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Geometrically induced bound states - preliminaries

« Two dimensional system L?(R?), potential supported by a curve T

"H=—-A—adr” a>0.

N

X
Exner, Ichinose 2001 for 2D, Exner, SK, 2002 for 3D.
Definition of Hamiltonian

£lf] = / Vi —a / 1P, fe WHB(R?), W'3(R?)— LA(T).
R? r

The Hamiltonian H: (Hf, f) 2Ry = E[f].
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Boundary conditions

More precisely, we have
Hy=—-Ay  ae.inRY,

D(H) = {zp € W'3(RY) n W22(RY\T) : ¢ satisfies (2)} . ()

Iy lr — Oy lr = —a)|r . (2)

Point interaction in D1
H=—-A—ad(x).
D(H) := {f ¢ W'2(R)n W22(R\ {0}), f(0F) —f(0~) = —af(0)}.

£ LD
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Spectrum of Hamiltonian

Straight line interaction

"H=—-A—ad”
& T
_%2 U [0, 00), |
Spectrum of H
o(H) = [ . 0) J
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Curved wire. 2D: Exner, Ichinose; 3D: Exner, SK.

Bending acts as an attractive potential for quantum wires

I- infinite asymptotically straight, C? piecewise,
(|v(s) = ~v(s")| > C|s — §'| no intersections, near-selfintersection).
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Formulation of the problem
- angle.

What is an asymptotics of the discrete spectrum is we approach
to a straight line?
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Some inspirations...

Strong coupling constant asymptotics.

Curvature k as an effective potential:

a2 d2 k2
for a — oo.
Consider k «» Sk where 5 — 0. Then
d®  (Bk) 4
)\(—@— y )=0(6"). ]
Total curvature
fss' k(t) measures the angle between tangential vectors f(s) and t(s’).
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| class of deformations and the result

Theorem [P.Exner, SK ’15].

For ¢ small enough there is a unique discrete eigenvalue which admits
the asymptotics

2

Az—%—A(p“’—i—O((p“’), A>0.

Parameterization of I',: s — 7,(S)

A is defined by the first perturbation term of

Ko(176(8) = 70(8)]) — Ko(Is — s'])
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Generalization

Curvature of g is defined by gk.

ra(s) = ( /0 "(cos /0 " k), /0 "(sin /0 " Bkdu)du)

Then
o

A= 4

+ Br5* + o(84)
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Il class of deformations
I',- infinite, asymptotically straight - with the same straight line at
infinity.

LI’

Hamiltonian has the discrete eigenvalues: A\, k € N
Introduce deformation

M
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Theorem [P.Exner, SK ’15].

For ¢ small enough eigenvalues of Hr_, admit the asymptotics

M + Ak + 0(p)
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Some ideas of the proof

Birman—Schwinger argument.
Analysis of the resolvent, H= —-A + V

(H—2)"" = R(z) - R(2)V2l + V" 2R(2)V/? " |V|'/2R(2),

where R(z) = (—A — z)~!

Analysis of "poles" of / + | V|'/2R(z)V1/2
i.e. z such that

ker(/+|V|'"2R(z)V1/2) £ 0
Embedding to L2(I).
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Modification of the Birman-Schwinger argument

B-S principle
—r2 €oa(Hr,) < ker(l—aQr () #0, ()

where

/ 1 / 1 / /
Or, (1:5.8) = 5= Ko(kl5(8)~75()]) = o Kolls—5)+ Dyl 5. ).

v
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Modification of the Birman-Schwinger argument, cont.

ker(I — aQr_(ks)) # 0 < ker(I — BsD,) # Owhere-rx? = —a?/4 — §2,

1
Bs = 3L+ Ms, ||Ms||ns < const

where L is rank one,
D, = D'¢? + o(¢%).

| N,

5(I—BsD,) = & — LD'?+ s.t.thens = \(LD")y? + s.t.

| A\

—k2 = —0?/4 — 2 = —a?/4 — A\(LD")2p* + s.t.

N
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Colliding quantum wires; based on a common

research with D. KrejCifik

Let ¥y := 09 the boundary of Q (bounded smooth open set in R? ) For
all sufficiently small positive ¢, we consider parallel curves
(hypersurfaces)

Yi={q+en(q):qec o}, (3)
e n - pointed outward of ¥, in the direction of ¥ .

n < + )§+
Zo . S 2670

Sylwia Kondej (Institute of Physics, University

Ostrava, 27 September 2016 15/23



Hamiltonian

He:=-A+ o4 dy, +a_65_, (4)

Analysis of spectral asymptotics for ¢ — O.

e Limitting operator:

Ho := —A+ (ay +a_)dx,. (5)

Essential spectrum

e Compact perturbation, essential spectrum:

Oess(He) = 0ess(Ho) = 0ess(—4) = [0,00) .
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Point interaction in D1

Hamiltonian

H=—-A+ ad(x).
D(H) := {f e W"2(R)n W?2(R\ {0}), f(0*) —f(0~) = af(0)}.

e Assume a < 0. Eigenvalue:

£ L0

N
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Point interactions in D1

Hamiltonian

H=—-A+a_6(x+e)+aid(x—e).

Singularity of eigenfunctions
€L

M &

/\‘h:

LLFL-

de(X) » do(x), X € (—¢,€).
IS 1(de — d0)'|? = (aB + a2 )|do|€ + s.t.
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Theorem (d = 1)

Let oy + a— < 0. Fore small enough operator H. has a unique simple
discrete eigenvalue which admits the following asymptotics

A = Do+ [ [90[?/(0%) — a [1l?'(07) = (a4 +a2) [Yo[2(0)| e+ O(=?)
(6)
or, equivalently,

Ae = X — (g + a)aya_ e+ O(e?) (7)

v

e oy < 0 pushing down the spectrum after separation;
e o, > 0 pushing up spectrum after separation;
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Generalization: colliding curves. Preliminary
statement.

For any z € p(Hyp), there exists a positive constant ey such that, for all
€ < €9, we have z € p(H.) and

|(He = 2" = (Ho )

= O(e) as e¢—0.(8)
L2(R9)—L2(RY)

e ingradients of proof: first representation theorem, variational
arguments, elliptic regularity (regularity of eigenfunctions of H.).
e Consequences: convergence of spectrum (discrete spectrum).
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Generalization: colliding curves

Theorem

Let \q be a simple discrete eigenvalue of Hy and let g be the

corresponding eigenfunction. H. possesses precisely one simple
eigenvalue with asymptotics:

A=+ Nge+O(?) as e—0 (9)

for e small, with

o ; —+ 2 — 2
SR CF BT T "o
[ o+ e +(@ar—aki] wol) . (1

where Ky the sign curvature of .
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Generalizations

e Hypersurfaces in RY.
e Complex coupling constants. Non-self-adjoint operators.
e Semisimple eigenvalues.
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Thank you for your attention
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