Leaky conical surfaces: spectral asymptotics, isoperimetric properties, and beyond

V. Lotoreichik

in collaboration with

J. Behrndt, P. Exner, and T. Ourmiéres-Bonafos

Nuclear Physics Institute, Czech Academy of Sciences, Řež

Ostrava, 02.06.2016

Introduction

2 Qualitative properties of circular conical surfaces

- 3 Spectral asymptotics for circular conical surfaces
- General conical surfaces and isoperimetric inequality

V. Lotoreichik (NPI CAS)

メロト メポト メヨト メヨ

Notations

(i) $d \ge 2$ – space dimension and $\Sigma \subset \mathbb{R}^d$ – hypersurface.

(ii) $\alpha > 0$ – coupling constant.

Notations

(i) $d \ge 2$ – space dimension and $\Sigma \subset \mathbb{R}^d$ – hypersurface.

(ii) $\alpha > 0$ – coupling constant.

Typically, some assumptions on the smoothness of Σ are imposed.

Notations

(i) $d \ge 2$ – space dimension and $\Sigma \subset \mathbb{R}^d$ – hypersurface.

(ii) $\alpha > 0$ – coupling constant.

Typically, some assumptions on the smoothness of Σ are imposed.

Schrödinger operator with δ -interaction of strength α supported on Σ $\mathsf{H}^{\Sigma}_{\alpha} := -\Delta - \alpha \delta(x - \Sigma)$ on \mathbb{R}^{d} .

Notations

(i) $d \ge 2$ – space dimension and $\Sigma \subset \mathbb{R}^d$ – hypersurface.

(ii) $\alpha > 0$ – coupling constant.

Typically, some assumptions on the smoothness of Σ are imposed.

Schrödinger operator with δ -interaction of strength α supported on Σ $\mathsf{H}_{\alpha}^{\Sigma} := -\Delta - \alpha \delta(x - \Sigma)$ on \mathbb{R}^{d} .

 H^{Σ}_{α} models 'leaky' quantum systems; a particle is confined to Σ but the tunnelling between different parts of Σ is not neglected.

Quantum graphs and waveguides do not explain this effect.

(本間) (本語) (本語)

Notations

(i) $d \ge 2$ – space dimension and $\Sigma \subset \mathbb{R}^d$ – hypersurface.

(ii) $\alpha > 0$ – coupling constant.

Typically, some assumptions on the smoothness of Σ are imposed.

Schrödinger operator with δ -interaction of strength α supported on Σ $\mathsf{H}_{\alpha}^{\Sigma} := -\Delta - \alpha \delta(x - \Sigma)$ on \mathbb{R}^{d} .

 H^{Σ}_{α} models 'leaky' quantum systems; a particle is confined to Σ but the tunnelling between different parts of Σ is not neglected.

Quantum graphs and waveguides do not explain this effect.

A mathematically rigorous definition

Self-adjoint operator $H_{\mathbb{R}^d}^{\Sigma}$ in $L^2(\mathbb{R}^d)$ represents semibounded quadratic form $H^1(\mathbb{R}^d) \ni u \mapsto \|\nabla u\|_{\mathbb{R}^d}^2 - \alpha \|u|_{\Sigma}\|_{\Sigma}^2$; here $u|_{\Sigma}$ – the restriction of u onto Σ .

V. Lotoreichik (NPI CAS)

イロト イヨト イヨト イ

Quantum mechanics

- (i) Mathematical models for mesoscopic systems.
- (ii) Atomic Hamiltonians in strong magnetic fields.

(iii) Ultra-cold gases.

(iv) ...

Quantum mechanics

- (i) Mathematical models for mesoscopic systems.
- (ii) Atomic Hamiltonians in strong magnetic fields.
- (iii) Ultra-cold gases.

(iv) ...

Electromagnetism

- (i) Photonic crystals.
- (ii) Dielectric media with translation invariance + high contrast; including media made of metamaterials.

Quantum mechanics

- (i) Mathematical models for mesoscopic systems.
- (ii) Atomic Hamiltonians in strong magnetic fields.
- (iii) Ultra-cold gases.

(iv) ...

Electromagnetism

- (i) Photonic crystals.
- (ii) Dielectric media with translation invariance + high contrast; including media made of metamaterials.

Applications in future branches of physics are not excluded!

V. Lotoreichik (NPI CAS)

Characterise the spectrum of H^{Σ}_{α} in terms of Σ !

Characterise the spectrum of H^{Σ}_{α} in terms of Σ !

Geometrically induced bound states

- δ -interaction on the straight line $\Sigma \subset \mathbb{R}^2$ induces no bound states.
- Any 'small' deformation of Σ creates at least one bound state!

Characterise the spectrum of H^{Σ}_{α} in terms of Σ !

Geometrically induced bound states

- δ -interaction on the straight line $\Sigma \subset \mathbb{R}^2$ induces no bound states.
- Any 'small' deformation of Σ creates at least one bound state!

Isoperimetric properties

- Find the shape of Σ under some constraints optimizing a spectral quantity for H^{Σ}_{α} .
- Circle in \mathbb{R}^2 maximizes the ground-state eigenvalue of H^{Σ}_{α} among all loops Σ of fixed length.

Characterise the spectrum of H^{Σ}_{α} in terms of Σ !

Geometrically induced bound states

- δ -interaction on the straight line $\Sigma \subset \mathbb{R}^2$ induces no bound states.
- Any 'small' deformation of Σ creates at least one bound state!

