Spectral geometry of tubes
 David KREJČIŘík

http://people.fjfi.cvut.cz/krejcirik
Czech Technical University in Prague

Spectral geometry in physics

Why is the spectrum (of the Laplacian) so important ?

Spectral geometry in physics

Why is the spectrum (of the Laplacian) so important ?

$$
\frac{\partial^{2} \Psi}{\partial t^{2}}-\Delta \Psi=0 \quad \frac{\partial \Psi}{\partial t}-\Delta \Psi=0 \quad i \frac{\partial \Psi}{\partial t}=-\Delta \Psi
$$

Spectral geometry in physics

Why is the spectrum (of the Laplacian) so important ?

$$
\frac{\partial^{2} \Psi}{\partial t^{2}}-\Delta \Psi=0 \quad \frac{\partial \Psi}{\partial t}-\Delta \Psi=0 \quad i \frac{\partial \Psi}{\partial t}=-\Delta \Psi \quad \leadsto \quad-\Delta \psi=\lambda \psi
$$

Spectral geometry in physics

Why is the spectrum (of the Laplacian) so important?

$$
\begin{array}{cccc}
\frac{\partial^{2} \Psi}{\partial t^{2}}-\Delta \Psi=0 & \frac{\partial \Psi}{\partial t}-\Delta \Psi=0 & i \frac{\partial \Psi}{\partial t}=-\Delta \Psi & \leadsto \\
e^{t\left(\begin{array}{ll}
0 & 1 \\
\Delta & 0
\end{array}\right)} & e^{t \Delta} & e^{i t \Delta} & e^{-\Delta H}=\int_{\sigma(H)} e^{-t \lambda} \mathrm{~d} E_{H}(\lambda)
\end{array}
$$

Spectral geometry in physics

Why is the spectrum (of the Laplacian) so important ?

$$
\left.\begin{array}{ccc}
\frac{\partial^{2} \Psi}{\partial t^{2}}-\Delta \Psi=0 & \frac{\partial \Psi}{\partial t}-\Delta \Psi=0 & i \frac{\partial \Psi}{\partial t}=-\Delta \Psi
\end{array}\right) \leadsto \begin{aligned}
& -\Delta \psi=\lambda \psi \\
& e^{t\left(\begin{array}{ll}
0 & 1 \\
\Delta & 0
\end{array}\right)} \\
& e^{t \Delta}
\end{aligned} e^{i t \Delta} \quad e^{-t H}=\int_{\sigma(H)} e^{-t \lambda} \mathrm{~d} E_{H}(\lambda)
$$

We are thus lead to the study of the spectral-geometric problem for the Laplacian :

$$
\left\{\begin{aligned}
-\Delta \psi & =\lambda \psi \quad \text { in } \quad \Omega, \\
\frac{\partial \psi}{\partial n}+\alpha \psi & =0 \quad \text { on } \quad \partial \Omega . \quad(\text { Neumann } \alpha=0, \text { Dirichlet } \alpha=\infty)
\end{aligned}\right.
$$

$$
\text { geometry of } \Omega \quad \leftrightarrows \text { spectrum of }-\Delta
$$

Spectral geometry in physics

Why is the spectrum (of the Laplacian) so important ?

$$
\left.\begin{array}{ccc}
\frac{\partial^{2} \Psi}{\partial t^{2}}-\Delta \Psi=0 & \frac{\partial \Psi}{\partial t}-\Delta \Psi=0 & i \frac{\partial \Psi}{\partial t}=-\Delta \Psi
\end{array}\right) \leadsto \begin{aligned}
& -\Delta \psi=\lambda \psi \\
& e^{t\left(\begin{array}{ll}
0 & 1 \\
\Delta & 0
\end{array}\right)} \\
& e^{t \Delta}
\end{aligned} e^{i t \Delta} \quad e^{-t H}=\int_{\sigma(H)} e^{-t \lambda} \mathrm{~d} E_{H}(\lambda)
$$

We are thus lead to the study of the spectral-geometric problem for the Laplacian :

$$
\left\{\begin{aligned}
-\Delta \psi & =\lambda \psi \quad \text { in } \quad \Omega, \\
\frac{\partial \psi}{\partial n}+\alpha \psi & =0 \quad \text { on } \quad \partial \Omega . \quad(\text { Neumann } \alpha=0, \text { Dirichlet } \alpha=\infty)
\end{aligned}\right.
$$

$$
\text { geometry of } \Omega \quad \leftrightarrows \text { spectrum of }-\Delta
$$

But: spectrum known explicitly only for $\Omega=\mathbb{R}^{d}$, ball and parallelipiped
\Longrightarrow functional-analytic tools have to be employed

What is the spectrum?

What is the spectrum?

What is the spectrum?

¿ How to correctly understand $\left\{\begin{array}{rlrl}-\Delta \psi & =\lambda \psi & \text { in } \Omega, \\ \psi & =0 & & \text { on } \partial \Omega .\end{array}\right.$?

What is the spectrum?

¿ How to correctly understand $\left\{\begin{array}{rlrl}-\Delta \psi & =\lambda \psi & \text { in } \Omega, \\ \psi & =0 & & \text { on } \partial \Omega .\end{array}\right.$?
\rightarrow Spectral problem for an unbounded (self-adjoint) operator in a Hilbert space:

$$
\begin{array}{r}
-\Delta_{D}^{\Omega}: L^{2}(\Omega) \rightarrow L^{2}(\Omega):\{\psi \mapsto-\Delta \psi\} \\
\operatorname{Dom}\left(-\Delta_{D}^{\Omega}\right):=\left\{\psi \in W_{0}^{1,2}(\Omega) \mid \Delta \psi \in L^{2}(\Omega)\right\}
\end{array}
$$

What is the spectrum?

