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Holonomy
Let (M, g) be a pseudo-Riemannian manifold of signature (r , s).
Any smooth curve γ : [a, b] → M defines the parallel transport

τγ : Tγ(a)M → Tγ(b)M.

Let x ∈ M. The holonomy group

Hx ⊂ O(TxM, gx) ' O(r , s)

at the point x is the group that consists of parallel transport along
all loops at the point x .
The corresponding Lie subalgebra

hx ⊂ so(TxM, gx) ' so(r , s)

is called the holonomy algebra.
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Theorem. (Ambrose-Singer, 1952)

holx = {(τγ)−1 ◦Rγ(b)(τγ(X ), τγ(Y ))◦τγ
∣∣∣γ(a) = x , X ,Y ∈ TxM}.
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Fundamental principle. There exists a one-to-one correspondence
between parallel tensor fields A ∈ Γ(T p,q(M)) (∇A = 0) and
tensors Ax ∈ T p,q

x M preserved by the holonomy group.
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The case of Riemannian manifolds
Let (N, h) be an n-dimensional Riemannian manifold.
By the de Rham theorem, locally (N, h) can be decomposed into a
product of a flat space and of some Riemannian manifolds that can
not be further decomposed.
This corresponds to the decomposition

Rn = Rn0 ⊕ Rn1 ⊕ · · · ⊕ Rnr (1)

and the of the tangent space and the decomposition

h = {0} ⊕ h1 ⊕ · · · ⊕ hr (2)

of the holonomy algebra h ⊂ so(n) of (N, h) each hi ⊂ so(ni ) is an
irreducible Riemannian holonomy algebra.
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Irreducible holonomy algebras of Riemannian manifolds
(Berger 1953,..., Bryant 1987)
The holonomy algebra h ⊂ so(n) of a locally indecomposable not
locally symmetric n-dimensional Riemannian manifold (M, g)
coincides with one of the following subalgebras of so(n):

so(n), u(n
2 ), su(n

2 ), sp(n
4 )⊕ sp(1), sp(n

4 ), G2 ⊂ so(7),
spin7 ⊂ so(8).

Holonomy algebras of symmetric Riemannian manifolds different
from so(n), u(n

2 ), sp(n
4 )⊕ sp(1) are called symmetric Berger

algebras.
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Special geometries:

so(n): ,,generic” Riemannian manifolds;

u(n
2 ): Kählerian manifolds;

su(n
2 ): Calabi-Yau manifolds

or special Kählerian manifolds (Ric = 0);

sp(n
4 ): hyper-Kählerian manifolds;

sp(n
4 )⊕ sp(1): quaternionic-Kählerian manifolds;

spin(7): 8-dimensional manifolds with a parallel 4-form;

G2: 7-dimensional manifolds with a parallel 3-form.
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Berger classified irreducible subalgebras h ⊂ so(n) linearly
generated by the images of the maps from the space

R(h) = {R ∈ Λ2(Rn)∗⊗h|R(X ,Y )Z+R(Y ,Z )X +R(Z ,X )Y = 0}

of algebraic curvature tensors of type h, under the condition that
the space

R∇(h) = {S ∈ (Rn)∗⊗R(h)|SX (Y ,Z )+SY (Z ,X )+SZ (X ,Y ) = 0}

is not trivial.
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The Berger result can be reformulated in the following way:

If the connected holonomy group of an indecomposable
Riemannian manifold does not act transitively on the unite sphere
of the tangent space, then the manifold is locally symmetric.

Direct proofs: J. Simens 1962, C. Olmos 2005.
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The spaces R(h) for subalgebras h ⊂ so(n) computed
D.V. Alekseevsky,

R(h) = R0(h)⊕R1(h)⊕R′(h),

where R0(h) consists of tensors with zero Ricci tensor, R1(h),
consists of tensors annihilated by h.

For example, R(h) = R0(h) for su(n
2 ), sp(n

4 ), G2 ⊂ so(7) and
spin(7) ⊂ so(8), whence the corresponding manifolds are Ricci-flat.