Isoperimetric properties

- Find the shape of Σ under some constraints optimizing a spectral quantity for ${\sf H}^{\Sigma}_{\alpha}.$
- Circle in \mathbb{R}^2 maximizes the ground-state eigenvalue of H^{Σ}_{α} among all loops Σ of fixed length.

Spectra and curvatures

Asymptotic behaviour of eigenvalues of H^{Σ}_{α} as $\alpha \to \infty$ is governed by the curvatures of Σ , *etc.*

V. Lotoreichik (NPI CAS)

V. Lotoreichik (NPI CAS)

(日)

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for general Σ – very difficult task!

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for general Σ – very difficult task!

general surfaces \supset asymptotically flat surfaces

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for general Σ – very difficult task!

general surfaces \supset asymptotically flat surfaces

Asymptotically flat = unbounded surface with vanishing curvatures at ∞ .

Asymptotically flat: local deformation of the plane. Not asymptotically flat: graph of $x \mapsto \sin x$.

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for general Σ – very difficult task!

general surfaces \supset asymptotically flat surfaces

Asymptotically flat = unbounded surface with vanishing curvatures at ∞ .

Asymptotically flat: local deformation of the plane. Not asymptotically flat: graph of $x \mapsto \sin x$.

Basic spectral properties

- Typically, $\sigma_{\rm ess}({\sf H}^{\Sigma}_{\alpha})=[-\alpha^2/4,\infty);$ each case needs a separate proof.
- $\sigma_{\rm d}(\mathsf{H}^{\Gamma}_{\alpha}) = \varnothing$ for Γ straight line in \mathbb{R}^2 or plane in \mathbb{R}^3 .
- $\sigma_{\rm d}({\sf H}_{\alpha}^{\Sigma}) \neq \emptyset$ for Σ = "a small deformation" of Γ & extra assumption α large in \mathbb{R}^3 .

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for general Σ – very difficult task!

general surfaces \supset asymptotically flat surfaces

Asymptotically flat = unbounded surface with vanishing curvatures at ∞ .

Asymptotically flat: local deformation of the plane. Not asymptotically flat: graph of $x \mapsto \sin x$.

Basic spectral properties

- Typically, $\sigma_{\rm ess}({\sf H}^{\Sigma}_{\alpha})=[-\alpha^2/4,\infty);$ each case needs a separate proof.
- $\sigma_{\rm d}(\mathsf{H}^{\Gamma}_{\alpha}) = \varnothing$ for Γ straight line in \mathbb{R}^2 or plane in \mathbb{R}^3 .
- $\sigma_{\rm d}({\sf H}_{\alpha}^{\Sigma}) \neq \varnothing$ for Σ = "a small deformation" of Γ & extra assumption α large in \mathbb{R}^3 .

Open problem: for α small in \mathbb{R}^3 .

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for general Σ – very difficult task!

general surfaces \supset asymptotically flat surfaces

Asymptotically flat = unbounded surface with vanishing curvatures at ∞ .

Asymptotically flat: local deformation of the plane. Not asymptotically flat: graph of $x \mapsto \sin x$.

Basic spectral properties

- Typically, $\sigma_{\rm ess}({\sf H}^{\Sigma}_{\alpha})=[-\alpha^2/4,\infty);$ each case needs a separate proof.
- $\sigma_{\rm d}(\mathsf{H}^{\Gamma}_{\alpha}) = \varnothing$ for Γ straight line in \mathbb{R}^2 or plane in \mathbb{R}^3 .
- $\sigma_{\rm d}({\sf H}_{\alpha}^{\Sigma}) \neq \varnothing$ for Σ = "a small deformation" of Γ & extra assumption α large in \mathbb{R}^3 .

Open problem: for α small in \mathbb{R}^3 .

V. Lotoreichik (NPI CAS)

(日)

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for asymptotically flat Σ – still a hard task!

Full characterisation of $\sigma(\mathsf{H}_{\alpha}^{\Sigma})$ for asymptotically flat Σ – still a hard task!

asymptotically flat surfaces \supset circular conical surfaces

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for asymptotically flat Σ – still a hard task!

asymptotically flat surfaces \supset circular conical surfaces

Opening angle $\phi \in (0, \pi/2]$

$$\Sigma_{\phi} := \{ (x_1, \dots, x_d) \in \mathbb{R}^d \colon x_d^2 = \cot^2 \phi (x_1^2 + x_2^2 + \dots + x_{d-1}^2), x_d > 0 \}$$

Full characterisation of $\sigma(\mathsf{H}^{\Sigma}_{\alpha})$ for asymptotically flat Σ – still a hard task!

asymptotically flat surfaces \supset circular conical surfaces

Opening angle $\phi \in (0, \pi/2]$

$$\Sigma_{\phi} := \{ (x_1, \dots, x_d) \in \mathbb{R}^d : x_d^2 = \cot^2 \phi (x_1^2 + x_2^2 + \dots + x_{d-1}^2), x_d > 0 \}$$

1 Introduction

2 Qualitative properties of circular conical surfaces

- 3 Spectral asymptotics for circular conical surfaces
- 4 General conical surfaces and isoperimetric inequality

Continuous spectrum

V. Lotoreichik (NPI CAS)

(日)

Continuous spectrum

Theorem (BEHRNDT-EXNER-L-14, d = 3)

 $\sigma_{\rm ess}(\mathsf{H}_{\phi}) = [-1,\infty).$

< ≣ ► <

Theorem (BEHRNDT-EXNER-L-14, d = 3)

 $\sigma_{\rm ess}(\mathsf{H}_{\phi}) = [-1,\infty).$

Variables can be almost separated far away from the vertex of $\Sigma_{\phi} \Rightarrow \sigma_{\rm ess}(\mathsf{H}_{\phi}) = \sigma_{\rm ess}(-\Delta_{\mathbb{R}^3} - 2\delta(x - \mathbb{R}^2)) = [-1, \infty).$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (BEHRNDT-EXNER-L-14, d = 3)