¿ How to correctly understand $\left\{\begin{array}{rlrl}-\Delta \psi & =\lambda \psi & \text { in } \Omega, \\ \psi & =0 & & \text { on } \partial \Omega .\end{array}\right.$?
\rightarrow Spectral problem for an unbounded (self-adjoint) operator in a Hilbert space:

$$
\begin{array}{r}
-\Delta_{D}^{\Omega}: L^{2}(\Omega) \rightarrow L^{2}(\Omega):\{\psi \mapsto-\Delta \psi\} \\
\operatorname{Dom}\left(-\Delta_{D}^{\Omega}\right):=\left\{\psi \in W_{0}^{1,2}(\Omega) \mid \Delta \psi \in L^{2}(\Omega)\right\}
\end{array}
$$

NB (spectrum of an unbounded operator H)

$$
\sigma(H):=\{\lambda \in \mathbb{C} \mid H-\lambda I \text { is not bijective }\}
$$

What is the spectrum?

¿ How to correctly understand $\left\{\begin{array}{rlrl}-\Delta \psi & =\lambda \psi & \text { in } \Omega, \\ \psi & =0 & & \text { on } \partial \Omega .\end{array}\right.$?
\rightarrow Spectral problem for an unbounded (self-adjoint) operator in a Hilbert space:

$$
\begin{array}{r}
-\Delta_{D}^{\Omega}: L^{2}(\Omega) \rightarrow L^{2}(\Omega):\{\psi \mapsto-\Delta \psi\} \\
\operatorname{Dom}\left(-\Delta_{D}^{\Omega}\right):=\left\{\psi \in W_{0}^{1,2}(\Omega) \mid \Delta \psi \in L^{2}(\Omega)\right\}
\end{array}
$$

NB (spectrum of an unbounded operator H)

$$
\begin{aligned}
\sigma(H) & :=\{\lambda \in \mathbb{C} \mid H-\lambda I \quad \text { is not bijective }\} \\
& =\underbrace{\sigma_{\text {disc }}(H)}_{\|} \dot{\cup} \sigma_{\mathrm{ess}}(H)
\end{aligned}
$$

isolated eigenvalues of finite multiplicity

Classification of Euclidean domains

[Glazman 1963]

Classification of Euclidean domains

[Glazman 1963]

- quasi-conical $\quad: \Longleftrightarrow \Omega \supset$ \{arbitrarily large balls\}

Classification of Euclidean domains

[Glazman 1963]

- quasi-conical $\quad: \Longleftrightarrow \Omega \supset$ \{arbitrarily large balls\}

- quasi-cylindrical $: \Longleftrightarrow$ not q-conical but $\Omega \supseteq$ \{sequence of identical disjoint balls\}

Classification of Euclidean domains

[Glazman 1963]

- quasi-conical $\quad: \Longleftrightarrow \Omega \supset$ \{arbitrarily large balls $\}$

- quasi-cylindrical $: \Longleftrightarrow$ not q-conical but $\Omega \supseteq$ \{sequence of identical disjoint balls\}

- quasi-bounded $: \Longleftrightarrow$ neither q-conical nor q-cylindrical

Quasi-conical domains

Theorem. $\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=[0, \infty)$

Quasi-conical domains

Theorem. $\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=[0, \infty)$
Proof. Weyl's criterion:

$$
\begin{aligned}
& \text { Weyl's criterion: } \\
& \qquad \lambda \in \sigma(H) \Longleftrightarrow \exists\left\{\psi_{n}\right\} \subset \operatorname{Dom}(H):\left\{\begin{aligned}
\left\|\psi_{n}\right\| & =1 \\
\left\|(H-\lambda) \psi_{n}\right\| & \rightarrow 0
\end{aligned}\right.
\end{aligned}
$$

Quasi-conical domains

Theorem. $\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=[0, \infty)$
Proof. Weyl's criterion:

$$
\begin{aligned}
& \text { Weyl's criterion: } \\
& \lambda \in \sigma(H) \Longleftrightarrow \exists\left\{\psi_{n}\right\} \subset \operatorname{Dom}(H):\left\{\begin{aligned}
\left\|\psi_{n}\right\| & =1 \\
\left\|(H-\lambda) \psi_{n}\right\| & \rightarrow 0
\end{aligned}\right.
\end{aligned}
$$

Given $k \in \mathbb{R}^{d}$ such that $|k|^{2}=\lambda$, one takes

$$
\psi_{n}(x)=e^{i k \cdot x} \tilde{\chi}_{B_{n}}(x) \text { where: }\left\{\begin{array}{c}
\left\{B_{n}\right\}=\text { a sequence of the enlarging balls } \\
\tilde{\chi}_{B}=\text { mollified and normalised } \chi_{B} \text { q.e.d. }
\end{array}\right.
$$

Quasi-conical domains

Theorem. $\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=[0, \infty)$
Proof. Weyl's criterion:

$$
\lambda \in \sigma(H) \Longleftrightarrow \exists\left\{\psi_{n}\right\} \subset \operatorname{Dom}(H):\left\{\begin{aligned}
\left\|\psi_{n}\right\| & =1 \\
\left\|(H-\lambda) \psi_{n}\right\| & \rightarrow 0
\end{aligned}\right.
$$

Given $k \in \mathbb{R}^{d}$ such that $|k|^{2}=\lambda$, one takes

$$
\psi_{n}(x)=e^{i k \cdot x} \tilde{\chi}_{B_{n}}(x) \text { where: }\left\{\begin{array}{c}
\left\{B_{n}\right\}=\text { a sequence of the enlarging balls } \\
\tilde{\chi}_{B}=\text { mollified and normalised } \chi_{B} \quad \text { q.e.d. }
\end{array}\right.
$$

¿ Is there anything interesting to study ?

