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http://people.fjfi.cvut.cz/krejcirik

Czech Technical University in Prague



Spectral geometry in physics
Why is the spectrum (of the Laplacian) so important ?



Spectral geometry in physics
Why is the spectrum (of the Laplacian) so important ?

∂2Ψ

∂t2
−∆Ψ = 0

∂Ψ

∂t
−∆Ψ = 0 i

∂Ψ

∂t
= −∆Ψ



Spectral geometry in physics
Why is the spectrum (of the Laplacian) so important ?

∂2Ψ

∂t2
−∆Ψ = 0

∂Ψ

∂t
−∆Ψ = 0 i

∂Ψ

∂t
= −∆Ψ ❀ −∆ψ = λψ



Spectral geometry in physics
Why is the spectrum (of the Laplacian) so important ?

∂2Ψ

∂t2
−∆Ψ = 0

∂Ψ

∂t
−∆Ψ = 0 i

∂Ψ

∂t
= −∆Ψ ❀ −∆ψ = λψ

e
t
(

0 1
∆ 0

)

et∆ eit∆ e−tH =

∫

σ(H)
e−tλ dEH(λ)



Spectral geometry in physics
Why is the spectrum (of the Laplacian) so important ?

∂2Ψ

∂t2
−∆Ψ = 0

∂Ψ

∂t
−∆Ψ = 0 i

∂Ψ

∂t
= −∆Ψ ❀ −∆ψ = λψ

e
t
(

0 1
∆ 0

)

et∆ eit∆ e−tH =

∫

σ(H)
e−tλ dEH(λ)

We are thus lead to the study of the spectral-geometric problem for the Laplacian :







−∆ψ = λψ in Ω,

∂ψ

∂n
+ αψ = 0 on ∂Ω. (Neumann α = 0, Dirichlet α = ∞ )

geometry of Ω ⇆ spectrum of −∆



Spectral geometry in physics
Why is the spectrum (of the Laplacian) so important ?

∂2Ψ

∂t2
−∆Ψ = 0

∂Ψ

∂t
−∆Ψ = 0 i

∂Ψ

∂t
= −∆Ψ ❀ −∆ψ = λψ

e
t
(

0 1
∆ 0

)

et∆ eit∆ e−tH =

∫

σ(H)
e−tλ dEH(λ)

We are thus lead to the study of the spectral-geometric problem for the Laplacian :







−∆ψ = λψ in Ω,

∂ψ

∂n
+ αψ = 0 on ∂Ω. (Neumann α = 0, Dirichlet α = ∞ )

geometry of Ω ⇆ spectrum of −∆

But: spectrum known explicitly only for Ω = R
d, ball and parallelipiped

=⇒ functional-analytic tools have to be employed
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−∆ψ = λψ in Ω,
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D : L2(Ω) → L2(Ω) :

{
ψ 7→ −∆ψ

}
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D) :=

{
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NB (spectrum of an unbounded operator H)

σ(H) := {λ ∈ C | H − λI is not bijective}

= σdisc(H)
︸ ︷︷ ︸

||

∪̇σess(H)

isolated eigenvalues of finite multiplicity
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Theorem (criticality of R1 and R
2). Let d = 1, 2. For any non-positive measurable V ,

inf σ(−∆Rd

D + V ) < 0
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σ(−∆Ω
D) = σdisc(−∆Ω

D) ∪ σess(−∆Ω
D) ⇒ very hard to study

︸ ︷︷ ︸

6=∅

distinguished subclass: TUBES

tubular neighbourhoods of submanifolds

−→ location of the essential spectrum

−→ existence of the discrete spectrum
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• oriented submanifold Σ ⊂ R
d

complete and non-compact, dimΣ < d

• orthonormal vector fields n1, . . . , ncodimΣ : Σ → R
d

• cross-section ω ⊂ R
codimΣ

bounded domain

• tube Ω :=






x+

codimΣ∑

j=1

tj nj(x) : (x, t) ∈ Σ× ω







Assumption. No self-intersections.

−→ unbounded geometry

−→ uniform cross-section
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[Exner, Šeba 1989] dimΣ = 1, codimΣ = 1

→ existence of quantum bound states (σdisc)



Premillennial history

Many results for ◦ complete manifolds (both compact and non-compact),
◦ compact submanifolds (with boundary),

but no systematic spectral-theoretic study of non-compact non-complete manifolds.

