Discrete eigenvalues asymptotics in two models with delta interaction

Sylwia Kondej

Institute of Physics, University of Zielona Góra

Ostrava, 27 September 2016

Geometrically induced bound states - preliminaries

- Two dimensional system $L^{2}\left(R^{2}\right)$, potential supported by a curve Γ.

$$
" H=-\Delta-\alpha \delta_{\Gamma} " \quad \alpha>0
$$

Exner, Ichinose 2001 for 2D, Exner, SK, 2002 for 3D.

Definition of Hamiltonian

$$
\mathcal{E}[f]=\int_{R^{2}}|\nabla f|^{2}-\alpha \int_{\Gamma}|f|^{2}, \quad f \in W^{1,2}\left(R^{2}\right), \quad W^{1,2}\left(R^{2}\right) \hookrightarrow L^{2}(\Gamma) .
$$

The Hamiltonian $H: \quad(H f, f)_{L^{2}\left(R^{2}\right)}=\mathcal{E}[f]$.

Boundary conditions

More precisely, we have

$$
\begin{gather*}
H \psi=-\Delta \psi \quad \text { a.e. in } R^{d} \\
D(H)=\left\{\psi \in W^{1,2}\left(R^{d}\right) \cap W^{2,2}\left(R^{d} \backslash \Gamma\right): \psi \text { satisfies }(2)\right\} . \tag{1}\\
\left.\quad \partial_{n}^{+} \psi\right|_{\Gamma}-\left.\partial_{n}^{-} \psi\right|_{\Gamma}=-\left.\alpha \psi\right|_{\Gamma} \tag{2}
\end{gather*}
$$

Point interaction in D1

$$
H=-\Delta-\alpha \delta(x)
$$

$$
D(H):=\left\{f \in W^{1,2}(R) \cap W^{2,2}(R \backslash\{0\}), \quad f\left(0^{+}\right)^{\prime}-f\left(0^{-}\right)^{\prime}=-\alpha f(0)\right\}
$$

Spectrum of Hamiltonian

Straight line interaction

$$
" H=-\Delta-\alpha \delta_{\Gamma} "
$$

Transversal component: $-\Delta^{(1)}-\alpha \delta(x)$

$$
-\frac{\alpha^{2}}{4} \cup[0, \infty),
$$

Spectrum of H

$$
\sigma(H)=\left[-\frac{\alpha^{2}}{4}, \infty\right)
$$

Curved wire. 2D: Exner, Ichinose; 3D: Exner, SK.

Bending acts as an attractive potential for quantum wires

Γ - infinite asymptotically straight, C^{2} piecewise,
$\left(\left|\gamma(\boldsymbol{s})-\gamma\left(s^{\prime}\right)\right| \geq \boldsymbol{C}\left|\boldsymbol{s}-\boldsymbol{s}^{\prime}\right|\right.$ no intersections, near-selfintersection).

Spectrum

$$
\sigma_{\text {ess }}(H)=\left[-\frac{\alpha^{2}}{4}, \infty\right), \quad \sigma_{d}(H) \neq \emptyset
$$

$$
-\frac{c^{2}}{4}
$$

Formulation of the problem

Γ - angle.

What is an asymptotics of the discrete spectrum is we approach to a straight line?

$$
\dot{\vec{\varphi} \rightarrow 0}-\frac{\bar{z}^{2}}{4}
$$

Some inspirations...

Strong coupling constant asymptotics.
Curvature k as an effective potential:

$$
\lambda(H)=-\frac{\alpha^{2}}{4}+\lambda\left(-\frac{d^{2}}{d s^{2}}-\frac{k^{2}}{4}\right)+o(1)
$$

for $\alpha \rightarrow \infty$.
Consider $k \leftrightarrow \beta k$ where $\beta \rightarrow 0$. Then

$$
\lambda\left(-\frac{d^{2}}{d s^{2}}-\frac{(\beta k)^{2}}{4}\right)=\mathcal{O}\left(\beta^{4}\right)
$$

Total curvature

$\int_{s}^{s^{\prime}} k(t)$ measures the angle between tangential vectors $t(s)$ and $t\left(s^{\prime}\right)$.

I class of deformations and the result

Theorem [P.Exner, SK '15].

For φ small enough there is a unique discrete eigenvalue which admits the asymptotics

$$
\lambda=-\frac{\alpha^{2}}{4}-A \varphi^{4}+o\left(\varphi^{4}\right), \quad A>0
$$

Parameterization of $\Gamma_{\varphi}: s \mapsto \gamma_{\varphi}(s)$

A is defined by the first perturbation term of

$$
K_{0}\left(\left|\gamma_{\varphi}(s)-\gamma_{\varphi}\left(s^{\prime}\right)\right|\right)-K_{0}\left(\left|s-s^{\prime}\right|\right)
$$

Generalization

Curvature of Γ_{β} is defined by βk.

$$
\Gamma_{\beta}(s)=\left(\int_{0}^{s}\left(\cos \int_{0}^{u} \beta k d u^{\prime}\right) d u, \int_{0}^{s}\left(\sin \int_{0}^{u} \beta k d u^{\prime}\right) d u\right)
$$

Then

$$
\lambda=-\frac{\alpha^{2}}{4}+B_{\ulcorner } \beta^{4}+o\left(\beta^{4}\right)
$$

II class of deformations

Γ_{φ} - infinite, asymptotically straight - with the same straight line at infinity.

