Discrete eigenvalues asymptotics in two models with delta interaction

Sylwia Kondej

Institute of Physics, University of Zielona Góra

Ostrava, 27 September 2016

Geometrically induced bound states - preliminaries

• Two dimensional system $L^2(\mathbb{R}^2)$, potential supported by a curve Γ .

"
$$H = -\Delta - \alpha \delta_{\Gamma}$$
" $\alpha > 0$.

Exner, Ichinose 2001 for 2D, Exner, SK, 2002 for 3D.

Definition of Hamiltonian

$$\mathcal{E}[f] = \int_{R^2} |\nabla f|^2 - \alpha \int_{\Gamma} |f|^2 \,, \quad f \in W^{1,2}(R^2) \,, \quad W^{1,2}(R^2) \hookrightarrow L^2(\Gamma) \,.$$

The Hamiltonian H: $(Hf, f)_{L^2(B^2)} = \mathcal{E}[f]$.

Boundary conditions

More precisely, we have

$$H\psi = -\Delta \psi$$
 a.e. in R^d ,
 $D(H) = \left\{ \psi \in W^{1,2}(R^d) \cap W^{2,2}(R^d \setminus \Gamma) : \psi \text{ satisfies (2)} \right\}$. (1)

$$\partial_{n}^{+}\psi|_{\Gamma} - \partial_{n}^{-}\psi|_{\Gamma} = -\alpha\psi|_{\Gamma}. \tag{2}$$

Point interaction in D1

$$H = -\Delta - \alpha \delta(\mathbf{x}).$$

$$D(H) := \{ f \in W^{1,2}(R) \cap W^{2,2}(R \setminus \{0\}), \quad f(0^+)' - f(0^-)' = -\alpha f(0) \}.$$

Spectrum of Hamiltonian

Straight line interaction

"
$$H = -\Delta - \alpha \delta_{\Gamma}$$
"

Transversal component: $-\Delta^{(1)} - \alpha \delta(x)$

$$-\frac{\alpha^2}{4}\cup[0,\infty)\,,$$

Spectrum of H

$$\sigma(H) = \left[-\frac{\alpha^2}{4}, \infty \right)$$

Curved wire. 2D: Exner, Ichinose; 3D: Exner, SK.

Bending acts as an attractive potential for quantum wires

 Γ - infinite asymptotically straight, C^2 piecewise, $(|\gamma(s)-\gamma(s')| \geq C|s-s'|$ no intersections, near-selfintersection).

Spectrum

$$\sigma_{\mathrm{ess}}(H) = \left[-\frac{\alpha^2}{4}, \infty \right), \quad \sigma_d(H) \neq \emptyset$$

Formulation of the problem

Γ- angle.

What is an asymptotics of the discrete spectrum is we approach to a straight line?

$$\varphi \stackrel{\checkmark}{\rightarrow} 0 - \frac{\zeta^2}{4}$$

Some inspirations...

Strong coupling constant asymptotics. Curvature k as an effective potential:

$$\lambda(H) = -\frac{\alpha^2}{4} + \lambda(-\frac{d^2}{ds^2} - \frac{k^2}{4}) + o(1).$$

for $\alpha \to \infty$.

Consider $k \leftrightarrow \beta k$ where $\beta \rightarrow 0$. Then

$$\lambda(-\frac{d^2}{ds^2}-\frac{(\beta k)^2}{4})=\mathcal{O}(\beta^4).$$

Total curvature

 $\int_{s}^{s'} k(t)$ measures the angle between tangential vectors t(s) and t(s').

I class of deformations and the result

Theorem [P.Exner, SK '15].

For φ small enough there is a unique discrete eigenvalue which admits the asymptotics

$$\lambda = -\frac{\alpha^2}{4} - A\varphi^4 + o(\varphi^4)\,, \quad A>0\,. \label{eq:lambda}$$

Parameterization of Γ_{φ} : $s \mapsto \gamma_{\varphi}(s)$

A is defined by the first perturbation term of

$$K_0(|\gamma_{\varphi}(s) - \gamma_{\varphi}(s')|) - K_0(|s - s'|)$$

Generalization

Curvature of Γ_{β} is defined by βk .

$$\Gamma_{\beta}(s) = (\int_0^s (\cos \int_0^u \beta k du') du, \int_0^s (\sin \int_0^u \beta k du') du)$$

Then

$$\lambda = -\frac{\alpha^2}{4} + B_{\Gamma}\beta^4 + o(\beta^4)$$

II class of deformations

 Γ_{φ^-} infinite, asymptotically straight - with the same straight line at infinity.