Similarly, for h = sp(n
4 )⊕ sp(1), R(h) = R0(h)⊕R1(h), and the

corresponding manifolds are Einstein (Ric = Λg , Λ 6= 0).
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In M-theory and String theories:
our universe is locally a product:

R1,3 ×M,

where M is a compact Riemannian manifold of dimension 6,7 or 8
(depending on the theory) with the holonomy algebra su(3), G2, or
spin(7).
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The case of Lorentzian manifolds

By the Wu theorem, any Lorentzian manifold is either locally
indecomposable, or it is locally a product of a Riemannian
manifold and of a locally indecomposable Lorentzian manifold.

If (M, g) is locally indecomposable, then its holonomy algebra
g ⊂ so(1, n + 1) is weakly irreducible, i.e. it does not preserve any
non-degenerate subspace of the tangent space. But g may preserve
a degenerate subspace, e.g. an isotropic line. Then g is not
reductive anymore.
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Consider locally indecomposable Lorentzian manifold (M, g) of
dimension n + 2 with the holonomy algebra g ⊂ so(1, n + 1).

If g ⊂ so(1, n + 1) is irreducible, then g = so(1, n + 1).

If g 6= so(1, n + 1) then g preserves an isotropic line l ⊂ R1,n+1.

Then (M, g) admits a parallel distribution of isotropic lines
and local recurrent lightlike vector fields p, i.e.

g(p, p) = 0, ∇Xp = θ(X )p

for a 1-form θ.
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On such manifolds there exist the Walker coordinates
v , x1, ..., xn, u such that ∂v = p and

g = 2dvdu + h + 2Adu + H(du)2, (3)

h = hij(x
1, ..., xn, u)dx idx j is an u-dependent family of

Riemannian metrics,

A = Ai (x
1, . . . , xn, u) dx i is an u-dependent family of one-forms,

H = H(v , x1, ..., xn, u) is a local function on M
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Let (M, g) be a locally indecomposable Lorentzian manifold with a
parallel distribution l of isotropic lines.

Let p, e1, ..., en, q be a Witt basis ((p, q) = (ei , ei ) = 1) of
R1,n+1 ' TxM such that Rp corresponds to the distribution l .

The holonomy algebra g of (M, g) is contained in the maximal
subalgebra of so(1, n + 1) preserving Rp,

g ⊂ sim(n) =


 a X t 0

0 A −X
0 0 −a

∣∣∣∣∣∣
a ∈ R,

X ∈ Rn,
A ∈ so(n)

 = (R⊕so(n))nRn.
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Example. A Lorentzian manifold (M, g) is a pp-wave, i.e. its
metric is of the form

g = dvdu +
n∑

i=1

(dx i )2 + H(du)2, ∂vH = 0,

if and only if the holonomy algebra of (M, g) is contained in
Rn ⊂ sim(n).
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Theorem. (L. Berard-Bergery, A. Ikemakhen 1993)
Weakly-irreducible subalgebras g ⊂ sim(n):

Type I. g1,h =


 a X t 0

0 A −X
0 0 −a

∣∣∣∣∣∣
a ∈ R,
A ∈ h,
X ∈ Rn

 = (R⊕ h) n Rn,

Type II. g2,h = h n Rn,

Type III. g3,h,ϕ =


 ϕ(A) X t 0

0 A −X
0 0 −ϕ(A)

∣∣∣∣∣∣ A ∈ h,
X ∈ Rn

,

Type IV. g4,h,m,ψ =




0 X t ψ(A)t 0
0 A 0 −X
0 0 0 −ψ(A)
0 0 0 0


∣∣∣∣∣∣∣∣

A ∈ h,
X ∈ Rm

,

where h ⊂ so(n) is a subalgebra; ϕ : h → R is a non-zero linear
map, ϕ|[h,h] = 0;
for the last algebra Rn = Rm ⊕ Rn−m, h ⊂ so(m), and
ψ : h → Rn−m is a surjective linear map, ψ|[h,h] = 0.
(Recall that h = [h, h]⊕ z(h))
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Geometric proof: a weakly irreducible not irreducible Lie subgroup
G ⊂ SO(1, n + 1) acts on the boundary of the hyperbolic space
∂Hn+1 ' Sn and preserves the point Rp ∈ ∂Hn+1, i.e. G acts on
the Euclidean space Rn = Sn\{point}.