 $\sigma_{\rm ess}(\mathsf{H}_{\phi}) = [-1,\infty).$

Variables can be almost separated far away from the vertex of $\Sigma_{\phi} \Rightarrow \sigma_{\rm ess}(\mathsf{H}_{\phi}) = \sigma_{\rm ess}(-\Delta_{\mathbb{R}^3} - 2\delta(x - \mathbb{R}^2)) = [-1, \infty).$

Making this observation rigorous

- $\sigma_{\rm ess}({\sf H}_\phi) \supset [-1,\infty)$ Weyl's singular sequences.
- $\sigma_{\rm ess}({\sf H}_{\phi}) \subset [-1,\infty)$ Neumann bracketing.

イロト イヨト イヨト イヨト 二日

Theorem (BEHRNDT-EXNER-L-14, d = 3)

 $\sigma_{\rm ess}(\mathsf{H}_{\phi}) = [-1,\infty).$

Variables can be almost separated far away from the vertex of $\Sigma_{\phi} \Rightarrow \sigma_{\rm ess}(\mathsf{H}_{\phi}) = \sigma_{\rm ess}(-\Delta_{\mathbb{R}^3} - 2\delta(x - \mathbb{R}^2)) = [-1, \infty).$

Making this observation rigorous

- $\sigma_{\rm ess}({\sf H}_\phi) \supset [-1,\infty)$ Weyl's singular sequences.
- $\sigma_{\rm ess}({\sf H}_\phi) \subset [-1,\infty)$ Neumann bracketing.

Theorem (BRUNEAU-POPOFF-15, d > 3)

 $\sigma_{\rm ess}(\mathsf{H}_{\phi}) = [-1,\infty).$

Different method of the proof, our method is also applicable.

V. Lotoreichik (NPI CAS)

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → ⊙ < @

V. Lotoreichik (NPI CAS)

・ロト ・ 日 ト ・ 目 ト ・
Theorem (BEHRNDT-EXNER-L-14, d = 3)

 $\#\sigma_{\rm d}(\mathsf{H}_{\phi}) = \infty$ if $\phi \in (0, \pi/2)$ and $\#\sigma_{\rm d}(\mathsf{H}_{\phi}) = 0$ if $\phi = \pi/2$.

These eigenvalues accumulate to E = -1.

▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Image: Image:

Theorem (BEHRNDT-EXNER-L-14, d = 3)

 $\#\sigma_{\rm d}(\mathsf{H}_{\phi}) = \infty$ if $\phi \in (0, \pi/2)$ and $\#\sigma_{\rm d}(\mathsf{H}_{\phi}) = 0$ if $\phi = \pi/2$.

These eigenvalues accumulate to E = -1.

Proof via construction of test functions & min-max principle

- Use functions which are employed in BREZIS-MARCUS-97 to show sharpness of Hardy inequality.
- The strategy goes back to the proof of $\#\sigma_d = \infty$ for ₂He in KATO-51.

Theorem (BEHRNDT-EXNER-L-14, d = 3)

 $\#\sigma_{\rm d}(\mathsf{H}_{\phi}) = \infty$ if $\phi \in (0, \pi/2)$ and $\#\sigma_{\rm d}(\mathsf{H}_{\phi}) = 0$ if $\phi = \pi/2$.

These eigenvalues accumulate to E = -1.

Proof via construction of test functions & min-max principle

- Use functions which are employed in BREZIS-MARCUS-97 to show sharpness of Hardy inequality.
- The strategy goes back to the proof of $\#\sigma_{\rm d} = \infty$ for ₂He in KATO-51.

Theorem (L-OURMIERES-BONAFOS-16, d > 3)

 $\sigma(\mathsf{H}_{\phi}) = \sigma_{\mathrm{ess}}(\mathsf{H}_{\phi}) = [-1,\infty)$ and $\#\sigma_{\mathrm{d}}(\mathsf{H}_{\phi}) = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Theorem (BEHRNDT-EXNER-L-14, d = 3)

 $\#\sigma_{\rm d}(\mathsf{H}_{\phi}) = \infty$ if $\phi \in (0, \pi/2)$ and $\#\sigma_{\rm d}(\mathsf{H}_{\phi}) = 0$ if $\phi = \pi/2$.

These eigenvalues accumulate to E = -1.

Proof via construction of test functions & min-max principle

- Use functions which are employed in BREZIS-MARCUS-97 to show sharpness of Hardy inequality.
- The strategy goes back to the proof of $\#\sigma_{\rm d} = \infty$ for ₂He in KATO-51.

Theorem (L-OURMIERES-BONAFOS-16, d > 3)

$$\sigma(\mathsf{H}_\phi)=\sigma_{\mathrm{ess}}(\mathsf{H}_\phi)=[-1,\infty)$$
 and $\#\sigma_{\mathrm{d}}(\mathsf{H}_\phi)=0.0$

Proof relies on rotational invariance of Σ_{ϕ} & separation of variables

σ(H_φ) = ∪[∞]_{m=0}σ(H_{φ,m}); H_{φ,m} – fibre operators on ℝ²₊.