Quasi-conical domains

Theorem.

$$
\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\Omega}\right)=[0, \infty)
$$

Proof. Weyl's criterion:

$$
\lambda \in \sigma(H) \Longleftrightarrow \exists\left\{\psi_{n}\right\} \subset \operatorname{Dom}(H):\left\{\begin{aligned}
\left\|\psi_{n}\right\| & =1 \\
\left\|(H-\lambda) \psi_{n}\right\| & \rightarrow 0
\end{aligned}\right.
$$

Given $k \in \mathbb{R}^{d}$ such that $|k|^{2}=\lambda$, one takes

$$
\psi_{n}(x)=e^{i k \cdot x} \tilde{\chi}_{B_{n}}(x) \text { where: }\left\{\begin{array}{c}
\left\{B_{n}\right\}=\text { a sequence of the enlarging balls } \\
\tilde{\chi}_{B}=\text { mollified and normalised } \chi_{B} \quad \text { q.e.d. }
\end{array}\right.
$$

¿ Is there anything interesting to study ?
Theorem (Hardy inequality). Let $d \geq 3$. Then
$\forall \psi \in W_{0}^{1,2}(\Omega), \quad \int_{\Omega}|\nabla \psi(x)|^{2} \mathrm{~d} x \geq\left(\frac{d-2}{2}\right)^{2} \int_{\Omega} \frac{|\psi(x)|^{2}}{|x|^{2}} \mathrm{~d} x$

1877-1947

Quasi-conical domains

Theorem.

$$
\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\Omega}\right)=[0, \infty)
$$

Proof. Weyl's criterion:

$$
\lambda \in \sigma(H) \Longleftrightarrow \exists\left\{\psi_{n}\right\} \subset \operatorname{Dom}(H):\left\{\begin{aligned}
\left\|\psi_{n}\right\| & =1 \\
\left\|(H-\lambda) \psi_{n}\right\| & \rightarrow 0
\end{aligned}\right.
$$

Given $k \in \mathbb{R}^{d}$ such that $|k|^{2}=\lambda$, one takes

$$
\psi_{n}(x)=e^{i k \cdot x} \tilde{\chi}_{B_{n}}(x) \text { where: }\left\{\begin{array}{c}
\left\{B_{n}\right\}=\text { a sequence of the enlarging balls } \\
\tilde{\chi}_{B}=\text { mollified and normalised } \chi_{B} \quad \text { q.e.d. }
\end{array}\right.
$$

¿ Is there anything interesting to study ?
Godfrey Harold Hardy
Theorem (Hardy inequality). Let $d \geq 3$. Then

$$
\forall \psi \in W_{0}^{1,2}(\Omega), \quad \int_{\Omega}|\nabla \psi(x)|^{2} \mathrm{~d} x \geq\left(\frac{d-2}{2}\right)^{2} \int_{\Omega} \frac{|\psi(x)|^{2}}{|x|^{2}} \mathrm{~d} x
$$

1877-1947

Theorem (criticality of \mathbb{R}^{1} and \mathbb{R}^{2}). Let $d=1,2$. For any non-positive measurable V,

$$
\inf \sigma\left(-\Delta_{D}^{\mathbb{R}^{d}}+V\right)<0
$$

Quasi-bounded domains

Ω is quasi-bounded $\Longleftrightarrow \quad \limsup _{|x| \rightarrow \infty, x \in \Omega} \operatorname{dist}(x, \partial \Omega)=0$

Quasi-bounded domains

Quasi-bounded domains

Ω is quasi-bounded $\Longleftrightarrow \quad \limsup _{|x| \rightarrow \infty, x \in \Omega} \operatorname{dist}(x, \partial \Omega)=0$
$\Uparrow *$

$$
H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega) \text { is compact }
$$

介

$$
\limsup _{|x| \rightarrow \infty, x \in \Omega}\left|\Omega \cap B_{1}(x)\right|=0
$$

$$
\Longleftrightarrow \quad \sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right)
$$

sufficient condition due to [Berger, Schechter 1972]

Quasi-bounded domains

Ω is quasi-bounded $\Longleftrightarrow \limsup _{|x| \rightarrow \infty, x \in \Omega} \operatorname{dist}(x, \partial \Omega)=0$

介*

$$
H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega) \text { is compact } \Longleftrightarrow \sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right)
$$

介
$\limsup _{|x| \rightarrow \infty, x \in \Omega}\left|\Omega \cap B_{1}(x)\right|=0 \quad$ sufficient condition due to [Berger, Schechter 1972]
not satisfied for spiny urchin

$$
\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\mathrm{disc}}\left(-\Delta_{D}^{\Omega}\right)
$$

Quasi-bounded domains

Quasi-bounded domains

Quasi-bounded domains

Quasi-bounded domains

$$
\Omega \text { is quasi-bounded } \Longleftrightarrow \quad \lim \sup \operatorname{dist}(x, \partial \Omega)=0
$$

$$
\Uparrow \nVdash
$$

$$
H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega) \text { is compact } \Longleftrightarrow \sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right)
$$

介

$$
\limsup _{x \mid \rightarrow \infty, x \in \Omega}\left|\Omega \cap B_{1}(x)\right|=0 \quad \text { sufficient condition due to [Berger, Schechter 1972] }
$$

not satisfied for spiny urchin

Quasi-bounded domains

Quasi-bounded domains

$$
\begin{aligned}
& H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega) \text { is compact } \Longleftrightarrow \sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right) \\
& \text { 介 } \\
& \limsup _{|x| \rightarrow \infty, x \in \Omega}\left|\Omega \cap B_{1}(x)\right|=0 \quad \text { sufficient condition due to [Berger, Schechter 1972] } \\
& \text { not satisfied for spiny urchin }
\end{aligned}
$$

Quasi-bounded domains

Ω is quasi-bounded $\Longleftrightarrow \quad \limsup _{|x| \rightarrow \infty, x \in \Omega} \operatorname{dist}(x, \partial \Omega)=0$
$\Uparrow \geqslant$

$$
H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega) \text { is compact } \Longleftrightarrow \sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right)
$$

介
$\limsup _{|x| \rightarrow \infty, x \in \Omega}\left|\Omega \cap B_{1}(x)\right|=0 \quad$ sufficient condition due to [Berger, Schechter 1972]

Quasi-cylindrical domains

$$
\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\mathrm{disc}}\left(-\Delta_{D}^{\Omega}\right) \cup \underbrace{\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\Omega}\right)}_{\neq \varnothing} \Rightarrow \text { very hard to study }
$$

