QUESTIONS ABOUT SIMPLE LIE ALGEBRAS IN CHARACTERISTIC 2 BY ALEXANDER GRISHKOV

PASHA ZUSMANOVICH

The ground field is assumed algebraically closed of characteristic 2, unless stated otherwise, and all algebras and modules assumed to be finite-dimensional. W_1 and H_2 are 7-dimensional simple Lie algebras, the Zassenhaus algebra and the Hamiltonian algebra, respectively (see [GG2] and [GGA]), the Skryabin algebra is a certain simple 15-dimensional algebra (see [GGRZ]).

1. LIE ALGEBRAS OF LOW DIMENSION

1.1. (asked in [GGA]). Describe irreducible representations of W_1 and H_2.

1.2. Elements in the 15-dimensional Skryabin algebra. For the 2-envelope of the 15-dimensional Skryabin algebra, describe conjugacy classes of the following elements:

1. (toral elements);
2. elements satisfying $x^{[2]} \in \langle x \rangle$;
3. elements satisfying $x^{[2^n]} = 0$, for all n;

1.3. Gradings. Describe gradings of the 7-dimensional Hamiltonian algebra and the 15-dimensional Skryabin algebra (the latter question is asked in [GGRZ]). The $\mathbb{Z}/2\mathbb{Z}$-gradings probably could be handled with the approach from [KL].

2. CLASSIFICATION OF SIMPLE LIE ALGEBRAS

2.1. Describe simple Lie algebras of dimension 7. Conjecture: they are isomorphic either to W_1, or to H_2. For algebras of absolute toral rank 3, this is proved in [GGA].

2.2. For each known simple Lie algebra, compute its absolute toral rank and the automorphism group.

2.3. (posed in [GG1]). Let L be a Lie algebra over a field of characteristic $p > 0$ such that $\text{Der}(L)$ contains a subalgebra S isomorphic to \mathfrak{sl}_2 (note that if $p = 2$, then \mathfrak{sl}_2 is nilpotent). Let us call the pair (S, L) semisimple, if L decomposed as an S-module as

$$L = \bigoplus_i S_i \oplus \bigoplus_j V_j,$$

where each S_i is a submodule of $M_2(K)$, and each V_j is an irreducible S-module.

Conjecture: L is of classical type if and only if there exists a semisimple pair (L, S).

2.4. Simple Lie algebras of toral rank 1. Describe simple Lie algebras L having a Cartan subalgebra of toral rank 1 in L. According to [S, Theorem 6.3], they are either Zassenhaus, or Hamiltonian, or filtered deformations of semisimple Lie algebras G of the form

$$S \otimes \mathcal{O}_1(n) \subset G \subseteq \text{Der}(S) \otimes \mathcal{O}_1(n) + K \partial,$$

where either $n = 2$ and $S \simeq W'_1(m)$, or $n = 1$ and $S \simeq H''_2(m_1, m_2)$. In [GZ] those deformations are computed in the simplest case when $S = W'_1(2)$, the 3-dimensional simple algebra. So the question is reduced to computation of those deformations in general case.

Which of those simple algebras admit a thin decomposition?

2.5. Classify finite-dimensional simple Lie 2-algebras.

2.6. (asked in [GGRZ]). Classify finite-dimensional simple Lie algebras having a \mathbb{Z}-grading with all homogeneous components of dimension < 3.

3. ROOT SPACE DECOMPOSITIONS

3.1. Conjecture. Let L be a simple Lie algebra, T a torus of the maximal dimension in the 2-envelope of L, and $T \cap L = 0$. Then in the root space decomposition $L = \bigoplus \alpha L_\alpha$, $\dim L_\alpha$ is a constant (i.e., does not depend on α).

Date: first written February 3, 2021; last updated September 5, 2021.
3.2. Thin decompositions. Derivations. (asked in [GGRZ]). Conjecture. If \(L \) is a simple Lie algebra admitting a thin decomposition, then \(\text{Der}(L) \cong T \oplus L \).

3.3. Thin decompositions. Classification. (asked in [GGRZ]). To classify simple Lie algebras over an algebraically closed field admitting a thin decomposition, i.e., when \(\dim L = 2^n - 1 \), \(\dim T = n \), the roots are exactly \(GF(2)^n \setminus (0, \ldots, 0) \), and \(\dim L_\alpha = 1 \) for any root \(\alpha \).

3.4. Thin decompositions. Subalgebras. Prove that any simple Lie algebra of dimension \(> 3 \) over a field of characteristic 2 admitting a thin decomposition, has:
 a) a proper simple graded subalgebra (with respect to this decomposition);
 b) a graded subalgebra isomorphic either to \(W_1 \) or to \(H_2 \).

3.5. Thin decompositions. Modules. Conjecture. Let \(L \) be a simple Lie algebra of dimension \(2^n - 1 \) with a thin decomposition, \(V \) an irreducible \(2^n \)-dimensional \(L \)-module. Assume that there is a simple Lie algebra with thin decomposition of the form \(L \oplus V \), where \(L \) is a subalgebra, the multiplication between \(L \) and \(V \) is given by the action of \(L \) on \(V \), and the multiplication between elements of \(V \) is given by the map \(f : V \times V \rightarrow L \). The the map \(f \) is determined uniquely. Study this situation for \(L = W_1 \) or \(H_2 \) (the Skryabin algebra arises in this way from \(H_2 \)).

3.6. Variety of algebras with a thin decomposition. Let \(L \) be a Lie algebra with thin decomposition, with multiplication defined by \([e_g, e_h] = f(g, h)e_{g+h}\). Study the variety of all possible functions \(f \) defining a thin Lie algebra, from the algebro-geometric viewpoint. What are irreducible components? Which simple Lie algebras are “generic” in this sense?

REFERENCES

Email address: pasha.zusmanovich@gmail.com