•
$$\inf \sigma(\mathsf{H}_{\phi,m}) \geq \inf \sigma(-\Delta_{\mathbb{R}^2} - 2\delta(x - \mathbb{R})) = -1.$$

V. Lotoreichik (NPI CAS)

(日)

Eigenvalues of H_{ϕ} repeated with multiplicities

 $E_1(\mathsf{H}_{\phi}) \leq E_2(\mathsf{H}_{\phi}) \leq \cdots \leq E_k(\mathsf{H}_{\phi}) \leq \cdots < -1$

イロト イポト イヨト イヨト 二日

Eigenvalues of H_{ϕ} repeated with multiplicities

 $E_1(\mathsf{H}_\phi) \leq E_2(\mathsf{H}_\phi) \leq \cdots \leq E_k(\mathsf{H}_\phi) \leq \cdots < -1$

Theorem (L-OURMIERES-BONAFOS-16)

$(0, \frac{\pi}{2}) \ni \phi \mapsto E_k(\mathsf{H}_{\phi})$ are non-decreasing functions.

• • = • • = •

Eigenvalues of H_{ϕ} repeated with multiplicities

 $E_1(\mathsf{H}_\phi) \leq E_2(\mathsf{H}_\phi) \leq \cdots \leq E_k(\mathsf{H}_\phi) \leq \cdots < -1$

Theorem (L-OURMIERES-BONAFOS-16)

 $(0, \frac{\pi}{2}) \ni \phi \mapsto E_k(\mathsf{H}_{\phi})$ are non-decreasing functions.

As the cone becomes more and more flat the eigenvalues move up.

Eigenvalues of H_{ϕ} repeated with multiplicities

 $E_1(\mathsf{H}_\phi) \leq E_2(\mathsf{H}_\phi) \leq \cdots \leq E_k(\mathsf{H}_\phi) \leq \cdots < -1$

Theorem (L-OURMIERES-BONAFOS-16)

 $(0, \frac{\pi}{2}) \ni \phi \mapsto E_k(\mathsf{H}_{\phi})$ are non-decreasing functions.

As the cone becomes more and more flat the eigenvalues move up.

Method of the proof

- $E_k(H_{\phi})$ is expressible via its Rayleigh quotient.
- Geometric transforms \Rightarrow monotonicity of Rayleigh quotients follows from monotonicity of tan ϕ .

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …

Eigenvalues of H_{ϕ} repeated with multiplicities

 $E_1(\mathsf{H}_\phi) \leq E_2(\mathsf{H}_\phi) \leq \cdots \leq E_k(\mathsf{H}_\phi) \leq \cdots < -1$

Theorem (L-OURMIERES-BONAFOS-16)

 $(0, \frac{\pi}{2}) \ni \phi \mapsto E_k(\mathsf{H}_{\phi})$ are non-decreasing functions.

As the cone becomes more and more flat the eigenvalues move up.

Method of the proof

- $E_k(H_{\phi})$ is expressible via its Rayleigh quotient.
- Geometric transforms \Rightarrow monotonicity of Rayleigh quotients follows from monotonicity of tan ϕ .

Proving that $\phi \mapsto E_k(H_{\phi})$ is strictly increasing requires a different method.

V. Lotoreichik (NPI CAS)

イロト 不得 トイヨト イヨト

Absence of positive embedded eigenvalues

V. Lotoreichik (NPI CAS)

Eigenvalues inside continuous spectrum are called **embedded**.

∃ ≻

Eigenvalues inside continuous spectrum are called embedded.

In some applications it is important to exclude them.

Eigenvalues inside continuous spectrum are called **embedded**.

In some applications it is important to exclude them.

Proposition

There are no eigenvalues of H_{ϕ} embedded into $(0, \infty)$.

Eigenvalues inside continuous spectrum are called embedded.

In some applications it is important to exclude them.

Proposition

There are no eigenvalues of H_{ϕ} embedded into $(0, \infty)$.

Existence of $E \in (0, \infty)$ such that $H_{\phi}\psi = E\psi$ for $\psi \in L^2(\mathbb{R}^d)$ contradicts to **Rellich theorem** for conical domains DHIA-FLISS-HAZARD-TONNOIR-16.

Eigenvalues inside continuous spectrum are called **embedded**.

In some applications it is important to exclude them.

Proposition

There are no eigenvalues of H_{ϕ} embedded into $(0, \infty)$.

Existence of $E \in (0, \infty)$ such that $H_{\phi}\psi = E\psi$ for $\psi \in L^2(\mathbb{R}^d)$ contradicts to **Rellich theorem** for conical domains DHIA-FLISS-HAZARD-TONNOIR-16.

Open question

Absence of eigenvalues of H_{ϕ} embedded in (-1, 0].

Introduction

2 Qualitative properties of circular conical surfaces

- 3 Spectral asymptotics for circular conical surfaces
- 4 General conical surfaces and isoperimetric inequality

V. Lotoreichik (NPI CAS)

- 4 ∃ ▶

Definition

 $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) =$ number of eigenvalues of H_{ϕ} below the point -1 - E.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

 $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) =$ number of eigenvalues of H_{ϕ} below the point -1 - E.

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) := \#\{k \in \mathbb{N} \colon E_k(\mathsf{H}_{\phi}) < -1-E\}.$$

(日)

Definition

 $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) =$ number of eigenvalues of H_{ϕ} below the point -1 - E.

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) := \#\{k \in \mathbb{N} \colon E_k(\mathsf{H}_{\phi}) < -1-E\}.$$

Behaviour of $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$ is interesting for d=3

- $\#\sigma_{\mathrm{d}}(\mathsf{H}_{\phi}) = \infty \Rightarrow \lim_{E \to 0^+} \mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) = \infty.$
- How fast is $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$ growing?

 $\mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi}) =$ number of eigenvalues of H_{ϕ} below the point $-1 - \mathcal{E}$.

