A classification scheme for the inverse problem in arbitrary dimension

Thoan Do \& Geoff Prince
Department of Mathematics and Statistics
La Trobe University

Department of Mathematics, Ostrava University
Ostrava, Czech Republic July 7, 2016.

Φ is diagonalisable with distinct eigenvalues, $p \neq 0$ non-integrable, $n-p$ integrable co-distributions

Φ is diagonalisable with distinct eigenvalues, $p \neq 0$ non-integrable, $n-p$ integrable co-distributions

Non-existence theorem

Suppose that the matrix Φ is diagonalisable with distinct eigenvalues. If Φ has p non-integrable co-distributions and up to differential ideal step p no differential ideal has been found, then there is no non-degenerate multiplier.

Φ is diagonalisable with distinct eigenvalues, $p \neq 0$ non-integrable, $n-p$ integrable co-distributions

Non-existence theorem
Suppose that the matrix Φ is diagonalisable with distinct eigenvalues. If Φ has p non-integrable co-distributions and up to differential ideal step p no differential ideal has been found, then there is no non-degenerate multiplier.

- A differential ideal is generated at step 1 , step $2, \ldots$, up to step p \Rightarrow the existence of non-degenerate multiplier depends on whether the Pfaffian system admits solutions.

Φ is diagonalisable with distinct eigenvalues, $p \neq 0$ non-integrable, $n-p$ integrable co-distributions

In Differential ideal step:

$$
\Sigma^{1} \supset \Sigma^{2} \supset \ldots \supseteq \Sigma^{f}
$$

Φ is diagonalisable with distinct eigenvalues, $p \neq 0$ non-integrable, $n-p$ integrable co-distributions

In Differential ideal step:

$$
\Sigma^{1} \supset \Sigma^{2} \supset \ldots \supseteq \Sigma^{f}
$$

\Rightarrow If there is 1 non-integrable co-distribution, necessary conditions for the existence of non-degenerate multiplier is that $\left\langle\Sigma^{1}\right\rangle$ is a differential ideal.

Φ is diagonalisable with distinct eigenvalues, $p \neq 0$ non-integrable, $n-p$ integrable co-distributions

In Differential ideal step:

$$
\Sigma^{1} \supset \Sigma^{2} \supset \ldots \supseteq \Sigma^{f}
$$

\Rightarrow If there is 1 non-integrable co-distribution, necessary conditions for the existence of non-degenerate multiplier is that $\left\langle\Sigma^{1}\right\rangle$ is a differential ideal.
\Rightarrow If there is 2 non-integrable co-distributions, necessary conditions for the existence of non-degenerate multiplier is that $\left\langle\Sigma^{1}\right\rangle$ or $\left\langle\Sigma^{2}\right\rangle$ is a differential ideal.

Φ is diagonalisable with distinct eigenvalues, $p \neq 0$ non-integrable, $n-p$ integrable co-distributions

Theorem (Do, 2016)

Assume that $\boldsymbol{\Phi}$ is diagonalisable with distinct (real) eigenvalues and with $p \neq 0$ non-integrable eigen co-distributions. Suppose that eigen co-distributions are ordered such that $\operatorname{Sp}\left\{\phi^{A V}, \phi^{A H}\right\}$, $A=1, \ldots, p$ are non-integrable. Suppose further that $\operatorname{rank}\left(\mathbf{A}_{1}\right)=p-1$. Then the necessary and sufficient conditions for the existence of a solution for the associated inverse problem are that the given conditions hold. Moreover, the solution (if it exists) depends on $n-p$ arbitrary functions of 2 variables each.