This action is by similarity transformations

G ⊂ Sim0(n) = (R+ × SO(n)) i Rn

and transitive. All such groups are known.
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T. Leistner, 2003: the subalgebra h ⊂ so(n) associated to a
Lorentzian holonomy algebra g ⊂ sim(n) is spanned by the images
of the maps from the space

P(h) = {P ∈ Hom(Rn, h)|
g(P(X )Y ,Z ) + g(P(Y )Z ,X ) + g(P(Z )X ,Y ) = 0}.

Each such subalgebra is the holonomy algebra of a
Riemannian manifold.

(R ∈ R(h), X0 ∈ Rn =⇒ R(·,X0) ∈ P(h))
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About the proof:

If h ⊂ u(m) ⊂ so(2m), then P(h) ' (h⊗ C ⊂ gl(m,C))(1)

= {ϕ : Cm → h⊗ C|ϕ(X )Y = ϕ(Y )X , X ,Y ∈ Cm}.

If h 6⊂ u(m), then h⊗ C ⊂ so(n,C) is irreducible and it is
necessary to use the classification of irreducible representations of
complex semisimple Lie algebras.
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Construction of metrics with each possible holonomy algebra:

L. Berard-Bergery, A. Ikemakhen, 1993

g = 2dvdu + h + H(du)2

if ∂vH = 0 and H is quite general, then g = h n Rn

if H = v2 + H0, ∂vH0 = 0 and H0 is quite general, then
g = (R⊕ h) n Rn
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Lemma. For each subalgebra h ⊂ so(n) there exists P ∈ P(h)
such that its image generates h.

Construction

g = 2dvdu +
n∑

i=1

(dx i )2 + 2Aidx idu + H · (du)2,

where Ai = 1
3(P i

jk + P i
kj)x

jxk , P(ei )ej = Pk
ji ek

For g3,h,ϕ let ϕi = ϕ(P(ei )). For g4,h,m,ψ let ψij , j = m + 1, ..., n,
be such that ψ(P(ei )) = −

∑n
j=m+1 ψijej .

H g

v2 +
∑n

i=1(x
i )2 g1,h∑n

i=1(x
i )2 g2,h

2vϕix
i +
∑n

i=1(x
i )2 g3,h,ϕ

2
∑n

j=m+1 ψijx
ix j +

∑m
i=1(x

i )2 g4,h,m,ψ
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Curvature tensors
Each curvature tensor R ∈ R(g1,h) is uniquely given by

λ ∈ R, ~v ∈ Rn, R0 ∈ R(h), P ∈ P(h), T ∈ �2Rn :

R(p, q) =(λp, 0, ~v),

R(X ,Y ) =(0,R0(X ,Y ),P(Y )X − P(X )Y ),

R(X , q) =(g(~v ,X ),P(X ),T (X )), R(p,X ) = 0.

In particular, there exists an isomorphism of h-modules

R(g1,h) ' R⊕ Rn ⊕�2Rn ⊕R(h)⊕ P(h).

Next,

R(g2,h) = {R ∈ R(g1,h)|λ = 0, ~v = 0},
R(g3,h,ϕ) = {R ∈ R(g1,h)|λ = 0, R0 ∈ R(kerϕ), g(~v , ·) = ϕ(P(·))},

R(g4,h,m,ψ) = {R ∈ R(g2,h)|R0 ∈ R(kerψ), prRn−m ◦T = ψ ◦ P}.
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g = 2dvdu + hijdx idx j + 2Aidx idu + H(du)2,

Consider the frame p = ∂v , Xi = ∂x i − Ai∂v , q = ∂u − 1
2H∂v .