New motivations from physics:

nanostructures

GaAs/AlGaAs crescent shaped quantum wire
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Theorem ([D.K., Lu 2014 (J. Math. Phys.)]). If

• Σ is asymptotically flat (2nd fundamental form goes to 0 at infinity),
and

• the transport of ω along Σ is asymptotically parallel (relevant only if codimΣ ≥ 2),

then

σess(−∆Ω
D) = [E1,∞) .

E1 := minσ(−∆ω
D)

Proof. −∆Ω
D ≃ −G

1

2∂iG
1

2Gij∂j

L2(Ω) L2(Σ× ω, dx dt)

Weyl’s criterion adapted to quadratic forms:

λ ∈ σ(H) ⇐⇒ ∃{ψn} ⊂ Dom
(
H

1

2

)

︸ ︷︷ ︸

H1

:

{

‖ψn‖H = 1

‖(H − λ)ψn‖H∗

1
→ 0

Dom(H) ⊂ H1 ⊂ H = H∗ ⊂ H∗

1 q.e.d.



Quantum layers: the discrete spectrum
dimΣ = 2, codimΣ = 1

Theorem ([Duclos, Exner, D.K. 2001 (Comm. Math. Phys.)],
[Carron, Exner, D.K. 2004 (J. Math. Phys.)]).

Let K ∈ L2(Σ) and Σ 6= R
2. If

•
∫

ΣK ≤ 0,
or

• ω is thin enough,
or

•
∫

ΣM
2 = ∞ but ∇M ∈ L2(Σ),

or

• Σ ⊃ cylindrically symmetric end E with
∫

EK > 0,

then
inf σ(−∆Ω

D) < E1 .

E10



Quantum layers: the discrete spectrum
dimΣ = 2, codimΣ = 1

Theorem ([Duclos, Exner, D.K. 2001 (Comm. Math. Phys.)],
[Carron, Exner, D.K. 2004 (J. Math. Phys.)]).

Let K ∈ L2(Σ) and Σ 6= R
2. If

•
∫

ΣK ≤ 0,
or

• ω is thin enough,
or

•
∫

ΣM
2 = ∞ but ∇M ∈ L2(Σ),

or

• Σ ⊃ cylindrically symmetric end E with
∫

EK > 0,

then
inf σ(−∆Ω

D) < E1 .

Corollary. If Σ is asymptotically flat and any of the conditions above hold, then

σdisc(−∆Ω
D) 6= ∅ .

E10



Quantum layers: the discrete spectrum
dimΣ = 2, codimΣ = 1

Theorem ([Duclos, Exner, D.K. 2001 (Comm. Math. Phys.)],
[Carron, Exner, D.K. 2004 (J. Math. Phys.)]).

Let K ∈ L2(Σ) and Σ 6= R
2. If

•
∫

ΣK ≤ 0,
or

• ω is thin enough,
or

•
∫

ΣM
2 = ∞ but ∇M ∈ L2(Σ),

or

• Σ ⊃ cylindrically symmetric end E with
∫

EK > 0,

then
inf σ(−∆Ω

D) < E1 .

Corollary. If Σ is asymptotically flat and any of the conditions above hold, then

σdisc(−∆Ω
D) 6= ∅ .

E10

Proof. Test function 1× J1 where J1 is the first eigenfunction of −∆ω
D, etc. q.e.d.
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Quantum layers: further results
dimΣ = 2, codimΣ = 1

• extensions to higher dimensions and codimensions
[Lin, Lu 2006], [Lin, Lu 2007]

• alternative sufficient conditions
[Lin, Lu 2007], [Lu, Rowlett 2012]

• extensions to tubes in curved ambient manifolds
[D.K. 2003], [D.K. 2006], [Kolb, D.K. 2014],
[Wachsmuth, Teufel 2013]

s

t

S-a

a

• magnetic field −∆ ❀ (−i∇−A)2

[D.K., Raymond, Tušek 2015]

Theorem ([D.K., Raymond, Tušek 2015 (J. Geom. Anal.)]).

Replace ω 7→ εω with ε > 0. Then (dimΣ = 2, codimΣ = 1, A = 0)

−∆Ωε

D −
E1

ε2
n.r.s.