Quasi-cylindrical domains

$\underbrace{\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {dise }}\left(-\Delta_{D}^{\Omega}\right) \cup \sigma_{\text {ess }}\left(-\Delta_{D}^{R}\right)}_{\neq \varnothing} \Rightarrow$ very hard to study

distinguished subclass: TUBES

tubular neighbourhoods of submanifolds

Quasi-cylindrical domains

$\sigma\left(-\Delta_{D}^{\Omega}\right)=\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right) \cup \underbrace{\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)}_{\neq \varnothing} \Rightarrow$ very hard to study

distinguished subclass: TUBES

tubular neighbourhoods of submanifolds

\longrightarrow location of the essential spectrum
\longrightarrow existence of the discrete spectrum

The geometry of tubes

The geometry of tubes

- ambient Riemannian manifold $\mathbb{R}^{d}, d \geq 2$

The geometry of tubes

- ambient Riemannian manifold $\mathbb{R}^{d}, d \geq 2$
- oriented submanifold $\Sigma \subset \mathbb{R}^{d}$ complete and non-compact, $\operatorname{dim} \Sigma<d$

The geometry of tubes

- ambient Riemannian manifold $\mathbb{R}^{d}, d \geq 2$
- oriented submanifold $\Sigma \subset \mathbb{R}^{d}$

The geometry of tubes

- ambient Riemannian manifold $\mathbb{R}^{d}, d \geq 2$
- oriented submanifold $\Sigma \subset \mathbb{R}^{d}$

- cross-section $\omega \subset \mathbb{R}^{\operatorname{codim} \Sigma}$ bounded domain

The geometry of tubes

- ambient Riemannian manifold $\mathbb{R}^{d}, d \geq 2$
- oriented submanifold $\Sigma \subset \mathbb{R}^{d}$

- cross-section $\omega \subset \mathbb{R}^{\operatorname{codim} \Sigma}$ bounded domain
- tube $\Omega:=\left\{x+\sum_{j=1}^{\operatorname{codim} \Sigma} t_{j} n_{j}(x):(x, t) \in \Sigma \times \omega\right\}$

The geometry of tubes

- ambient Riemannian manifold $\mathbb{R}^{d}, d \geq 2$
- oriented submanifold $\Sigma \subset \mathbb{R}^{d}$ complete and non-compact, $\operatorname{dim} \Sigma<d$
\bullet orthonormal vector fields $n_{1}, \ldots, n_{\text {codim } \Sigma}: \Sigma \rightarrow \mathbb{R}^{d}$
- cross-section $\omega \subset \mathbb{R}^{\text {codim } \Sigma}$ bounded domain
- tube $\Omega:=\left\{x+\sum_{j=1}^{\text {codim } \Sigma} t_{j} n_{j}(x):(x, t) \in \Sigma \times \omega\right\}$

Assumption. No self-intersections.

The geometry of tubes

- ambient Riemannian manifold $\mathbb{R}^{d}, d \geq 2$
- oriented submanifold $\Sigma \subset \mathbb{R}^{d}$ complete and non-compact, $\operatorname{dim} \Sigma<d$
\bullet orthonormal vector fields $n_{1}, \ldots, n_{\text {codim } \Sigma}: \Sigma \rightarrow \mathbb{R}^{d}$
- cross-section $\omega \subset \mathbb{R}^{\text {codim } \Sigma}$
bounded domain
- tube $\Omega:=\left\{x+\sum_{j=1}^{\operatorname{codim} \Sigma} t_{j} n_{j}(x):(x, t) \in \Sigma \times \omega\right\}$

Assumption. No self-intersections.
\longrightarrow unbounded geometry
\longrightarrow uniform cross-section

Premillennial history

Many results for \circ complete manifolds (both compact and non-compact), - compact submanifolds (with boundary),
but no systematic spectral-theoretic study of non-compact non-complete manifolds.

Premillennial history

Many results for o complete manifolds (both compact and non-compact), - compact submanifolds (with boundary),
but no systematic spectral-theoretic study of non-compact non-complete manifolds.

New motivations from physics:
nanostructures

GaAs/AIGaAs crescent shaped quantum wire

Premillennial history

Many results for o complete manifolds (both compact and non-compact), - compact submanifolds (with boundary),
but no systematic spectral-theoretic study of non-compact non-complete manifolds.

New motivations from physics:

nanostructures

[Exner, Šeba 1989] $\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=1$
\rightarrow existence of quantum bound states ($\sigma_{\text {disc }}$)

GaAs/AIGaAs crescent shaped quantum wire

Premillennial history

Many results for \circ complete manifolds (both compact and non-compact), - compact submanifolds (with boundary),
but no systematic spectral-theoretic study of non-compact non-complete manifolds.
New motivations from physics:

nanostructures

[Exner, Šeba 1989] $\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=1$
\rightarrow existence of quantum bound states ($\sigma_{\text {disc }}$)
[Goldstone, Jaffe 1992] $\operatorname{dim} \Sigma=1, ~ " \operatorname{codim} \Sigma=2 "$ \rightarrow variational proof

GaAs/AIGaAs crescent shaped quantum wire

Premillennial history

Many results for \circ complete manifolds (both compact and non-compact), - compact submanifolds (with boundary),
but no systematic spectral-theoretic study of non-compact non-complete manifolds.
New motivations from physics:

nanostructures

[Exner, Šeba 1989] $\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=1$
\rightarrow existence of quantum bound states ($\sigma_{\text {disc }}$)
[Goldstone, Jaffe 1992] $\operatorname{dim} \Sigma=1, ~ " \operatorname{codim} \Sigma=2 "$ \rightarrow variational proof
[Duclos, Exner 1995] idem

GaAs/AIGaAs crescent shaped quantum wire

Premillennial history

Many results for \circ complete manifolds (both compact and non-compact), - compact submanifolds (with boundary),
but no systematic spectral-theoretic study of non-compact non-complete manifolds.
New motivations from physics:

nanostructures

[Exner, Šeba 1989] $\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=1$
\rightarrow existence of quantum bound states ($\sigma_{\text {disc }}$)
[Goldstone, Jaffe 1992] $\operatorname{dim} \Sigma=1, ~ " \operatorname{codim} \Sigma=2 "$ \rightarrow variational proof
[Duclos, Exner 1995] idem

GaAs/AIGaAs crescent shaped quantum wire
[Duclos, Exner, D.K. 2001] $\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1$

Premillennial history

Many results for o complete manifolds (both compact and non-compact), - compact submanifolds (with boundary),
but no systematic spectral-theoretic study of non-compact non-complete manifolds.