R is given by the tensor fields λ, ~v , R0, P and T ,

λ =
1

2
∂2

vH, ~v =
1

2

(
∂i∂vH − Ai∂

2
vH
)
hijXj ,

hilP
l
jk =− 1

2
∇kFij +

1

2
∇k ḣij − Γ̇l

kjhli , Fij = ∂iAj − ∂jAi

Tij =
1

2
∇i∇jH − 1

4
(Fik + ḣik)(Fjl + ḣjl)h

kl − 1

4
(∂vH)(∇iAj +∇jAi )

− 1

2
(Ai∂j∂vH + Aj∂i∂vH)− 1

2
(∇i Ȧj +∇j Ȧi )

+
1

2
AiAj∂

2
vH +

1

2
ḧij +

1

4
ḣij∂

2
vH.
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The spaces P(h)
Let h ⊂ so(n) be irreducible. Consider the h-equivariant map

R̃ic : P(h) → Rn, R̃ic(P) =
n∑

i=1

P(ei )ei .

Let P0(h) = ker R̃ic, P1(h) = P0(h)⊥. Then

P(h) = P0(h)⊕ P1(h).
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h ⊂ so(n) P1(h) P0(h) dimP0(h)
so(2) R2 0 0
so(3) R3 V4π1 5
so(4) R4 V3π1+π′

1
⊕ Vπ1+3π′

1
16

so(n), n ≥ 5 Rn Vπ1+π2

(n−2)n(n+2)
3

u(m), n = 2m ≥ 4 Rn (�2(Cm)∗ ⊗ Cm)0 m2(m − 1)
su(m), n = 2m ≥ 4 0 (�2(Cm)∗ ⊗ Cm)0 m2(m − 1)

sp(m)⊕ sp(1), n = 4m ≥ 8 Rn �3(C2m)∗ m(m+1)(m+2)
3

sp(m), n = 4m ≥ 8 0 �3(C2m)∗ m(m+1)(m+2)
3

G2 ⊂ so(7) 0 Vπ1+π2 64
spin(7) ⊂ so(8) 0 Vπ2+π3 112

h ⊂ so(n), n ≥ 4, Rn 0 0
is a symmetric Berger alg.

Corollary. P1(h) ' Rn ⇔ ∃ symmetric space with the holonomy
algebra h;
P0(h) 6= 0 ⇔ ∃ non-locally symmetric space with the holonomy
algebra h;
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A direct proof of Leistner’s theorem for semisimple non-simple
irreducible subalgebras h ⊂ so(n).

If h⊗ C = so(n1,C)⊕ so(n2,C) or h⊗ C = sp(n1,C)⊕ sp(n2,C)
(ni ≥ 3), then it holds P(h⊗ C) ' Cn

Thus it is enough to consider the case
h⊗ C = sl(2,C)⊕ k ⊂ so(4m,C), k ( sp(2m,C).
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It holds P(h)⊗ C ' C2 ⊗ g1, where g1 is the first Tanaka
prolongation of the Lie algebra g−2 ⊕ g−1 ⊕ g0, where
g−2 = C, g−1 = C2m, g0 = k⊕ CidC2m ;

g1 = {ϕ : C2m → g0|∃Z ∈ C2m, ϕ(X )Y − ϕ(Y )X = ω(X ,Y )Z}.

If P(h) 6= 0, then the total Tanaka prolongation defines the simple
|2|-graded complex Lie algebra

g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

Such Lie algebra defines a simply connected quaternionic-Kählerian
manifold with the holonomy algebra h.
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Farther remarks.
Suppose now that h ⊂ so(n) is simple and irreducible of
non-complex type. Prove the following facts:

• If P1(h) 6= 0 (i.e. P1(h) ' Rn), then the h-equivariant map
R : Rn → P(h) satisfies R(X )(Y ) = −R(Y )X , i.e. it belongs to
R(h) and it is the curvature tensor of a symmetric space with the
holonomy algebra h ⊂ so(n).
(Such proof is obtained under the assumption that there are not
more then two non-zero labels on the Dynkin diagram of the
representation)

• If the connected Lie subgroup H ⊂ SO(n) corresponding to
h ⊂ so(n) does not act transitively on the unite sphere, then
P0(h) = 0.
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Remark on other signatures
Consider the Witt basis p1, p1, e1, ..., en, q2, q1

(g(pa, qa) = g(ei , ei ) = 1)

gh =




0 0 −Y t −c 0
0 0 −X t 0 c
0 0 A X Y
0 0 0 0 0
0 0 0 0 0


∣∣∣∣∣∣∣∣∣∣

A ∈ h,X ,Y ∈ Rn, c ∈ R


gh ⊂ so(2, n + 2) is the holonomy algebra for an arbitrary
subalgebra h ⊂ so(n)
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APPLICATIONS
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Applications to the Einstein Equation
Recently the Einstein Equation on Lorentzian manifolds with
special holonomy is considered in

G. W. Gibbons, C. N. Pope, Time-Dependent Multi-Centre
Solutions from New Metrics with Holonomy Sim(n − 2), Class.
Quantum Grav. 25 (2008) 125015 (21pp).
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(M, g) is called Einstein if

Ric = Λg , Λ ∈ R.

