LIE ALGEBRAS THAT CAN BE WRITTEN AS THE SUM OF TWO NILPOTENT SUBALGEBRAS

PASHA ZUSMANOVICH

This is a short survey about the current state of affairs with Lie algebras L that can be written as the sum of two nilpotent subalgebras $A, B: L=A+B$. The sum is understood in the sense of vector spaces and is not (necessarily) direct.

Motivated by similar questions from Group Theory and Ring Theory, Kegel [Ke] asked in 1963 whether a Lie ring that can be written as the sum of two nilpotent subrings, is solvable.

If we restrict our attention to algebras over a field, it is easy to see that without loss of generality one can assume that the ground field is algebraically closed. If, further, we restrict our attention to the finite-dimensional algebras, the existing powerful arsenal of structure theory immediately yields a positive answer in the zero characteristic case (see [G] or [Kos]). As it always happens, in characteristic $p>0$ the situation becomes more complicated, and the attention to this question was renewed in 1982 by Kostrikin [Kos].

After that, Petravchuk [Pe1] gave an example providing a negative answer to the question in characteristic 2. In positive direction, a few particular results (with restrictions on the index of nilpotency of one of the summands) were obtained (including [Pe1]), and at the beginning of 1990s Panyukov [Pa1] (for characteristic $p>2$) and myself [Z] (for characteristic $p>5$), using different approaches, provided a positive answer in the general case.

A further question arise of precise description of a class of such algebras inside the class of all solvable algebras (see [Z], [Pa2], and [BTT]).

Numerous results about finite groups that can be decomposed into a product of two groups with different properties, may be found in [CS], [F], [H, Chap. VI], and references therein.

Degree of solvability

So, L is solvable. What can be said about its degree of solvability $s(L)$ in terms of degrees of nilpotency $n(A)$ and $n(B)$ of A and B ?

In [Kol, Proposition 1.5], following the well-known result of Ito for groups, it is proved that if $n(A)=$ $n(B)=1$ (i.e., both A and B are abelian), then $s(L)=2$ (i.e., L is metabelian).

In [Pe5] it is proved that if $n(A)=1$ (i.e., A is abelian) and $n(B)=2$ (i.e., B is 2-step nilpotent), then $s(L) \leq 10$. This bound is, probably, too rough. I do not know an example of such algebra with $s(L)>3$.

Question 1 (Dietrich Burde). Is it true that if $n(A)=1$ and $n(B)=2$, then $s(L) \leq 3$?
Examples of groups for which $s(L)>n(A)+n(B)$, are given in [CS].
Form the results of $[\mathrm{Pe} 2]$ follows, that if $n(A)=1$, then $s(L)$ is bounded by a function of $n(B)$.
Question 2. Is it possible to bound $s(L)$ by a linear function of $n(A)$ and $n(B)$?
The same question for groups is asked in Kourovka notebook, question 14.43.

Infinite-dimensional algebras

What happens in the infinite-dimensional situation?
Question 3. Is it true, that an infinite-dimensional Lie algebra over a field of characteristic $\neq 2$ that can be written as the sum of two nilpotent subalgebras, is solvable?

This was (re)asked, in particular, in [BTT] and by Rutwig Campoamor-Stursberg.
In [Pe 2] a positive answer is obtained in the case when one of the summands is abelian.
In [Pe3], a positive answer to this question is provided in the two cases: when one of the summands is finite-dimensional, and when commutants of both summands are finite-dimensional, and in [HS] for the class of locally-finite Lie algebras (i.e. Lie algebras all whose finitely-generated algebras are finite-dimensional). Both results are obtained by a quick and easy reduction to the finite-dimensional case.

Similar results for infinite groups (with, again, that or another finiteness conditions) were obtained by N.S. Chernikov (see [C] and references in [Pe3]).

A weaker question is also open:
Question 4. Is it true, that an (infinite-dimensional) associative algebra that can be written as the sum of two Lie-nilpotent associative algebras, is Lie-solvable?

An affirmative answer is known in the cases when one of the summands is commutative ([Pe4]), or is an one-sided ideal ([LP, Corollary 1]).

References

[BTT] Y. Bahturin, M. Tvalavadze, and T. Tvalavadze, Sums of simple and nilpotent Lie algebras, Comm. Algebra 30 (2002), 4455-4471.
[C] N.S. Chernikov, Infinite groups that are products of nilpotent subgroups, Soviet Math. Dokl. 21 (1980), N3, 701-703.
[CS] J. Cossey and S. Stonehewer, On the derived length of finite dinilpotent groups, Bull. London Math. Soc. 30 (1998), 247-250.
[F] E. Fisman, Finite factorizable groups, PhD Thesis, Bar-Ilan University, 1982.
[G] M. Goto, Note on a characterization of solvable Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I 26 (1962), 1-2.
[HS] M. Honda and T. Sakamoto, Lie algebras represented as a sum of two subalgebras, Math. J. Okayama Univ. 42 (2000), 73-81.
[H] B. Huppert, Endliche Gruppen. I, Springer, 1967.
[Ke] O.H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann. 149 (1963), 258-260.
[Kol] B. Kolman, Semi-modular Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 149-163.
[Kos] A.I. Kostrikin, A solvability criterion for a finite-dimensional Lie algebra, Moscow Univ. Math. Bull. 37 (1982), N2, 21-26.
[LP] V.S. Luchko and A.P. Petravchuk, On one-sided Lie nilpotent ideals of associative rings, Algebra Discrete Math. 2007, N4, 102-107; arXiv:0803.0968.
[Pa1] V.V. Panyukov, On the solvability of Lie algebras of positive characteristic, Russ. Math. Surv. 45 (1990), N4, 181182.
[Pa2] ,On solvable Lie algebras decomposable into a sum of two nilpotent subalgebras, Sbornik Math. 83 (1995), 221-235.
[Pe1] A.P. Petravchuk, Lie algebras which can be decomposed into the sum of an abelian subalgebra and a nilpotent subalgebra, Ukrain. Math. J. 40 (1988), 331-334.
[Pe2] , The solubility of a Lie algebra which decomposes into a direct sum of an abelian and a nilpotent subalgebra, Ukrain. Math. J. 43 (1991), 920-924.
[Pe3] , On the sum of two Lie algebras with finite dimensional commutants, Ukrain. Math. J. 47 (1995), N8, 12441252.
[Pe4] , On the Lie solvability of sums of some associative rings, Visn. Kyïv. Univ. Ser. Fiz.-Mat. Nauki 1999, N1, 78-81 (in Russian). ${ }^{\dagger}$
[Pe5] \qquad , On derived length of the sum of two nilpotent Lie algebras, Visn. Mat. Mekh. Kyïv. Univ. 2001, No.6, 53-56 (in Ukrainian).
[Z] P. Zusmanovich, A Lie algebra that can be written as a sum of two nilpotent subalgebras, is solvable, Math. Notes 50 (1991), 909-912; arXiv:0911.5418.

Email address: pasha.zusmanovich@gmail.com

[^0]
[^0]: ${ }^{\dagger}$ I have not seen that paper and judging it solely by MR2003a:16043.