New motivations from physics:

nanostructures

[Exner, Šeba 1989] $\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=1$
\rightarrow existence of quantum bound states ($\sigma_{\text {disc }}$)
[Goldstone, Jaffe 1992] $\operatorname{dim} \Sigma=1$, "codim $\Sigma=2$ " \rightarrow variational proof
[Duclos, Exner 1995] idem

GaAs/AIGaAs crescent shaped quantum wire
[Duclos, Exner, D.K. 2001] $\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1$
[Exner, Kovařík 2015]
\rightarrow book

Premillennial history

Many results for o complete manifolds (both compact and non-compact), - compact submanifolds (with boundary),
but no systematic spectral-theoretic study of non-compact non-complete manifolds.

New motivations from physics:

nanostructures

[Exner, Šeba 1989] $\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=1$
\rightarrow existence of quantum bound states ($\sigma_{\text {disc }}$)
[Goldstone, Jaffe 1992] $\operatorname{dim} \Sigma=1$, "codim $\Sigma=2$ " \rightarrow variational proof
[Duclos, Exner 1995] idem

GaAs/AIGaAs crescent shaped quantum wire
[Duclos, Exner, D.K. 2001] $\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1$
[Exner, Kovařík 2015] ... [Exner, Barseghyan 2014] ...
\rightarrow book

The essential spectrum

Theorem ([D.K., Lu 2014 (J. Math. Phys.)]). If

- Σ is asymptotically flat ($2^{\text {nd }}$ fundamental form goes to 0 at infinity),
and
- the transport of ω along Σ is asymptotically parallel (relevant only if codim $\Sigma \geq 2$), then

$$
\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

$$
E_{1}:=\min \sigma\left(-\Delta_{D}^{\omega}\right)
$$

The essential spectrum

Theorem ([D.K., Lu 2014 (J. Math. Phys.)]). If

- Σ is asymptotically flat ($2^{\text {nd }}$ fundamental form goes to 0 at infinity),
and
- the transport of ω along Σ is asymptotically parallel (relevant only if codim $\Sigma \geq 2$), then

$$
\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

$$
E_{1}:=\min \sigma\left(-\Delta_{D}^{\omega}\right)
$$

$$
\begin{array}{ll}
\text { Proof. } & -\Delta_{D}^{\Omega} \simeq-G^{\frac{1}{2}} \partial_{i} G^{\frac{1}{2}} G^{i j} \partial_{j} \\
& L^{2}(\Omega) \\
L^{2}(\Sigma \times \omega, \mathrm{d} x \mathrm{~d} t)
\end{array}
$$

The essential spectrum

Theorem ([D.K., Lu 2014 (J. Math. Phys.)]). If

- Σ is asymptotically flat ($2^{\text {nd }}$ fundamental form goes to 0 at infinity),
and
- the transport of ω along Σ is asymptotically parallel (relevant only if codim $\Sigma \geq 2$), then

$$
\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

$$
E_{1}:=\min \sigma\left(-\Delta_{D}^{\omega}\right)
$$

Proof. $\quad-\Delta_{D}^{\Omega} \simeq-G^{\frac{1}{2}} \partial_{i} G^{\frac{1}{2}} G^{i j} \partial_{j}$

$$
L^{2}(\Omega) \quad L^{2}(\Sigma \times \omega, \mathrm{d} x \mathrm{~d} t)
$$

Weyl's criterion adapted to quadratic forms:

$$
\lambda \in \sigma(H) \Longleftrightarrow \exists\left\{\psi_{n}\right\} \subset \underbrace{\operatorname{Dom}\left(H^{\frac{1}{2}}\right)}_{\mathcal{H}_{1}}:\left\{\begin{array}{c}
\left\|\psi_{n}\right\|_{\mathcal{H}}=1 \\
\left\|(H-\lambda) \psi_{n}\right\|_{\mathcal{H}_{1}^{*}} \rightarrow 0
\end{array}\right.
$$

$$
\operatorname{Dom}(H) \subset \mathcal{H}_{1} \subset \mathcal{H}=\mathcal{H}^{*} \subset \mathcal{H}_{1}^{*}
$$

Quantum layers: the discrete spectrum

$$
\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1
$$

Theorem ([Duclos, Exner, D.K. 2001 (Comm. Math. Phys.)], [Carron, Exner, D.K. 2004 (J. Math. Phys.)]).
Let $K \in L^{2}(\Sigma)$ and $\Sigma \neq \mathbb{R}^{2}$. If

- $\int_{\Sigma} K \leq 0$,
or

- ω is thin enough,
$\stackrel{\text { or }}{\bullet} \int_{\Sigma} M^{2}=\infty$ but $\nabla M \in L^{2}(\Sigma)$,
or $\Sigma \Sigma$ cylindrically symmetric end E with $\int_{E} K>0$,
then

$$
\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1}
$$

Quantum layers: the discrete spectrum

$$
\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1
$$

Theorem ([Duclos, Exner, D.K. 2001 (Comm. Math. Phys.)], [Carron, Exner, D.K. 2004 (J. Math. Phys.)]).
Let $K \in L^{2}(\Sigma)$ and $\Sigma \neq \mathbb{R}^{2}$. If