Φ is diagonalisable with distinct eigenvalues, $p \neq 0$ non-integrable, $n-p$ integrable co-distributions

In Differential ideal step:

$$
\Sigma^{1} \xrightarrow{A_{1}} \Sigma^{2} \xrightarrow{A_{2}} \cdots \xrightarrow{A_{p-1}} \Sigma^{p} \xrightarrow{A_{p}} \Sigma^{p+1} .
$$

- \mathbf{A}_{i} is system of homogeneous linear algebraic equations required for $d \omega \in\left\langle\Sigma^{i}\right\rangle$ where $\omega \in \Sigma^{i}$
$-\operatorname{rank}\left(\mathbf{A}_{1}\right) \in\{0,1, \ldots, p\}$ and $\operatorname{rank}\left(\mathbf{A}_{i+1}\right) \leq p-\sum_{k=1}^{i} \operatorname{rank}\left(\mathbf{A}_{k}\right)$,
- if $\operatorname{rank}\left(\mathbf{A}_{1}\right)=p \Rightarrow$ no non-degenerate solutions.

$N=3: \Phi$ is diagonalisable with distinct eigenvalues with p non-integrable co-distributions

A classification scheme
CASE 1. $p=0$ (known).

$N=3: \Phi$ is diagonalisable with distinct eigenvalues with p non-integrable co-distributions

A classification scheme
CASE 1. $p=0$ (known).
CASE 2. $p=1$. $\left(\operatorname{rank}\left(A_{1}\right)=0 \Rightarrow\left\langle\Sigma^{1}\right\rangle\right.$ is DI$)$ or no solutions.
$N=3: \Phi$ is diagonalisable with distinct eigenvalues with p non-integrable co-distributions

A classification scheme
CASE 1. $p=0$ (known).
CASE 2. $p=1$. $\left(\operatorname{rank}\left(A_{1}\right)=0 \Rightarrow\left\langle\Sigma^{1}\right\rangle\right.$ is DI$)$ or no solutions.
CASE 3. $p=2$.
$\operatorname{rank}\left(A_{1}\right)=0 \Rightarrow\left\langle\Sigma^{1}\right\rangle$ is DI.
$\left(\operatorname{rank}\left(A_{1}\right)=1\right.$ and $\operatorname{rank}\left(A_{2}\right)=0 \Rightarrow\left\langle\Sigma^{2}\right\rangle$ is DI$)$ or no solutions. $\operatorname{rank}\left(A_{1}\right)=2 \Rightarrow$ no solutions.

$N=3: \Phi$ is diagonalisable with distinct eigenvalues with p

 non-integrable co-distributions
A classification scheme

CASE 1. $p=0$ (known).
CASE 2. $p=1$. $\left(\operatorname{rank}\left(A_{1}\right)=0 \Rightarrow\left\langle\Sigma^{1}\right\rangle\right.$ is DI$)$ or no solutions.
CASE 3. $p=2$.
$\operatorname{rank}\left(A_{1}\right)=0 \Rightarrow\left\langle\Sigma^{1}\right\rangle$ is DI.
$\left(\operatorname{rank}\left(A_{1}\right)=1\right.$ and $\operatorname{rank}\left(A_{2}\right)=0 \Rightarrow\left\langle\Sigma^{2}\right\rangle$ is DI$)$ or no solutions.
$\operatorname{rank}\left(A_{1}\right)=2 \Rightarrow$ no solutions.
CASE 4. $p=3$.
$\operatorname{rank}\left(A_{1}\right)=0 \Rightarrow\left\langle\Sigma^{1}\right\rangle$ is DI .
$\operatorname{rank}\left(A_{1}\right)=1$.

$$
\operatorname{rank}\left(A_{2}\right)=0 \Rightarrow\left\langle\Sigma^{2}\right\rangle \text { is } \mathrm{DI}
$$

$$
\left.\operatorname{rank}\left(A_{2}\right)=1 \text { and } \operatorname{rank}\left(A_{3}\right)=0 \Rightarrow\left\langle\Sigma^{3}\right\rangle \text { is } \mathrm{DI}\right) \text { or no }
$$

solutions.
$\left(\operatorname{rank}\left(A_{1}\right)=2\right.$ and $\operatorname{rank}\left(A_{2}\right)=0 \Rightarrow\left\langle\Sigma^{2}\right\rangle$ is DI$)$ or no solutions.
$\operatorname{rank}\left(A_{1}\right)=3 \Rightarrow$ no solutions.

