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We are thus lead to the study of the spectral-geometric problem for the Laplacian:

A =X in Q
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geometry of 2 & spectrum of —A

But: spectrum known explicitly only for Q = R¢, ball and parallelipiped
—> functional-analytic tools have to be employed
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i How to correctly understand { —AY =Xy in ?
=0  on 0f.

— Spectral problem for an unbounded (self-adjoint) operator in a Hilbert space:

—A% L2(Q) = L) : {¢p = —Ay}
Dom(—A%) := {4 € W;*(Q) | Ay € L*(Q)}

NB (spectrum of an unbounded operator H)
o(H):={\e€ C | H— Al is not bijective}
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isolated eigenvalues of finite multiplicity




Classification of Euclidean domains
[Glazman 1963]



Classification of Euclidean domains
[Glazman 1963]

e quasi-conical <= () D {arbitrarily large balls}




Classification of Euclidean domains
[Glazman 1963]

e quasi-conical <= () D {arbitrarily large balls}

e quasi-cylindrical <= not g-conical but 2 O {sequence of identical disjoint balls}

N
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[Glazman 1963]

e quasi-conical <= () D {arbitrarily large balls}

e quasi-cylindrical <= not g-conical but 2 O {sequence of identical disjoint balls}

i

e quasi-bounded :<=> neither g-conical nor g-cylindrical
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Given k € R? such that |k|? = ), one takes
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i Is there anything interesting to study 7?

Godfrey Harold Hardy
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Theorem (Hardy inequality). Let d > 3. Then

1,2 2 d—2\? |¢(5’3)|2
Vi € Wi (), L\Vw(x)\ dr > <?> TP dx

18771947
Theorem (criticality of R! and R?). Let d = 1,2. For any non-positive measurable V/,

infa(—A%d +V)<0
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Quasi-cylindrical domains

U(_A%) — Udisc(_A%) U Uess(_A%) => very hard to study %

>7

distinguished subclass: TUBES

tubular neighbourhoods of submanifolds

— location of the essential spectrum

—— existence of the discrete spectrum
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e ambient Riemannian manifold R%, d > 2

e oriented submanifold ¥ c R¢
complete and non-compact, dimX < d

e orthonormal vector fields 11, ..., Tcodimy : & — R?

e cross-section w ¢ [Reodim 2
bounded domain

( . 3
codim X

o tube 0 :=<¢ =+ Z tinij(x) : (z,t) e X xXw
j=1

y

\

Assumption. No self-intersections.

— unbounded geometr \/ /“ﬂ?ﬂ'
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Theorem ([D.K., Lu 2014 (J. Math. Phys.)]). If

e X is asymptotically flat (229 fundamental form goes to 0 at infinity),
and
e the transport of w along X is asymptotically parallel (relevant only if codim ¥ > 2),

then

UeSS(_A%) = [Ey,00).

Eq :=mino(—-AY%)

Proof. — _A% ~ _—G20,G2G0;
L?(Q) L?(Y x w,dx dt)

Weyl's criterion adapted to quadratic forms:

~

Hq
Dom(H) C H; C H =3H* C I3 q.e.d.

1 n =1
ANeo(H) < 3{¢n}CPom(H§)J: { ‘(H_)\‘)’:pp H‘;C* — 0
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dim>» =2, codimX =1

Theorem ([Duclos, Exner, D.K. 2001 (Comm. Math. Phys.)],
[Carron, Exner, D.K. 2004 (J. Math. Phys.)]).

Let K € L*(X) and ¥ # R, If T, s
K <0, » = o
OI’. fz B ‘Z / =3

e w is thin enough,

or
o [(M*=0c0 but VM e L*(%),
or

e ¥ D cylindrically symmetric end E with [, K > 0,

then info(—AP) < E; .

Corollary. If X is asymptotically flat and any of the conditions above hold, then

Q —.Q_
O-dISC(_AD) # @ . O E1

Proof. Test function 1 x J; where J; is the first eigenfunction of =A%, etc. g.e.d.
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dim>» =2, codimX =1

e extensions to higher dimensions and codimensions
[Lin, Lu 2006], [Lin, Lu 2007]

e alternative sufficient conditions
[Lin, Lu 2007], [Lu, Rowlett 2012]

e extensions to tubes in curved ambient manifolds
[D.K. 2003], [D.K. 2006], [Kolb, D.K. 2014],
[Wachsmuth, Teufel 2013]

e magnetic field —A ~ (—iV — A)?
[D.K., Raymond, Tu3ek 2015]

Theorem ([D.K., Raymond, Tusek 2015 (J. Geom. Anal.)]).
Replace w +— ew with ¢ > 0. Then (dimX¥ =2, codim¥ =1, A =0)