Ric = Λg ⇐⇒ λ = −Λ, Ric0 = Λh, R̃ic P = ~v , trT = 0
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Theorem
If (M, g) is Ricci-flat, then one of the following holds:

(1) The holonomy algebra of (M, g) coincides with

(R⊕ h) n Rn,

and in the decomposition (2) of h ⊂ so(n) at least
one subalgebra hi ⊂ so(ni ) coincides with one of the
Lie algebras so(ni ), u(ni

2 ), sp(ni
4 )⊕ sp(1) or with a

symmetric Berger algebra.

(2) The holonomy algebra of (M, g) coincides with

h n Rn,

and in the decomposition (2) of h ⊂ so(n) each
subalgebra hi ⊂ so(ni ) coincides with one of the Lie
algebras so(ni ), su(ni

2 ), sp(ni
4 ), G2 ⊂ so(7),

spin(7) ⊂ so(8).
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Theorem
If (M, g) is Einstein and not Ricci-flat, then the holonomy algebra
of (M, g) coincides with

(R⊕ h) n Rn,

and in the decomposition (2) of h ⊂ so(n) each subalgebras
hi ⊂ so(ni ) coincides with one of the Lie algebras so(ni ), u(ni

2 ),
sp(ni

4 )⊕ sp(1) or with a symmetric Berger algebra. Moreover, in
the decomposition (1) it holds ns+1 = 0.
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Let n = 2, i.e. dim M = 4

If (M, g) is Ricci-flat, then either
g = (R⊕ so(2)) n R2, or g = R2

(the last case corresponds to pp-waves).

If (M, g) is Einstein with Λ 6= 0, then g = (R⊕ so(2)) n R2.
These statements are already proved in the papers of Schell, Hall,
Lonie.
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Unlike to the case of Riemannian manifolds, it can not be stated
that a Lorentzian manifold with some holonomy algebra is
automatically an Einstein manifold, but there is a weaker
statement.
(M, g) is called totally Ricci-isotropic if the image of its Ricci
operator is isotropic. If (M, g) is a spin Lorentzian manifold and it
admits a parallel spinor, then it is totally Ricci-isotropic (but not
necessary Ricci-flat, unlike in the Riemannian case)

Theorem
The holonomy algebras of totally Ricci-isotropic (M, g) are the
same as for Ricci-flat (M, g).
Conversely, if the holonomy algebra of (M, g) is h n Rn and in the
decomposition (2) of h ⊂ so(n) each subalgebra hi ⊂ so(ni )
coincides with one of the Lie algebras
su(ni

2 ), sp(ni
4 ), G2 ⊂ so(7), spin(7) ⊂ so(8),

then (M, g) is totally Ricci-isotropic.
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The form of the Einstein equation

Consider the Walker metric

g = 2dvdu + h + 2Adu + H(du)2,

h = hij(x
1, ..., xn, u)dx idx j is an u-dependent family of

Riemannian metrics,

A = Ai (x
1, . . . , xn, u) dx i is an u-dependent family of one-forms,

H = H(v , x1, ..., xn, u) is a local function on M
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(M, g) is Einstein iff

H = Λv2 + vH1 + H0, ∂vH1 = ∂vH0 = 0, (4)

∆H0 −
1

2
F ijFij − 2Ai∂iH1 − H1∇iAi + 2ΛAiAi

−2∇i Ȧi +
1

2
ḣij ḣij + hij ḧij +

1

2
hij ḣijH1 = 0, (5)

∇jFij + ∂iH1 − 2ΛAi +∇j ḣij − ∂i (h
jk ḣjk) = 0, (6)

∆H1 − 2Λ∇iAi + Λhij ḣij = 0, (7)

Ricij = Λhij , (8)

where Fij = ∂iAj − ∂jAi .
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A special example of the Walker metric is the metric of a pp-wave

g = 2dvdu +
n∑

i=1

(dx i )2 + H · (du)2, ∂vH = 0. (9)

If such metric is Einstein, then it is Ricci-flat, and it is Ricci-flat if
and only if

∑n
i=1 ∂

2
i H = 0.
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Simplification of the Einstein equation
The Walker coordinates are not defined canonically!