Φ is diagonalisable with distinct eigenvalues, $p=2$ non-integrable co-distributions and $\operatorname{rank}\left(\mathbf{A}_{1}\right)=1$

Assume $\operatorname{Sp}\left\{\phi^{1 V}, \phi^{1 H}\right\}$ and $\operatorname{Sp}\left\{\phi^{2 V}, \phi^{2 H}\right\}$ are non-integrable STEP 1:Differential ideal step
$\Sigma^{1}:=\operatorname{Sp}\left\{\omega^{c}:=\phi^{c V} \wedge \phi^{c H}: c=1, \ldots, n\right\}$
$d \omega \in\left\langle\Sigma^{1}\right\rangle$, where $\omega:=r_{c} \omega^{c} \in \Sigma^{1}$ is equivalent to system \mathbf{A}_{1} :

$$
\begin{aligned}
& r_{1} \tau_{2}^{1 \Gamma}+r_{2} \tau_{1}^{2 \Gamma}=0 \\
& r_{1} \tau_{\alpha}^{1 \Gamma}=0 \\
& r_{2} \tau_{\alpha}^{2 \Gamma}=0 \\
& r_{1}\left(\tau_{2 \alpha}^{1 V}-\tau_{\alpha 2}^{1 V}\right)-r_{2} \tau_{\alpha 1}^{2 V}=0 \\
& r_{1} \tau_{2 \alpha}^{1 V}-r_{2} \tau_{1 \alpha}^{2 V}=0 \\
& r_{1}\left(\tau_{2 \alpha}^{1 H}-\tau_{\alpha 2}^{1 H}\right)-r_{2} \tau_{\alpha 1}^{2 H}=0 \\
& r_{1} \tau_{2 \alpha}^{1 H}-r_{2} \tau_{1 \alpha}^{2 H}=0 \\
& r_{1} \phi^{1 V}\left(R\left(X_{2}^{H}, X_{\alpha}^{H}\right)\right)-r_{2} \phi^{2 V}\left(R\left(X_{1}^{H}, X_{\alpha}^{H}\right)\right)=0
\end{aligned}
$$

Φ is diagonalisable with distinct eigenvalues, $p=2$ non-integrable co-distributions and $\operatorname{rank}\left(\mathbf{A}_{1}\right)=1$

STEP 1: Differential ideal step
We have conditions

$$
\begin{equation*}
\tau_{\alpha}^{1 \Gamma}=0, \quad \tau_{\alpha}^{2 \Gamma}=0, \text { for all } \alpha=3, \ldots, n \tag{1}
\end{equation*}
$$

And at least one of the expressions

$$
\begin{equation*}
-\frac{\tau_{2}^{1 \Gamma}}{\tau_{1}^{2 \Gamma}}, \frac{\tau_{2 \alpha}^{1 V}-\tau_{\alpha 2}^{1 V}}{\tau_{\alpha 1}^{2 V}}, \frac{\tau_{2 \alpha}^{1 V}}{\tau_{1 \alpha}^{2 V}}, \frac{\tau_{2 \alpha}^{1 H}-\tau_{\alpha 2}^{1 H}}{\tau_{\alpha 1}^{2 H}}, \frac{\tau_{2 \alpha}^{1 H}}{\tau_{1 \alpha}^{2 H}}, \frac{\phi^{1 V}\left(R\left(X_{2}^{H}, X_{\alpha}^{H}\right)\right)}{\phi^{2 V}\left(R\left(X_{1}^{H}, X_{\alpha}^{H}\right)\right)} \tag{2}
\end{equation*}
$$

for all $\alpha=3, \ldots, n$, must be non-zero and when they are non-zero, they must be equal. $\Rightarrow h_{2}$ equals the non-zero expressions.
$\Sigma^{2}:=\operatorname{Sp}\left\{\tilde{\omega}^{1}, \omega^{\alpha}: \alpha=3, \ldots, n\right\}$, with $\tilde{\omega}^{1}=\omega^{1}+h_{2} \omega^{2}$