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) := \#\{k \in \mathbb{N} \colon E_k(\mathsf{H}_{\phi}) < -1-E\}.$$

Behaviour of $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$ is interesting for d=3

- $\#\sigma_{\mathrm{d}}(\mathsf{H}_{\phi}) = \infty \Rightarrow \lim_{E \to 0^+} \mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) = \infty.$
- How fast is $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$ growing?
- BEHRNDT-EXNER-L-14 estimate for $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$ from one side.
- Aim of L-OURMIERES-BONAFOS-16 to obtain more on $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$.

米田 とくほとくほど

Definition

 $\mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi}) =$ number of eigenvalues of H_{ϕ} below the point $-1 - \mathcal{E}$.

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) := \#\{k \in \mathbb{N} \colon E_k(\mathsf{H}_{\phi}) < -1-E\}.$$

Behaviour of $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$ is interesting for d=3

- $\#\sigma_{\mathrm{d}}(\mathsf{H}_{\phi}) = \infty \Rightarrow \lim_{E \to 0^+} \mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) = \infty.$
- How fast is $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$ growing?
- BEHRNDT-EXNER-L-14 estimate for $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$ from one side.
- Aim of L-OURMIERES-BONAFOS-16 to obtain more on $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})$.

Exact order of growth for $\mathcal{N}_{-1-E}(H_{\phi})$ is called spectral asymptotics.

V. Lotoreichik (NPI CAS)

Theorem (L-OURMIÉRES-BONAFOS-16)

 $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) \sim rac{\cot \phi}{4\pi} |\ln E| \text{ as } E
ightarrow 0+.$

★ ∃ ►

Theorem (L-OURMIÉRES-BONAFOS-16)

 $\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) \sim rac{\cot \phi}{4\pi} |\ln E| \text{ as } E \to 0+.$

$$S_c = -\frac{d^2}{dx^2} - \frac{c}{x^2}$$
 on $(1, \infty)$ + Dirichlet BC at $x = 1$

4 3 > 4

Theorem (L-OURMIÉRES-BONAFOS-16)

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) \sim rac{\cot \phi}{4\pi} |\ln E| \text{ as } E \to 0+.$$

$$\mathsf{S}_c = -rac{\mathsf{d}^2}{\mathsf{d}x^2} - rac{c}{x^2}$$
 on $(1,\infty)+$ Dirichlet BC at $x=1$

Spectral properties of S_c (KIRSCH-SIMON-87)

•
$$\sigma_{\mathrm{ess}}(\mathsf{S}_c) = [0,\infty).$$

•
$$\#\sigma_{\mathrm{d}}(\mathsf{S}_c) = \infty$$
 for $c > 1/4$.

•
$$\mathcal{N}_{-E}(\mathsf{S}_c) = \#\{k \in \mathbb{N} \colon E_k(\mathsf{S}_c) < -E\} \sim \frac{1}{2\pi} \sqrt{c - \frac{1}{4}} |\ln E|,$$

★ ∃ ▶

Theorem (L-OURMIÉRES-BONAFOS-16)

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) \sim rac{\cot \phi}{4\pi} |\ln E| \text{ as } E \to 0+.$$

$$\mathsf{S}_c = -rac{\mathsf{d}^2}{\mathsf{d}x^2} - rac{c}{x^2}$$
 on $(1,\infty)+$ Dirichlet BC at $x=1$

Spectral properties of S_c (KIRSCH-SIMON-87)

•
$$\sigma_{\mathrm{ess}}(\mathsf{S}_c) = [0,\infty).$$

•
$$\#\sigma_{\mathrm{d}}(\mathsf{S}_c)=\infty$$
 for $c>1/4.$

•
$$\mathcal{N}_{-E}(\mathsf{S}_c) = \#\{k \in \mathbb{N} \colon E_k(\mathsf{S}_c) < -E\} \sim \frac{1}{2\pi} \sqrt{c - \frac{1}{4}} |\ln E|,$$

Spectral asymptotics of H_{ϕ} and of S_c are related

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) \sim \mathcal{N}_{-E}(\mathsf{S}_{1/(4\sin^{2}\phi)}) \sim \frac{1}{2\pi} \sqrt{\frac{1}{4\sin^{2}\phi} - \frac{1}{4}} |\ln E| = \frac{\cot \phi}{4\pi} |\ln E|.$$

V. Lotoreichik (NPI CAS)

(日)

Theorem (L-OURMIÉRES-BONAFOS-16)

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) \sim rac{\cot \phi}{4\pi} |\ln E| \text{ as } E \to 0+.$$

$$\mathsf{S}_c = -rac{\mathsf{d}^2}{\mathsf{d}x^2} - rac{c}{x^2}$$
 on $(1,\infty)+$ Dirichlet BC at $x=1$

Spectral properties of S_c (KIRSCH-SIMON-87)

•
$$\sigma_{\mathrm{ess}}(\mathsf{S}_c) = [0,\infty).$$

•
$$\#\sigma_{\mathrm{d}}(\mathsf{S}_c) = \infty$$
 for $c > 1/4$.

•
$$\mathcal{N}_{-E}(\mathsf{S}_c) = \#\{k \in \mathbb{N} \colon E_k(\mathsf{S}_c) < -E\} \sim rac{1}{2\pi} \sqrt{c - rac{1}{4}} |\ln E|,$$

Spectral asymptotics of H_{ϕ} and of S_c are related

$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi}) \sim \mathcal{N}_{-E}(\mathsf{S}_{1/(4\sin^2\phi)}) \sim \frac{1}{2\pi} \sqrt{\frac{1}{4\sin^2\phi} - \frac{1}{4}} |\ln E| = \frac{\cot\phi}{4\pi} |\ln E|.$$

The proof is much more complicated!