And any other Walker coordinates ṽ , x̃1, . . . , x̃n, ũ such that
∂ṽ = ∂v are given by

ṽ = v + ϕ(x1, ..., xn, u), x̃ i = ψi (x1, ..., xn, u), ũ = u + c .

The aim: find new coordinates in order to simplify the Einstein
Equation.
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Theorem [Galaev, Leistner 2010] (M, g) is an Einstein manifold
with Λ 6= 0 iff there exist Walker coordinates v , x1, ..., xn, u such
that A = 0 and H1 = 0, i.e.

g = 2dvdu + h + (Λv2 + H0)(du)2,

and

∆H0 +
1

2
hij ḧij = 0, (10)

∇j ḣij = 0, (11)

hij ḣij = 0, (12)

Ricij = Λhij , (13)

where ḣij = ∂uhij .
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Proof.
At a point: choose other vector q′.
There exists a unique vector w ∈ E such that
q′ = −1

2g(w ,w)p + w + q and E ′ = {−g(x ,w)p + x |x ∈ E}.
Consider the map x ∈ E 7→ x ′ = −g(x ,w)p + x ∈ E ′.

R = R(λ′, ṽ ,R ′
0,P

′,T ′).
λ′ = λ, ṽ = (~v − λw)′, P ′(x ′) = (P(x)− R0(x ,w))′,
R ′

0(x
′, y ′) = (R0(x , y))′
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On the manifold:

Proposition

Let xa be Walker coordinates. For any W ∈ Γ(E ) such that
∇∂v W = 0 there exist new Walker coordinates x̃a such that the
corresponding vector field q′ has the form
q′ = −1

2g(W ,W )p + W + q.

Proof. Find x i = x i (x̃1, ..., x̃n, ũ), u = ũ.
W = W iXi

We need only to solve the system of ODE:

∂x i (x̃1, ..., x̃n, ũ)

∂ũ
= W i (x1(x̃1, ..., x̃n, ũ), ..., xn(x̃1, ..., x̃n, ũ), ũ).

�
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Proof of the theorem
It holds

~v =

(
1

2
∂iH1 − λAi

)
hijXj .

Find new coordinates such that ṽ = 0
(recall that ṽ = ~v − λW , λ = −Λ)

For this take in the above proposition W = − 1
Λ~v

In the new coordinates get

Ai =
1

2Λ
∂iH1.

under the transformation ṽ = v − f (x1, ..., xn, u), x̃ i = x i , ũ = u
it holds

Ai 7→ Ai + ∂i f , H1 7→ H1 + 2Λf .

Take f = − 1
2ΛH1, then with respect to the new coordinates

Ai = H1 = 0. �
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Theorem (Schimming 1974; Galaev, Leistner 2010). On any
(M, g) there exist Walker coordinates such that Ai = 0 (and
H0 = 0 if the manifold is Einstein).

Then the Einstein Equation is equivalent to the system

1

2
ḣij ḣij + hij ḧij +

1

2
hij ḣijH1 = 0, (14)

∂iH1 +∇j ḣij − ∂i (h
jk ḣjk) = 0, (15)

∆H1 + Λhij ḣij = 0, (16)

Ricij = Λhij . (17)
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Lorentzian spin-manifolds with recurrent spinor fields

(M, g), S , ∇S

s ∈ Γ(S) is recurrent if

∇S
X s = θ(X )s

for all vector fields X ∈ Γ(TM), here θ is a complex valued 1-form.

If θ = 0, then s is parallel.
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Theorem (Wang 1989) A simply connected locally
indecomposable Riemannian spin-manifold admits a parallel spinor
if and only if its holonomy algebra is one of
su(n

2 ), sp(n
4 ), G2 ⊂ so(7), spin7 ⊂ so(8).