Φ is diagonalisable with distinct eigenvalues, $p=2$ non-integrable co-distributions and $\operatorname{rank}\left(\mathbf{A}_{1}\right)=1$

STEP 1: Differential ideal step
$\Sigma^{2}:=\operatorname{Sp}\left\{\tilde{\omega}^{1}, \omega^{\alpha}: \alpha=3, \ldots, n\right\}$, with $\tilde{\omega}^{1}=\omega^{1}+h_{2} \omega^{2}$
$d \omega \in\left\langle\Sigma^{2}\right\rangle$, where $\omega:=\tilde{r}_{1} \tilde{\omega}^{1}+r_{\alpha} \omega^{\alpha} \in \Sigma^{2}$
if and only if

$$
d \tilde{\omega}^{1} \in\left\langle\Sigma^{2}\right\rangle
$$

equivalently

$$
\begin{equation*}
d h_{2}+\xi_{2}^{1}+h_{2}\left(\xi_{2}^{2}-\xi_{1}^{1}\right) \equiv 0 \quad\left(\bmod \phi^{2 V}, \phi^{2 H}\right) \tag{3}
\end{equation*}
$$

STEP 2: Pfaffian system step
Find closed 2-forms $\Omega \in \Sigma^{2}$
$d \Omega=0$ gives the system of Pfaffian equations

$$
\begin{aligned}
& d \tilde{r}_{1}+\tilde{r}_{1} \tilde{\xi}_{1}^{1}=0 \\
& d r_{\alpha}+\tilde{r}_{1} \tilde{\xi}_{\alpha}^{1}+r_{\alpha} \xi_{\alpha}^{\alpha}=-P_{\alpha} \phi^{\alpha V}-Q_{\alpha} \phi^{\alpha H}(\text { no sum on } \alpha)
\end{aligned}
$$

where $\alpha=p+1, \ldots, n$ and P_{α}, Q_{α} are arbitrary functions.
Set

$$
\begin{aligned}
\sigma_{1} & :=d \tilde{r}_{1}+\tilde{r}_{1} \tilde{\xi}_{1}^{1} \\
\sigma_{\alpha} & :=d r_{\alpha}+\tilde{r}_{1} \tilde{\xi}_{\alpha}^{1}+r_{\alpha} \xi_{\alpha}^{\alpha}+P_{\alpha} \phi^{\alpha V}+Q_{\alpha} \phi^{\alpha H}
\end{aligned}
$$

Then

$$
\begin{aligned}
& d \sigma_{1} \equiv 0 \quad\left(\bmod \sigma_{1}\right) \\
& d \sigma_{\alpha} \equiv \tilde{\pi}_{\alpha}^{P} \wedge \phi^{\alpha V}+\tilde{\pi}_{\alpha}^{Q} \wedge \phi^{\alpha H}\left(\bmod \sigma_{1}, \sigma_{\alpha}\right)
\end{aligned}
$$

STEP 2: Pfaffian system step
Find closed 2-forms $\Omega \in \Sigma^{2}$

$$
\begin{aligned}
d \sigma_{1} & \equiv 0 \quad\left(\bmod \sigma_{1}\right) \\
d \sigma_{\alpha} & \equiv \tilde{\pi}_{\alpha}^{P} \wedge \phi^{\alpha V}+\tilde{\pi}_{\alpha}^{Q} \wedge \phi^{\alpha H}\left(\bmod \sigma_{1}, \sigma_{\alpha}\right)
\end{aligned}
$$

if and only if (torsion is absorbed)

$$
\begin{gather*}
d \tilde{\xi}_{1}^{1}=d\left(\xi_{1}^{1}+h_{2} \xi_{1}^{2}\right)=0, \tag{4}\\
\left(\xi_{\alpha}^{\alpha}-\tilde{\xi}_{1}^{1}\right) \wedge \tilde{\xi}_{\alpha}^{1}+d \tilde{\xi}_{\alpha}^{1} \equiv 0 \quad\left(\bmod \phi^{\alpha V}, \phi^{\alpha H}\right), \alpha=3, \ldots, n . \tag{5}
\end{gather*}
$$