V. Lotoreichik (NPI CAS)

Leaky conical surfaces

★ ∃ ►

Construction of energy-dependent comparison operators

 $\mathsf{H}_{\phi,\mathsf{E}}^{-} \leq \mathsf{H}_{\phi} \leq \mathsf{H}_{\phi,\mathsf{E}}^{+}$

4 3 > 4

Construction of energy-dependent comparison operators

 $\mathsf{H}_{\phi, \textit{E}}^{-} \leq \mathsf{H}_{\phi} \leq \mathsf{H}_{\phi, \textit{E}}^{+}$

$$\left|\mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi,\mathcal{E}}^{-})\geq\mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi})\geq\mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi,\mathcal{E}}^{+})
ight|.$$

イロト イヨト イヨト -

Construction of energy-dependent comparison operators

 $\mathsf{H}^{-}_{\phi, \textit{E}} \leq \mathsf{H}_{\phi} \leq \mathsf{H}^{+}_{\phi, \textit{E}}$

$$\mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi,\mathcal{E}}^{-}) \geq \mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi}) \geq \mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi,\mathcal{E}}^{+})$$

Very technical estimates for
$$\mathcal{N}_{-1-E}(\mathsf{H}_{\phi,E}^{\pm})$$

$$\frac{\cot\phi}{4\pi} \leq \liminf_{E \to 0^+} \frac{\mathcal{N}_{-1-E}(\mathsf{H}_{\phi,E}^{+})}{|\ln E|} \leq \limsup_{E \to 0^+} \frac{\mathcal{N}_{-1-E}(\mathsf{H}_{\phi,E}^{-})}{|\ln E|} \leq \frac{\cot\phi}{4\pi}.$$

(本語)とう

Construction of energy-dependent comparison operators

 $\mathsf{H}_{\phi,\textit{E}}^{-} \leq \mathsf{H}_{\phi} \leq \mathsf{H}_{\phi,\textit{E}}^{+}$

$$\mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi,\mathcal{E}}^{-}) \geq \mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi}) \geq \mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}_{\phi,\mathcal{E}}^{+})$$

Very technical estimates for
$$\mathcal{N}_{-1-\mathcal{E}}(\mathsf{H}^{\pm}_{\phi,\mathcal{E}})$$

$$\frac{\cot \phi}{4\pi} \leq \liminf_{E \to 0+} \frac{\mathcal{N}_{-1-E}(\mathsf{H}^+_{\phi,E})}{|\ln E|} \leq \limsup_{E \to 0+} \frac{\mathcal{N}_{-1-E}(\mathsf{H}^-_{\phi,E})}{|\ln E|} \leq \frac{\cot \phi}{4\pi}.$$

Main difficulties

To find a domain decomposition for $H_{\phi,E}^{\pm}$ and to estimate $\mathcal{N}_{-1-E}(H_{\phi,E}^{\pm})$.

イロト イヨト イヨト イヨ

Maya-pyramid-like tiling

V. Lotoreichik (NPI CAS)

(日)

Maya-pyramid-like tiling

To get full decomposition rotate the figure around the sloped line. This decomposition is used for ${\rm H}^-_{\phi,E}$
Introduction

2 Qualitative properties of circular conical surfaces

3 Spectral asymptotics for circular conical surfaces

General conical surfaces and isoperimetric inequality

V. Lotoreichik (NPI CAS)

circular conical surface \subset general conical surface

circular conical surface \subset general conical surface

Definition

- $\mathcal{T} C^2$ -smooth loop on the unit sphere \mathbb{S}^2 .
- $\Sigma(\mathcal{T}) := \{ r\mathcal{T} : r > 0 \}$ conical surface with base \mathcal{T} .

circular conical surface \subset general conical surface

Definition

- $\mathcal{T} C^2$ -smooth loop on the unit sphere \mathbb{S}^2 .
- $\Sigma(\mathcal{T}) := \{ r\mathcal{T} : r > 0 \}$ conical surface with base \mathcal{T} .

Circular conical surface $= \Sigma(\mathcal{T})$ with \mathcal{T} being a circle on \mathbb{S}^2 .

circular conical surface \subset general conical surface

Definition

- $\mathcal{T} C^2$ -smooth loop on the unit sphere \mathbb{S}^2 .
- $\Sigma(\mathcal{T}) := \{ r\mathcal{T} : r > 0 \}$ conical surface with base \mathcal{T} .

Circular conical surface $= \Sigma(\mathcal{T})$ with \mathcal{T} being a circle on \mathbb{S}^2 .

V. Lotoreichik (NPI CAS)

 $\sigma_{\mathrm{ess}}(\mathsf{H}_{\mathcal{T}}) = [-1,\infty)$

★ ∃ ►

 $\sigma_{\mathrm{ess}}(\mathsf{H}_{\mathcal{T}}) = [-1,\infty)$

 $\inf \sigma_{ess}(H_{\mathcal{T}}) < -1$ if \mathcal{T} has corner points; *e.g.* a polygon on \mathbb{S}^2 .

▲ □ ▶ ▲ □ ▶ ▲ □

 $\sigma_{\rm ess}(\mathsf{H}_{\mathcal{T}}) = [-1,\infty)$

 $\inf \sigma_{ess}(H_{\mathcal{T}}) < -1$ if \mathcal{T} has corner points; *e.g.* a polygon on \mathbb{S}^2 .