Theorem If a simply connected locally indecomposable
Riemannian spin-manifold (M, g) admits a recurrent spinor and
does not admit a parallel spinor, then (M, g) is Kählerian and not
Ricci flat.
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Theorem (Leistner 2002) A locally indecomposable simply
connected Lorentzian spin-manifold admits a parallel spinor if and
only if its holonomy algebra coincides with

h n Rn,

where h ⊂ so(n) is the holonomy algebra of a Riemannian manifold
admitting a parallel spinor.

Theorem If a locally indecomposable simply connected Lorentzian
spin-manifold admits a recurrent spinor, then the orthogonal part
h ⊂ so(n) of the holonomy algebra is the holonomy algebra of a
Riemannian manifold admitting a recurrent spinor.
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Conformally flat Lorentzian manifolds with special holonomy

Assume that (M, g) is locally indecomposable, conformally flat
(W = 0) and the holonomy algebra is contained in sim(n)

Problem: find all such metrics g !
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Theorem. Let (M, g) be a conformally flat Walker Lorentzian
manifold. Then locally

g = 2dvdu + Ψ
n∑

i=1

(dx i )2 + 2Adu + (λ(u)v2 + vH1 + H0)(du)2,

where

Ψ =
4

(1− λ(u)
∑n

k=1(x
k)2)

2
,

A = Aidx i , Ai = Ψ

(
−4Ck(u)xkx i + 2Ci (u)

n∑
k=1

(xk)2

)
,

H1 = −4Ck(u)xk
√

Ψ− ∂u lnΨ + K (u),

s = −(n − 2)(n + 1)λ(u)
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Theorem.
If the function λ is non-vanishing at a point, then in a
neighborhood of this point there exist coordinates v , x1, ..., xn, u
such that

g = 2dvdu + Ψ
n∑

i=1

(dx i )2 + (λ(u)v2 + vH1 + H0)(du)2,

where

Ψ =
4

(1− λ(u)
∑n

k=1(x
k)2)

2
,

H1 = −∂u lnΨ, H0 =
√

Ψ

(
a(u)

n∑
k=1

(xk)2 + Dk(u)xk + D(u)

)
.
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Theorem. If λ ≡ 0 in a neighborhood of a point, then in a
neighborhood of this point there exist coordinates v , x1, ..., xn, u
such that

g = 2dvdu +
n∑

i=1

(dx i )2 + 2Adu + (vH1 + H0)(du)2,

where

A = Aidx i , Ai = Ci (u)
n∑

k=1

(xk)2, H1 = −2Ck(u)xk

H0 =
n∑

k=1

(xk)2

(
1

4

n∑
k=1

(xk)2
n∑

k=1

C 2
k (u)− (Ck(u)xk)2 + Ċk(u)xk + a(u)

)
+ Dk(u)xk + D(u).

In particular, if all Ci ≡ 0, then the metric can be rewritten in the
form

g = 2dvdu +
n∑

i=1

(dx i )2 + a(u)
n∑

k=1

(xk)2(du)2. (18)
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Remarks.
The field equations of Nordström’s theory of gravitation, which
appeared before Einstein’s theory, are the following:

W = 0, s = 0.

Thus we have found all solutions to Nordström’s gravity with
holonomy algebras contained in sim(n).
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The case of dimension 4.
Possible holonomy algebras of conformally flat 4-dimensional
Lorentzian manifolds were classified also in

G. S. Hall, D. P. Lonie, Holonomy groups and spacetimes, Class.
Quantum Grav. 17 (2000), 1369–1382.

It is stated that it is an open problem to construct a conformally
flat metric with the holonomy algebra sim(2) (which is denoted in
by R14).
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An attempt to construct such metric is made in
R. Ghanam, G. Thompson, Two special metrics with R14-type
holonomy, Class. Quantum Grav. 18 (2001), 2007–2014
where the following metric was constructed:

g = 2dxdt+4ydtdy−4zdtdz+
(dy)2

2y2
+

(dz)2

2y2
+2(x+y2−z2)2(dt)2.

