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Outline of the talk

Preliminaries

- Quantum graphs
- Spectrum of periodic operators and spectral gaps
- Previous results on spectral gaps

Main results
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Preliminaries
Quantum graphs∗

∗ See [G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, AMS, 2013].

Quantum graph is a pair (Γ,H), where Γ is a network-shaped
structure of vertices connected by edges (“metric graph”, see
figure) and H is a second order self-adjoint differential operator on
Γ (“Hamiltonian”).

edgevertex
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Preliminaries
Metric graphs

Notations:

VΓ – the set of vertices of Γ

EΓ – the set of edges of Γ

le – the length of e ∈ EΓ

xe ∈ [0, le] – the local coordinate on e ∈ EΓ

Let u : Γ→ C, e ∈ EΓ. We denote by ue the restriction of u onto
◦
e.

Using a coordinate xe we identify ue with a function on (0, le).
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Preliminaries
Hamiltonians

The Hamiltonian H is a second order self-adjoint differential operator,
which is determined by differential operations on the edges and certain
interface conditions at the vertices.

Examples of operations

u 7→ −
d2u
dx2 , f 7→ −

d2u
dx2 + V(x)u, u 7→ −

1
b(x)

d
dx

(
a(x)

du
dx

)
, . . .

Examples of interface conditions at v ∈ VΓ (for H = − d2

dx2 )

• u is continuous at v ,
∑

e∈EΓ(v)

due

dxe
= 0 (Kirchhoff conditions)

• u is continuous at v ,
∑

e∈EΓ(v)

due

dxe
= αu, α ∈ R (δ-coupling)

•
∑

e∈EΓ(v)

due

dxe
= 0,

due

dxe
−

due′

dxe′
= β(ue − ue′), β ∈ R (δ′-coupling)

Here EΓ(v) is a set of edges emanating from v, xe = 0 at v for e ∈ EΓ(v).
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Preliminaries
Periodic graphs

The metric graph Γ ⊂ Rd is periodic (or Zn-periodic) if it is invariant
under translations through linearly independent vectors e1, . . . , en:

Γ = Γ + ej , j = 1, . . . , n.

The Hamiltonian H on a periodic metric graph Γ is said to be
periodic if it commutes with the operators Tj , j = 1, . . . , n,

(Tju)(x) := u(x + ej)

A. Khrabustovskyi Periodic quantum graphs with asymptotically predefined spectral gaps



7/15

Preliminaries
Spectrum of periodic quantum graphs

Let (Γ,H) be a periodic quantum graph.

The Floque-Bloch theory says that the spectrum of H has a band
structure, i.e. the spectrum is a locally finite union of compact
intervals called bands.

The open interval (α, β) is called a gap if (α, β) ∩ σ(H) = ∅ and
α, β ∈ σ(H).

In general the presence of gaps in the spectrum of periodic
Hamiltonians is not guaranteed.

Example: If Γ is a rectangular lattice and H is defined by the
operation −d2/dx2 on its edges and the Kirchhoff conditions at the
vertices then σ(H) = [0,∞).
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Preliminaries
How to create periodic quantum graphs with spectral gaps?

Decorated graphs

Example∗: given a graph Γ0 we “decorate” it attaching to each
vertex of Γ0 a copy of certain graph Γ1, the obtained graph we
denote by Γ. The gaps open up in the spectrum of the operator H
defined by the operation −d2/dx2 on the edges of Γ and the
Kirchhoff conditions at its vertices.
∗ J. Schenker, M. Aizenman, Lett. Math. Phys. 53 (2000)
∗ P. Kuchment, J. Phys. A 38 (2005)
∗ J.E. Avron, P. Exner, Y. Last, Phys. Rev. Lett. 72 (1994) (“spider” decorations)
∗ B.-S. Ong, PhD thesis, Texas A&M University, 2006 (“spider” decorations)

Change of Kirchhoff conditions by more “advanced” ones

Example∗: let Γ be a rectangular lattice and H be defined by the
operation −d2/dx2 on its edges and δ coupling at the vertices with
α , 0. Then the spectrum of H has infinitely many gaps provided
α , 0 and the lengths of edges satisfies some mild assumptions.
∗ P. Exner, Phys. Rev. Lett. 74 (1995)
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Main results
The graph Γ

Yi1
�	

Yi2
QQs

Γ0
��1

Fig. : The graph Γ. Here m = 2.