Theorem (EXNER-L-15)

 $\sigma_{\rm d}(\mathsf{H}_{\mathcal{T}}) \neq \varnothing \text{ if } |\mathcal{T}| < 2\pi.$

Open Question: $\#\sigma_d(H_T) = \infty$ as for circular case?

• • = • • = • =

 $\sigma_{\rm ess}(\mathsf{H}_{\mathcal{T}}) = [-1,\infty)$

 $\inf \sigma_{ess}(H_{\mathcal{T}}) < -1$ if \mathcal{T} has corner points; *e.g.* a polygon on \mathbb{S}^2 .

Theorem (EXNER-L-15)

 $\sigma_{\rm d}(\mathsf{H}_{\mathcal{T}}) \neq \varnothing \text{ if } |\mathcal{T}| < 2\pi.$

Open Question: $\#\sigma_d(H_T) = \infty$ as for circular case?

If $|\mathcal{T}| = 2\pi$ then $\sigma_d(\mathsf{H}_{\mathcal{T}}) = \emptyset$ for \mathcal{T} being equator of \mathbb{S}^2 .

Open Question: $|\mathcal{T}| \geq 2\pi$, \mathcal{T} not equator, $\sigma_d(\mathsf{H}_{\mathcal{T}}) \neq \varnothing$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Isoperimetric inequality

V. Lotoreichik (NPI CAS)

Image: A match a ma

$\mathcal{T} \mapsto E_1(\mathsf{H}_{\mathcal{T}}) = \max! + \text{constraint } |\mathcal{T}| = L \in (0, 2\pi)$ (*)

→ < E > < E

Image: Image:

$$\mathcal{T} \mapsto E_1(\mathsf{H}_{\mathcal{T}}) = \max! + \mathsf{constraint} \ |\mathcal{T}| = L \in (0, 2\pi)$$
 (*

Theorem (EXNER-L-15)

The optimizer for the problem (\star) is a circle on the unit sphere.

< 注 → →

$$\mathcal{T} \mapsto E_1(\mathsf{H}_{\mathcal{T}}) = \max! + \text{constraint } |\mathcal{T}| = L \in (0, 2\pi)$$
 (*)

Theorem (EXNER-L-15)

The optimizer for the problem (\star) is a circle on the unit sphere.

Circular cone maximizes the 1st eigenvalue among all cones with fixed base length!

$$\mathcal{T}\mapsto E_1(\mathsf{H}_{\mathcal{T}})=\max !+ \mathsf{constraint} \; |\mathcal{T}|=L\in (0,2\pi) \quad (\star)$$

Theorem (EXNER-L-15)

The optimizer for the problem (\star) is a circle on the unit sphere.

Circular cone maximizes the 1st eigenvalue among all cones with fixed base length!

This theorem belongs to a family of optimization results

Most famous: the ball minimizes the 1st eigenvalue of Dirichlet Laplacian among domains of fixed volume (FABER-23, KRAHN-25).

< ∃ > <

$\mathcal{C},\mathcal{T}\subset\mathbb{S}^2$, $|\mathcal{C}|=|\mathcal{T}|\in(0,2\pi)$, \mathcal{C} – a circle. We need to prove

$E_1(\mathsf{H}_\mathcal{T}) \leq E_1(\mathsf{H}_\mathcal{C})$

 $\mathcal{C},\mathcal{T}\subset\mathbb{S}^2$, $|\mathcal{C}|=|\mathcal{T}|\in(0,2\pi),$ \mathcal{C} – a circle. We need to prove

$\mathit{E}_1(\mathsf{H}_{\mathcal{T}}) \leq \mathit{E}_1(\mathsf{H}_{\mathcal{C}})$

Birman-Schwinger principle

Spectral analysis of $H_{\mathcal{C}}$, $H_{\mathcal{T}}$ reduces to integral equations on $\Sigma(\mathcal{C})$, $\Sigma(\mathcal{T})$.

 $\mathcal{C},\mathcal{T}\subset\mathbb{S}^2$, $|\mathcal{C}|=|\mathcal{T}|\in(0,2\pi)$, \mathcal{C} – a circle. We need to prove

$E_1(\mathsf{H}_{\mathcal{T}}) \leq E_1(\mathsf{H}_{\mathcal{C}})$

Birman-Schwinger principle

Spectral analysis of $H_{\mathcal{C}}$, $H_{\mathcal{T}}$ reduces to integral equations on $\Sigma(\mathcal{C})$, $\Sigma(\mathcal{T})$.

Next step inspired by Exner-Harrell-Loss-06

(i) $E_1(H_{\mathcal{T}}) \leq E_1(H_{\mathcal{C}})$ reduces to comparing two integrals expressed via:

- Green's function for the Helmholtz equation;
- \mathcal{T} and \mathcal{C} ;
- restriction of ground-state $\psi_{\mathcal{C}}$ onto $\Sigma(\mathcal{C})$; $\mathsf{H}_{\mathcal{C}}\psi_{\mathcal{C}} = E_1(\mathsf{H}_{\mathcal{C}})\psi_{\mathcal{C}}$.

(ii) Comparing integrals via mean-chord inequality (L \ddot{U} K $\ddot{0}$ -66).

< □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{C},\mathcal{T}\subset\mathbb{S}^2$, $|\mathcal{C}|=|\mathcal{T}|\in(0,2\pi),$ \mathcal{C} – a circle. We need to prove

$E_1(\mathsf{H}_{\mathcal{T}}) \leq E_1(\mathsf{H}_{\mathcal{C}})$

Birman-Schwinger principle

Spectral analysis of $H_{\mathcal{C}}$, $H_{\mathcal{T}}$ reduces to integral equations on $\Sigma(\mathcal{C})$, $\Sigma(\mathcal{T})$.