Φ is diagonalisable with distinct eigenvalues, 2 non-integrable, $n-p$ integrable co-distributions

STEP 3: Cartan-Kähler theorem

$$
\begin{aligned}
& d \sigma_{1} \equiv 0 \quad\left(\bmod \sigma_{1}\right) \\
& d \sigma_{\alpha} \equiv \tilde{\pi}_{\alpha}^{P} \wedge \phi^{\alpha V}+\tilde{\pi}_{\alpha}^{Q} \wedge \phi^{\alpha H}\left(\bmod \sigma_{1}, \sigma_{\alpha}\right)
\end{aligned}
$$

Cartan characters $s_{1}=n-2, s_{2}=n-2, s_{k}=0$ for all $k>2$ The system pass Cartan-Kähler test and so solution depend on $n-2$ functions of 2 variables.

Φ is diagonalisable with distinct eigenvalues, 2 non-integrable co-distributions and $\operatorname{rank}\left(\mathbf{A}_{1}\right)=1$

Examples:
Non-existence example:

$$
\begin{equation*}
\ddot{x}=x \dot{y}, \ddot{y}=\dot{x}, \ddot{z}=0, \tag{6}
\end{equation*}
$$

on an appropriate domain. Denoting the derivatives by u, v, w, we find that $\boldsymbol{\Phi}$ is diagonalisable with distinct eigenvalues and corresponding re-scaled eigenvectors X_{a} as follows,

$$
\begin{array}{rll}
\lambda_{1}=-\frac{x}{4} & \text { and } & X_{1}=\left(\frac{u}{\sqrt[4]{v^{3}}}, \sqrt[4]{v}, 0\right) \\
\lambda_{2}=-\frac{4 v+x}{4} & \text { and } & X_{2}=\left(\frac{1}{\sqrt[4]{v}}, 0,0\right) \\
\lambda_{3}=0 & \text { and } & X_{3}=(0,0,1)
\end{array}
$$

Φ is diagonalisable with distinct eigenvalues, $p=2$ non-integrable co-distributions and $\operatorname{rank}\left(\mathbf{A}_{1}\right)=1$

Non-existence example:
The structure functions τ 's are zero except for

$$
\begin{aligned}
& \tau_{2}^{1\ulcorner }=-\frac{\sqrt{v}}{4 v}, \tau_{1}^{2 \Gamma}=-\frac{3 u^{2}}{4 v \sqrt{v}}, \tau_{11}^{1 H}=\frac{u}{8 v \sqrt[4]{v^{3}}}, \tau_{11}^{1 V}=\frac{1}{2 \sqrt[4]{v^{3}}} \\
& \tau_{21}^{1 H}=\frac{1}{8 v \sqrt[4]{v}}, \tau_{11}^{2 H}=\frac{2 x v^{2}-u^{2}}{2 v^{2} \sqrt[4]{v}}, \tau_{11}^{2 V}=\frac{-u}{v \sqrt[4]{v}}, \tau_{12}^{2 H}=\frac{-u}{8 v \sqrt[4]{v^{3}}} \\
& \tau_{12}^{2 V}=-\frac{1}{2 \sqrt[4]{v^{3}}}, \tau_{22}^{2 V}=-\frac{1}{8 v \sqrt[4]{v}}, \phi^{2 V}\left(R\left(X_{1}^{H}, X_{2}^{H}\right)\right)=-\sqrt[4]{v}
\end{aligned}
$$

These results show that the eigen co-distributions $\operatorname{Sp}\left\{\phi^{1 V}, \phi^{1 H}\right\}$ and $\operatorname{Sp}\left\{\phi^{2 V}, \phi^{2 H}\right\}$ are non-integrable and the third one is integrable that the conditions (1) and (2) hold with

$$
h_{2}=-\frac{\tau_{2}^{1 \Gamma}}{\tau_{1}^{2 \Gamma}}=-\frac{v}{3 u^{2}} .
$$