- $\int_{\Sigma} K \leq 0$,
or
- ω is thin enough,
$\stackrel{\text { or }}{\bullet} \int_{\Sigma} M^{2}=\infty$ but $\nabla M \in L^{2}(\Sigma)$,

or Σ cylindrically symmetric end E with $\int_{E} K>0$,
then

$$
\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1}
$$

Corollary. If Σ is asymptotically flat and any of the conditions above hold, then

$$
\sigma_{\mathrm{disc}}\left(-\Delta_{D}^{\Omega}\right) \neq \varnothing
$$

Quantum layers: the discrete spectrum

$$
\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1
$$

Theorem ([Duclos, Exner, D.K. 2001 (Comm. Math. Phys.)], [Carron, Exner, D.K. 2004 (J. Math. Phys.)]).
Let $K \in L^{2}(\Sigma)$ and $\Sigma \neq \mathbb{R}^{2}$. If

- $\int_{\Sigma} K \leq 0$,
or
- ω is thin enough,
or $\int_{\Sigma} M^{2}=\infty$ but $\nabla M \in L^{2}(\Sigma)$,

or $\Sigma \supset$ cylindrically symmetric end E with $\int_{E} K>0$, then

$$
\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1} .
$$

Corollary. If Σ is asymptotically flat and any of the conditions above hold, then

$$
\sigma_{\mathrm{disc}}\left(-\Delta_{D}^{\Omega}\right) \neq \varnothing
$$

Proof. Test function $1 \times \mathcal{J}_{1}$ where \mathcal{J}_{1} is the first eigenfunction of $-\Delta_{D}^{\omega}$, etc. q.e.d.

Quantum layers: examples

$\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1$

Quantum layers: examples

$\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1$

Quantum layers: examples

$\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1$

Quantum layers: further results

$$
\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1
$$

Quantum layers: further results

```
dim}\Sigma=2,\operatorname{codim}\Sigma=
```

- extensions to higher dimensions and codimensions
[Lin, Lu 2006], [Lin, Lu 2007]

Quantum layers: further results

```
dim}\Sigma=2,\operatorname{codim}\Sigma=
```

- extensions to higher dimensions and codimensions [Lin, Lu 2006], [Lin, Lu 2007]
- alternative sufficient conditions [Lin, Lu 2007], [Lu, Rowlett 2012]

Quantum layers: further results

$$
\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1
$$

- extensions to higher dimensions and codimensions [Lin, Lu 2006], [Lin, Lu 2007]
- alternative sufficient conditions [Lin, Lu 2007], [Lu, Rowlett 2012]
- extensions to tubes in curved ambient manifolds [D.K. 2003], [D.K. 2006], [Kolb, D.K. 2014], [Wachsmuth, Teufel 2013]

Quantum layers: further results

$$
\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1
$$

- extensions to higher dimensions and codimensions [Lin, Lu 2006], [Lin, Lu 2007]
- alternative sufficient conditions [Lin, Lu 2007], [Lu, Rowlett 2012]
- extensions to tubes in curved ambient manifolds [D.K. 2003], [D.K. 2006], [Kolb, D.K. 2014], [Wachsmuth, Teufel 2013]

- magnetic field $-\Delta \leadsto(-i \nabla-A)^{2}$
[D.K., Raymond, Tušek 2015]

Quantum layers: further results

$$
\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1
$$

- extensions to higher dimensions and codimensions [Lin, Lu 2006], [Lin, Lu 2007]
- alternative sufficient conditions [Lin, Lu 2007], [Lu, Rowlett 2012]
- extensions to tubes in curved ambient manifolds [D.K. 2003], [D.K. 2006], [Kolb, D.K. 2014],
 [Wachsmuth, Teufel 2013]
- magnetic field $-\Delta \leadsto(-i \nabla-A)^{2}$
[D.K., Raymond, Tušek 2015]
Theorem ([D.K., Raymond, Tušek 2015 (J. Geom. Anal.)]).
Replace $\omega \mapsto \varepsilon \omega$ with $\varepsilon>0$. Then $(\operatorname{dim} \Sigma=2, \operatorname{codim} \Sigma=1, A=0)$

$$
-\Delta_{D}^{\Omega_{\varepsilon}}-\frac{E_{1}}{\varepsilon^{2}} \quad \xrightarrow[\varepsilon \rightarrow 0]{\text { n.r.s. }} \quad-\Delta^{\Sigma}+K-M^{2}
$$

$$
N B \quad K-M^{2}=-\frac{1}{4}\left(k_{1}-k_{2}\right)^{2} \leq 0
$$

Quantum tubes: the geometry

$\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2$
$\Sigma:=\{\Gamma(s): s \in \mathbb{R}\}, \quad \Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ unit-speed $(|\dot{\Gamma}|=1)$ immersion, curvature $\kappa:=|\ddot{\Gamma}|$

Quantum tubes: the geometry

$\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2$
$\Sigma:=\{\Gamma(s): s \in \mathbb{R}\}, \quad \Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ unit-speed $(|\dot{\Gamma}|=1)$ immersion, curvature $\kappa:=|\ddot{\Gamma}|$
Frenet frame

$$
\begin{gathered}
\left(\begin{array}{c}
\dot{\Gamma} \\
N \\
B
\end{array}\right)^{\cdot}=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
\dot{\Gamma} \\
N \\
B
\end{array}\right) \\
\kappa>0
\end{gathered}
$$

Quantum tubes: the geometry

$$
\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2
$$

$\Sigma:=\{\Gamma(s): s \in \mathbb{R}\}, \quad \Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ unit-speed $(|\dot{\Gamma}|=1)$ immersion, curvature $\kappa:=|\ddot{\Gamma}|$

Frenet frame

$$
\begin{gathered}
\left(\begin{array}{c}
\dot{\Gamma} \\
N \\
B
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
\dot{\Gamma} \\
N \\
B
\end{array}\right) \\
\kappa>0
\end{gathered}
$$

versus
relatively parallel frame

$$
\begin{gathered}
\left(\begin{array}{c}
\dot{\Gamma} \\
N_{1} \\
N_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\dot{\Gamma} \\
N_{1} \\
N_{2}
\end{array}\right) \\
\kappa^{2}=k_{1}^{2}+k_{2}^{2}
\end{gathered}
$$

[Bishop 1975]
[D.K., Šediváková 2012]

