Seminar on Mathematical Physics February 2016, University of Ostrava

Periodic quantum graphs with asymptotically predefined spectral gaps

Andrii Khrabustovskyi

Institute for Analysis, Karlsruhe Institute of Technology, Germany CRC 1173 "Wave phenomena: analysis and numerics", Karlsruhe Institute of Technology, Germany

Joint work with Diana Barseghyan (University of Ostrava)

Published in Journal of Physics A: Mathematical and Theoretical, 48(25) (2015), 255201

Ústav jaderné fyziky AV Č veřejná výzkumná instituce

A. Khrabustovskyi

Periodic quantum graphs with asymptotically predefined spectral gap

- Preliminaries
 - Quantum graphs
 - Spectrum of periodic operators and spectral gaps
 - Previous results on spectral gaps
- Main results

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

* See [G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, AMS, 2013].

Quantum graph is a pair (Γ, \mathcal{H}) , where Γ is a network-shaped structure of vertices connected by edges ("metric graph", see figure) and \mathcal{H} is a second order self-adjoint differential operator on Γ ("Hamiltonian").

Notations:

- \mathcal{V}_{Γ} the set of vertices of Γ
- δ_Γ the set of edges of Γ
- l_e the length of $e \in \mathcal{E}_{\Gamma}$
- $x_e \in [0, I_e]$ the local coordinate on $e \in \mathcal{E}_{\Gamma}$

Let $u : \Gamma \to \mathbb{C}$, $e \in \mathcal{E}_{\Gamma}$. We denote by u_e the restriction of u onto e. Using a coordinate x_e we identify u_e with a function on $(0, l_e)$.

The **Hamiltonian** \mathcal{H} is a second order self-adjoint differential operator, which is determined by differential operations on the edges and certain interface conditions at the vertices.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminaries Hamiltonians

The **Hamiltonian** \mathcal{H} is a second order self-adjoint differential operator, which is determined by differential operations on the edges and certain interface conditions at the vertices.

Examples of operations

$$u\mapsto -\frac{\mathrm{d}^2 u}{\mathrm{d}x^2}, \quad f\mapsto -\frac{\mathrm{d}^2 u}{\mathrm{d}x^2}+V(x)u, \quad u\mapsto -\frac{1}{b(x)}\frac{\mathrm{d}}{\mathrm{d}x}\left(a(x)\frac{\mathrm{d}u}{\mathrm{d}x}\right), \ldots$$

< ロ > < 同 > < 三 > < 三 > 、

Preliminaries Hamiltonians

The **Hamiltonian** \mathcal{H} is a second order self-adjoint differential operator, which is determined by differential operations on the edges and certain interface conditions at the vertices.

Examples of operations

$$u \mapsto -\frac{\mathrm{d}^2 u}{\mathrm{d}x^2}, \quad f \mapsto -\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + V(x)u, \quad u \mapsto -\frac{1}{b(x)}\frac{\mathrm{d}}{\mathrm{d}x}\left(a(x)\frac{\mathrm{d}u}{\mathrm{d}x}\right), \ldots$$

Examples of interface conditions at $v \in \mathcal{V}_{\Gamma}$ (for $\mathcal{H} = -\frac{d^2}{dx^2}$)

• *u* is continuous at *v*, $\sum_{e \in \mathcal{E}_{\Gamma}(v)} \frac{du_e}{dx_e} = 0$ (Kirchhoff conditions) • *u* is continuous at *v*, $\sum_{e \in \mathcal{E}_{\Gamma}(v)} \frac{du_e}{dx_e} = \alpha u, \alpha \in \mathbb{R}$ (δ -coupling) • $\sum_{e \in \mathcal{E}_{\Gamma}(v)} \frac{du_e}{dx_e} = 0, \ \frac{du_e}{dx_e} - \frac{du_{e'}}{dx_{e'}} = \beta(u_e - u_{e'}), \ \beta \in \mathbb{R}$ (δ '-coupling) Here $\mathcal{E}_{\Gamma}(v)$ is a set of edges emanating from *v*, $x_e = 0$ at *v* for $e \in \mathcal{E}_{\Gamma}(v)$.

