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Abstract. We demonstrate how a simple linear-algebraic technique used earlier to com-
pute low-degree cohomology of current Lie algebras, can be utilized to compute other kinds
of structures on such Lie algebras, and discuss further generalizations, applications, and re-
lated questions. While doing so, we touch upon such seemingly diverse topics as associative
algebras of infinite representation type, Hom-Lie structures, Poisson brackets of hydrody-
namic type, Novikov algebras, simple Lie algebras in small characteristics, and Koszul dual
operads.

Introduction

Earlier, we have demonstrated how a simple linear-algebraic technique, somewhat resem-
bling separation of variables in differential equations, allows to obtain general results about
the low-degree cohomology of current Lie algebras, i.e. Lie algebras of the form L⊗A, where
L is a Lie algebra, and A is an associative commutative algebra, with an obvious Lie bracket

[x⊗ a, y ⊗ b] = [x, y]⊗ ab

for x, y ∈ L, a, b ∈ A. On a pedestrian level, kept through the most of [Z1] and [Z3], this
technique amounts to symmetrization of cocycle equations with respect to variables belonging
to L and A separately. On a more sophisticated level, the method can be formulated in terms
of a certain spectral sequence defined with the help of Young symmetrizers on the underlying
spaces L and A (described briefly in [Z1, §4]).

In this, somewhat eclectic, paper we discuss further generalizations, applications and ex-
tensions of this method. We start in §1 by providing examples of finite-dimensional Lie
algebras having an infinite number of cohomologically nontrivial non-isomorphic modules of
a fixed finite dimension. This answers a question and corrects a statement from an (old) pa-
per by Dzhumadil’daev [D1]. The Lie algebras in our example are current Lie algebras, and
our technique allows to reduce the question about the number of non-isomorphic cohomologi-
cally nontrivial “current” modules over such algebras to a similar, but purely representation-
theoretic (i.e. not appealing to any cohomological condition) question about the number of
non-isomorphic modules over the corresponding associative commutative algebra A.

Further, we consider a question of description of Poisson structures on a given Lie algebra
– i.e., description of all (not necessary associative) algebra structures which, together with a
given Lie structure, form a Poisson algebra. The Poissonity condition resembles the cocycle
equation, and this allows to apply the same methods used previously to compute low-degree
cohomology of current Lie algebras. In §2 we describe Poisson structures on current and
Kac–Moody Lie algebras, and in §3 – on Lie algebras of the form sln(A). Associative Poisson
structures on Kac–Moody algebras were described earlier by Kubo in [Ku1] via case-by-case
computations, and we generalize and provide a conceptual explanation of Kubo’s result.

In §4 we compute, in a similar way, Hom-Lie structures on current Lie algebras.
In the last §5 we discuss a possibility of extension of all the previous results from current Lie

algebras to Lie algebras obtained from the tensor product of algebras over Koszul dual binary
quadratic operads, with a special emphasis on Novikov algebras. This is the most speculative
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part of the paper: it does not contain a single theorem, but numerous examples, speculations,
and questions, including an observation that the classical construction of “Poisson brackets of
hydrodynamic type” due to Gelfand–Dorfman and Balinskii–Novikov, arises in this context.
(However, this simple observation is, perhaps, the most important result of the paper).

This is a modest contribution in honor of Nikolai Vavilov, an amazing man and amazing
mathematician. There is an obvious similarity between current Lie algebras, the main heroes
of this paper, and linear and close to them groups over rings, Vavilov’s favorite objects of
study. The latters, however, offer much deeper difficulties, and it is my hope to extend in
the future the methods and ideas of this paper to be able to tackle some questions close to
Vavilov’s heart.

Notation and conventions

Our notation is mostly standard. The base field is denoted by the letter K. By Hn(L,M)
is denoted the nth degree Chevalley-Eilenberg cohomology of a Lie algebra L with coefficients
in an L-module M . The symbol HomA for a (Lie or associative) algebra A is understood
in the category of A-modules (in particular, HomK is just the vector space of linear maps
between its arguments). The notation EndA(V ) serves as a shortcut for HomA(V, V ). All
unadorned tensor products are assumed over K. Direct sum ⊕ is always understood in the
category of vector spaces over K. An operator of multiplication by an element u in an
associative commutative algebra is denoted by Ru. For a (not necessary associative) algebra
A, A(−) denotes its skew-symmetrization, i.e. an algebra structure on the same underlying
vector space A subject to the new multiplication [a, b] = ab− ba for a, b ∈ A. An algebra is
called Lie-admissible, if its skew-symmetrization is a Lie algebra.

All other necessary notation and notions are defined as they are introduced in the text.

1. On the finiteness of the number of cohomologically nontrivial Lie

modules

In 1980s, Askar Dzhumadil’daev has initiated a study of cohomology of finite-dimensional
Lie algebras over fields of positive characteristic, which showed a (long time anticipated)
drastic difference with the characteristic zero case. It turned out that cohomology in posi-
tive characteristic does not vanish much more often that in the characteristic zero case (for
example, Whitehead lemmas do not hold), and a natural question arose about the number
of cohomologically nontrivial modules.

One of the papers of that period is [D1], and we start our discussion by indicating one inac-
curacy there. In [D1, Theorem 1] it is claimed that, for any finite-dimensional Lie algebra L
over a field of positive characteristic, the number of cohomologically nontrivial non-isomorphic
L-modules of a fixed finite dimension is finite. There is a following gap in the proof of this
statement: when arguing inductively about indecomposable modules over a Lie algebra L, it
is claimed that non-equivalent extensions of L-modules 0 → V1 → V → V2 → 0 are described
by the space H1(L,HomK(V1, V2)) which is finite-dimensional, and hence the set of such ex-
tensions is finite provided the set of modules V1 and V2 is finite. This is obviously incorrect:
the extensions are in bijective correspondence with the space H1(L,HomK(V1, V2)) as a set,
which is infinite (provided the base field K is infinite).

This does not, however, exclude the possibility that the set of non-isomorphic modules
would be finite, as there can be ad hoc module isomorphisms which do not follow from the
equivalence of modules.

In the category of associative algebras, where extensions of modules are described, up to
equivalence, by the corresponding first Hochschild cohomology, it is known that algebras can
have both finite and infinite number of indecomposable modules of a fixed finite dimension.
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The situation in the category of finite-dimensional Lie p-algebras was studied in [FeS]. It
turns out that Lie p-algebras having a finite number of indecomposable p-modules of a fixed
finite dimension, form quite a narrow class.

Still, from all this it is not clear whether the statement of [D1, Theorem 1] is true. The
aim of this section is to show that it is not: we provide a recipe to construct Lie algebras,
of arbitrarily high finite dimension, having an infinite number of non-isomorphic cohomo-
logically nontrivial modules of a fixed finite dimension. These Lie algebras come as current
Lie algebras L ⊗ A, and the modules appear as the corresponding “current modules”, i.e.
L⊗A-modules of the form M ⊗V , where M is an L-module and V is an A-module, with an
obvious action

(x⊗ a) • (m⊗ v) = (x •m)⊗ (a • v)

for x ∈ L, a ∈ A, m ∈ M , v ∈ V ; the bullets denote, by abuse of notation, the respective
module actions. By choosing suitably L and M , we are able to reduce the question to those
about the finiteness of the number of modules of a given dimension over A, i.e. to a similar
(but simpler, as it does not involve any cohomological condition) question in the category of
associative commutative algebras.

This construction works in any characteristic of the base field, so it also answers affirma-
tively Question 1 from [D1]: does there exist finite-dimensional Lie algebras over a field of
characteristic zero having an infinite number of cohomologically nontrivial non-isomorphic
modules of a given finite dimension?

Lemma 1.1. Let L be a Lie algebra, A an associative commutative algebra with unit, M
an L-module, and V an unital A-module. Then there is an embedding of H∗(L,M)⊗ V into
H∗(L⊗ A,M ⊗ V ).

Proof. Define a map of the Chevalley–Eilenberg cochain complexes

ξ : Cn(L,M)⊗ V → Cn(L⊗ A,M ⊗ V )

as follows:

ξ(ϕ⊗ v)(x1 ⊗ a1, . . . , xn ⊗ an) = ϕ(x1, . . . , xn)⊗ (a1 · · · an) • v

where ϕ ∈ Cn(L,M), v ∈ V , xi ∈ L, ai ∈ A.
Let us see how differentials in the complexes C∗(L⊗A,M ⊗ V ) and C∗(L,M), denoted as

dL⊗A and dL respectively, interact with this map:

dL⊗Aξ(ϕ⊗ v)(x1 ⊗ a1, . . . , xn+1 ⊗ an+1)

=
n+1∑

i=1

(−1)i+1(xi ⊗ ai) • ξ(ϕ⊗ v)(x1 ⊗ a1, . . . , x̂i ⊗ ai, . . . , xn+1 ⊗ an+1)

+
∑

1≤i<j≤n+1

(−1)i+jξ(ϕ⊗ v)([xi ⊗ ai, xj ⊗ aj], x1 ⊗ a1, . . . , x̂i ⊗ ai, . . . , x̂j ⊗ aj,

. . . , xn+1 ⊗ an+1)

=
n+1∑

i=1

(−1)i+1xi • ϕ(x1, . . . , x̂i, . . . , xn+1)⊗ (aia1 · · · âi · · · an+1) • v

+
∑

1≤i<j≤n+1

(−1)i+jϕ([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+1)

⊗ (aiaja1 · · · âi · · · âj · · · an+1) • v

= dLϕ(x1, . . . , xn+1)⊗ (a1 · · · an+1) • v = ξ(dLϕ⊗ v)(x1 ⊗ a1, . . . , xn+1 ⊗ an+1).

Thus ξ is a homomorphism of cochain complexes, and hence it induces the map between
their cohomology:

ξ : H∗(L,M)⊗ V → H∗(L⊗ A,M ⊗ V ).
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The kernel of ξ consists of classes of cocycles
∑

k ϕk ⊗ vk ∈ Zn(L,M)⊗ V such that
∑

k

ϕk(x1, . . . , xn)⊗ (a1 · · · an) • vk = dL⊗AΩ(x1 ⊗ a1, . . . , xn ⊗ an)

for some Ω ∈ Cn−1(L ⊗ A,M ⊗ V ) and all x1, . . . , xn ∈ L, a1, . . . , an ∈ A. Setting in this
equality all ai’s to 1, we get

(1.1)
∑

k

ϕk(x1, . . . , xn)⊗ vk =
∑

ℓ

dLωℓ(x1, . . . , xn)⊗ uℓ,

where
∑

ℓ ωℓ ⊗ uℓ is an image of the restriction of Ω to
∧n−1(L ⊗ 1), under the canonical

isomorphism Cn−1(L,M ⊗ V ) ≃ Cn−1(L,M)⊗ V .
The equality (1.1) implies that some nontrivial linear combination of ϕk’s is a coboundary,

hence ξ is injective, and the statement of the lemma follows. �

As simple as it is, it is curious to note that this is essentially the same reasoning as in [Z4,
Lemma] about cohomology of generalized de Rham complex.

Generally, a full computation of cohomology H∗(L ⊗ A,M ⊗ V ), except for some special
cases in low degrees, is a hopeless task, and this embedding is very far from being surjective
(for cohomology of degree 2, see [Z1, Proposition 3.1]).

