,y⊗b) 7→ (ab+ba)Tr(xy),

and on S−(Mn(Oµ(K)),J),

(x⊗1,y⊗1) 7→ 2Tr(xy)

(x⊗1,m⊗a) 7→ 0

(m⊗a,s⊗b) 7→ (ab+ba)Tr(ms).

Here, as before in this paper, x,y ∈ M−
n (K), m,s ∈ M+

n (K), and a,b ∈ O−
µ (K). (For the algebra

S+(Mn(Oµ(K)),J), the associativity follows also from [R, Satz 5.2], where it is proved that the form

(18) is a symmetric associative form on a larger algebra (Mn(Oµ(K)),◦).) �

Note that it is possible to get an alternative, direct proof of Theorem 12 without appealing to results

of §3, in the linear algebra spirit of the proofs of Proposition 4 and Theorem 8.

5. FURTHER QUESTIONS

1) Compute automorphism groups of the algebras S+(Mn(Oµ(K)),J) and S−(Mn(Oµ(K)),J). Are

they isomorphic to G2 ×SO(n)?

2) For n > 3, the algebras S+(Mn(Oµ(K)),J) are no longer Jordan. How “far” they are from Jordan

algebras? Which identities these algebras do satisfy? (The last question was also asked in [BH], where

it is proved that S+(M4(O(Q)),J) does not satisfy nontrivial identities of degree ≤ 6.) A starting point

could be investigation of (non-Jordan) representations of the Jordan subalgebras which are forms of the

full matrix Jordan algebra Mn(K), mentioned in § 2, in the whole S+(Mn(Oµ(K)),J).

3) What can one say about subalgebras of the algebras in question? Say, what are the maximal

subalgebras? Maximal Jordan subalgebras of S+(Mn(Oµ(K)),J)? Some low-dimensional subalgebras

of S+(M4(O(R)),J) were exhibited in [Jo, pp. 34–37] (see also [LRH, p. 37]). These subalgebras

belong to the class of so-called elementary algebras, defined by a certain identity of degree 5. In that

old and seemingly forgotten paper, Jordan suggested to investigate which other elementary subalgebras

the octonionic matrix algebras may contain.

4) Idempotents play an important role in Jordan algebras. Find idempotents in S+(Mn(Oµ(K)),J).
This amounts to solving a system of quadratic equations in the Lie algebra son(K).

5) In [Sa] it is proved that any anticommutative algebra with a bilinear symmetric associative form

is isomorphic to a “minus” algebra A(−) of a noncommutative Jordan algebra A. In view of The-

orem 12, which noncommutative Jordan algebras arise in this way in connection with the algebras

S−(Mn(Oµ(K)),J)?

6) Investigate the case of characteristic 3. Though this case is, perhaps, of little interest for physics,

in characteristic 3 the 7-dimensional algebra O−
µ (K) is not merely a Malcev algebra, but isomorphic

to a form of the Lie algebra psl3(K) (see, for example, [EK, Theorem 4.26]). This suggests that the

algebras S+(Mn(Oµ(K)),J) and S−(Mn(Oµ(K)),J) in this characteristic may satisfy a different set of

identities than in the generic case, perhaps, more tractable and more closer to the classical identities

(Jacobi, Jordan, etc.).

Note that, unlike the questions treated in this paper, some of these questions are sensitive to the ground

field, and are related to the subtle behavior of quadratic forms, etc.



ON HERMITIAN AND SKEW-HERMITIAN MATRIX ALGEBRAS OVER OCTONIONS 16

ACKNOWLEDGEMENTS

Thanks are due to Francesco Toppan and Bernd Henschenmacher, who explained the importance of

algebras considered here, and pointed us to the relevant literature ([R], [Jo], [LT]), and to Dimitry Leites

and the anonymous referee for significant improvements to the previous version of the paper. GAP [G]

was utilized to check some of the computations performed in the paper. Arezoo Zohrabi was supported
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