A. Khrabustovskyi Periodic quantum graphs with asymptotically predefined spectral gap

Preliminaries Periodic graphs

The metric graph $\Gamma \subset \mathbb{R}^d$ is periodic (or \mathbb{Z}^n -periodic) if it is invariant under translations through linearly independent vectors e_1, \ldots, e_n :

 $\Gamma = \Gamma + e_j, j = 1, \ldots, n.$

The Hamiltonian \mathcal{H} on a periodic metric graph Γ is said to be periodic if it commutes with the operators T_j , j = 1, ..., n,

$$(T_j u)(x) := u(x + e_j)$$

イロト 不得 トイヨト イヨト ニヨー

Let (Γ, \mathcal{H}) be a periodic quantum graph.

The Floque-Bloch theory says that the spectrum of \mathcal{H} has a band structure, i.e. the spectrum is a locally finite union of compact intervals called bands.

The open interval (α,β) is called a gap if $(\alpha,\beta) \cap \sigma(\mathcal{H}) = \emptyset$ and $\alpha,\beta \in \sigma(\mathcal{H})$.

(日)

Let (Γ, \mathcal{H}) be a periodic quantum graph.

The Floque-Bloch theory says that the spectrum of \mathcal{H} has a band structure, i.e. the spectrum is a locally finite union of compact intervals called bands.

The open interval (α,β) is called a gap if $(\alpha,\beta) \cap \sigma(\mathcal{H}) = \emptyset$ and $\alpha,\beta \in \sigma(\mathcal{H})$.

In general the presence of gaps in the spectrum of periodic Hamiltonians is not guaranteed.

Example: If Γ is a rectangular lattice and \mathcal{H} is defined by the operation $-d^2/dx^2$ on its edges and the Kirchhoff conditions at the vertices then $\sigma(\mathcal{H}) = [0, \infty)$.

Decorated graphs

Example^{*}: given a graph Γ_0 we "decorate" it attaching to each vertex of Γ_0 a copy of certain graph Γ_1 , the obtained graph we denote by Γ . The gaps open up in the spectrum of the operator \mathcal{H} defined by the operation $-d^2/dx^2$ on the edges of Γ and the Kirchhoff conditions at its vertices.

- * J. Schenker, M. Aizenman, Lett. Math. Phys. 53 (2000)
- * P. Kuchment, J. Phys. A 38 (2005)
- * J.E. Avron, P. Exner, Y. Last, Phys. Rev. Lett. 72 (1994) ("spider" decorations)
- * B.-S. Ong, PhD thesis, Texas A&M University, 2006 ("spider" decorations)

(a)

3

Decorated graphs

Example^{*}: given a graph Γ_0 we "decorate" it attaching to each vertex of Γ_0 a copy of certain graph Γ_1 , the obtained graph we denote by Γ . The gaps open up in the spectrum of the operator \mathcal{H} defined by the operation $-d^2/dx^2$ on the edges of Γ and the Kirchhoff conditions at its vertices.

- * J. Schenker, M. Aizenman, Lett. Math. Phys. 53 (2000)
- * P. Kuchment, J. Phys. A 38 (2005)
- * J.E. Avron, P. Exner, Y. Last, Phys. Rev. Lett. 72 (1994) ("spider" decorations)
- * B.-S. Ong, PhD thesis, Texas A&M University, 2006 ("spider" decorations)

Change of Kirchhoff conditions by more "advanced" ones

Example^{*}: let Γ be a rectangular lattice and \mathcal{H} be defined by the operation $-d^2/dx^2$ on its edges and δ coupling at the vertices with $\alpha \neq 0$. Then the spectrum of \mathcal{H} has infinitely many gaps provided $\alpha \neq 0$ and the lengths of edges satisfies some mild assumptions.

* P. Exner, Phys. Rev. Lett. 74 (1995)

Main results The graph Γ

Fig. : The graph Γ . Here m = 2.