Hamiltonian has the discrete eigenvalues: λ_k , $k \in N$

Introduce deformation

Theorem [P.Exner, SK '15].

For φ small enough eigenvalues of $H_{\Gamma_{\varphi}}$ admit the asymptotics

$$\lambda_k + A_k \varphi + o(\varphi)$$

Some ideas of the proof

Birman-Schwinger argument.

Analysis of the resolvent, $H = -\Delta + V$

$$(H-z)^{-1} = R(z) - R(z)V^{1/2}[I+|V|^{1/2}R(z)V^{1/2}]^{-1}|V|^{1/2}R(z),$$

where $R(z) = (-\Delta - z)^{-1}$

Analysis of "poles" of $I + |V|^{1/2}R(z)V^{1/2}$

i.e. z such that

$$\ker(I + |V|^{1/2}R(z)V^{1/2}) \neq \emptyset$$

Embedding to $L^2(\Gamma)$.

Modification of the Birman-Schwinger argument

B-S principle

$$-\kappa^2 \in \sigma_{\mathrm{d}}(H_{\Gamma_\beta}) \quad \Leftrightarrow \quad \ker(I - \alpha Q_{\Gamma_\varphi}(\kappa)) \neq \emptyset, \quad (*)$$

where

$$Q_{\Gamma_{\varphi}}(\kappa; s, s') = \frac{1}{2\pi} K_0(\kappa |\gamma_{\varphi}(s) - \gamma_{\varphi}(s')|) = \frac{1}{2\pi} K_0(\kappa |s - s'|) + D_{\varphi}(\kappa; s, s').$$

Modification of the Birman-Schwinger argument, cont.

$$\ker(I - \alpha Q_{\Gamma_{\varphi}}(\kappa_{\delta})) \neq \emptyset \Leftrightarrow \ker(I - B_{\delta}\check{D}_{\varphi}) \neq \emptyset$$
 where $\kappa^2 = -\alpha^2/4 - \delta^2$,

$$B_{\delta} = \frac{1}{\delta}L + M_{\delta}, \ \|M_{\delta}\|_{HS} \leq const$$

where L is rank one,

$$\check{D}_{\varphi}=D^{1}\varphi^{2}+o(\varphi^{2}).$$

$$\delta(I - B_{\delta} \check{D}_{\varphi}) = \delta - LD^{1}\varphi^{2} + s.t.then\delta = \lambda(LD^{1})\varphi^{2} + s.t.$$

$$-\kappa^2 = -\alpha^2/4 - \delta^2 = -\alpha^2/4 - \lambda (LD^1)^2 \varphi^4 + s.t.$$

Colliding quantum wires; based on a common research with D. Krejčiřík

Let $\Sigma_0:=\partial\Omega$ the boundary of Ω (bounded smooth open set in R^2) For all sufficiently small positive ϵ , we consider parallel curves (hypersurfaces)

$$\Sigma_{\pm} := \left\{ q \pm \epsilon n(q) : q \in \Sigma_0 \right\}, \tag{3}$$

• n - pointed outward of Σ_0 , in the direction of Σ_+ .

Hamiltonian

$$H_{\epsilon} := -\Delta + \alpha_{+} \, \delta_{\Sigma_{+}} + \alpha_{-} \, \delta_{\Sigma_{-}} \,, \tag{4}$$

Analysis of spectral asymptotics for $\epsilon \to 0$.

Limitting operator:

$$H_0 := -\Delta + (\alpha_+ + \alpha_-) \delta_{\Sigma_0}. \tag{5}$$

Essential spectrum

Compact perturbation, essential spectrum:

$$\sigma_{\mathsf{ess}}(H_{\epsilon}) = \sigma_{\mathsf{ess}}(H_0) = \sigma_{\mathsf{ess}}(-\Delta) = [0, \infty)$$
.