Lemma 1.2. Let L be a Lie algebra, A an associative commutative algebra with unit, M
an L-module, and V1, V2 two unital A-modules. Suppose that either M , or both V1, V2 are
finite-dimensional. Then

(1.2) HomL⊗A(M ⊗ V1,M ⊗ V2)

≃ {ϕ ∈ EndK(M) |ϕ(LM) = 0;Lϕ(M) = 0}⊗HomK(V1, V2)+EndL(M)⊗HomA(V1, V2).

At this point we start to use repeatedly linear-algebraic reasonings similar to those in [Z1]
and [Z3]. This simple case concerns maps of one argument, and thus does not involve any
symmetrization, unlike the other cases considered further, in subsequent sections.

Proof. Let Φ : M ⊗ V1 → M ⊗ V2 be a homomorphism of L ⊗ A-modules. Because of the
finite-dimensionality condition,

HomK(M ⊗ V1,M ⊗ V2) ≃ EndK(M)⊗ HomK(V1, V2),

so we may write

(1.3) Φ =
∑

i∈I

ϕi ⊗ αi

for some finite set I, and some ϕi ∈ EndK(M), αi ∈ HomK(V1, V2). The condition of Φ to
be a homomorphism of L⊗ A-modules can be then written as

(1.4)
∑

i∈I

ϕi(x •m)⊗ αi(a •1 v)−
∑

i∈I

(x • ϕi(m))⊗ (a •2 αi(v)) = 0

for any x ∈ L, a ∈ A, m ∈ M , v ∈ V1, where •1 and •2 denote the A-action on V1 and V2,
respectively. Substitute in this equality a = 1:

∑

i∈I

(ϕi(x •m)− x • ϕi(m))⊗ αi(v) = 0.

Hence, we may assume that ϕi(x •m) = x • ϕi(m) holds for all ϕi’s and any x ∈ L, m ∈M ;
in other words, each ϕi’s is an endomorphism of M as an L-module. Substituting this back
to (1.4), we have: ∑

i∈I

ϕi(x •m)⊗ (αi(a •1 v)− a •2 αi(v)) = 0.
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Hence there is a partition of the set of indices I = I1 ∪ I2 such that ϕi(LM) = 0 for i ∈ I1,
and αi(a •1 v) = a •2 αi(v) for i ∈ I2, and the statement of the lemma follows. �

It seems to be difficult to derive similarly general results about isomorphisms between
current modules over a current Lie algebra, as it is not clear how the condition of bijectivity
of the map (1.3) could be related to conditions imposed on the summands ϕi’s and αi’s.
However, in the particular case where the number of homomorphisms between the respective
modules is rather “small”, we can use the previous lemma to establish

Theorem 1. Let L be a Lie algebra having a cohomologically nontrivial finite-dimensional
module M such that either LM = M , or M does not contain a trivial submodule, and A an
associative commutative algebra with unit having an infinite set V of non-isomorphic unital
modules of a fixed finite dimension. Then in each of the following cases:

(i) dimEndL(M) = 1,
(ii) for any two non-isomorphic modules V1, V2 ∈ V, dimHomA(V1, V2) ≤ 1,

the Lie algebra L ⊗ A has an infinite number of cohomologically nontrivial non-isomorphic
modules of a fixed finite dimension.

Proof. Consider the set of L⊗A-modules of the formM⊗V , where V ∈ V . By Lemma 1.1, all
these modules are cohomologically nontrivial. Due to the condition imposed on M , the first
summand in the right-hand side of (1.2) vanishes, hence by Lemma 1.2, in both cases (i) and
(ii), each L⊗A-homomorphism between two modulesM⊗V1 andM⊗V2 can be represented
as a decomposable map ϕ ⊗ α, where ϕ ∈ EndL(M) and α ∈ HomA(V1, V2). Such a map is
bijective (i.e. is an isomorphism of L⊗A-modules) if and only if both tensor components ϕ
and α are bijective. Hence two L ⊗ A-modules M ⊗ V1 and M ⊗ V2 are isomorphic if and
only if the A-modules V1 and V2 are isomorphic, whence the conclusion of the theorem. �

Thus, to exhibit an example of a finite-dimensional Lie algebra having an infinite number
of cohomologically nontrivial non-isomorphic modules of a fixed finite dimension (and thus
answer Question 1 from [D1] in the case of characteristic zero, and provide a counterexample
to the claim of Theorem 1 from [D1] in the case of positive characteristic), it is enough to
exhibit algebras and modules satisfying the conditions of Theorem 1.

Take, for example, a Lie algebra L having a nontrivial, irreducible, cohomologically non-
trivial module M : in characteristic zero, according to a converse to the Whitehead theorem
([Z2, Theorem]), we may take any Lie algebra which is not a direct sum of a semisimple alge-
bra and a nilpotent algebra; in positive characteristic, by combination of Dzhumadil’daev’s
results – that any finite-dimensional Lie algebra has a finite-dimensional cohomologically non-
trivial module ([D2, §1, Corollary 2]; also established independently in [FaS, Corollary 2.2]),
and that triviality of any irreducible cohomologically nontrivial module implies nilpotency
([D2, §4, Theorem]) – we may take any nonnilpotent Lie algebra.

Over an algebraically closed base field, the condition (i) of Theorem 1 is satisfied then
due to Schur’s lemma, so in this case it is enough to pick any finite-dimensional associative
commutative algebra A with an infinite number of modules of a fixed finite dimension –
for example, any algebra of infinite representation type. Over an arbitrary (infinite) field,
however, we exhibit a concrete example of an algebra A having an infinite number of modules
satisfying the property (ii).

Example. Let A be a 3-dimensional local algebra whose radical is square-zero: that is, A
has a basis {1, x, y}, with multiplication x2 = xy = yx = y2 = 0. This is one of the simplest
examples of algebras of infinite representation type. Finite-dimensional indecomposable rep-
resentations of A are known: to our knowledge, they were described first in [HR, Proposition
5]. (A more general problem about canonical forms of a pair of mutually annihilating nilpo-
tent – and not necessary square-zero – matrices was solved in the famous paper [GP]; see also
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[NRSB]). From them, it is possible to pick an infinite family V satisfying the property (ii) of
Theorem 1. This can be done in multiple ways, and one of the simplest is the following.

Consider a family Vt of unital 2-dimensional A-modules, parametrized by element of the
base field t, defined as follows: Vt has a basis {u, v} with the following A-action:

x • u = v, y • u = tv, x • v = 0, y • v = 0.

Straightforward computation show that for different t, s ∈ K, the modules Vt and Vs are
non-isomorphic, and that HomA(Vt, Vs) is 1-dimensional, linearly spanned by the map u 7→ v,
v 7→ 0.

Note that for any finite-dimensional Lie algebra of positive characteristic, the number
of irreducible cohomologically nontrivial finite-dimensional modules is finite, by the same
arguments used in the proof of [D1, Theorem 1]. In view of this, perhaps the Question 1
from [D1] should be reformulated as follows:

Problem 1. Do there exist finite-dimensional Lie algebras over a field of characteristic zero
having an infinite number of cohomologically nontrivial irreducible non-isomorphic modules
of a fixed finite dimension?

We conjecture that the answer to this question is negative, and a possible way to prove
this is to employ the standard ultraproduct considerations, allowing to deduce the zero char-
acteristic case from the cases of positive characteristics.

Problem 2. What would be a “noncommutative” version of Theorem 1, where current Lie
algebras are replaced by Lie algebras of the form sln(A) or gln(A) for an associative (and not
necessary commutative) algebra A?

We expect that in this way one may to obtain further interesting connections between
cohomology of Lie algebras and representation theory of associative algebras.

2. Poisson structures on current and Kac-Moody algebras

In this section, the characteristic of the base field K is assumed to be as big as needed, in
particular, to allow all denominators appearing in the formulas. Thus, in the results about
general current Lie algebras below (Theorem 2, Corollary 2.1, Lemmas 2.1–2.3), we assume
the characteristic is 6= 2, 3, while when dealing with simple Lie algebras and, in particular,
with formulas like (2.3), the characteristic is assumed to be zero.

The classical example of a vector space of functions on a manifold equipped, from one
hand, with operation of point-wise function multiplication, and, from another hand, with
Poisson bracket, leads to the abstract notion of a Poisson algebra: a vector space A with
two algebra structures: one, Lie, denoted by [ · , · ], and another, associative commutative,
denoted by ⋆ with compatibility condition saying that Lie multiplication by each element is
a derivation of a commutative algebra structure:

(2.1) [z, x ⋆ y] = [z, x] ⋆ y + x ⋆ [z, y]

for any x, y, z ∈ A.
It is only natural to consider a more general situation, when condition of commutativity

of ⋆ is dropped, arriving at so-called noncommutative Poisson algebras. Such algebras were
studied in many papers ([Ku1] is just one of them). As in [Ku1], we adopt a “Lie-centric”
(as opposed to “associative-centric”) viewpoint, according to which one fixes a Lie algebra
L and considers all possible multiplications ⋆ on the vector space L such that (L, [ · , · ], ⋆)
forms a Poisson algebra.

We go, however, a bit further, and drop associativity condition of ⋆, thus retaining only
the compatibility condition (2.1) (and, of course, Lieness of [ · , · ]). So, given a Lie algebra
L, we call a Poisson structure on L any algebra structure ⋆ on the vector space L such that
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(2.1) holds. If ⋆ satisfies additional conditions like commutativity, associativity, etc., we will
speak about commutative, associative, etc., Poisson structures on L.

Note that a Poisson structure on a Lie algebra L is nothing but an L-module homomor-
phism from L⊗ L to L. As such, the set of all Poisson structures on L forms a vector space
under usual operations of additions and multiplication on scalar of linear maps from L ⊗ L
to L.

There is a canonical decomposition of an L-module L⊗ L into the direct sum of commu-
tative and anti-commutative components: L ⊗ L = (L ∧ L) ⊕ (L ∨ L). Accordingly, the
space of Poisson structures on L decomposes into the direct sum of two spaces, consisting of
commutative and anti-commutative Poisson structures on L.

Obviously, for every Lie algebra L, a bilinear map L × L → L proportional to the Lie
multiplication, is a Poisson structure on L (what amounts to the Jacobi identity). Of course,
such Poisson structures are not very interesting, and one wishes to consider all Poisson
structures on L modulo them. A bit more generally, we may wish to eliminate Poisson
structures which can be written in the form x ⋆ y = ω([x, y]) for some linear map ω : L→ L.
Then (2.1) together with the Jacobi identity implies that

(2.2) [z, ω([x, y])] = ω([z, [x, y]])

for any x, y, z ∈ L. Note that this is nothing but the centroid (i.e., the set of linear maps
on an algebra commuting with all multiplications) of the commutant [L,L]. Moreover, when
L is simple and the base field is algebraically closed, the centroid Cent(L) of L coincides
with multiplications on the elements of the base field ([Ja, Chapter 10, §1, Theorem 1]), so
we arrive in this case at Poisson structures which are proportional to Lie multiplications we
started with.

Centroid also appears in a different way in our context: if ⋆ is a Poisson structure on a
Lie algebra L with a nonzero center Z(L), then (2.1) implies that for any element z ∈ Z(L),
the left and right Poisson multiplication on z, i.e. the maps x 7→ z ⋆ x and x 7→ x ⋆ z, are
elements of the centroid of L.