Γ0 is a Zn-periodic metric graph (with compact period cell){
Yij , i ∈ Zn, j = 1, . . . ,m

}
is a family of compact graphs

satisfying Yij ' Y0j , ∀j

Γ := Γ0 ∪

(⋃
i,j

Yij

)
vij := Yij ∩ Γ0
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Main results
Hamiltonian Hε

Let ε > 0 be a small parameter.

The operatorHε acts on edges as follows:

(Hεu)e = −ε−1 d2ue

dx2
e
, e ∈ EΓ.

At vertices v ∈ V the functions from its domain satisfy

v < ∪i,j{vij} :

(Kirchhoff coupling)


• u is continuous in v ,

•
∑

e∈EΓ(v)

due

dxe
= 0

v = vij :

(δ′-type coupling)



• the limiting value of u(x) as x → vij along e ∈ EΓ(vij) ∩ Γ0

is independent of e. We denote this value by u0(vij)

• the limiting value of u(x) as x → vij along e ∈ EΓ(vij) ∩ Yij

is independent of e. We denote this value by uj(vij)

•
∑

e∈EΓ(v)∩Γ0

due

dxe
= −

∑
e∈EΓ(v)∩Yij

due

dxe
= qjε(u0(v) − uj(v)),

where qj are positive constants
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Main results
Notations

For j = 1, . . . ,m we set:
lj :=

∑
e∈EΓ∩Y0j

le .

For j = 1, . . . ,m we set:

aj :=
qj

lj
.

It is assumed that the numbers aj are pairwise non-equivalent. We
renumber them in the ascending order: aj < aj+1, ∀j = 1, . . . ,m − 1.

We consider the following equation (with unknown λ ∈ C):

1 +
m∑

i=1

qi li
l0(λli − qi)

= 0,

where l0 is a total length of edges belonging to the period cell of Γ0. This
equation has exactly m roots bj satisfying (after appropriate renumbering)

aj < bj < aj+1, j = 1, . . . ,m − 1, am < bm < ∞.
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Main results
Convergence theorem

Theorem 1
Let L > 0 be an arbitrary number. Then the spectrum of the
operator Hε in [0, L ] has the following structure for ε small enough:

σ(Hε) ∩ [0, L ] = [0, L ] \
m⋃

j=1

(
aj(ε), bj(ε)

)
,

where the endpoints of the intervals
(
aj(ε), bj(ε)

)
satisfy the

relations

lim
ε→0

aj(ε) = aj , lim
ε→0

bj(ε) = bj , j = 1, . . . ,m.
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Main results
Inverse problem

Above we have defined the map

L : Rm × Rm → Rm × Rm, (q1, . . . , qm; l1, . . . , lm)
L
7→ (a1, . . . , am; b1, . . . , bm),

dom(L) =

{
(q; l) ∈ Rm × Rm : qj > 0, lj > 0,

qj+1

lj+1
>

qj

lj

}
.

Theorem 2

The map L maps dom(L) onto the set{
(a; b) ∈ Rm × Rm : aj < bj < aj+1, j = 1, . . . ,m − 1, am < bm < ∞

}
.

Moreover L is one-to-one and the inverse map L−1 is given by

qj = aj l0
bj − aj

aj

∏
i=1,m|i,j

(
bi − aj

ai − aj

)
,

lj = l0
bj − aj

aj

∏
i=1,m|i,j

(
bi − aj

ai − aj

)
.
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Main results
Proof ingredients

Floque-Bloch theory and Neumann-Dirichlet bracketing

Convergence theorems for monotonically increasing
sequence of forms [B. Simon, J. Funct. Anal. 28 (1978)]

Some algebra
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Thank you for your attention!
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