• Γ_0 is a \mathbb{Z}^n -periodic metric graph (with compact period cell)

- {Y_{ij}, i ∈ Zⁿ, j = 1,...,m} is a family of compact graphs satisfying Y_{ij} ≃ Y_{0j}, ∀j
 Γ := Γ₀ ∪ (∪ V_{ij})
- $v_{ij} := Y_{ij} \cap \Gamma_0$

3

Let $\varepsilon > 0$ be a small parameter.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

Main results Hamiltonian $\mathcal{H}_{\varepsilon}$

Let $\varepsilon > 0$ be a small parameter. The operator $\mathcal{H}_{\varepsilon}$ acts on edges as follows:

$$(\mathcal{H}_{\varepsilon}u)_{e} = -\varepsilon^{-1} \frac{\mathrm{d}^{2}u_{e}}{\mathrm{d}x_{e}^{2}}, \ e \in \mathcal{E}_{\Gamma}.$$

At vertices $v \in \mathcal{V}$ the functions from its domain satisfy

- $\begin{array}{ll} v \notin \cup_{i,j} \{v_{ij}\} : \\ (\text{Kirchhoff coupling}) \end{array} \begin{cases} \bullet & u \text{ is continuous in } v, \\ \bullet & \sum_{e \in \mathcal{F}_{-}(v)} \frac{\mathrm{d}u_e}{\mathrm{d}x_e} = 0 \end{array}$
- $\begin{array}{l} \mathsf{v} = \mathsf{v}_{ij}: \\ (\delta' \text{-type coupling}) \end{array} \left\{ \begin{array}{l} \bullet \quad \text{une limiting value of } u(x) \text{ as } x \to \mathsf{v}_{ij} \text{ along } e \in \mathcal{E}_{\Gamma}(\mathsf{v}_{ij}) \cap \Gamma_{0} \\ \text{is independent of } e. \text{ We denote this value by } u_{0}(\mathsf{v}_{ij}) \\ \bullet \quad \text{the limiting value of } u(x) \text{ as } x \to \mathsf{v}_{ij} \text{ along } e \in \mathcal{E}_{\Gamma}(\mathsf{v}_{ij}) \cap Y_{ij} \\ \text{is independent of } e. \text{ We denote this value by } u_{j}(\mathsf{v}_{ij}) \\ \bullet \quad \sum \quad \frac{\mathrm{d}u_{e}}{\sum} = \quad \sum \quad \mathrm{d}u_{e} \end{array} \right.$

$$\sum_{e \in \mathcal{E}_{\Gamma}(v) \cap \Gamma_0} \frac{\mathrm{d}u_e}{\mathrm{d}x_e} = -\sum_{e \in \mathcal{E}_{\Gamma}(v) \cap Y_{ij}} \frac{\mathrm{d}u_e}{\mathrm{d}x_e} = \mathbf{q}_i \varepsilon(u_0(v) - u_j(v)),$$

where \mathbf{q}_i are positive constants

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 10/15

Main results

For j = 1, ..., m we set:

$$_{j}:=\sum_{e\in \mathcal{E}_{\Gamma}\cap Y_{0j}}I_{e}.$$

A. Khrabustovskyi Periodic quantum graphs with asymptotically predefined spectral gap

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Main results Notations

For $j = 1, \ldots, m$ we set:

$$I_j := \sum_{e \in \mathcal{E}_{\Gamma} \cap Y_{0j}} I_e.$$

For $j = 1, \ldots, m$ we set:

$$\mathsf{a}_j := rac{\mathsf{q}_j}{\mathsf{I}_j}.$$

It is assumed that the numbers a_j are pairwise non-equivalent. We renumber them in the ascending order: $a_j < a_{j+1}, \forall j = 1, ..., m-1$.