Poisson structures of type (2.2) will be called trivial, and the quotient of the space of
all Poisson structures on a Lie algebra L by the trivial ones, will be denoted by P(L).
Poisson structures, whose representatives form a basis of P(L), will be called basic Poisson
structures. Note that trivial Poisson structures are always anti-commutative, so any nonzero
commutative Poisson structure is nontrivial.

Somewhat similarly, on a skew-symmetrization A(−) of an associative algebra A, one always
have a commutative Poisson structure defined by the “Jordan” multiplication: x◦y = 1

2
(xy+

yx) for x, y ∈ A. Though such “Jordan” Poisson structures are defined only for Lie algebras
which are skew-symmetrizations of associative ones, for the Lie algebra sln(K) we can define
a related Poisson structure by adding a term “correcting” for tracelessness:

(2.3) X ⋆ Y =
1

2
(XY + Y X)−

1

n
Tr(XY )E,

where X, Y are traceless matrices of order n, and E is the identity matrix. It is easy to
check that this is indeed a Poisson structure on sln(K) (what amounts to the fact that
(X, Y ) 7→ Tr(XY ) is a symmetric invariant form on sln(K)), and it will be called a standard
commutative Poisson structure. Note that this is no longer a Jordan structure. The case of
sl2(K) is degenerate, as multiplication defined by (2.3) vanishes.

Our goal is to describe Poisson structures on current Lie algebras L⊗A in terms of L and
A. We do this under mild technical assumptions. The Poissonity condition (2.1) is similar
to the cocycle equation, and the same technique used to compute low-degree cohomology of
L⊗ A, applies.

As the centroid, essentially, is “almost” isomorphic to the space of trivial Poisson structures,
we first determine the centroid of current Lie algebras. This is generally known from the
literature, perhaps in a slightly less general or explicit form.
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Lemma 2.1. Let L be a Lie algebra, A an associative commutative algebra with unit, and
one of L, A is finite-dimensional. Then

Cent(L⊗ A) ≃ Cent(L)⊗ A+HomK(L/[L,L], (Z(L) + [L,L])/[L,L])⊗ EndK(A).

Any element of Cent(L ⊗ A) can be written as the sum of decomposable maps ϕ ⊗ α, ϕ ∈
EndK(L), α ∈ EndK(A), of one of the following form:

(i) ϕ ∈ Cent(L) and α = Ru for some u ∈ A;
(ii) ϕ(L) ⊆ Z(L) and ϕ([L,L]) = 0.

This generalizes [Kr, Lemma 5.1], and overlaps with [BeNe, Corollary 2.23] and [Gü,
Remark 2.19.1].

Proof. Let Φ ∈ Cent(L ⊗ A). Due to the finite-dimensionality assumption, we may write
Φ =

∑
i∈I ϕi⊗αi for suitable linear maps ϕi ∈ EndK(L) and αi ∈ EndK(A). The centroidity

condition then reads

(2.4)
∑

i∈I

ϕi([x, y])⊗ αi(ab)− [x, ϕi(y)]⊗ aαi(b) = 0

for any x, y ∈ L, a, b ∈ A. Substituting here a = 1, we get
∑

i∈I

(ϕi([x, y])− [x, ϕi(y)])⊗ αi(b) = 0,

and hence we may assume that all ϕi’s belong to Cent(L). Taking this into account, (2.4)
can be rewritten as ∑

i∈I

ϕi([x, y])⊗ (αi(ab)− aαi(b)) = 0.

Hence there is a partition of the set of indices I = I1∪ I2 such that ϕi([x, y]) = [x, ϕi(y)] = 0,
x, y ∈ L for i ∈ I1, and αi(ab) = aαi(b), a, b ∈ A for i ∈ I2. The latter condition is equivalent
to αi(a) = aui for some ui ∈ A. �

If L is perfect, i.e. [L,L] = L, then the second summand in the isomorphism of Lemma
2.1 disappears:

Corollary 2.1. Let L be a perfect Lie algebra, A an associative commutative algebra with
unit, and one of L, A is finite-dimensional. Then Cent(L⊗ A) ≃ Cent(L)⊗ A.

After this warm-up, let us turn to computation of Poisson structures on current and close to
them Lie algebras. Let us call a Poisson structure ⋆ on a Lie algebra L left skew if it satisfies
the identity [x, y] ⋆ z = [y, z] ⋆ x, and right skew if it satisfies the identity x ⋆ [y, z] = y ⋆ [z, x].

Theorem 2. Let L be a perfect Lie algebra not having nonzero left skew and right skew
Poisson structures, A an associative commutative algebra with unit, and one of L, A is
finite-dimensional. Then P(L⊗A) ≃ P(L)⊗A, and basic Poisson structures on L⊗A can
be chosen as

(2.5) (x⊗ a)⋆ (y ⊗ b) = (x ⋆ y)⊗ abu,

where x, y ∈ L, a, b ∈ A, for some Poisson structure ⋆ on L, and u ∈ A.

Proof. Let Φ =
∑

i∈I ϕi ⊗ αi, where ϕi : L × L → L, αi : A × A → A are bilinear maps, be
a Poisson structure on L⊗ A. Writing the Poissonity condition (2.1) for triple x⊗ a, y ⊗ b,
z ⊗ c, we get:

(2.6)
∑

i∈I

[z, ϕi(x, y)]⊗ cαi(a, b)− ϕi([z, x], y)⊗ αi(ca, b)− ϕi(x, [z, y])⊗ αi(a, cb) = 0.

Substitute here c = 1:∑

i∈I

([z, ϕi(x, y)]− ϕi([z, x], y)− ϕi(x, [z, y]))⊗ αi(a, b) = 0.



A COMPENDIUM OF LIE STRUCTURES ON TENSOR PRODUCTS 9

Hence, replacing ϕi’s by their appropriate linear combinations, we get that each ϕi satisfies
[z, ϕi(x, y)] = ϕi([z, x], y) + ϕi(x, [z, y]) and hence is a Poisson structure on L. Substituting
this back to (2.6), we get:

(2.7)
∑

i∈I

ϕi([z, x], y)⊗ (cαi(a, b)− αi(ca, b)) + ϕi(x, [z, y])⊗ (cαi(a, b)− αi(a, cb)) = 0.

Symmetrizing this with respect to x, z and y, z, we get respectively:
∑

i∈I

(ϕi(x, [z, y]) + ϕi(z, [x, y])⊗ (cαi(a, b)− αi(a, cb)) = 0

and ∑

i∈I

(ϕi([z, x], y) + ϕi([y, x], z))⊗ (cαi(a, b)− αi(ca, b)) = 0.

The vanishing of the first tensor factors here is equivalent for ϕi to be right and left skew
respectively, and hence they cannot vanish for a nonzero ϕi. Hence for each i ∈ I, cαi(a, b)−
αi(a, cb) = 0 and cαi(a, b)− αi(ca, b) = 0, what implies αi(ab) = abαi(1). It is easy to check
that each ϕi ⊗ αi for such αi’s is a Poisson structure on L⊗ A.

So, we see that each Poisson structure on L⊗A can be written as a sum of Poisson structures
of the form (2.5), and hence the space of all Poisson structures on L ⊗ A is isomorphic to
the tensor product of the space of all Poisson structures on L with A. To prove the asserted
isomorphism, note that perfectness of L implies perfectness of L⊗A, and hence the space of
trivial Poisson structures on L⊗A is isomorphic to the centroid of L⊗A, and by Corollary
2.1, to Cent(L)⊗A. But Cent(L) is precisely the space of trivial Poisson structures on L, so
factoring out the isomorphism of the spaces of Poisson structures established above by the
spaces of trivial Poisson structures, we get the desired isomorphism. �

Though it seems that it is impossible to get a definitive result describing Poisson structures
on L⊗A in terms of L and A in the most general case, by using much more elaborate (and
cumbersome) arguments along these lines, one may significantly relax restrictions on L. That
way, nonperfectness of L becomes responsible for Poisson structures on L⊗A of the form ψ⊗α
with conditions like ψ([L,L], L) = 0, skew Poisson structures ϕ on L become responsible for
Poisson structures on L⊗A of the form ϕ⊗α, where α is composed from various generalized
derivations on A, etc.

Corollary 2.2. Let g be a finite-dimensional simple Lie algebra and A an associative com-
mutative algebra with unit, defined over an algebraically closed field K of characteristic 0.
Then P(g ⊗ A) ≃ A in the case g = sln(K), n ≥ 3, and vanishes in all other cases. In the
former case the basic Poisson structures can be chosen as

(X ⊗ a) ⋆ (Y ⊗ b) =
(1
2
(XY + Y X)−

1

n
Tr(XY )E

)
⊗ abu,

where X, Y ∈ sln(K), a, b ∈ A, for some u ∈ A.

Note that in the case A = K, this corollary reduces to [BO, Lemma 3.1], which can be
interpreted as a description of Poisson structures on simple finite-dimensional Lie algebras
(also rediscovered in [LR, Lemma 8] and [Ku2]). In fact, we base on that result. It is also
curious to note that exactly the same dichotomy between sln(K), n ≥ 3, and the other
simple types occurs in the second and third degree (co)homology H2(g ⊗ A, g ⊗ A) and
H3(g⊗A,K) (see [C, Propositions 1 and 2]; also follows from a careful substitution of g into
the isomorphism displayed at p. 94 in the published version, and p. 17 in the arXiv version
of [Z1]).

Proof of Corollary 2.2. To be able to apply Theorem 2, we should demonstrate that g does
not have nonzero left and right skew Poisson structures. This is not difficult: consider, for
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example, a left skew Poisson structure ⋆ on g. By the above-mentioned [BO, Lemma 3.1],
for the case g = sln(K), n ≥ 3, we have

X ⋆ Y =
λ

2
(XY + Y X)−

λ

n
Tr(XY )E + µ(XY − Y X)

for some λ, µ ∈ K. Taking X and Z to be the block-diagonal matrices with



1 0 0
0 −1 0
0 0 0




and



0 0 1
0 0 0
0 0 0


 in the upper-left corner, and zero everywhere else, respectively (these are

just a semisimple element and a corresponding root vector in the subalgebra isomorphic to
sl3(K)), we get [X,X] ⋆ Z = 0 and [X,Z] ⋆ X = Z ⋆X is equal to the block-diagonal matrix

with



0 0 λ

2
− µ

0 0 0
0 0 0


 in the upper-left corner, whence λ− 2µ = 0.

Taking now X ′ to be the block-diagonal matrix with



1 0 0
0 1 0
0 0 −1


 in the upper-left corner,

and zero everywhere else, we get [X ′, X ′] ⋆ Z = 0 and [X ′, Z] ⋆ X ′ = 3Z ⋆ X ′ is equal to the

block-diagonal matrix with



0 0 −3

2
λ− 9µ

0 0 0
0 0 0


 in the upper-left corner, whence λ+6µ = 0.

Thus λ = µ = 0 and ⋆ vanishes.
For the all other types of g, ⋆ is proportional to the Lie multiplication on g, so the left

skewness amounts to the identity [[x, y], z] = [[y, z], x], which obviously does not hold in a
simple Lie algebra.

