Singularities of relativistic membranes

Mariusz Hynek KTH, Stockholm

mkhynek@kth.se

May 11, 2016

Outline

Laplace-Beltrami equation

$$\Delta x^{\mu} = 0$$
 \updownarrow

Singularities of relativistic membranes

May 11, 2016 2 / 39

Extended objects

Let us consider an M-dimensional compact orientable manifold Σ moving in Minkowski space $\mathbb{R}^{1,D}$. The world-volume is given by

$$S[x] = -\int_{\mathbb{R}\times\Sigma} \sqrt{G} d^{M+1}\varphi.$$
 (1.1)

•
$$\varphi^a$$
, $a = 0, 1, ..., M$ - local coordinates on S

- $x^{\mu}(arphi^{0},arphi^{1},...,arphi^{M})$ embedding functions, $\mu=0,1,...,D$
- $G = det[G_{ab}], \ G_{ab} := \partial_a x^{\mu} \partial_b x^{\nu} \eta_{\mu\nu}$

Extended objects

Let us consider an M-dimensional compact orientable manifold Σ moving in Minkowski space $\mathbb{R}^{1,D}$. The world-volume is given by

$$S[x] = -\int_{\mathbb{R}\times\Sigma} \sqrt{G} d^{M+1}\varphi.$$
 (1.1)

•
$$\varphi^{a}$$
, $a = 0, 1, ..., M$ - local coordinates on S
• $x^{\mu}(\varphi^{0}, \varphi^{1}, ..., \varphi^{M})$ - embedding functions, $\mu = 0, 1, ..., D$
• $G = det[G_{ab}], G_{ab} := \partial_{a} x^{\mu} \partial_{b} x^{\nu} \eta_{\mu\nu}$

$$\frac{\delta S}{\delta x} = 0 \implies \frac{1}{\sqrt{G}} \partial_{\alpha} \sqrt{G} G^{\alpha\beta} \partial_{\beta} x^{\mu} = 0, \ \mu = 0, ..., D$$

Extended objects

Let us consider an M-dimensional compact orientable manifold Σ moving in Minkowski space $\mathbb{R}^{1,D}$. The world-volume is given by

$$S[x] = -\int_{\mathbb{R}\times\Sigma} \sqrt{G} d^{M+1}\varphi.$$
 (1.1)

•
$$\varphi^{a}$$
, $a = 0, 1, ..., M$ - local coordinates on S
• $x^{\mu}(\varphi^{0}, \varphi^{1}, ..., \varphi^{M})$ - embedding functions, $\mu = 0, 1, ..., D$
• $G = det[G_{ab}], G_{ab} := \partial_{a} x^{\mu} \partial_{b} x^{\nu} \eta_{\mu\nu}$

$$\frac{\delta S}{\delta x} = \mathbf{0} \implies \frac{1}{\sqrt{G}} \partial_{\alpha} \sqrt{G} G^{\alpha \beta} \partial_{\beta} x^{\mu} = \mathbf{0}, \ \mu = \mathbf{0}, ..., D$$

 $\Delta x^{\mu} = 0$, vanishing mean curvature

Extended objects: orthogonal gauge

 $t := x^{0} = \varphi_{0}, \quad \dot{\vec{x}} \cdot \partial_{a}\vec{x} = 0, a = 1, 2, ..., M$ (1.2) $G_{\alpha\beta} = \begin{pmatrix} 1 - \dot{\vec{x}}^{2} & 0 \\ 0 & -g_{rs} \end{pmatrix}$ $g_{rs} := \partial_{r}\vec{x} \cdot \partial_{s}\vec{x}, \quad g := det(g_{rs}), \quad \dot{\vec{x}} := \partial_{t}\vec{x}$ • time-dependent surface $(x^{\mu}) = (t, \vec{x}(t, \vec{\varphi}))$ • $\mu = 0$ component \implies local conservation law

$$\partial_t \sqrt{\frac{g}{1-\dot{\vec{x}}^2}} \equiv \partial_\tau \rho(\varphi) = 0$$
 (1.3)

