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Hamiltonian

Notations
(i) d ≥ 2 – space dimension and Σ ⊂ Rd – hypersurface.
(ii) α > 0 – coupling constant.

Typically, some assumptions on the smoothness of Σ are imposed.
Schrödinger operator with δ-interaction of strength α supported on Σ
HΣ
α := −∆− αδ(x − Σ) on Rd .

HΣ
α models ‘leaky’ quantum systems; a particle is confined to Σ but the

tunnelling between different parts of Σ is not neglected.

Quantum graphs and waveguides do not explain this effect.
A mathematically rigorous definition
Self-adjoint operator HΣ

α in L2(Rd ) represents semibounded quadratic form
H1(Rd ) 3 u 7→ ‖∇u‖2Rd − α‖u|Σ‖2Σ; here u|Σ – the restriction of u onto Σ.
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Physical applications

Quantum mechanics
(i) Mathematical models for mesoscopic systems.
(ii) Atomic Hamiltonians in strong magnetic fields.
(iii) Ultra-cold gases.
(iv) ...

Electromagnetism
(i) Photonic crystals.
(ii) Dielectric media with translation invariance + high contrast;

including media made of metamaterials.

Applications in future branches of physics are not excluded!
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Motivation from spectral geometry

Characterise the spectrum of HΣ
α in terms of Σ!

Geometrically induced bound states
δ-interaction on the straight line Σ ⊂ R2 induces no bound states.
Any ‘small’ deformation of Σ creates at least one bound state!

Isoperimetric properties
Find the shape of Σ under some constraints optimizing a spectral
quantity for HΣ

α .
Circle in R2 maximizes the ground-state eigenvalue of HΣ

α among all
loops Σ of fixed length.

Spectra and curvatures
Asymptotic behaviour of eigenvalues of HΣ

α as α→∞ is governed by the
curvatures of Σ, etc.
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Asymptotically flat surfaces

Full characterisation of σ(HΣ
α) for general Σ – very difficult task!

general surfaces ⊃ asymptotically flat surfaces

Asymptotically flat = unbounded surface with vanishing curvatures at ∞.

Asymptotically flat: local deformation of the plane.
Not asymptotically flat: graph of x 7→ sin x .

Basic spectral properties
Typically, σess(HΣ

α) = [−α2/4,∞); each case needs a separate proof.
σd(HΓ

α) = ∅ for Γ straight line in R2 or plane in R3.
σd(HΣ

α) 6= ∅ for Σ = “a small deformation” of Γ & extra assumption
α large in R3.

Open problem: for α small in R3.
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Circular conical surfaces

Full characterisation of σ(HΣ
α) for asymptotically flat Σ – still a hard task!

asymptotically flat surfaces ⊃ circular conical surfaces

Opening angle φ ∈ (0, π/2]

Σφ :=
{

(x1, . . . , xd ) ∈ Rd : x2
d = cot2 φ

(
x2

1 + x2
2 + · · ·+ x2

d−1
)
, xd > 0

}

Σφφ

σ(HΣφ
α ) = α2

4 σ(HΣφ
2 )

Hφ := HΣφ
2

σ(Hφ) = ?
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Continuous spectrum

Theorem (Behrndt-Exner-L-14, d = 3)
σess(Hφ) = [−1,∞).

Variables can be almost separated far away from the vertex of Σφ ⇒
σess(Hφ) = σess(−∆R3 − 2δ(x − R2)) = [−1,∞).

Making this observation rigorous
σess(Hφ) ⊃ [−1,∞) – Weyl’s singular sequences.
σess(Hφ) ⊂ [−1,∞) – Neumann bracketing.

Theorem (Bruneau-Popoff-15, d > 3)
σess(Hφ) = [−1,∞).

Different method of the proof, our method is also applicable.
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Discrete spectrum

Theorem (Behrndt-Exner-L-14, d = 3)
#σd(Hφ) =∞ if φ ∈ (0, π/2) and #σd(Hφ) = 0 if φ = π/2.

These eigenvalues accumulate to E = −1.

Proof via construction of test functions & min-max principle
Use functions which are employed in Brezis-Marcus-97 to show
sharpness of Hardy inequality.
The strategy goes back to the proof of #σd =∞ for 2He in Kato-51.