Making the transformation

x 7→ x − y2 + z2, y 7→ y , z 7→ z , t 7→ t,

we obtain

g = 2dxdt + 2x2(dt)2 +
(dy)2

2y2
+

(dz)2

2y2
.

This metric is decomposible and its holonomy algebra coincides
with so(1, 1)⊕ so(2), but not with sim(2).
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Weyl tensor

W = R + RL,

where the tensor RL is defined by

RL(X ,Y ) = LX ∧ Y + X ∧ LY ,

L =
1

d − 2

(
Ric− s

2(d − 1)
Id
)

d = n + 2 is the dimension
Lemma The equation W = 0 is equivalent to the following system
of equations:

s0 = −n(n − 1)λ, R0 = −1

2
λRId, P(X ) = ~v ∧ X , T = f idE ,

where X is any section of E and f is a function. In particular,
W = 0 implies that R̃ic P = −(n− 1)~v and the Weyl tensor W0 of
h is zero.
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From the lemma it follows that
∂vλ = 0, hence

H = λv2 + H1v + H0, ∂vH1 = ∂vH0 = 0.

Each metric in the family h(u) is of constant sectional curvature
with the scalar curvature s0 = −n(n − 1)λ.
The coordinates can be chosen in such a way that

h = Ψ
n∑

k=1

(dxk)2, Ψ =
4

(1− λ(u)
∑n

k=1(x
k)2)

2
.

Now we must find the 1-form A and the functions H1 and H0.
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Part of the equations:

f1δij =
1

2
∇i∇jH1 − λ(u)

1

2
(∇iAj +∇jAi ).

These equations are equivalent to

∇iZi = ∇jZj , ∇iZj +∇jZi = 0, i 6= j ,

where

Zi = λAi −
1

2
∂iH1

and to

∂i

(
Zi

Ψ

)
= ∂j

(
Zj

Ψ

)
, ∂i

(
Zj

Ψ

)
+ ∂j

(
Zi

Ψ

)
= 0, i 6= j .
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Two-symmetric Lorentzian manifolds
A Lorentzian manifold (M, g) is called two-symmetric if ∇2R = 0
and ∇R 6= 0.

First detailed investigation of two-symmetric Lorentzian spaces:
J. M. Senovilla, Second-order symmetric Lorentzian manifolds. I.
Characterization and general results, Classical Quantum Gravity 25
(2008), no. 24, 245011, 25 pp.

It is proven that any two-symmetric Lorentzian space admits a
parallel null vector field.

A classification of four-dimensional two-symmetric Lorentzian
spaces is obtained in the paper
O. F. Blanco, M. Sánchez, J. M. Senovilla, Complete classifcation
of second-order symmetric spacetimes. Journal of Physics:
Conference Series 229 (2010), 012021, 5pp.
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Theorem (Alekseevsky, Galaev 2010)

Let (M, g) be a locally indecomposable Lorentzian manifold of
dimension n + 2. Then (M, g) is two-symmetric if and only if
locally there exist coordinates v , x1, ..., xn, u such that

g = 2dvdu +
n∑

i=1

(dx i )2 + (Hiju + Fij)x
ix j(du)2,

where Hij is a nonzero diagonal real matrix with the diagonal
elements λ1 ≤ · · · ≤ λn, and Fij is a symmetric real matrix.
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Theorem The holonomy algebra g of an (n + 2)-dimensional
locally indecomposable two-symmetric Lorentzian manifold (M, g)
is Rn ⊂ sim(n).

(any such manyfold is a pp-wave!)
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Proof.
• reduction using the adapted coordinates of Ch. Boubel ⇒
assume that either g = Rn or g = h n Rn, h ⊂ so(n) is irreducible.

• assume that g = h n Rn and show that R∇(g)g is
one-dimensional. Then ∇R is defined up to a multiple. It holds
∇W = 0.

• the results of A. Derdzinski and W. Roter show that (M, g) is a
pp-wave.
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Another proof:
O. F. Blanco, M. Sánchez, J. M. Senovilla, Structure of
second-order symmetric Lorentzian manifolds, J. Eur. Math. Soc.
15 (2) (2013) 595–634.
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