• first order system implied

$$\dot{\vec{x}}^2 + \frac{g}{\rho^2} = 1$$
 (1.4)

$$\dot{\vec{x}} \cdot \partial_a \vec{x} = 0 \tag{1.5}$$

•
$$\vec{x} = (x^1, ..., x^D)$$
, $\vec{\varphi}^M = (\varphi^1, ..., \varphi^M)$, $co - dim = 1 \leftrightarrow D = M + 1$
• assume $\dot{\vec{x}}, \partial_a \vec{x}$ are linearly independent. Then

Lemma 1. Zero mean curvature in co-dim 1

$$\Delta x^{\mu} = 0 \iff \begin{cases} \dot{\vec{x}}^2 + \frac{g}{\rho^2} = 1\\ \dot{\vec{x}} \cdot \partial_a \vec{x} = 0 \end{cases}$$

 $\mu = 0, 1, ..., M + 1, \ a = 1, ..., M$

 \bullet examples: closed strings (curves) in the plane, membranes (compact surfaces) in \mathbb{R}^3

Closed curves in the plane, M=1, D=2

Setting

$$ec{x}(t,arphi) = (x(t,arphi), y(t,arphi))$$

 $g = ec{x}'^2 := (\partial_arphi ec{x})^2$

Zero mean curvature condition:

$$\begin{cases} \dot{\vec{x}}^2 + \frac{{x'}^2}{\rho^2} = 1\\ \dot{\vec{x}} \cdot \vec{x'} = 0 \end{cases}$$
(1.6)

Closed curves in the plane, M=1, D=2

Setting

$$ec{x}(t,arphi) = (x(t,arphi), y(t,arphi))$$

 $g = ec{x}'^2 := (\partial_arphi ec{x})^2$

Zero mean curvature condition:

$$\begin{cases} \dot{\vec{x}}^2 + \frac{{x'}^2}{\rho^2} = 1\\ \dot{\vec{x}} \cdot \vec{x}' = 0 \end{cases}$$
(1.6)

Solution:

$$egin{aligned} ec{x}' &=
ho \cos(f-h) \left(egin{aligned} -\sin(f+h) \ \cos(f+h) \end{aligned}
ight) \ ec{x} &= -\sin(f-h) \left(egin{aligned} \cos(f+h) \ \sin(f+h) \end{array}
ight) \end{aligned}$$

where $f = f(\varphi + \frac{t}{\rho}), h = h(\varphi - \frac{t}{\rho})$ (implied by the integrability conditions: $\partial_{\omega} \dot{\vec{y}} = \partial_t \vec{y}'$ (KTH) May 11, 2016 6 / 39

Closed strings in the plane, M=1, D=2

Curvature:

$$k(t,\varphi) = \frac{f'+g'}{\cos(f-g)}$$

Theorem. k becomes singular in finite time Proof (idea): closedness \implies Range $(f + h) \ge 2\pi$ and thus $\exists t_s, 0 < t_s < \infty$ s.t. $|f - h| = \frac{\pi}{2}$ at $t = t_s$ and some $\varphi = \varphi_s$ (rigorous proof: L. Nguyen and G. Tian, 2013)

Example. shrinking circle (the only self-similar solution)

$$ec{x} = \cos(t) \left(egin{array}{c} -\sin(arphi)\ \cos(arphi) \end{array}
ight)$$

$$f(\varphi) = h(\varphi) = \frac{\varphi}{2}, \quad k \propto \frac{1}{\cos(t)}$$

 $\dot{\vec{x}} = \kappa \vec{n}$

Theorem (Gage-Hamilton-Grayson). Smooth simple closed curves shrink to points

Figure: From Wikipedia

Extended objects 1. \exists solutions with this property 2. \exists counter-examples

(KTH)

Harmonic perturbations of the shrinking circle (Hoppe, 1995)

Take

$$f(\varphi) = h(\varphi) = \frac{1}{2}(\varphi + \epsilon \sin(m\varphi)), \quad m \in \mathbb{Z}, \quad |m\epsilon| << 1$$

Then

$$ec{x}' =
ho \cos(t + \epsilon \sin(mt) \cos(marphi)) \left(egin{array}{c} -\sin(t + \epsilon \cos(mt) \sin(marphi)) \ \cos(t + \epsilon \cos(mt) \sin(marphi)) \end{array}
ight)$$

Curvature

$$k(t,\varphi) = \frac{1 + m\epsilon(\cos(mt) + \cos(m\varphi))}{|\cos(t + \epsilon\sin(mt)\cos(m\varphi))|}$$