Quantum tubes: the geometry

$$
\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2
$$

$\Sigma:=\{\Gamma(s): s \in \mathbb{R}\}, \quad \Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ unit-speed $(|\dot{\Gamma}|=1)$ immersion, curvature $\kappa:=|\ddot{\Gamma}|$
Frenet frame versus relatively parallel frame

$$
\begin{gathered}
\left(\begin{array}{c}
\dot{\Gamma} \\
N \\
B
\end{array}\right)^{\cdot}=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
\dot{\Gamma} \\
N \\
B
\end{array}\right) \quad\left(\begin{array}{ccc}
\dot{\Gamma} \\
N_{1} \\
N_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\dot{\Gamma} \\
N_{1} \\
N_{2}
\end{array}\right) \\
\kappa>0
\end{gathered}
$$

$$
\begin{gathered}
\kappa^{2}=k_{1}^{2}+k_{2}^{2} \\
\\
\text { [Bishop 1975] } \\
\text { [D.K., Šediváková 2012] }
\end{gathered}
$$

Quantum tubes: the geometry

$$
\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2
$$

$\Sigma:=\{\Gamma(s): s \in \mathbb{R}\}, \quad \Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ unit-speed $(|\dot{\Gamma}|=1)$ immersion, curvature $\kappa:=|\ddot{\Gamma}|$

Frenet frame versus relatively parallel frame

$$
\begin{gathered}
\left(\begin{array}{c}
\dot{\Gamma} \\
N \\
B
\end{array}\right)^{\cdot}=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
\dot{\Gamma} \\
N \\
B
\end{array}\right) \quad\left(\begin{array}{c}
\dot{\Gamma} \\
N_{1} \\
N_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\dot{\Gamma} \\
N_{1} \\
N_{2}
\end{array}\right) \\
\kappa>0
\end{gathered}
$$

[Bishop 1975]
[D.K., Šediváková 2012]

Quantum tubes: effect of bending

$\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma \geq 1$

Quantum tubes: effect of bending

$$
\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma \geq 1
$$

Theorem ([Chenaud, Duclos, Freitas, D.K. 2005 (Differential Geom. Appl.)]). If $\kappa \neq 0$ and $\dot{\theta}=0$, then $\quad \inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1}$

Quantum tubes: effect of bending

$$
\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma \geq 1
$$

Theorem ([Chenaud, Duclos, Freitas, D.K. 2005 (Differential Geom. Appl.)]).
If $\kappa \neq 0$ and $\dot{\theta}=0$, then

$$
\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1}
$$

If, in addition, $\lim _{|s| \rightarrow \infty} \kappa(s)=0$, then

$$
\sigma_{\operatorname{disc}}\left(-\Delta_{D}^{\Omega}\right) \neq \varnothing
$$

Quantum tubes: effect of bending

$$
\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma \geq 1
$$

Theorem ([Chenaud, Duclos, Freitas, D.K. 2005 (Differential Geom. Appl.)]).
If $\kappa \neq 0$ and $\dot{\theta}=0$, then

$$
\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1}
$$

If, in addition, $\lim _{|s| \rightarrow \infty} \kappa(s)=0$, then

$$
\sigma_{\operatorname{disc}}\left(-\Delta_{D}^{\Omega}\right) \neq \varnothing
$$

bending acts as an attractive interacion

Quantum tubes: effect of twisting

$\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2$
Proposition. If $\kappa=0$ and $\lim _{|s| \rightarrow \infty} \dot{\theta}(s)=0$, then $\sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)$

Quantum tubes: effect of twisting

$\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2$
Proposition. If $\kappa=0$ and $\lim _{|s| \rightarrow \infty} \dot{\theta}(s)=0$, then $\sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)$

$$
\begin{array}{ll}
\text { Proof. }-\Delta_{D}^{\Omega} \simeq-\left(\partial_{s}-\dot{\theta}(s) \partial_{\tau}\right)^{2}-\Delta_{t} \geq-\Delta_{t} \geq E_{1}, & (s, t) \in \mathbb{R} \times \omega \\
& \partial_{\tau}:=t_{2} \partial_{t_{1}}-t_{1} \partial_{t_{2}} \quad \text { q.e.d. }
\end{array}
$$

Quantum tubes: effect of twisting

$$
\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2
$$

Proposition. If $\kappa=0$ and $\lim _{|s| \rightarrow \infty} \dot{\theta}(s)=0$, then $\sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)$

$$
\begin{array}{ll}
\text { Proof. }-\Delta_{D}^{\Omega} \simeq-\left(\partial_{s}-\dot{\theta}(s) \partial_{\tau}\right)^{2}-\Delta_{t} \geq-\Delta_{t} \geq E_{1}, & (s, t) \in \mathbb{R} \times \omega \\
& \partial_{\tau}:=t_{2} \partial_{t_{1}}-t_{1} \partial_{t_{2}} \quad \text { q.e.d. }
\end{array}
$$

Theorem ([Ekholm, Kovařík, D.K. 2008 (Arch. Ration. Mech. Anal.)]). If $\kappa=0, \quad \dot{\theta} \neq 0, \dot{\theta} \in C_{0}(\mathbb{R})$ and ω is not circular, then there exists $c>0$,

$$
\forall \psi \in W_{0}^{1,2}(\Omega),
$$

$$
\int_{\Omega}|\nabla \psi(x)|^{2} \mathrm{~d} x-E_{1} \int_{\Omega}|\psi(x)|^{2} \mathrm{~d} x \geq c \int_{\Omega} \frac{|\psi(x)|^{2}}{1+|x|^{2}} \mathrm{~d} x
$$

Quantum tubes: effect of twisting

$$
\operatorname{dim} \Sigma=1, \operatorname{codim} \Sigma=2
$$

Proposition. If $\kappa=0$ and $\lim _{|s| \rightarrow \infty} \dot{\theta}(s)=0$, then $\sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)$