−−−−→
ε→0

−∆Σ +K −M2

NB K −M2 = − 1

4
(k1 − k2)

2 ≤ 0
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=




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






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N1
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
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[Bishop 1975]
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(
n1

n2

)

:=

(
cos θ − sin θ
sin θ cos θ

)(
N1

N2

)

, θ : R → R (twisting angle)
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Theorem ([Chenaud, Duclos, Freitas, D.K. 2005 (Differential Geom. Appl.)]).

If κ 6= 0 and θ̇ = 0, then inf σ(−∆Ω
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If, in addition, lim
|s|→∞

κ(s) = 0, then

σdisc(−∆Ω
D) 6= ∅

E10

bending acts as an attractive interacion
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Proposition. If κ = 0 and lim
|s|→∞

θ̇(s) = 0, then σ(−∆Ω
D) = [E1,∞)
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Proof. −∆Ω
D ≃ −

(
∂s − θ̇(s)∂τ

)2
−∆t ≥ −∆t ≥ E1, (s, t) ∈ R× ω

∂τ := t2∂t1 − t1∂t2 q.e.d.

Theorem ([Ekholm, Kovǎŕık, D.K. 2008 (Arch. Ration. Mech. Anal.)]).

If κ = 0, θ̇ 6= 0, θ̇ ∈ C0(R) and ω is not circular, then there exists c > 0,

∀ψ ∈W
1,2
0 (Ω),

∫

Ω
|∇ψ(x)|2 dx− E1

∫

Ω
|ψ(x)|2 dx ≥ c

∫

Ω

|ψ(x)|2

1 + |x|2
dx

twisting acts as a repulsive interacion
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Corollary. Let θ̇ 6= 0, θ̇ ∈ C0(R) and ω is not circular. Then there exists ǫ > 0,

∀s ∈ R, |κ(s)| ≤
ǫ
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Twisting versus bending

Corollary. Let θ̇ 6= 0, θ̇ ∈ C0(R) and ω is not circular. Then there exists ǫ > 0,

∀s ∈ R, |κ(s)| ≤
ǫ

1 + s2
=⇒ σ(−∆Ω

D) = [E1,∞)

Theorem ([D.K., Šediváková 2012 (Rev. Math. Phys.)]).
Replace ω 7→ εω with ε > 0. Then

−∆Ωε

D −
E1

ε2
n.r.s.

−−−−→
ε→0

−∆Σ −
κ2

4
+ ‖∂τJ1‖

2 θ̇2

Remark. Previous related results:
[Bouchitté, Mascarenhas, Trabucho 2007], [Wachsmuth, Teufel 2013], [de Oliveira 2010].



Application to the heat equation






∂u

∂t
−∆xu = 0 , (x, t) ∈ Ω× (0,∞) ,

u(x, 0) = u0(x) .
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straight bent (λ1 < E1) twisted

[D.K., Zuazua 2010 (J. Math. Pures Appl.)] norm-wise

[Grillo, Kovǎŕık, Pinchover 2014 (Arch. Ration. Mech. Anal.)] point-wise
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





∂u

∂t
−∆xu = 0 , (x, t) ∈ Ω× (0,∞) ,

u(x, 0) = u0(x) .

u(t) ∼ t−1/4 e−E1t u0 u(t) ∼ e−λ1t u0 u(t) ∼ t−3/4 e−E1t u0

straight bent (λ1 < E1) twisted

[D.K., Zuazua 2010 (J. Math. Pures Appl.)] norm-wise

[Grillo, Kovǎŕık, Pinchover 2014 (Arch. Ration. Mech. Anal.)] point-wise

twisting =⇒ faster cool down (death of a Brownian particle) in twisted tubes
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Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let lim
|s|→∞

|θ̇(s)| = ∞.

1. If 0 ∈ ω, then σ(−∆Ω
D) ⊃ [µ1,∞) where µ1 := inf σ(−∆Br

D ), r := dist(0, ∂ω).

2. If ω ⊂ {t1 > 0}, then σess(−∆Ω
D) = ∅ (¡ quasi-bounded realisation !)

Open problem: ¿ Non-standard Weyl-type asymptotics in the case 2 ?
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