- m = 2n curve smoothly shrinks to a point
- m = 2n + 1 then m discrete singular points before it has shrunk completely

Figure: $m=3, \epsilon = 0.1, t=1$

Singularities of relativistic membranes

10 / 39

Figure: $m=3, \epsilon = 0.1, t=1.48$

Singularities of relativistic membranes

May 11, 2016

11 / 39

Figure: $m=3, \epsilon = 0.1, t=1.5$

Singularities of relativistic membranes

May 11, 2016

12 / 39

Figure: $m=3, \epsilon = 0.1, t=1.54$

Singularities of relativistic membranes

May 11, 2016 13 / 39

э

Figure: $m=3, \epsilon = 0.1, t=1.56$

Figure: $m=3, \epsilon = 0.1, t=1.58$

Figure: $m=3, \epsilon = 0.1, t=1.64$

Axially symmetric membranes: M=2, D=3

$$\vec{x}(t,\varphi,\psi) = \begin{pmatrix} r(t,\varphi)\cos\psi\\ r(t,\varphi)\sin\psi\\ z(t,\varphi) \end{pmatrix}$$
(1.7)

Vanishing mean curvature (' := $\partial_{\varphi}, \ \psi \in (0, 2\pi), \varphi \in (0, \pi)$):

$$r'\dot{r} + z'\dot{z} = 0$$
 (1.8)

May 11, 2016

17 / 39

$$\dot{r}^2 + \dot{z}^2 + rac{r^2(z'^2 + r'^2)}{
ho^2} = 1$$
 (1.9)

General solution can be again parametrized by two functions F and G $\vec{y} := (r, z)$

$$\frac{r}{\rho}\vec{y}' = \cos(F(\varphi, t)) \begin{pmatrix} -\sin(G(\varphi, t)) \\ \cos(G(\varphi, t)) \end{pmatrix}$$
(1.10)

$$\dot{\vec{y}} = -\sin(F(\varphi, t)) \begin{pmatrix} \cos(G(\varphi, t)) \\ \sin(G(\varphi, t)) \end{pmatrix}$$
(1.11)

Singularities of relativistic membranes

Axially symmetric membranes: M=2, D=3

Solution

$$\frac{r}{\rho}\vec{y}' = \cos(F(\varphi, t)) \begin{pmatrix} -\sin(G(\varphi, t)) \\ \cos(G(\varphi, t)) \end{pmatrix}$$
(1.12)

$$\dot{\vec{y}} = -\sin(F(\varphi, t)) \begin{pmatrix} \cos(G(\varphi, t)) \\ \sin(G(\varphi, t)) \end{pmatrix}$$
(1.13)

with y := (r, z).

- integrability conditions: $\partial_{\varphi} \dot{\vec{y}} = \partial_t \vec{y'}$ unsolved
- curvature of the curve (giving rise to the solid of revolution)

$$k(\varphi, t) = \frac{r}{\rho} \frac{G'}{\cos F}.$$
 (1.14)

• Conjecture. The motion becomes singular in finite time.

(KTH)

The only known exact compact solution for M = 2Ansatz:

$$r(t, \varphi) = R(t)\sin(\varphi), \quad z(t, \varphi) = R(t)\cos(\varphi)$$

Then

$$\dot{R}^2 + rac{R^4}{
ho^2} = 1, \ \
ho = rac{R(0)^4}{1 - \dot{R}(0)^2} = const.$$

(compare

$$\dot{R}^2 + rac{R^2}{
ho^2} = 1$$
)

for the string) Curvature $k o \infty$ as $t o t_s$.

Zero-mean curvature

$$\begin{cases} \dot{\vec{x}}^2 + \frac{g}{\rho^2} = 1\\ \dot{\vec{x}} \cdot \partial_a \vec{x} = 0 \end{cases}, \quad a = 1, ..., M$$

For real solutions and smooth initial conditions (ρ smooth) we get, for all times

$$|ec{x}| \leq 1, \quad |g| \leq \max_{ec{arphi}}
ho(ec{arphi})$$

• strings
$$(M=1)$$
: $g=ec{x}'^2\implies |ec{x}'|<\infty$, actually $ec{x}\in C^\infty$