The case of right skew Poisson structures is similar.
A consecutive application of Theorem 2 and [BO, Lemma 3.1] concludes the proof. �

In order to apply this further to Kac–Moody algebras, we need to consider semidirect sums
of a current Lie algebra with an algebra of derivations of A, and their central extensions.
Consider a Lie algebra defined as the vector space (L⊗A)⊕Kz⊕D, where D is a nontrivial
Lie algebra of derivations of A, with the following multiplication:

[x⊗ a, y ⊗ b] = [x, y]⊗ ab+ 〈x, y〉ξ(a, b)z(2.8)

[x⊗ a, d] = x⊗ d(a)

for x, y ∈ L, a, b ∈ A, d ∈ D, and z is a central element. Here 〈·, ·〉 is a nonzero symmetric
bilinear invariant form on L, i.e., a symmetric bilinear map satisfying the equality 〈[x, y], z〉+
〈y, [x, z]〉 = 0 for any x, y, z ∈ L; and ξ is a nonzero D-invariant element of HC1(A), the first-
degree cyclic cohomology of A, i.e., a skew-symmetric bilinear map ξ : A×A→ K satisfying
the following conditions: ξ(ab, c) + ξ(ca, b) + ξ(bc, a) = 0, and ξ(d(a), b) + ξ(a, d(b)) = 0 for
any a, b, c ∈ A, d ∈ D. Note that the former condition implies ξ(1, A) = 0.

Such algebra is a nonsplit central extension of the semidirect sum (L⊗A) A D. For brevity,
we will call algebras with multiplication (2.8) extended current Lie algebras. Specializing this
construction to the case where K is an algebraically closed field of characteristic zero, L = g,
a simple finite-dimensional Lie algebra, 〈·, ·〉 is the Killing form on g, A = K[t, t−1], the
algebra of Laurent polynomials, D = Kt d

dt
, and ξ(f, g) = Res(g df

dt
) for f, g ∈ K[t, t−1], we

get non-twisted affine Kac-Moody algebras (see [Ka, Chapter 7]).
In the next series of lemmas and corollaries to Theorem 2, we gradually approach to

computation of Poisson structures on some class of extended current Lie algebras.
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Lemma 2.2. Let L be an extended current Lie algebra such that L is a perfect centerless Lie
algebra, and one of L, A is finite-dimensional. Then any element in Cent(L) is of the form

x⊗ a 7→ x⊗ au

d 7→ ud+ ϕ(d)z(2.9)

z 7→ λz

where x ∈ L, a ∈ A, d ∈ D, for some u ∈ A such that D(u) = 0, a linear map ϕ : D → K
such that ϕ([D,D]) = 0, and λ ∈ K such that ξ(au, b) = λξ(a, b) for any a, b ∈ A.

Proof. Let Φ ∈ Cent(L). Note the the center of L coincides with Kz. It is straightforward
that Φ preserves the center of L, and hence induces the map on the quotient L/Kz, which
belongs to the centroid of L/Kz ≃ (L⊗ A) A D.

Let us determine the structure of the latter first. Let Ψ ∈ Cent((L⊗ A) A D). Then

Ψ(L⊗ A) = Ψ([L,L]⊗ A) = [L⊗ A,Ψ(L⊗ A)] ⊆ L⊗ A.

Consequently Ψ, being restricted to L ⊗ A, belongs to Cent(L ⊗ A), and by Corollary 2.1,
Ψ(x ⊗ a) = ψ(x) ⊗ au for some ψ ∈ Cent(L) and u ∈ A. The centroidity condition [Ψ(x ⊗
a), d] = Ψ([x ⊗ a, d]), for any x ∈ L, a ∈ A, d ∈ D, implies that D(u) = 0. Next, the
centroidity condition [x⊗ a,Ψ(d)] = Ψ([x⊗ a, d]) is equivalent to

(2.10) [x⊗ a,Ψ(d)] = ψ(x)⊗ d(a)u.

Writing the L ⊗ A-valued component of the restriction of Ψ to D in the form
∑

i∈I xi ⊗ αi

for some xi ∈ L and linear maps αi : D → A, and substituting in (2.10) a = 1, we get
∑

i∈I

[x, xi]⊗ αi(d) = 0.

Thus all xi’s belong to the center of L and hence vanish. This shows that Ψ(D) ⊆ D, and
the condition (2.10) can be rewritten as

x⊗Ψ(d)(a) = ψ(x)⊗ d(a)u

for any x ∈ L, a ∈ A, d ∈ D. This implies ψ(x) = αx and Ψ(d) = αud for some α ∈ K.
Consequently, Cent((L⊗ A) A D) ≃ AD, and any element in that centroid is of the form

x⊗ a+ d 7→ x⊗ au+ ud,

where x ∈ L, a ∈ A, d ∈ D, for some u ∈ A such that D(u) = 0.
Returning to the algebra L, we may now write Φ in the form

Φ(x⊗ a) = x⊗ au+ τ(x⊗ a)z

Φ(d) = ud+ ϕ(d)z

Φ(z) = λz

for some τ ∈ HomK(L ⊗ A,K), ϕ ∈ HomK(D, K), λ ∈ K, and u ∈ A as above. Then the
centroidity condition Φ([x⊗ a, y ⊗ b]) = [Φ(x⊗ a), y ⊗ b] is equivalent to

τ([x, y]⊗ ab) = 〈x, y〉(ξ(au, b)− λξ(a, b))

for any x, y ∈ L, a, b ∈ A. The left-hand side here is skew-symmetric in x, y, while the
right-hand side is symmetric, therefore they vanish separately, what implies the vanishing of
τ , and the identity ξ(au, b) = λξ(a, b).

The centroidity condition Φ([d, f ]) = [Φ(d), f ] for any d, f ∈ D is equivalent to ϕ([d, f ]) =
0.

It is easy to check that the map defined by (2.9) subject the all specified conditions, indeed
belongs to the centroid of L. �

We will need also the following statement about bilinear invariant forms on current Lie
algebras.
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Lemma 2.3. Let L be a Lie algebra, A an associative commutative algebra with unit, and one
of L, A is finite-dimensional. Then each bilinear invariant form on L⊗A can be represented
as the sum of decomposable forms ϕ⊗ α, ϕ : L× L → K, α : A× A → K satisfying one of
the two following conditions:

(i) ϕ([x, y], z) = ϕ([z, x], y) for any x, y, z ∈ L, and α(a, b) = β(ab) for some linear map
β : A→ K;

(ii) ϕ([L,L], L) = 0.

Proof. The proof is absolutely similar to those of Theorem 2, and, in fact, is given in [Z3,
Theorem 2]. The condition of symmetricity of bilinear forms used there at the very end and
does not affect the main body of the proof. Specializing to the case where A contains a unit,
we get the statement of the lemma. �

Corollary 2.3. Let A be an associative commutative algebra with unit, and D an abelian Lie
algebra of derivations of A. Then

P((g⊗ A) A D) ≃





U(D, A)⊕ U(D, A)⊕ {u ∈ A | D(u) = D(A)u = 0},

g = sln(K), n ≥ 3

U(D, A)⊕ U(D, A), otherwise,

where U(D, A) = {β ∈ HomK(D, A) | D(β(D)) = 0}. The basic Poisson structures can be
chosen as follows (assuming x, y ∈ g, a, b ∈ A, d, d′ ∈ D):

(i) (x⊗ a) ⋆ (y⊗ b) = (1
2
(xy+ yx)− 1

n
Tr(xy)E)⊗ abu, where u ∈ A such that D(u) = 0

and D(A)u = 0;
D ⋆ (g⊗ A) = (g⊗ A) ⋆D = D ⋆D = 0;
these Poisson structures exist in the case g = sln(K), n ≥ 3 only;

(ii) d ⋆ (x⊗ a) = x⊗ aβ(d), d ⋆ d′ = β(d)d′, where β ∈ U(D, A);
(g⊗ A) ⋆ (g⊗ A) = (g⊗ A) ⋆D = 0;

(iii) (x⊗ a) ⋆ d = x⊗ aγ(d), d ⋆ d′ = γ(d′)d, where γ ∈ U(D, A);
(g⊗ A) ⋆ (g⊗ A) = D ⋆ (g⊗ A) = 0.

Proof. Each Poisson structure on (g⊗A) A D, being restricted to (g⊗A)× (g⊗A), can be
decomposed into the sum of two maps Φ and Ψ with values in g ⊗ A and D, respectively.
Writing the Poissonity condition for elements of g⊗ A, we get

(2.11) [z ⊗ c,Φ(x⊗ a, y ⊗ b)] + [z ⊗ c,Ψ(x⊗ a, y ⊗ b)]

= Φ([z, x]⊗ ca, y ⊗ b) + Φ(x, [z, y]⊗ ca)

and

Ψ([z, x]⊗ ca, y ⊗ b) + Ψ(x, [z, y]⊗ ca) = 0

for any x, y, z ∈ g, a, b, c,∈ A. Hence, Ψ is a D-valued invariant bilinear form on g⊗A. Now
apply Lemma 2.3. As g is perfect, forms of type (ii) vanish. Bilinear maps on g satisfying
the condition in (i) can be decomposed into the sum of symmetric and skew-symmetric ones.
Symmetric maps coincide with symmetric invariant forms on g and hence are proportional
to the Killing form 〈·, ·〉, and skew-symmetric maps vanish by [Z3, Lemma 2]. Hence Ψ can
be written in the form Ψ(x⊗ a, y ⊗ b) = 〈x, y〉β(ab) for some linear map β : A→ D.

Now we may proceed as in the proof of Theorem 2. Writing Φ in the form
∑

i∈I ϕi ⊗ αi

and substituting this into (2.11), we get the equality (2.6) with

(2.12) 〈x, y〉z ⊗ β(ab)(c)

instead of 0 at the right-hand side. This expression vanishes under the substitution c = 1,
and we may proceed exactly as in the proof of Theorem 2 to arrive at the equality (2.7) with
the same term (2.12) instead of 0 at the right-hand side. Setting in the latter x = y = z, we
get the vanishing left-hand side, and 〈x, x〉x⊗ β(ab)(c) at the right-hand side. Now picking
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x ∈ g such that 〈x, x〉 6= 0, we get β = 0. Hence Ψ = 0, Φ is a Poisson structure on g ⊗ A,
and by Corollary 2.2,

Φ(x⊗ a, y ⊗ b) = (x ⋆ y)⊗ abu+ [x, y]⊗ abv

in the case of g = sln(K), n ≥ 3, where ⋆ is the standard commutative Poisson structure on
sln(K), and u, v ∈ A, and Φ(x⊗ a, y ⊗ b) = [x, y]⊗ abv for the all other types of g.

Now writing the Poissonity condition for triple y ⊗ b, d, x ⊗ a, where x, y ∈ g, a, b ∈ A,
d ∈ D, we get that d(u) = d(v) = 0 for any d ∈ D.