Point interaction in D1

Hamiltonian

$$H = -\Delta + \alpha \delta(x)$$
.

$$D(H) := \{ f \in W^{1,2}(R) \cap W^{2,2}(R \setminus \{0\}) \,, \quad f(0^+)' - f(0^-)' = \alpha f(0) \} \,.$$

• Assume α < 0. Eigenvalue:

$$\lambda_0 = -\frac{\alpha^2}{4}, \quad \phi_0 = e^{\frac{\alpha}{2}|x|} \cong 1 + \frac{\alpha}{2}|x| + \dots$$

Point interactions in D1

Hamiltonian

$$H = -\Delta + \alpha_{-}\delta(\mathbf{X} + \epsilon) + \alpha_{+}\delta(\mathbf{X} - \epsilon).$$

Singularity of eigenfunctions

$$\phi_{\epsilon}(\mathbf{x})' \nrightarrow \phi_{0}(\mathbf{x})', \quad \mathbf{x} \in (-\epsilon, \epsilon).$$

$$\int_{-\epsilon}^{\epsilon} |(\phi_{\epsilon} - \phi_{0})'|^{2} = (\alpha_{+}^{2} + \alpha_{-}^{2})|\phi_{0}|^{2} \epsilon + s.t.$$

Theorem (d = 1)

Let $\alpha_+ + \alpha_- < 0$. For ε small enough operator H_{ε} has a unique simple discrete eigenvalue which admits the following asymptotics

$$\lambda_{\varepsilon} = \lambda_0 + \left[\alpha_+ |\psi_0|^{2\prime} (0^+) - \alpha_- |\psi_0|^{2\prime} (0^-) - (\alpha_+^2 + \alpha_-^2) |\psi_0|^2 (0) \right] \varepsilon + O(\varepsilon^2).$$
(6)

or, equivalently,

$$\lambda_{\epsilon} = \lambda_0 - (\alpha_+ + \alpha_-)\alpha_+ \alpha_- \epsilon + O(\epsilon^2)$$
 (7)

- $\alpha_{+}\alpha_{-}$ < 0 pushing down the spectrum after separation;
- $\alpha_{+}\alpha_{-} > 0$ pushing up spectrum after separation;

Generalization: colliding curves. Preliminary statement.

Theorem

For any $z \in \rho(H_0)$, there exists a positive constant ϵ_0 such that, for all $\epsilon < \epsilon_0$, we have $z \in \rho(H_\epsilon)$ and

$$\|(H_{\epsilon}-z)^{-1}-(H_{0}-z)^{-1}\|_{L^{2}(R^{d})\to L^{2}(R^{d})}=O(\epsilon)$$
 as $\epsilon\to 0$. (8)

- ingradients of proof: first representation theorem, variational arguments, elliptic regularity (regularity of eigenfunctions of H_{ϵ}).
- Consequences: convergence of spectrum (discrete spectrum).

Generalization: colliding curves

Theorem

Let λ_0 be a simple discrete eigenvalue of H_0 and let ψ_0 be the corresponding eigenfunction. H_{ϵ} possesses precisely one simple eigenvalue with asymptotics:

$$\lambda_{\epsilon} = \lambda_0 + \lambda_0' \, \epsilon + O(\epsilon^2)$$
 as $\epsilon \to 0$ (9)

for ϵ small, with

$$\lambda_0' := \frac{1}{\int_{R^d} |\psi_0|^2} \left(\alpha_+ \int_{\Sigma_0} \partial_n^+ |\psi_0|^2 - \alpha_- \int_{\Sigma_0} \partial_n^- |\psi_0|^2 - \right)$$
 (10)

$$\int_{\Sigma_0} \left[\alpha_+^2 + \alpha_-^2 + (\alpha_+ - \alpha_-) K_1 \right] |\psi_0|^2 , \qquad (11)$$

where K_1 the sign curvature of Σ_0 .

Generalizations

- Hypersurfaces in Rd.
- Complex coupling constants. Non-self-adjoint operators.
- Semisimple eigenvalues.

Thank you for your attention