Theorem (L-Ourmieres-Bonafos-16, d > 3)
σ(Hφ) = σess(Hφ) = [−1,∞) and #σd(Hφ) = 0.

Proof relies on rotational invariance of Σφ & separation of variables
σ(Hφ) = ∪∞m=0σ(Hφ,m); Hφ,m – fibre operators on R2

+.
inf σ(Hφ,m) ≥ inf σ(−∆R2 − 2δ(x − R)) = −1.
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The strategy goes back to the proof of #σd =∞ for 2He in Kato-51.

Theorem (L-Ourmieres-Bonafos-16, d > 3)
σ(Hφ) = σess(Hφ) = [−1,∞) and #σd(Hφ) = 0.

Proof relies on rotational invariance of Σφ & separation of variables
σ(Hφ) = ∪∞m=0σ(Hφ,m); Hφ,m – fibre operators on R2

+.
inf σ(Hφ,m) ≥ inf σ(−∆R2 − 2δ(x − R)) = −1.
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Monotonicity of eigenvalues (d = 3)

Eigenvalues of Hφ repeated with multiplicities
E1(Hφ) ≤ E2(Hφ) ≤ · · · ≤ Ek(Hφ) ≤ · · · < −1

Theorem (L-Ourmieres-Bonafos-16)
(0, π2 ) 3 φ 7→ Ek(Hφ) are non-decreasing functions.

As the cone becomes more and more flat the eigenvalues move up.

Method of the proof
Ek(Hφ) is expressible via its Rayleigh quotient.
Geometric transforms ⇒ monotonicity of Rayleigh quotients follows
from monotonicity of tanφ.

Proving that φ 7→ Ek(Hφ) is strictly increasing requires a different method.
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Absence of positive embedded eigenvalues

Definition
Eigenvalues inside continuous spectrum are called embedded.

In some applications it is important to exclude them.

Proposition
There are no eigenvalues of Hφ embedded into (0,∞).

Existence of E ∈ (0,∞) such that Hφψ = Eψ for ψ ∈ L2(Rd ) contradicts
to Rellich theorem for conical domains Dhia-Fliss-Hazard-Tonnoir-16.

Open question
Absence of eigenvalues of Hφ embedded in (−1, 0].
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Eigenvalue counting function

Definition
N−1−E (Hφ) = number of eigenvalues of Hφ below the point −1− E.

N−1−E (Hφ) := #
{
k ∈ N : Ek(Hφ) < −1− E

}
.

Behaviour of N−1−E (Hφ) is interesting for d = 3
#σd(Hφ) =∞ ⇒ limE→0+N−1−E (Hφ) =∞.
How fast is N−1−E (Hφ) growing?

Behrndt-Exner-L-14 – estimate for N−1−E (Hφ) from one side.
Aim of L-Ourmieres-Bonafos-16 – to obtain more on N−1−E (Hφ).

Exact order of growth for N−1−E (Hφ) is called spectral asymptotics.
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Main theorem on spectral asymptotics

Theorem (L-Ourmiéres-Bonafos-16)
N−1−E (Hφ) ∼ cotφ

4π | lnE | as E → 0+.

Sc = − d2

dx2 − c
x2 on (1,∞) + Dirichlet BC at x = 1

Spectral properties of Sc (Kirsch-Simon-87)
σess(Sc) = [0,∞).
#σd(Sc) =∞ for c > 1/4.

N−E (Sc) = #{k ∈ N : Ek(Sc) < −E} ∼ 1
2π

√
c − 1

4 | lnE |,

Spectral asymptotics of Hφ and of Sc are related

N−1−E (Hφ)∼N−E (S1/(4 sin2 φ)) ∼ 1
2π

√
1

4 sin2 φ
− 1

4 | lnE | = cotφ
4π | lnE |.

The proof is much more complicated!
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Proof via domain decomposition methods

Construction of energy-dependent comparison operators
H−φ,E ≤ Hφ ≤ H+

φ,E

N−1−E (H−φ,E ) ≥ N−1−E (Hφ) ≥ N−1−E (H+
φ,E ) .

Very technical estimates for N−1−E (H±φ,E )

cotφ
4π ≤ lim infE→0+

N−1−E (H+
φ,E )

| ln E | ≤ lim supE→0+
N−1−E (H−

φ,E )
| ln E | ≤ cotφ

4π .