Now denoting, by abuse of notation, the whole Poisson structure on (g ⊗ A) A D by the
same letter Φ, let us see what happens when one of the arguments of Φ lies in D. Writing
the Poissonity condition for triple y ⊗ b, d, x⊗ a, we get

(2.13) [y ⊗ b,Φ(d, x⊗ a)] = Φ(y ⊗ d(b), x⊗ a) + Φ(d, [y, x]⊗ ba),

what implies Φ(D, g⊗ A) = Φ(D, [g, g]⊗ A) ⊆ g⊗ A. We may write

Φ(d, x⊗ a) =
∑

i∈I

ϕi(x)⊗ αi(d, a)

for suitable (bi)linear maps ϕi : g → g and αi : D × A → A. Substituting this into (2.13)
and setting there b = 1, we get

∑

i∈I

(ϕi([y, x])− [y, ϕi(x)])⊗ αi(d, a) = 0.

Thus we may assume that ϕi([y, x]) − [y, ϕi(x)] = 0 for each i ∈ I, i.e. each ϕi belongs to
the centroid of g and hence is a multiplication by an element of the base field. But then we
have Φ(d, x⊗ a) = x⊗ α(d, a) for a suitable bilinear map D × A → A and all x ∈ g, a ∈ A,
d ∈ D, and the Poissonity condition (2.13) reduces to

[y, x]⊗ (bα(d, a)− α(d, ba)) = Φ(y ⊗ d(b), x⊗ a)

for any x, y ∈ g, a, b ∈ A, d ∈ D. If g = sln(K), n ≥ 3, then setting in this equality
x = y, we get (x ⋆ x) ⊗ d(b)au = 0, and picking x such that x ⋆ x 6= 0 (for example,
x = diag(1, 1,−2, 0, . . . , 0)), we get that D(A)u = 0, and the whole equality reduces to

(2.14) bα(d, a)− α(d, ba) = ad(b)v.

If g is different from sln(K), n ≥ 3, then the term with the standard commutative Poisson
structure is absent in Φ, and we also get the equality (2.14). Setting in the latter equality
a = 1, we see that it is equivalent to the condition α(d, a) = aβ(d) − d(a)v for some linear
map β : D → A. The Poissonity condition for triple d, d′, x ⊗ a for x ∈ g, a ∈ A, d, d′ ∈ D,
together with the condition D(v) = 0 and abelianity of D, implies then that D(β(D)) = 0.

Quite similarly, we have that

Φ(x⊗ a, d) = aγ(d) + d(a)v

for any x ∈ g, a ∈ A, d ∈ D, and a suitable linear map γ : D → A such that D(γ(D)) = 0.
Finally, the Poissonity condition written for three elements ofD implies that [D,Φ(D,D)] =

0 and hence Φ(D,D) ⊆ D, and the Poissonity condition for triple x⊗ a, d, d′ implies

Φ(d, d′)(a) = d(a)γ(d′) + d′(a)β(d)

for any a ∈ A, d, d′ ∈ D.
Summarizing all this together, it is easy to single out the trivial Poisson structures: those

are precisely the maps involving the element v. Writing the generic form of the Poisson
structure modulo these maps, we get the desired statement. �

Corollary 2.4. Let L be an extended current Lie algebra over an algebraically closed base
field K of characteristic zero, L is simple finite-dimensional Lie algebra, D = Kd is one-
dimensional, dimA > 2, and AD = K. Then the basic Poisson structures on L can be chosen
from the following list:
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(i) (x⊗ a) ⋆ (y ⊗ b) = 〈x, y〉f(ab)z,
z ⋆ d = −d ⋆ z = z,
(g⊗ A) ⋆ d = d ⋆ (g⊗ A) = d ⋆ d = 0,
where f : A→ K is a linear map such that f(ad(b)) = ξ(a, b) for any a, b ∈ A;

(ii) (x⊗ a) ⋆ (y ⊗ b) = 〈x, y〉f(ab)z,
d ⋆ L = L ⋆ d = 0,
where f : A→ K is a linear map such that f(ad(b)) = 0 for any a, b ∈ A;

(iii) d ⋆ (x⊗ a) = x⊗ a,
d ⋆ d = d,
(g⊗ A) ⋆ (g⊗ A) = (g⊗ A) ⋆ d = z ⋆ d = d ⋆ z = 0;

(iv) (x⊗ a) ⋆ d = x⊗ a,
d ⋆ d = d,
(g⊗ A) ⋆ (g⊗ A) = d ⋆ (g⊗ A) = z ⋆ d = d ⋆ z = 0;

(v) d ⋆ d = z,
(g⊗ A) ⋆ L = L ⋆ (g⊗ A) = z ⋆ d = d ⋆ z = 0.

Additionally, for all of them (g⊗ A) ⋆ z = z ⋆ (g⊗ A) = z ⋆ z = 0.

Proof. If Φ is a Poisson structure on L, then Φ(z, ·) and Φ(·, z) are elements of the centroid
of L. According to Lemma 2.2, Cent(L) is 2-dimensional, linearly spanned by the identity
map, and the map sending d to z, and (g⊗ A)⊕Kz to zero. Hence we may write

Φ(x⊗ a, z) = Φ(z, x⊗ a) = αx⊗ a

Φ(d, z) = αd+ βz(2.15)

Φ(z, d) = αd+ γz

Φ(z, z) = αz

where x ∈ g, a ∈ A, for some α, β, γ ∈ K.
Restrict Φ to ((g⊗A) A Kd)× ((g⊗A) A Kd), and decompose the restriction as the sum

of a ((g ⊗ A) A Kd)-valued bilinear map Ψ, and a Kz-valued bilinear map. The Poissonity
condition, taking into account equalities (2.15), then implies

(2.16) [t⊗ c,Ψ(x⊗ a, y ⊗ b)]

= Ψ([t, x]⊗ ca, y ⊗ b) + Ψ(x⊗ a, [t, y]⊗ cb) + α(〈t, x〉ξ(c, a)y ⊗ b+ 〈t, y〉ξ(c, b)x⊗ a)

and

[d,Ψ(x⊗ a, y ⊗ b)] = Ψ([d, x⊗ a], y ⊗ b) + Ψ(x⊗ a, [d, y ⊗ b])

[x⊗ a,Ψ(d, y ⊗ b)] = Ψ([x⊗ a, d], y ⊗ b) + Ψ(d, [x, y]⊗ ab) + α〈x, y〉ξ(a, b)d

[x⊗ a,Ψ(y ⊗ b, d)] = Ψ([x, y]⊗ ab, d) + Ψ(y ⊗ b, [x⊗ a, d]) + α〈x, y〉ξ(a, b)d

[d,Ψ(d, x⊗ a)] = Ψ(d, [d, x⊗ a])(2.17)

[d,Ψ(x⊗ a, d)] = Ψ([d, x⊗ a], d)

[x⊗ a,Ψ(d, d)] = Ψ([x⊗ a, d], d) + Ψ(d, [x⊗ a, d])

[d,Ψ(d, d)] = 0

for any x, y, t ∈ g, a, b, c ∈ A.
Decompose further Ψ into the (g⊗A)-valued and Kd-valued components, and proceed as

in the proof of Corollary 2.3. By the same reasoning, the Kd-valued component, being a
Kd-valued invariant form on g ⊗ A, can be written as 〈x, y〉 ⊗ β(ab)d for some linear map
β : A → K. Substituting this into equality (2.16), we get the Poissonity condition for the
g⊗ A-valued component, up to the term

〈x, y〉t⊗ β(ab)d(c) + α(〈t, x〉ξ(c, a)y ⊗ b+ 〈t, y〉ξ(c, b)x⊗ a)
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instead of (2.12) at the right-hand side. Proceeding exactly as in the proof of Corollary 2.3,
we get that this term vanishes whenever x = y = t, i.e.

α(ξ(c, a)b+ ξ(c, b)a) = β(ab)d(c)

for any a, b, c ∈ A. An easy calculation yields β(a)d(b) + β(b)d(a) = 0 for any a, b ∈ A.
If β is nonzero, this implies that d vanishes on Ker β, whence Ker β = K and dimA = 2,
a contradiction. Hence β vanishes, α = 0, and equalities (2.16)–(2.17) imply that Ψ is a
Poisson structure on (g⊗ A) A D.

Now look at Corollary 2.3. Since D is one-dimensional, and AD = K, the space U(D, A)
is one-dimensional, linearly spanned by the map sending d to 1. The conditions on u in
the structures of type (i) imply the vanishing of structures of that type. Hence the space of
Poisson structures on (g ⊗ A) A Kd is linearly spanned by the Lie bracket on that algebra,
and the following two bilinear maps:

(d, x⊗ a) 7→ x⊗ a

(x⊗ a, d) 7→ 0

and

(d, x⊗ a) 7→ 0

(x⊗ a, d) 7→ x⊗ a,

both of them sending (d, d) to d, and (g⊗ A)× (g⊗ A) to zero.
Going back to Φ, we may now write a generic Poisson structure on L, modulo the maps

proportional to the Lie bracket on L, as:

Φ(x⊗ a, y ⊗ b) = Θ(x⊗ a, y ⊗ b)z

Φ(d, x⊗ a) = λx⊗ a+ Γ(x⊗ a)z

Φ(x⊗ a, d) = µx⊗ a+ Γ′(x⊗ a)z

Φ(d, d) = (λ+ µ)d+ ηz

for some (bi)linear maps Θ : (g ⊗ A) × (g ⊗ A) → K, Γ,Γ′ : g ⊗ A → K, and λ, µ, η ∈ K.
Taking into account (2.15) (with α = 0), the Poissonity condition for Φ now amounts to the
following equalities:

Θ([t, x]⊗ ac, y ⊗ b) + Θ(x⊗ a, [t, y]⊗ bc) = 0(2.18)

Θ(x⊗ d(a), y ⊗ b) + Θ(x⊗ a, y ⊗ d(b)) = 0(2.19)

Θ(x⊗ d(a), y ⊗ b) + Γ([x, y]⊗ ab) + β〈x, y〉ξ(a, b) = 0(2.20)

Θ(y ⊗ b, x⊗ d(a)) + Γ′([x, y]⊗ ab) + γ〈x, y〉ξ(a, b) = 0(2.21)

for any x, y, t ∈ g, a, b, c ∈ A. Substituting into (2.20) a = 1, we get that Γ vanishes, similarly
for Γ′. The equality (2.18) is the condition of invariance of the bilinear form Θ. Referring
to Lemma 2.3 and [Z3, Lemma 2] in the same way as in the proof of Corollary 2.3, we have
Θ(x⊗ a, y ⊗ b) = 〈x, y〉f(ab) for some linear map f : A→ K.

The rest is straightforward: (2.19) now amounts to f(d(A)) = 0, and (2.20) and (2.21), to
f(d(a)b) + βξ(a, b) = 0 and f(bd(a)) − γξ(a, b) = 0, respectively. Hence γ = −β, and the
statement of the corollary follows. �

Corollary 2.5. The space of nontrivial Poisson structures on an affine non-twisted Kac-
Moody algebra is 3-dimensional, spanned by structures defined in (iii), (iv) and (v) of Corol-
lary 2.4.

Proof. It is easy to see that the map f satisfying the conditions in cases (i) and (ii) of
Corollary 2.4, vanishes in the Kac-Moody case. �
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This generalizes the result from [Ku1], where it is proved that any associative Poisson
structure on an affine Kac-Moody algebra is a linear combination of the specified 3 structures.
The proof in [Ku1] goes by lengthy case-by-case computations with the corresponding root
systems. As any of the structures of types (iii), (iv) and (v) is associative, it turns out that
any Poisson structure on an affine Kac–Moody algebra is decomposed into the sum of an
associative structure, and a trivial structure proportional to the Lie bracket.