Hamiltonian has the discrete eigenvalues: $\lambda_{k}, k \in N$

Introduce deformation

Theorem [P.Exner, SK '15].
For φ small enough eigenvalues of $H_{\Gamma_{\varphi}}$ admit the asymptotics

$$
\lambda_{k}+A_{k} \varphi+o(\varphi)
$$

Some ideas of the proof

Birman-Schwinger argument.
Analysis of the resolvent, $H=-\Delta+V$

$$
(H-z)^{-1}=R(z)-R(z) V^{1 / 2}\left[\mathbf{I}+|\mathbf{V}|^{\mathbf{1} / \mathbf{2}} \mathbf{R}(\mathbf{z}) \mathbf{V}^{1 / 2}\right]^{-1}|V|^{1 / 2} R(z)
$$

where $R(z)=(-\Delta-z)^{-1}$

Analysis of "poles" of $I+|V|^{1 / 2} R(z) V^{1 / 2}$
i.e. z such that

$$
\operatorname{ker}\left(I+|V|^{1 / 2} R(z) V^{1 / 2}\right) \neq \emptyset
$$

Embedding to $L^{2}(\Gamma)$.

Modification of the Birman-Schwinger argument

B-S principle

$$
-\kappa^{2} \in \sigma_{\mathrm{d}}\left(H_{\Gamma_{\beta}}\right) \Leftrightarrow \operatorname{ker}\left(I-\alpha Q_{\Gamma_{\varphi}}(\kappa)\right) \neq \emptyset, \quad(*)
$$

where

$$
\mathcal{Q}_{\Gamma_{\varphi}}\left(\kappa ; s, s^{\prime}\right)=\frac{1}{2 \pi} K_{0}\left(\kappa\left|\gamma_{\varphi}(s)-\gamma_{\varphi}\left(s^{\prime}\right)\right|\right)=\frac{1}{2 \pi} K_{0}\left(\kappa\left|s-s^{\prime}\right|\right)+D_{\varphi}\left(\kappa ; s, s^{\prime}\right) .
$$

Modification of the Birman-Schwinger argument, cont.

$\operatorname{ker}\left(I-\alpha Q_{\Gamma_{\varphi}}\left(\kappa_{\delta}\right)\right) \neq \emptyset \Leftrightarrow \operatorname{ker}\left(I-B_{\delta} \check{D}_{\varphi}\right) \neq \emptyset$ where $-\kappa^{2}=-\alpha^{2} / 4-\delta^{2}$,

$$
B_{\delta}=\frac{1}{\delta} L+M_{\delta}, \quad\left\|M_{\delta}\right\|_{H S} \leq \mathrm{const}
$$

where L is rank one,

$$
\check{D}_{\varphi}=D^{1} \varphi^{2}+o\left(\varphi^{2}\right) .
$$

$$
\delta\left(I-B_{\delta} \check{D}_{\varphi}\right)=\delta-L D^{1} \varphi^{2}+\text { s.t.then } \delta=\lambda\left(L D^{1}\right) \varphi^{2}+\text { s.t. }
$$

$-\kappa^{2}=-\alpha^{2} / 4-\delta^{2}=-\alpha^{2} / 4-\lambda\left(L D^{1}\right)^{2} \varphi^{4}+s . t$.

Colliding quantum wires; based on a common research with D. Krejčiřík

Let $\Sigma_{0}:=\partial \Omega$ the boundary of Ω (bounded smooth open set in R^{2}) For all sufficiently small positive ϵ, we consider parallel curves
(hypersurfaces)

$$
\begin{equation*}
\Sigma_{ \pm}:=\left\{q \pm \epsilon n(q): q \in \Sigma_{0}\right\} \tag{3}
\end{equation*}
$$

- n - pointed outward of Σ_{0}, in the direction of Σ_{+}.

Hamiltonian

$$
\begin{equation*}
H_{\epsilon}:=-\Delta+\alpha_{+} \delta_{\Sigma_{+}}+\alpha_{-} \delta_{\Sigma_{-}}, \tag{4}
\end{equation*}
$$

Analysis of spectral asymptotics for $\epsilon \rightarrow 0$.