Main difficulties
To find a domain decomposition for H±φ,E and to estimate N−1−E (H±φ,E ).
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Maya-pyramid-like tiling

s

tφ

. . .

To get full decomposition rotate the figure around the sloped line. This
decomposition is used for H−

φ,E
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Definition of general conical surfaces

circular conical surface ⊂ general conical surface

Definition
T – C2-smooth loop on the unit sphere S2.
Σ(T ) := {rT : r > 0} – conical surface with base T .

Circular conical surface = Σ(T ) with T being a circle on S2.

HT := HΣ(T )
2T

Σ(T )
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Qualitative spectral properties

Theorem (Bruneau-Popoff-15)
σess(HT ) = [−1,∞)

inf σess(HT ) < −1 if T has corner points; e.g. a polygon on S2.

Theorem (Exner-L-15)
σd(HT ) 6= ∅ if |T | < 2π.

Open Question: #σd(HT ) =∞ as for circular case?

If |T | = 2π then σd(HT ) = ∅ for T being equator of S2.

Open Question: |T | ≥ 2π, T not equator, σd(HT ) 6= ∅?
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Open Question: |T | ≥ 2π, T not equator, σd(HT ) 6= ∅?
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Isoperimetric inequality

Optimization problem
T 7→ E1(HT ) = max! + constraint |T | = L ∈ (0, 2π) (?)

Theorem (Exner-L-15)
The optimizer for the problem (?) is a circle on the unit sphere.

Circular cone maximizes the 1st eigenvalue among all cones with
fixed base length!

This theorem belongs to a family of optimization results
Most famous: the ball minimizes the 1st eigenvalue of Dirichlet Laplacian
among domains of fixed volume (Faber-23, Krahn-25).
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Isoperimetric inequality: method of the proof

C, T ⊂ S2, |C| = |T | ∈ (0, 2π), C – a circle. We need to prove

E1(HT ) ≤ E1(HC)

Birman-Schwinger principle
Spectral analysis of HC , HT reduces to integral equations on Σ(C), Σ(T ).

Next step inspired by Exner-Harrell-Loss-06
(i) E1(HT ) ≤ E1(HC) reduces to comparing two integrals expressed via:

Green’s function for the Helmholtz equation;
T and C;
restriction of ground-state ψC onto Σ(C); HCψC = E1(HC)ψC .

(ii) Comparing integrals via mean-chord inequality (Lükő-66).

Key novelty : Unknown restriction of ψC to Σ(C); only its positivity and
symmetry are used.
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Method applicable to truncated cones

Truncated conical surfaces
(i) T – C2-smooth loop on the unit sphere S2.
(ii) Σ(T ,R) := {rT : r ∈ (0,R)} – truncated conical surface with base
T and radius R > 0.

α > 0 fixed. Using our method we get in Exner-L-15

(i) Circular cone maximizes the 1st eigenvalue among all truncated
cones with fixed |T | and R.

(ii) For fixed |T | = L ∈ (0, 2π] there exists critical radius R∗(L) such
that:

circular truncated cone induces no bound states;
any non-circular truncated cone induces at least one bound
state.
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What else?

Ongoing projects
Affect of Aharonov-Bohm fields (Krejčiřík-L-Ourmieres-Bonafos)
Eigenvalue asymptotics as φ→ π/2− (L-Kondej)

Other important contributors
Bonaille-Noël, Bruneau, Dauge, Duclos, Krejčiřík, Levitin,
Pankrashkin, Parnovski, Popoff, Raymond, Tater,. . . .

Selected topics considered by other groups
(i) Robin and magnetic cones, Dirichlet conical layers.
(ii) Asymptotics of counting function for non-circular cones.
(iii) Continuous spectrum for cones with edges.
(iv) Semi-classical methods for φ→ 0+.
(v) Localization estimates for eigenfunctions.
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Summary and next challenges

Circular conical surface
Spectrum is understood on the qualitative level + spectral asymptotics.

General conical surfaces
Spectrum is only partially understood on the qualitative level +
isoperimetric inequality.

Still a lot of open questions for conical surfaces.

Other classes of surfaces less investigated
parabolic surfaces.
hyperbolic surfaces.
radially periodic surfaces.
Zd -periodic surfaces.
. . .
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Thank you!

Děkuji za pozornost!
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