Proof. $-\Delta_{D}^{\Omega} \simeq-\left(\partial_{s}-\dot{\theta}(s) \partial_{\tau}\right)^{2}-\Delta_{t} \geq-\Delta_{t} \geq E_{1}$

$$
\begin{aligned}
& (s, t) \in \mathbb{R} \times \omega \\
& \partial_{\tau}:=t_{2} \partial_{t_{1}}-t_{1} \partial_{t_{2}} \quad \text { q.e.d. }
\end{aligned}
$$

Theorem ([Ekholm, Kovařík, D.K. 2008 (Arch. Ration. Mech. Anal.)]).
If $\kappa=0, \quad \dot{\theta} \neq 0, \dot{\theta} \in C_{0}(\mathbb{R})$ and ω is not circular, then there exists $c>0$,

$$
\forall \psi \in W_{0}^{1,2}(\Omega)
$$

$$
\int_{\Omega}|\nabla \psi(x)|^{2} \mathrm{~d} x-E_{1} \int_{\Omega}|\psi(x)|^{2} \mathrm{~d} x \geq c \int_{\Omega} \frac{|\psi(x)|^{2}}{1+|x|^{2}} \mathrm{~d} x
$$

Twisting versus bending

Corollary. Let $\dot{\theta} \neq 0, \dot{\theta} \in C_{0}(\mathbb{R})$ and ω is not circular. Then there exists $\epsilon>0$,

$$
\forall s \in \mathbb{R}, \quad|\kappa(s)| \leq \frac{\epsilon}{1+s^{2}} \quad \Longrightarrow \quad \sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

Twisting versus bending

Corollary. Let $\dot{\theta} \neq 0, \dot{\theta} \in C_{0}(\mathbb{R})$ and ω is not circular. Then there exists $\epsilon>0$,

$$
\forall s \in \mathbb{R}, \quad|\kappa(s)| \leq \frac{\epsilon}{1+s^{2}} \quad \Longrightarrow \quad \sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

Theorem ([D.K., Šediváková 2012 (Rev. Math. Phys.)]).
Replace $\omega \mapsto \varepsilon \omega$ with $\varepsilon>0$. Then

$$
-\Delta_{D}^{\Omega_{\varepsilon}}-\frac{E_{1}}{\varepsilon^{2}} \xrightarrow[\varepsilon \rightarrow 0]{\text { n.r.s. }} \quad-\Delta^{\Sigma}-\frac{\kappa^{2}}{4}+\left\|\partial_{\tau} \mathcal{J}_{1}\right\|^{2} \dot{\theta}^{2}
$$

Remark. Previous related results:
[Bouchitté, Mascarenhas, Trabucho 2007], [Wachsmuth, Teufel 2013], [de Oliveira 2010].

Application to the heat equation

$\left\{\begin{aligned} \frac{\partial u}{\partial t}-\Delta_{x} u & =0, \quad(x, t) \in \Omega \times(0, \infty), \\ u(x, 0) & =u_{0}(x) .\end{aligned}\right.$

$u(t) \sim t^{-1 / 4} e^{-E_{1} t} u_{0}$	$u(t) \sim e^{-\lambda_{1} t} u_{0}$	$u(t) \sim t^{-3 / 4} e^{-E_{1} t} u_{0}$
straight	bent $\left(\lambda_{1}<E_{1}\right)$	twisted

$\begin{array}{ll}\text { [D.K., Zuazua } 2010 \text { (J. Math. Pures Appl.)] } & \text { norm-wise } \\ \text { [Grillo, Kovařík, Pinchover } 2014 \text { (Arch. Ration. Mech. Anal.)] } & \text { point-wise }\end{array}$

Application to the heat equation

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}-\Delta_{x} u & =0, \\
u(x, 0) & =u_{0}(x)
\end{aligned}\right.
$$

$u(t) \sim t^{-1 / 4} e^{-E_{1} t} u_{0}$	$u(t) \sim e^{-\lambda_{1} t} u_{0}$	$u(t) \sim t^{-3 / 4} e^{-E_{1} t} u_{0}$
straight	bent $\left(\lambda_{1}<E_{1}\right)$	twisted

[D.K., Zuazua 2010 (J. Math. Pures Appl.)] norm-wise [Grillo, Kovařík, Pinchover 2014 (Arch. Ration. Mech. Anal.)] point-wise twisting \Longrightarrow faster cool down (death of a Brownian particle) in twisted tubes

Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let $\lim _{|s| \rightarrow \infty}|\dot{\theta}(s)|=\infty$.

Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let $\lim _{|s| \rightarrow \infty}|\dot{\theta}(s)|=\infty$.

1. If $0 \in \omega$, then $\sigma\left(-\Delta_{D}^{\Omega}\right) \supset\left[\mu_{1}, \infty\right)$ where $\mu_{1}:=\inf \sigma\left(-\Delta_{D}^{B_{r}}\right), r:=\operatorname{dist}(0, \partial \omega)$.

Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let $\lim _{|s| \rightarrow \infty}|\dot{\theta}(s)|=\infty$.

1. If $0 \in \omega$, then $\sigma\left(-\Delta_{D}^{\Omega}\right) \supset\left[\mu_{1}, \infty\right)$ where $\mu_{1}:=\inf \sigma\left(-\Delta_{D}^{B_{r}}\right), r:=\operatorname{dist}(0, \partial \omega)$.
2. If $\omega \subset\left\{t_{1}>0\right\}$, then $\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=\varnothing$

(i quasi-bounded realisation!)

Diverging twisting

Theorem ([D.K. 2012 (Appl. Math. Lett.)]). Let $\lim _{|s| \rightarrow \infty}|\dot{\theta}(s)|=\infty$.

1. If $0 \in \omega$, then $\sigma\left(-\Delta_{D}^{\Omega}\right) \supset\left[\mu_{1}, \infty\right)$ where $\mu_{1}:=\inf \sigma\left(-\Delta_{D}^{B_{r}}\right), r:=\operatorname{dist}(0, \partial \omega)$.
2. If $\omega \subset\left\{t_{1}>0\right\}$, then $\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=\varnothing$
(i quasi-bounded realisation!)

Open problem: ¿ Non-standard Weyl-type asymptotics in the case 2 ?