The same approach can be used to describe Poisson structures in many other cases which
involve tensor products in that or another way: twisted Kac–Moody algebras, toroidal Lie
algebras, semisimple Lie algebras over a field of positive characteristic, variations of Kantor-
Koecher-Tits construction, Lie algebras graded by root systems, etc. Some of these compu-
tations will be technically (much) more cumbersome, but all of them should follow the same
scheme. Yet another similar computation will be presented in the next section.

3. Poisson structures on sln(A)

We may try to consider a noncommutative analog of the problem in the previous section.
Namely, for unital associative algebras A and B, whether one can describe Poisson structures
on the Lie algebra (A⊗B)(−) in terms of A and B, similar to those of Theorem 2? It seems
that in general the answer is negative. Let, for example, both A and B be a semidirect sum
of K1 and a nilpotent associative algebra N of degree 3 (i.e., N3 = 0). It is not difficult
to see that then (A ⊗ B)(−) is an abelian Lie algebra. Poisson structures on an abelian Lie
algebra L coincide with the whole space of bilinear maps L×L→ L, so, in that case Poisson
structures on (A⊗B)(−) and on A(−) and B(−) appear to be not related at all.

This example suggests that to be able to get such a description, algebras A and B, or
at least one of them, should be “far from nilpotent”. We are indeed able to do so in the
particular (and arguably one of the most interesting) case when B is, in a sense, as much not
nilpotent as possible – that is, is isomorphic to the full matrix algebra. In this case the Lie
algebra (A ⊗ B)(−) is isomorphic to the Lie algebra gln(A). Actually, we will even consider
not that algebra itself, but its close (and more interesting) cousin sln(A). One of the reasons
to do so is that in the case of gln(A) the picture is obscured by a lot of “degenerate”, not
very interesting, and having a cumbersome formulation Poisson structures related to the fact
that the center of gln(K) is not zero.

Thus, we will get, in a sense, a “noncommutative” version of Corollary 2.2.
Recall that for an associative algebra A, the Lie algebra sln(A) is defined as subalgebra of

gln(A) consisting of matrices over A with trace lying in [A,A]. There is a split extension of
Lie algebras

0 → sln(A) → gln(A) → A/[A,A] → 0,

and, as a vector space, sln(A) can be identified with

(sln(K)⊗ A)⊕ (E ⊗ [A,A]) ⊆ gln(K)⊗ A ≃ gln(A)

subject to multiplication

[X ⊗ a, Y ⊗ b] = XY ⊗ ab− Y X ⊗ ba

=
(
XY −

1

n
Tr(XY )E

)
⊗ ab−

(
Y X −

1

n
Tr(XY )E

)
⊗ ba+

1

n
Tr(XY )E ⊗ [a, b].

Note that the first tensor factors in the first two terms here are Poisson structures on sln(K).
Throughout this section, the characteristic of the base field K is assumed to be zero. This

is to allow denominators in the formula above providing realization of sln(K) we prefer to
work with. A more careful analysis would allow to prove essentially the same result assuming
the characteristic 6= 2, 3, but we will not take this pain.

Theorem 3. Let A be an associative algebra with unit. The basic Poisson structures on
sln(A), n ≥ 3, can be chosen as follows:
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(i) (X⊗a)⋆(Y ⊗b) = 1
2
(XY ⊗abu+Y X⊗bau)+Tr(XY )E⊗γ(ab) for either X ∈ sln(K),

a ∈ A, or X = E, a ∈ [A,A], the same for Y ,b, where u ∈ Z(A) and γ : A → Z(A)
is a linear map such that γ([A,A]) = γ([[A,A], A]A) = 0, and 1

n
au + γ(a) ∈ [A,A]

for any a ∈ A;
(ii) (E⊗a)⋆(X⊗b) = X⊗α(a)b for a ∈ [A,A] and either X ∈ sln(K), b ∈ A, or X = E,

b ∈ [A,A], where α : [A,A] → Z(A) is a linear map such that α([[A,A], [A,A]]) = 0;
(sln(K)⊗ A) ⋆ sln(A) = 0.

(iii) (X⊗a)⋆(E⊗b) = X⊗β(b)a for b ∈ [A,A] and either X ∈ sln(K), a ∈ A, or X = E,
a ∈ [A,A], where β : [A,A] → Z(A) is a linear map such that β([[A,A], [A,A]]) = 0;
sln(A) ⋆ (sln(K)⊗ A) = 0.

(iv) (E⊗a)⋆(E⊗b) = E⊗δ(a, b) for a, b ∈ [A,A], where δ : [A,A]×[A,A] → Z(A)∩[A,A]
is a bilinear map such that δ([c, a], b) + δ(a, [c, b]) = 0 for any a, b, c ∈ [A,A];
(sln(K)⊗ A) ⋆ sln(A) = sln(A) ⋆ (sln(K)⊗ A) = 0.

Here Z(A) denotes, as usual, the center of A.

Proof. Let Φ be a Poisson structure on sln(A). Identifying sln(A) with a subspace of gln(K)⊗A
as described above, extend Φ in an arbitrary way to the whole (gln(K)⊗A)× (gln(K)⊗A)
(say, by picking a complementary subspace and letting Φ vanish on it).

Let

(3.1) Φ =
∑

i∈I

ϕi ⊗ αi,

where ϕi’s are bilinear maps on gln(K), and αi’s are bilinear maps on A. Writing the
Poissonity condition for triple X ⊗ a, Y ⊗ b, Z ⊗ c ∈ sln(A) (that is, either X ∈ sln(K) and
a ∈ A, or X = E and a ∈ [A,A], similarly for Y ⊗ b and Z ⊗ c), we get:

∑

i∈I

Zϕi(X, Y )⊗ cαi(a, b)− ϕi(X, Y )Z ⊗ αi(a, b)c

−ϕi(ZX, Y )⊗ αi(ca, b) + ϕi(XZ, Y )⊗ αi(ac, b)(3.2)

−ϕi(X,ZY )⊗ αi(a, cb) + ϕi(X, Y Z)⊗ αi(a, bc) = 0.

Like in the proof of Theorem 2, substituting here c = 1, we can assume that each ϕi satisfies
the Poissonity condition

(3.3) [Z, ϕi(X, Y )] = ϕi([Z,X], Y ) + ϕi(X, [Z, Y ])

for any X, Y ∈ gln(K), Z ∈ sln(K).
Each ϕi, being restricted to sln(K) × sln(K), can be decomposed into the sum of two

linear maps with values in sln(K) and KE, respectively. The sln(K)-valued summand in
this decomposition is a Poisson structure on sln(K), and the KE-valued one is an invariant
bilinear form on sln(K). The latter is known to be proportional to the Killing form (see,
for example, [Bo, Chap. 1, §6, Exercises 7(b) and 18(a,b)]), and hence is proportional to
Tr(XY ). Then by [BO, Lemma 3.1], each ϕi, being restricted to sln(K) × sln(K), belongs
to the vector spaces of bilinear maps generated by (X, Y ) 7→ XY , (X, Y ) 7→ Y X, and
(X, Y ) 7→ Tr(XY )E. Hence Φ, being restricted to (sln(K)⊗A)× (sln(k)⊗A), can be written
in the form

(3.4) Φ(X ⊗ a, Y ⊗ b) = XY ⊗ α(a, b) + Y X ⊗ β(a, b) + Tr(XY )E ⊗ γ(a, b)
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for some bilinear maps α, β, γ : A×A→ A. Then the Poissonity condition for triple X ⊗ a,
Y ⊗ b, Z ⊗ c, X, Y, Z ∈ sln(K), a, b, c ∈ A, reads

XY Z ⊗ (α(a, bc)− α(a, b)c)

+XZY ⊗ (α(ac, b)− α(a, cb))

+Y XZ ⊗ (β(ac, b)− β(a, b)c)

+Y ZX ⊗ (β(a, bc)− β(ca, b))

+ZXY ⊗ (cα(a, b)− α(ca, b))(3.5)

+ZY X ⊗ (cβ(a, b)− β(a, cb))

+Tr(XY )Z ⊗ [c, γ(a, b)]

+E ⊗
(
Tr(XY Z)(γ(a, bc)− γ(ca, b)) + Tr(XZY )(γ(ac, b)− γ(a, cb))

)
= 0.

Setting in (3.5) X = Y = Z, we get:

X3 ⊗
(
[c, α(a, b)]− α([c, a], b)− α(a, [c, b]) + [c, β(a, b)]− β([c, a], b)− β(a, [c, b])

)

+ Tr(X2)X ⊗ [c, γ(a, b)]− Tr(X3)E ⊗
(
γ([c, a], b) + γ(a, [c, b])

)
= 0,

for any X ∈ sln(K) and a, b, c ∈ A. Taking here, for example, X = diag(1, 1,−2, 0, . . . , 0), we
see that each of the summands vanishes separately. In particular, the second tensor factor
vanishes, and, so is the corresponding term in (3.5) (those containing Tr(XY )Z). Moreover,
taking into account the vanishing of the third tensor factor, the last term in (3.5) can be
rewritten as

(Tr(XY Z)− Tr(XZY ))E ⊗ (γ(a, bc)− γ(ca, b)).

Now take X, Y, Z as follows: all their elements are zero besides the 3 × 3 upper left

corner, and the latter is



0 1 1
0 0 0
0 0 0


 for X,



0 0 0
1 0 1
0 0 0


 for Y , and



0 0 0
0 0 0
1 1 0


 for Z (so,

actually we are dealing with 3 × 3 matrices)†. It is straightforward to check that the 6
matrices formed by all triple products of X, Y, Z are linearly independent, and Tr(XY Z) −
Tr(XZY ) = 0. This implies that the second tensor factors in each of the first 6 terms of
(3.5) vanish. But then (3.5) reduces to just the last term, and picking any 3 matrices such
that Tr(XY Z)−Tr(XZY ) 6= 0 shows that the second tensor factor in the last term vanishes
too. By elementary manipulations with these vanishing conditions, we have α(a, b) = abu for
some u ∈ Z(A), and β(a, b) = bav for some v ∈ Z(A).

Now consider the equality

Tr(XY Z)(γ(a, bc)− γ(ca, b)) + Tr(XZY )(γ(ac, b)− γ(a, cb)) = 0.

Taking here, for example, X = Z = diag(1,−1, 0, . . . , 0) and Y = diag(

(
1 1
0 −1

)
, 0, . . . , 0),

we see that each of the two summands vanish separately, and, hence, γ(a, b) = γ′(ab) for a
linear map γ′ : A→ Z(A) such that γ′([A,A]) = 0.

Clearly, sln(A) is closed under Φ if and only if

1

n
(abu+ bav) + γ′(ab) ∈ [A,A]

for any a, b ∈ A, what can be rewritten as 1
n
a(u+ v) + γ′(a) ∈ [A,A] for any a ∈ A.