E n.r.Ss.
SN I B T
€ e—0

NB K —M?*=—%(k —k2)* <0
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Quantum tubes: the geometry
dim>» =1, codim> = 2

> :={I'(s):s € R}, T':R— R3 unit-speed (|I'] = 1) immersion, curvature  := |T|

Frenet frame Versus relatively parallel frame
r 0 x 0\ /T I 0 ki ko\ /T
N|l=|l- 0 71 N Ni|l=|—-Fkk 0 0 N1
B O —7 0 B N —ky 0 O No
k>0 k2 = k? + k3

[Bishop 1975]
[D.K., Sedivakova 2012]

ni\  [cost) —sin0 Ny . .
(n2> = (sin& cos 0 ) (N2>, 6:R — R (twisting angle)
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Theorem ([Chenaud, Duclos, Freitas, D.K. 2005 ( Differential Geom. Appl.)]).
If k#£0 and 6 =0, then infg(_A%) < By

If, in addition, lim k(s) =0, then

|s|—o0 . A
Odisc(—Ap) # & 0 E,

bending acts as an attractive interacion
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Proposition. If k=0 and lim 60(s) =0, then | o(—AP) = [E}, )
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Theorem ([Ekholm, Kovatik, D.K. 2008 (Arch. Ration. Mech. Anal.)]).

If k=0 0 - 0, 0 c Co(R) and w is not circular, then there exists ¢ > 0,
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Quantum tubes: effect of twisting
dim>» =1, codim> = 2

Proposition. If k=0 and lim 60(s) =0, then | o(—AP) = [E}, )

|s|—o0

0 E;

Proof. —A} ~ —(9s — 9(3)67)2 — Ay > Ay > Ey, (5,t) ER x w
87- = t28t1 — t18t2 qed

Theorem ([Ekholm, Kovatik, D.K. 2008 (Arch. Ration. Mech. Anal.)]).

If k=0 0 - 0, 0 c Co(R) and w is not circular, then there exists ¢ > 0,

Y ()]
ql+ |z

dz

Vo e Wi, | [ [Ve@)itde =B [ @l >

twisting acts as a repulsive interacion



Twisting versus bending

Corollary. Let 6 #£0, 6 € Cy(R) and w is not circular. Then there exists € > 0,




Twisting versus bending

Corollary. Let 6 #£0, 6 € Cy(R) and w is not circular. Then there exists € > 0,
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Theorem ([D.K., Sedivékova 2012 (Rev. Math. Phys.)]).
Replace w — cw with € > 0. Then

A £ s o A "3_2 + [|0-d1|? 6°
D g2 e—0 4

Remark. Previous related results:

[Bouchitté, Mascarenhas, Trabucho 2007], [Wachsmuth, Teufel 2013], [de Oliveira 2010].



Application to the heat equation

: %‘AMZO, (@,t) € £ x (0,00),

\ u(x,0) = up(z) .

w(t) ~ t7 1/ e Bt g u(t) ~ e Mg u(t) ~ t73/% e~ Frt

straight bent (\ < Eq) twisted

|D.K., Zuazua 2010 (J. Math. Pures Appl.)] norm-wise
|Grillo, KovaFik, Pinchover 2014 (Arch. Ration. Mech. Anal.)] point-wise



Application to the heat equation

< %_Axu:(), (.CU,t)EQX(O)OO)a

\ u(x,0) = up(z) .

w(t) ~ t7 1/ e Bt g u(t) ~ e Mg u(t) ~ t73/% e~ Frt

straight bent (\ < Eq) twisted

|D.K., Zuazua 2010 (J. Math. Pures Appl.)] norm-wise
|Grillo, KovaFik, Pinchover 2014 (Arch. Ration. Mech. Anal.)] point-wise

twisting = faster cool down (death of a Brownian particle) in twisted tubes



Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let lim [0(s)| = oc.

|s|—00




Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let lim [0(s)| = oo.

1.

If 0 € w, then

o(—AB) O [p1,00)

|s| =00

where i := infa(—Agr), r = dist(0, Ow).




Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let lim [0(s)| = oo.

|s| =00

1. If 0€w, then|o(—A%) D [u1,00)| where py := infa(—Ag’“), r = dist(0, dw).

2. If wC{t;1 >0}, then |oess(—AP) =@ | (i quasi-bounded realisation !)




Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let lim |6(s)| = cc.

1.

2.

Open problem:

|s| =00

If 0€w, then|o(—A$) D [u1,00) | where yy := inf o(—AL"), r := dist(0, dw).

If wC {t1 >0}, then

Oess(—AP) = @| (i quasi-bounded realisation !)

i Non-standard Weyl-type asymptotics in the case 2 7
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