•
$$M>1$$
 numerical evidence: $ec{x}\in C^\infty$

From now on consider only metric singularities g
ightarrow 0

We are still aiming for discussing the connection:

$$\Delta x^{\mu} = 0$$
 \updownarrow

Singularities of relativistic membranes

May 11, 2016 21 / 39

Metric singularities

Zero-mean curvature

$$\begin{cases} \dot{\vec{x}}^2 + \frac{g}{\rho^2} = 1\\ \dot{\vec{x}} \cdot \partial_a \vec{x} = 0 \end{cases}$$

Conserved quantity

$$ho(ec{arphi}) = \sqrt{rac{g}{1-\dot{ec{x}^2}}}, \ \ g = det(g_{rs}) \equiv det(\partial_r ec{x} \cdot \partial_s ec{x})$$

Observation: Singularities move with the speed of light

1-1 correspondence between g
ightarrow 0 and $|ec{x}|
ightarrow 1$

Thus around singularities:

$$\begin{cases} \dot{\vec{x}}^2 = 1\\ \dot{\vec{x}} \cdot \partial_a \vec{x} = 0 \end{cases}$$

Around singularities:

$$\begin{cases} \dot{\vec{x}}^2 = 1\\ \dot{\vec{x}} \cdot \partial_a \vec{x} = 0 \end{cases}$$

Assume that all points move either outwards or all inwards. Then:

$$\dot{\vec{x}} = \vec{n}$$

i.e. solutions around singularities satisfy the Eikonal equation (solvability around singularities!).

Catastrophe theory

Huygens solution

$$\vec{x}(\mathbf{u},t) = \vec{x}(\mathbf{u},0) + \vec{n}(\mathbf{u},0)t,$$
 (1.15)

Let $ec{x}=(ec{x}_{\parallel}(\mathbf{u},t),z(\mathbf{u},t)))$ and $z(\mathbf{u},0)=f(\mathbf{u}).$ Then

$$ec{n}(\mathbf{u},0)=rac{(-
abla f,1)}{\sqrt{1+
abla f^2}},$$

and thus the solution cast in a graph form : $\vec{x}(\mathbf{u}, t) = \vec{x}(\mathbf{u}, 0) + \frac{(-\nabla f, 1)}{\sqrt{1 + \nabla f^2}}t.$ or

$$\vec{x}_{\parallel} = \mathbf{u} - \frac{\nabla f}{\sqrt{1 + \nabla f^2}}t, \qquad (1.16)$$
$$z = f(\mathbf{u}) + \frac{t}{\sqrt{1 + \nabla f^2}}. \qquad (1.17)$$

(KTH)

Catastrophes: singularities of the EE

Let M = 2, $\mathbf{u} = (\varphi, \psi)$ and $\vec{x} = (\vec{x}_{\parallel}, z) = (x, y, z)$. Singularities of the EE $\iff rank(D)$ is no longer maximal

$$\mathcal{D} = egin{pmatrix} x_arphi & y_arphi & z_arphi \ x_\psi & y_\psi & z_\psi \end{pmatrix}$$

 $g = D_1^2 + D_2^2 + D_3^2 = 0$ leads to the shape of singularities. Elementary catastrophes (Thom's theorem)

- fold 1 control variable
- cusp 2 control variables (t, φ)
- swallow tail 3 control variables (t, φ, ψ)

Catastrophes: singularities of the EE

More rigorous analysis: self-similar solutions, blow-ups.

• new time
$$t' = t_0 - t$$

• "lip" - singular wave-front projected onto z=0, height $\propto |t'|^{rac{1}{2}}$, width $\propto |t'|^{rac{3}{2}}$

$$\Delta x^{\mu} = 0$$
 \updownarrow

May 11, 2016 27 / 39

・ロト (雪) (目) (日) (日) (日)

■Optical distance

• assume that $Z \gg f$, as well as $Z \gg X - x$ and $Z \gg Y - y$:

$$\ell = Z - f + \frac{(X - x)^2 + (Y - y)^2}{2Z}.$$
 (1.18)