Now let us see what happens with values of Φ when one of the arguments belongs to
E ⊗ [A,A]. Substituting in the Poissonity condition for ϕi’s (3.3) X = E or Y = E, we get
that the map ϕi(E, ·) or ϕi(·, E), respectively, commutes with adZ for any Z ∈ sln(K). But

†It seems that almost any other 3 matrices will do. See Problem 3 at the end of this section.
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then it commutes with adZ for any Z ∈ gln(K), i.e., belongs to the centroid of gln(K). Hence
each of the ϕi(E,X) and ϕi(X,E) coincides with a scalar multiplication by X, and ϕi(E,E)
is proportional to E. This implies that the values of Φ for the arguments in question can be
written in the form

Φ(E ⊗ a,X ⊗ b) = X ⊗ β′(a, b)

Φ(X ⊗ b, E ⊗ a) = X ⊗ γ′(a, b)

Φ(E ⊗ a,E ⊗ b) = E ⊗ δ(a, b),

for X ∈ sln(K) and a ∈ [A,A], b ∈ A in the first two cases, and a, b ∈ [A,A] in the third one,
and where β′, γ′, δ : A→ A are some bilinear maps.

Now writing the Poissonity condition for triples E ⊗ a, X ⊗ b, Y ⊗ c, X, Y ∈ sln(K),
a ∈ [A,A], b, c ∈ A, and E ⊗ a, X ⊗ b, E ⊗ c, X ∈ sln(K), a, c ∈ [A,A], b ∈ A, we get
respectively:

XY ⊗ (β′(a, b)c− β′(a, bc) + b[c, a]v) + Y X ⊗ (β′(a, cb)− cβ′(a, b) + [c, a]bu)

+ Tr(XY )E ⊗ α′([c, a]b) = 0

and

X ⊗ ([c, β′(a, b)]− β′([c, a], b)− β′(a, [c, b])) = 0.

Then, obviously, each of the summands in the first of these two equalities vanishes separately
(take, for example, X = Y = diag(1,−1, 0, . . . , 0), and X = diag(1,−1, 0, . . . , 0), Y =

diag(

(
0 1
0 0

)
, 0, . . . , 0)). Consequently, α′([[A,A], A]A) = 0, and elementary transformations

with conditions on β′ entail that

β′(a, b) = abu+ bav + β′′(a)b

for any a ∈ [A,A], b ∈ B, where β′′ : [A,A] → Z(A) is a linear map satisfying the condition
β′′([[A,A], [A,A]]) = 0.

Similarly, the Poissonity condition for triples X ⊗ a, E ⊗ b, Y ⊗ c and X ⊗ a, E ⊗ b, E ⊗ c
entails that

γ′(a, b) = abu+ bav + γ′′(b)a

for any a ∈ A, b ∈ [A,A], where γ′′ : [A,A] → Z(A) is a linear map satisfying the condition
γ′′([[A,A], [A,A]]) = 0.

At least, the Poissonity condition for triples E ⊗ a, E ⊗ b, X ⊗ c, a, b ∈ [A,A], c ∈ A, and
E ⊗ a, E ⊗ b, E ⊗ c, a, b, c ∈ [A,A] yields

X ⊗ ([c, δ(a, b)]− γ′([c, a], b)− β′(a, [c, b])) = 0

and

E ⊗ ([c, δ(a, b)]− δ([c, a], b)− δ(a, [c, b])) = 0,

what implies

δ(a, b) = abu+ bav + β′′(a)b+ γ′′(b)a+ δ′(a, b)

for any a, b ∈ [A,A], where δ′ : [A,A]× [A,A] → Z(A) is a bilinear map such that δ′([c, a], b)+
δ′(a, [c, b]) = 0 for any a, b, c ∈ [A,A]. For sln(A) to be closed under Φ, abu + bav + δ′(a, b)
should lie in [A,A], what is equivalent to ab(u+ v) + δ′(a, b) ∈ [A,A] for any a, b ∈ [A,A].

It remains to collect all the obtained maps, to check in a straightforward way that they
are indeed Poisson structures on sln(A) (in fact, we already did that in almost all the cases
by considering various Poissonity conditions on basic elements of sln(A)), and to take the
quotient by trivial Poisson structures. As sln(A) is perfect, the trivial Poisson structures are
of the form (x, y) 7→ ω([x, y]) where ω belongs to the centroid of sln(A). The latter can be
computed in exactly the same way as the space of Poisson structures on sln(A) (though the



20 PASHA ZUSMANOVICH

computations are much simpler): the centroid of sln(A), n ≥ 3, is isomorphic to Z(A) and
consists of the maps

(X ⊗ a, Y ⊗ b) 7→ XY ⊗ abu− Y X ⊗ bau

for some u ∈ Z(A), where either X ∈ sln(K) and a ∈ A, or X = E and a ∈ [A,A], the same
for Y and b (this is also noted without proof in [Kr, Remark 5.6]). �

Remark 1. Corollary 2.2 and Theorem 3 overlap in the case g = sln(K), n ≥ 3, and A
commutative.

Remark 2. One may treat the case of sl2(A) along the same lines, but this case, as it is often
happens in such situations, is much more cumbersome. Let us briefly outline the relevant
reasonings, without going into details. As every Poisson structure on sl2(K) is trivial, we may
assume in (3.5) β = −α. Using that, and the identity Tr(XY Z)+Tr(XZY ) = 0 which holds
for any three 2 × 2 traceless matrices, one can easily single out in (3.5), like in the general
case, the term containing Tr(XY )Z, but the remaining reasonings are cumbersome: there
are not “enough” elements in sl2(K) to separate all the terms in (3.5). Say, substituting into

(3.5) all possible values of the standard sl2(K)-basis
{(

1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)}
, we get

a (highly redundant) homogeneous linear system with rational coefficients of 27 equations in
7 unknowns, which reduces to 4 independent relations. Using these relations, one can derive
that

α(a, b) = u(ab+ ba) + (ab+ ba)u

for some u ∈ A satisfying some additional conditions, but the relation between γ and α is
more involved.

When dealing with the identity (3.5), we were able to separate the terms by picking concrete
matrices X, Y , Z. Computer experiments suggest that almost any 3 traceless matrices will
do.

Problem 3. Provide an (elegant) algebro-geometric, or linear-algebraic proof of the follow-
ing statement: for any three 3 × 3 traceless matrices X, Y , Z in general position, the 7
matrices XY Z,XZY, Y XZ, Y ZX,ZXY,ZY X, and (Tr(XY Z)− Tr(XZY ))E, are linearly
independent.

At the end of this section, let us mention another widely studied problem amenable to
our methods. Namely, people studied a lot Lie-admissible third power-associative structures
compatible with a given Lie algebra structure. (Lie-admissibility alone is too general, and
third-power associativity is one of the most natural additional conditions leading to a mean-
ingful theory). This is known to be equivalent to description of all symmetric bilinear maps
Φ : L× L→ L on a given Lie algebra L, such that

[Φ(x, y), z] + [Φ(z, x), y] + [Φ(y, z), x] = 0

for any x, y, z ∈ L (see, for example, [JKL, §1]). The resemblance with the 2-cocycle equation,
as well as with Poissonity condition, is evident.

Problem 4. Describe Lie-admissible third power-associative structures on current, extended
current, Kac-Moody Lie algebras, and on Lie algebras of the form sln(A), similarly to how it
is done for Poisson structures in this and preceding sections.

This should provide, among other, a conceptual approach to results of [JKL], similarly
to those to Kubo’s results about Poisson structures discussed in §2. These computations
should be pretty much straightforward, though, perhaps, technically somewhat challenging
at places.
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4. Hom-Lie structures

Hom-Lie algebras (under different names, notably “q-deformed Witt or Virasoro”) started
to appear long time ago in the physical literature, in the constant quest for deformed, in that
or another sense, Lie algebra structures bearing a physical significance. Recently there was
a surge of interest in them, starting with the paper [HLS].

Recall that a Hom-Lie algebra L is an algebra with a skew-symmetric multiplication [ · , · ]
and a linear map ϕ : L → L such that the following generalization of the Jacobi identity,
called the Hom-Jacobi identity, holds:

(4.1) [[x, y], ϕ(z)] + [[z, x], ϕ(y)] + [[y, z], ϕ(x)] = 0

for any x, y, z ∈ L. Further variations of this notion arise by requiring ϕ to be a homomor-
phism, automorphism, etc., of an algebra L with respect to the multiplication [ · , · ].

If (L, [ · , · ]) is a Lie algebra, then a linear map ϕ : L→ L turning it into a Hom-Lie algebra
– i.e. such that (4.1) holds – is called a Hom-Lie structure on L. The set of all Hom-Lie
structures on L will be denoted by HomLie(L). Obviously, it is a subspace of EndK(L)
containing the identity map.

In this section, the characteristic of the base field K is assumed 6= 2, 3.

Theorem 4. Let L be a Lie algebra, A is an associative commutative algebra with unit, and
one of L, A is finite-dimensional. Then

HomLie(L⊗ A) ≃ HomLie(L)⊗ A+ {ϕ ∈ EndK(L) | [[L,L], ϕ(L)] = 0} ⊗ EndK(A).

Each Hom-Lie structure on L ⊗ A can be represented as a sum of decomposable Hom-Lie
structures of the form ϕ⊗ α, where ϕ ∈ EndK(L), α ∈ EndK(A), of the following two types:

(i) ϕ ∈ HomLie(L), α = Ru for some u ∈ A;
(ii) [[L,L], ϕ(L)] = 0.

Proof. As usual in our approach, decompose a Hom-Lie structure Φ on L⊗A as Φ =
∑

i∈I ϕi⊗
αi for suitable linear maps ϕi : L→ L and αi : A→ A. The Hom-Jacobi identity (4.1) then
reads

(4.2)
∑

i∈I

[[x, y], ϕi(z)]⊗ abαi(c) + [[z, x], ϕi(y)]⊗ caαi(b) + [[y, z], ϕi(x)]⊗ bcαi(a) = 0

for any x, y, z ∈ L, a, b, c ∈ A.
Cyclically permuting in this equality x, y, z, and summing up the obtained 3 equalities, we

get:
∑

i∈I

(
[[x, y], ϕi(z)] + [[z, x], ϕi(y)] + [[y, z], ϕi(x)]

)
⊗

(
abαi(c) + caαi(b) + bcαi(a)

)
= 0.

Easy transformations show (at this place the assumption that the characteristic of the ground
field 6= 2, 3 is essential) that the vanishing of the second tensor factor here, abαi(c)+caαi(b)+
bcαi(a), implies the vanishing of αi, hence the first tensor factor vanishes for each ϕi, i.e. each
ϕi is a Hom-Lie structure on L. Writing the latter condition as

[[z, x], ϕi(y)] = −[[x, y], ϕi(z)]− [[y, z], ϕi(x)]

and substituting this back to (4.2), we get:
∑

i∈I

[[x, y], ϕi(z)]⊗
(
abαi(c)− caαi(b)

)
+ [[y, z], ϕi(x)]⊗

(
bcαi(a)− caαi(b)

)
= 0

for any x, y, z ∈ L, a, b, c ∈ A.
Symmetrizing the last equality with respect to x, z, we get:

∑

i∈I

(
[[x, y], ϕi(z)]− [[y, z], ϕi(x)]

)
⊗
(
abαi(c)− bcαi(a)

)
= 0.
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The vanishing of the first tensor factor here, [[x, y], ϕi(z)] − [[y, z], ϕi(x)], together with the
Hom-Jacobi identity (4.1), implies that

(4.3) [[L,L], ϕi(L)] = 0.