- Limitting operator:

$$
\begin{equation*}
H_{0}:=-\Delta+\left(\alpha_{+}+\alpha_{-}\right) \delta_{\Sigma_{0}} . \tag{5}
\end{equation*}
$$

Essential spectrum

- Compact perturbation, essential spectrum:

$$
\sigma_{e s s}\left(H_{\epsilon}\right)=\sigma_{e s s}\left(H_{0}\right)=\sigma_{e s s}(-\Delta)=[0, \infty)
$$

Point interaction in D1

Hamiltonian

$$
H=-\Delta+\alpha \delta(x)
$$

$$
D(H):=\left\{f \in W^{1,2}(R) \cap W^{2,2}(R \backslash\{0\}), \quad f\left(0^{+}\right)^{\prime}-f\left(0^{-}\right)^{\prime}=\alpha f(0)\right\}
$$

- Assume $\alpha<0$. Eigenvalue:

$$
\lambda_{0}=-\frac{\alpha^{2}}{4}, \quad \phi_{0}=\mathrm{e}^{\frac{\alpha}{2}|x|} \cong 1+\frac{\alpha}{2}|x|+\ldots
$$

Point interactions in D1

Hamiltonian

$$
H=-\Delta+\alpha_{-} \delta(x+\epsilon)+\alpha_{+} \delta(x-\epsilon) .
$$

Singularity of eigenfunctions

$$
\begin{array}{r}
\phi_{\epsilon}(x)^{\prime} \rightarrow \phi_{0}(x)^{\prime}, \quad x \in(-\epsilon, \epsilon) \\
\int_{-\epsilon}^{\epsilon}\left|\left(\phi_{\epsilon}-\phi_{0}\right)^{\prime}\right|^{2}=\left(\alpha_{+}^{2}+\alpha_{-}^{2}\right)\left|\phi_{0}\right|^{2} \epsilon+S_{t}
\end{array}
$$

Theorem $(d=1)$

Let $\alpha_{+}+\alpha_{-}<0$. For ε small enough operator H_{ε} has a unique simple discrete eigenvalue which admits the following asymptotics
$\lambda_{\varepsilon}=\lambda_{0}+\left[\alpha_{+}\left|\psi_{0}\right|^{2 \prime}\left(0^{+}\right)-\alpha_{-}\left|\psi_{0}\right|^{2 \prime}\left(0^{-}\right)-\left(\alpha_{+}^{2}+\alpha_{-}^{2}\right)\left|\psi_{0}\right|^{2}(0)\right] \varepsilon+O\left(\varepsilon^{2}\right)$.
or, equivalently,

$$
\begin{equation*}
\lambda_{\epsilon}=\lambda_{0}-\left(\alpha_{+}+\alpha_{-}\right) \alpha_{+} \alpha_{-} \epsilon+O\left(\epsilon^{2}\right) \tag{7}
\end{equation*}
$$

- $\alpha_{+} \alpha_{-}<0$ pushing down the spectrum after separation;
- $\alpha_{+} \alpha_{-}>0$ pushing up spectrum after separation;

Generalization: colliding curves. Preliminary statement.

Theorem

For any $z \in \rho\left(H_{0}\right)$, there exists a positive constant ϵ_{0} such that, for all $\epsilon<\epsilon_{0}$, we have $z \in \rho\left(H_{\epsilon}\right)$ and

$$
\begin{equation*}
\left\|\left(H_{\epsilon}-z\right)^{-1}-\left(H_{0}-z\right)^{-1}\right\|_{L^{2}\left(R^{d}\right) \rightarrow L^{2}\left(R^{d}\right)}=O(\epsilon) \quad \text { as } \quad \epsilon \rightarrow 0 \tag{8}
\end{equation*}
$$

- ingradients of proof: first representation theorem, variational arguments, elliptic regularity (regularity of eigenfunctions of H_{ϵ}).
- Consequences: convergence of spectrum (discrete spectrum).

Generalization: colliding curves

Theorem

Let λ_{0} be a simple discrete eigenvalue of H_{0} and let ψ_{0} be the corresponding eigenfunction. H_{ϵ} possesses precisely one simple eigenvalue with asymptotics:

$$
\begin{equation*}
\lambda_{\epsilon}=\lambda_{0}+\lambda_{0}^{\prime} \epsilon+O\left(\epsilon^{2}\right) \quad \text { as } \quad \epsilon \rightarrow 0 \tag{9}
\end{equation*}
$$

for ϵ small, with

$$
\begin{array}{r}
\lambda_{0}^{\prime}:=\frac{1}{\int_{R^{d}}\left|\psi_{0}\right|^{2}}\left(\alpha_{+} \int_{\Sigma_{0}} \partial_{n}^{+}\left|\psi_{0}\right|^{2}-\alpha_{-} \int_{\Sigma_{0}} \partial_{n}^{-}\left|\psi_{0}\right|^{2}-\right. \\
\left.\int_{\Sigma_{0}}\left[\alpha_{+}^{2}+\alpha_{-}^{2}+\left(\alpha_{+}-\alpha_{-}\right) K_{1}\right]\left|\psi_{0}\right|^{2}\right) \tag{11}
\end{array}
$$

where K_{1} the sign curvature of Σ_{0}.

Generalizations

- Hypersurfaces in R^{d}.
- Complex coupling constants. Non-self-adjoint operators.
- Semisimple eigenvalues.

Thank you for your attention