• a parboloid of revolution (up to a rescaling of the axes):

$$f(x,y)\approx \frac{x^2+y^2}{2Z_0}.$$

This means that a first focus occurs at $Z = Z_0$

 subtract the leading-order quadratic behaviour and introduce a new function g:

$$g(x,y) = f(x,y) - \frac{x^2 + y^2}{2Z_0}.$$
 (1.19)

control variables:

$$\xi = \frac{X}{Z}, \quad \eta = \frac{Y}{Z}, \quad \zeta = \frac{1}{2} \left(\frac{1}{Z_0} - \frac{1}{Z} \right), \quad (1.20)$$

• 'potential" ϕ by $\phi = Z_0 - \ell$, we have

$$\phi = g(x, y) + \zeta(x^2 + y^2) + \xi x + \eta y - 2\zeta Z_0^2,$$

where everything has been expanded to linear order in the control variables

- g(x, y) determines the catastrophe:fold : $g = x^3 + y^2$, cusp: $g = -x^4 + y^2$
- ray conditions: $t' = \phi, \phi_x = 0 = \phi_y$

• focusing conditions
$$\phi_{xx}\phi_{yy} - \phi xy^2 = 0$$

Lip for the cusp catastrophe

- Choose $g = -x^4 + y^2$
- the ray conditions give

$$\xi = -8x^3, \quad \eta = -2y, \quad \zeta = 6x^2$$
 (1.21)

.

• the focusing conditions imply

$$-t' = 12x^2 + y^2$$

• self-similar form (x = $\frac{X}{|t'|^{1/2}}$, y = $\frac{Y}{|t'|^{1/2}}$

$$1 = 12X^2 + Y^2 \tag{1.22}$$

$$\xi = -8|t'|^{3/2}X^3, \quad \eta = -2|t'|^{1/2}Y,$$
 (1.23)

Some numerics

We solve the following

$$\dot{r} = -z' \sqrt{\frac{1}{z'^2 + r'^2} - \frac{r^2}{\rho(\varphi)^2}}$$
(1.24)
$$\dot{z} = r' \sqrt{\frac{1}{z'^2 + r'^2} - \frac{r^2}{\rho(\varphi)^2}}.$$
(1.25)

subject to (rotationally symmetric ellipsoid :

$$r(0, \varphi) = a \sin(\varphi) \ z(0, \varphi) = -\cos(\varphi)$$

with a homogeneous initial velocity distribution, i.e. $\dot{\mathbf{x}}^2 = \mathbf{v}^2 = \textit{const}$

$$\rho = \frac{a\sin(\varphi)\sqrt{a^2\cos(\varphi)^2 + \sin(\varphi)^2}}{\sqrt{1 - v^2}}$$

Some numerics: ellipsoid, a > 1

(KTH)

Singularities of relativistic membranes

May 11, 2016 32 / 39

글 🛌 😑

< **1** → <

Some numerics: ellipsoid, a > 1

(KTH)

Singularities of relativistic membranes

May 11, 2016 33 / 39

3.5 3

Some numerics: ellipsoid, a > 1

(KTH)

Singularities of relativistic membranes

May 11, 2016 34 / 39

E> E

< 17 × 4

Some numerics: ellipsoid, a < 1

We solve

$$\dot{\mathbf{x}} = \pm \frac{\partial_1 \mathbf{x} \times \partial_2 \mathbf{x}}{|\partial_1 \mathbf{x} \times \partial_2 \mathbf{x}|} \sqrt{1 - \frac{g}{\rho^2}}$$
(1.26)

with a uniform initial velocity distribution i.e. $\dot{x}^2 = v^2 = const.$ and an ellipsoid as the initial condition,

$$\begin{aligned} x(0) &= a \cos \varphi \cos \theta \\ y(0) &= b \sin \varphi \cos \theta \\ z(0) &= c \sin \theta, \end{aligned} \tag{1.27}$$

Some numerics: ellipsoid (non-rotationally symmetric)

Some numerics: "lip" for an ellipsoid (non-rotationally symmetric)

- J. Hoppe, Membranes and matrix models, arXiv:hep-th/0206192.
- V. I. Arnol'd, V. A. Vasil'ev, V. V. Goryunov, and O. V. Lyashko, in Dynamical Systems VIII (Springer, Heidelberg, 1993)
- J. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (In- stitute of Physics Publishing, Bristol, 1999)
- J. Eggers and J. Hoppe, Phys. Lett. B 680, 274 (2009).
- Solution L. Nguyen and G. Tian, Class. Quantum Grav. 30, 16 (2013).