But the condition (3) does not hold \Rightarrow no non-degenerate

Φ is diagonalisable with distinct eigenvalues, $p=2$ non-integrable co-distributions and $\operatorname{rank}\left(\mathbf{A}_{1}\right)=1$

Existence example:

$$
\begin{equation*}
\ddot{x}=z t, \ddot{y}=0, \ddot{z}=x, \tag{7}
\end{equation*}
$$

on an appropriate domain. Denoting the derivatives by u, v, w, we find that $\boldsymbol{\Phi}$ is diagonalisable with distinct eigenvalues and corresponding eigenvectors X_{a} as follows,

$$
\begin{array}{rll}
\lambda_{1}=\sqrt{t} & \text { and } & X_{1}=(-\sqrt{t}, 0,1), \\
\lambda_{2}=-\sqrt{t} & \text { and } & X_{2}=(\sqrt{t}, 0,1), \\
\lambda_{3}=0 & \text { and } & X_{3}=(0,1,0) .
\end{array}
$$

Φ is diagonalisable with distinct eigenvalues, $p=2$ non-integrable, $n-p$ integrable co-distributions

Existence example:
The structure functions τ 's are zero except for

$$
\tau_{1}^{1 \Gamma}=\tau_{2}^{2 \Gamma}=-\tau_{2}^{1 \Gamma}=-\tau_{1}^{2 \Gamma}=\frac{1}{4 t}
$$

These results show:

- the eigen co-distributions $\operatorname{Sp}\left\{\phi^{1 V}, \phi^{1 H}\right\}$ and $\operatorname{Sp}\left\{\phi^{2 V}, \phi^{2 H}\right\}$ are non-integrable and the third one is integrable.
$\left\langle\Sigma^{1}\right\rangle$ is not a differential ideal.
-The conditions (1) and (2) hold with $h_{2}=-1$.

Φ is diagonalisable with distinct eigenvalues, $p=2$ non-integrable, $n-p$ integrable co-distributions

Existence example:
Further examination gives

$$
d \tilde{\omega}^{1}=-\frac{1}{2 t} d t \wedge \tilde{\omega}^{1}, \quad \tilde{\omega}^{1}=\omega^{1}-\omega^{2}
$$

\Rightarrow the condition (3) holds with $\tilde{\xi}_{1}^{1}=-\frac{1}{2 t} d t$ and $\tilde{\xi}_{3}^{1}=0$.
$\Rightarrow \Sigma^{2}:=\operatorname{Sp}\left\{\tilde{\omega}^{1}, \omega^{3}\right\}$ generates a differential ideal.
The remaining conditions (4) and (5) also hold for solution.
\Rightarrow this system is variational and the solution depends on one arbitrary function of two variables.

Φ is diagonalisable with distinct eigenvalues, $p=2$ non-integrable co-distributions and $\operatorname{rank}\left(\mathbf{A}_{1}\right)=1$

Existence example:
To determine the explicit expression of the Cartan two-form, we examine the Pfaffian equations:

$$
\begin{aligned}
& d \tilde{r}_{1}+\tilde{r}_{1} \tilde{\xi}_{1}^{1}=0 \\
& d r_{3}+P_{3} \phi^{3 V}+Q_{3} \phi^{3 H}=0
\end{aligned}
$$

$\Rightarrow \tilde{r}_{1}=G \sqrt{t}$ where G is a constant, and $r_{3}=r_{3}\left(u_{3}^{1}, u_{3}^{2}\right)$ is an arbitrary function of two variables $u_{3}^{1}=y-v t$ and $u_{3}^{2}=v$.

$$
\Rightarrow \Omega=G \sqrt{t}\left(\omega^{1}-\omega^{2}\right)+\tilde{r}_{3}\left(u_{3}^{1}, u_{3}^{2}\right) \omega^{3} .
$$

Thank you for your attention