イロト イロト イヨト イヨト ヨー のくで

Main results Notations

For $j = 1, \ldots, m$ we set:

$$I_j := \sum_{e \in \mathcal{E}_{\Gamma} \cap Y_{0j}} I_e.$$

For $j = 1, \ldots, m$ we set:

$$\mathsf{a}_j := rac{\mathsf{q}_j}{\mathsf{I}_j}.$$

It is assumed that the numbers a_j are pairwise non-equivalent. We renumber them in the ascending order: $a_j < a_{j+1}, \forall j = 1, ..., m-1$.

We consider the following equation (with unknown $\lambda \in \mathbb{C}$):

$$1+\sum_{i=1}^m \frac{q_i l_i}{l_0(\lambda l_i-q_i)}=0,$$

where l_0 is a total length of edges belonging to the period cell of Γ_0 . This equation has exactly *m* roots b_i satisfying (after appropriate renumbering)

$$a_j < b_j < a_{j+1}, \ j = 1, \ldots, m-1, \quad a_m < b_m < \infty.$$

Theorem 1

Let L > 0 be an arbitrary number. Then the spectrum of the operator $\mathcal{H}_{\varepsilon}$ in [0, L] has the following structure for ε small enough:

$$\sigma(\mathcal{H}_{\varepsilon}) \cap [0, L] = [0, L] \setminus \bigcup_{j=1}^{m} (a_j(\varepsilon), b_j(\varepsilon)),$$

where the endpoints of the intervals $(a_j(\varepsilon), b_j(\varepsilon))$ satisfy the relations

$$\lim_{\varepsilon\to 0}a_j(\varepsilon)=a_j,\quad \lim_{\varepsilon\to 0}b_j(\varepsilon)=b_j,\ j=1,\ldots,m.$$

イロト 不得 トイヨト イヨト 二日

Above we have defined the map

$$\mathcal{L}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^m, \quad (q_1, \dots, q_m; l_1, \dots, l_m) \stackrel{\mathcal{L}}{\mapsto} (a_1, \dots, a_m; b_1, \dots, b_m), \\ \operatorname{dom}(\mathcal{L}) = \left\{ (q; l) \in \mathbb{R}^m \times \mathbb{R}^m: q_j > 0, \ l_j > 0, \ \frac{q_{j+1}}{l_{j+1}} > \frac{q_j}{l_j} \right\}.$$

イロト イヨト イヨト イヨト

æ

Above we have defined the map

$$\mathcal{L}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^m, \quad (q_1, \dots, q_m; l_1, \dots, l_m) \stackrel{\mathcal{L}}{\mapsto} (a_1, \dots, a_m; b_1, \dots, b_m),$$
$$\operatorname{dom}(\mathcal{L}) = \left\{ (q; l) \in \mathbb{R}^m \times \mathbb{R}^m: q_j > 0, \ l_j > 0, \ \frac{q_{j+1}}{l_{j+1}} > \frac{q_j}{l_j} \right\}.$$

Theorem 2

The map \mathcal{L} maps dom(\mathcal{L}) onto the set $\left\{ (a; b) \in \mathbb{R}^m \times \mathbb{R}^m : a_j < b_j < a_{j+1}, j = 1, \dots, m-1, a_m < b_m < \infty \right\}.$

Moreover \mathcal{L} is one-to-one and the inverse map \mathcal{L}^{-1} is given by

$$egin{aligned} q_j &= a_j l_0 rac{b_j - a_j}{a_j} \prod_{i=1,m \mid i
eq j} \left(rac{b_i - a_j}{a_i - a_j}
ight) \ l_j &= l_0 rac{b_j - a_j}{a_j} \prod_{i=1,m \mid i
eq j} \left(rac{b_i - a_j}{a_i - a_j}
ight). \end{aligned}$$

A. Khrabustovskyi Periodic quantum graphs with asymptotically predefined spectral gap

- Floque-Bloch theory and Neumann-Dirichlet bracketing
- Convergence theorems for monotonically increasing sequence of forms [B. Simon, J. Funct. Anal. 28 (1978)]
- Some algebra

(日) (四) (四) (100 ·

э.

Thank you for your attention!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@