The vanishing of the second tensor factor, abαi(c) − bcαi(a), implies that αi(a) = aαi(1).
Hence we may split the indexing set into two subsets: I = I1 ∪ I2 such that ϕi satisfies (4.3)
for i ∈ I1, and ϕi ∈ HomLie(L) and αi(a) = aui for some ui ∈ A, for i ∈ I2. It is obvious
that for each i ∈ I1, i ∈ I2, the decomposable map ϕi ⊗ αi satisfies the Hom-Jacobi identity
(4.2), and we are done. �

Hom-Lie structures on simple classical Lie algebras were described in [JL], and it is natural
to try to extend this result to Kac-Moody algebras. However, a direct attempt to generalize
Theorem 4 to extended current Lie algebras, like it is done for Poisson structures in §2, meets
certain technical difficulties.

Problem 5. Describe Hom-Lie structures on extended current and Kac-Moody Lie algebras,
and on Lie algebras of the form sln(A).

5. Dual operads and affinizations of Novikov algebras

The following is a well-known phenomenon from the operadic theory: if A and B are
algebras over binary quadratic operads (Koszul) dual to each other, then their tensor product
A⊗B equipped with the bracket

(5.1) [a⊗ b, a′ ⊗ b′] = aa′ ⊗ bb′ − a′a⊗ b′b

for a, a′ ∈ A, b, b′ ∈ B, becomes a Lie algebra ([GK, Theorem 2.2.6(b)]). The most famous
pairs of dual operads are (Lie, associative commutative) and (associative, associative). In
the first case, this constructions leads to current Lie algebras, and in the second one – to Lie
algebras of the form (A⊗B)(−) for two associative algebras A, B, of which gln(A) and sln(A)
are important special cases.

We are going now to describe another broad and interesting class of Lie algebras, which
fits into this scheme for yet another pair of dual operads.

The ground field K is arbitrary, unless specified otherwise.
Recall that an algebra is called left Novikov if it satisfies two identities:

(5.2) (xy)z − x(yz) = (yx)z − y(xz)

and

(xy)z = (xz)y.

If an algebra satisfies the opposite identities (the order of multiplication is reversed):

(5.3) (xy)z − x(yz) = (xz)y − x(zy)

and

x(yz) = y(xz),

then it is called right Novikov. By just Novikov algebras we will mean algebras which are
either left or right Novikov.

Every associative commutative algebra is (both left and right) Novikov. An important
feature of Novikov algebras is that they are Lie-admissible.

Let N be a left Novikov algebra, G a commutative semigroup (written multiplicatively),
and χ : G→ K a map. Define a bracket on the tensor product N ⊗K[G], where K[G] is the
semigroup algebra, as follows:

(5.4) [x⊗ a, y ⊗ b] =
(
χ(a)xy − χ(b)yx

)
⊗ ab,

where x, y ∈ N and a, b ∈ G. This bracket is obviously anticommutative.
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Lemma 5.1. For a fixed G and χ as above, the bracket (5.4) satisfies the Jacobi identity for
an arbitrary left Novikov algebra N if an only if

(5.5) χ(ab)− χ(ac) = χ(b)− χ(c)

for any a, b, c ∈ G.

Proof. A tedious, but straightforward check. �

Remark. If G contains a unit e, then the property (5.5) is equivalent to

χ(ab) = χ(a) + χ(b)− χ(e)

for any a, b ∈ G.

A map satisfying the property (5.5) will be called a quasi-character of G. If χ is a quasi-
character of a commutative semigroup G, then the Lie algebra defined by the bracket (5.4)
will be denoted as Nχ[G]. Let us list a few interesting special cases of this construction.

(i) Witt algebras. G = (Z,+) (so K[G] ≃ K[t, t−1], the algebra of Laurent polynomials),
χ = degree of the monomial, and N = K. This is the famous infinite-dimensional (two-sided)
Witt algebraW with the basis {em |m ∈ Z} and multiplication [em, en] = (m−n)em+n, m,n ∈
Z. A variation of this constructions assumes K has characteristic p > 0, and G = Z/pZ (so
K[G] ≃ K[t]/(tp)), leading to the p-dimensional Witt algebra.

(ii) Current algebra over a Witt algebra. More generally, taking in the previous example
N as an arbitrary associative commutative algebra instead of K, we get the tensor product
of the corresponding Witt algebra with N .

(iii) Skew-symmetrization of a Novikov algebra. G = {1} and χ(1) = 1. This is the Lie
algebra N (−), a skew-symmetrization of N .

(iv) Current algebra over a skew-symmetrization of a Novikov algebra. More generally,
letting G be arbitrary and χ is identically 1, we get the current Lie algebra

N (−) ⊗K[G] ≃ (N ⊗K[G])(−).

(v) Affinization of a Novikov algebra. G = (Z, ∗), where n ∗m = n +m − 1 (so K[G] ≃
K[t, t−1] with multiplication tmtn = tn+m−1), χ = degree of the monomial. The resulting Lie
bracket is

[x⊗ tm, y ⊗ tn] = (mxy − nyx)⊗ tm+n−1,

where x, y ∈ N , n,m ∈ Z. This construction, which appeared (in a somewhat implicit form)
in the pioneering papers [GD] and [BaNo] (in the latter, under the name “Poisson brackets of
hydrodynamic type”), appears also in various physical questions, and in the theory of vertex
operator algebras (see references in [PB1], [PB2]). It resembles the construction of untwisted
affine Kac-Moody algebras, and we will call it affinization of the Novikov algebra N .

(vi) The Heisenberg–Virasoro algebra (see [PB1]). Specializing example (v) to the case
where N is the algebra with the basis {x, y} and multiplication table

x y
x x 0
y y 0

we get a nilpotent extension of the two-sided Witt algebra 〈em, hm |m ∈ Z〉 with multiplica-
tion table

(5.6) [em, en] = (m− n)em+n, [em, hn] = −nhm+n, [hm, hn] = 0

for m,n ∈ Z.
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(vii) The Schrödinger–Virasoro algebra (see [PB2]). Specializing example (v) to the case
where N is the algebra with the basis {x, y, z} and multiplication table

x y z
x x 0 1

2
z

y y 0 0
z z y 0

we get a nilpotent extension of the two-sided Witt algebra 〈em, hm, fr |m ∈ Z, r ∈ 1
2
+Z〉 with

multiplication rules between the basic elements, in addition to relations (5.6), as follows:

[em, fr] =
(m
2
− r

)
fm+r, [fr, fs] = (r − s)hr+s, [hm, fr] = 0

for m ∈ Z, r, s ∈ 1
2
+ Z.

As we see, most of the interesting instances of Nχ[G] are infinite-dimensional, physically-
motivated Lie algebras of characteristic zero. We suggest that this construction may serve
as an organizing principle in an entirely different, at the first glance, context – in the unruly
world of simple finite-dimensional Lie algebras over fields of small characteristics.

Problem 6. Is it possible to realize the so-called bi-Zassenhaus algebras over a field of char-
acteristic 2 introduced in [Ju], as Lie algebras of the form Nχ[G] for suitable N , G and
χ?

Bi-Zassenhaus algebras form a family parametrized by two integers g ≥ 2, h ≥ 1 and are
constructed as follows. Consider a Lie algebra with the basis {e(i,α) | i ∈ Z/2Z, α ∈ Z/2g+hZ}
and multiplication table:

[e(0,α), e(0,β)] = (α + β)e(0,α+β)

[e(0,α), e(1,β)] = (α + β)e(1,α+β)

[e(1,α), e(1,β)] = (α2g−1 + β2g−1)e(0,α+β).

This algebra possess an ideal which is a simple Lie algebra looking, at the first glance, very
different from the simple modular Lie algebras of Cartan type†. Note that it is not a skew-
symmetrization of a Novikov algebra, so G in such realization should contain more than one
element. On the other hand, dimension of N should be at least 3, as a seemingly direct
approach – take a 2-dimensional Novikov algebra to parametrize the first coordinate in the
set of indices – does not work, as a quick glance at the list of such algebras (for example, in
[BM, §2]) reveals.

Problem 7. The same question for Melikyan algebras – a series of simple Lie algebras over
a field of characteristic 5 which are neither of classical, nor of Cartan type, and is peculiar
to that characteristic (see [S, §4.3]).

This question is, apparently, more difficult.

It is remarkable (though pretty much straightforward) that, actually, the bracket (5.4) is
a particular case of (5.1). Namely, as noted in [D3, §4], the left Novikov and right Novikov
operads are dual to each other, hence if A is a left Novikov algebra and B is a right Novikov
one, their tensor product A⊗ B equipped with the bracket (5.1), is a Lie algebra. If G is a
commutative semigroup and χ its quasi-character, then the semigroup algebraK[G] equipped
with multiplication a · b = χ(a)ab for a, b ∈ G, becomes a right Novikov algebra, and the
bracket (5.4) becomes a particular case of the bracket (5.1) with A = N and B = (K[G], ·).

In [PB1], [PB2] it was demonstrated how central extensions of algebras from the examples
(vi) and (vii) above, can be realized in terms of some bilinear forms on the underlying Novikov

†However, recently is was shown that it is isomorphic to a suitable Hamiltonian algebra under a highly
non-trivial isomorphism, see [Gr] and [BLLS, §3].
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algebra N . We suggest that these results are instances of a more general principle, which is
a generalization of results of [Z1], [Z3] and §§2-4 of this paper, from current Lie algebras and
Lie algebras of the form sln(A), to Lie algebras with the bracket (5.1):

Problem 8. Describe, as much as possible, low-degree (co)homology, invariant bilinear
forms, Poisson structures, Hom-Lie structures on Lie algebras of the form (A⊗B)(−), where
A, B are algebras over dual binary quadratic operads, in terms of the underlying algebras A
and B.

As we have seen at the beginning of §3, even in the “classical” case, when both A and B
are associative, this can be unfeasible in some cases, so it is interesting to understand which
concrete properties of operads turn that or another problem of that type to a tractable one.

At least, we expect that all this is entirely tractable for algebras of the form Nχ[G]:

Problem 9. Describe low-degree (co)homology, invariant bilinear forms, Poisson structures,
Hom-Lie structures on Lie algebras of the form Nχ[G] in terms of N and G.

Specializing these conjectural description further to the case (v) above, we should get the
corresponding results for affinizations of Novikov algebras, similarly to how the results for
Kac-Moody algebras are derived from those for current Lie algebras.

We conclude with yet another couple of problems.
Arguing from the physical perspective, Bai, Meng and He in [BMH] called the left Novikov

algebras bosonic, and introduced a new class of so-called fermionic Novikov algebras as al-
gebras satisfying two identities: the left-symmetric identity (5.2), and

(xy)z = −(xz)y.

We will call such algebras left fermionic Novikov. The dual operad to the left fermionic
Novikov operad is right fermionic Novikov, governed by two identities: the right-symmetric
identity (5.3), and

x(yz) = −y(xz).

Problem 10. Are there “interesting” Lie algebras realized as (5.1) in this context, i.e. as
skew-symmetrization of the tensor product of left and right fermionic Novikov algebras?

Problem 11. To superize constructions of this section. Consider Problems 8 and 9 for
superalgebras.

We expect that this conjectural superization will provide an alternative view (and probably
much more) on the so-called stringy Lie superalgebras, see [KL], [GLS] and [Be, Appendix
D3, §8].
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