Next step inspired by Exner-Harrell-Loss-06

(i) $E_1(H_{\mathcal{T}}) \leq E_1(H_{\mathcal{C}})$ reduces to comparing two integrals expressed via:

- Green's function for the Helmholtz equation;
- \mathcal{T} and \mathcal{C} ;
- restriction of ground-state $\psi_{\mathcal{C}}$ onto $\Sigma(\mathcal{C})$; $\mathsf{H}_{\mathcal{C}}\psi_{\mathcal{C}} = E_1(\mathsf{H}_{\mathcal{C}})\psi_{\mathcal{C}}$.

(ii) Comparing integrals via mean-chord inequality (LÜKŐ-66).

Key novelty: Unknown restriction of $\psi_{\mathcal{C}}$ to $\Sigma(\mathcal{C})$; only its positivity and symmetry are used.

V. Lotoreichik (NPI CAS)

Method applicable to truncated cones

V. Lotoreichik (NPI CAS)

- (i) $\mathcal{T} C^2$ -smooth loop on the unit sphere \mathbb{S}^2 .
- (ii) $\Sigma(\mathcal{T}, R) := \{r\mathcal{T} : r \in (0, R)\}$ truncated conical surface with base \mathcal{T} and radius R > 0.

(i) $\mathcal{T} - C^2$ -smooth loop on the unit sphere \mathbb{S}^2 .

(ii) $\Sigma(\mathcal{T}, R) := \{r\mathcal{T} : r \in (0, R)\}$ – truncated conical surface with base \mathcal{T} and radius R > 0.

 $\alpha > 0$ fixed. Using our method we get in Exner-L-15

(i) $\mathcal{T} - C^2$ -smooth loop on the unit sphere \mathbb{S}^2 .

(ii) $\Sigma(\mathcal{T}, R) := \{r\mathcal{T} : r \in (0, R)\}$ – truncated conical surface with base \mathcal{T} and radius R > 0.

 $\alpha > {\rm 0}$ fixed. Using our method we get in ${\rm Exner-L-15}$

(i) Circular cone maximizes the 1st eigenvalue among all truncated cones with fixed $|\mathcal{T}|$ and R.

(i) $\mathcal{T} - C^2$ -smooth loop on the unit sphere \mathbb{S}^2 .

(ii) $\Sigma(\mathcal{T}, R) := \{r\mathcal{T} : r \in (0, R)\}$ – truncated conical surface with base \mathcal{T} and radius R > 0.

 $\alpha > {\rm 0}$ fixed. Using our method we get in ${\rm Exner-L-15}$

- (i) Circular cone maximizes the 1st eigenvalue among all truncated cones with fixed $|\mathcal{T}|$ and R.
- (ii) For fixed $|\mathcal{T}| = L \in (0, 2\pi]$ there exists critical radius $R_*(L)$ such that:
 - circular truncated cone induces no bound states;
 - any non-circular truncated cone induces at least one bound state.

• • = • •

V. Lotoreichik (NPI CAS)

メロト メポト メヨト メヨト

Ongoing projects

- Affect of Aharonov-Bohm fields (KREJČIŘÍK-L-OURMIERES-BONAFOS)
- Eigenvalue asymptotics as $\phi \to \pi/2-$ (L-KONDEJ)

Ongoing projects

- Affect of Aharonov-Bohm fields (KREJČIŘÍK-L-OURMIERES-BONAFOS)
- Eigenvalue asymptotics as $\phi \to \pi/2-$ (L-KONDEJ)

Other important contributors

BONAILLE-NOËL, BRUNEAU, DAUGE, DUCLOS, KREJČIŘÍK, LEVITIN, PANKRASHKIN, PARNOVSKI, POPOFF, RAYMOND, TATER,....

Ongoing projects

- Affect of Aharonov-Bohm fields (KREJČIŘÍK-L-OURMIERES-BONAFOS)
- Eigenvalue asymptotics as $\phi \to \pi/2-$ (L-KONDEJ)

Other important contributors

BONAILLE-NOËL, BRUNEAU, DAUGE, DUCLOS, KREJČIŘÍK, LEVITIN, PANKRASHKIN, PARNOVSKI, POPOFF, RAYMOND, TATER,....

Selected topics considered by other groups

- (i) Robin and magnetic cones, Dirichlet conical layers.
- (ii) Asymptotics of counting function for non-circular cones.
- (iii) Continuous spectrum for cones with edges.
- (iv) Semi-classical methods for $\phi \rightarrow 0+$.
 - $\left(v\right)$ Localization estimates for eigenfunctions.

V. Lotoreichik (NPI CAS)

(日)

Circular conical surface

Spectrum is understood on the qualitative level + spectral asymptotics.

Circular conical surface

Spectrum is understood on the qualitative level + spectral asymptotics.

General conical surfaces

Spectrum is only partially understood on the qualitative level + isoperimetric inequality.

Circular conical surface

Spectrum is understood on the qualitative level + spectral asymptotics.

General conical surfaces

Spectrum is only partially understood on the qualitative level + isoperimetric inequality.

Still a lot of open questions for conical surfaces.

Other classes of surfaces less investigated

- parabolic surfaces.
- hyperbolic surfaces.
- radially periodic surfaces.
- \mathbb{Z}^d -periodic surfaces.

```
• . . .
```

- J. BEHRNDT, P. EXNER, AND V. LOTOREICHIK, Schrödinger operators with δ-interactions supported on conical surfaces, J. Phys. A: Math. Theor. 47 (2014), 355202 (16pp).
- P. EXNER AND V. LOTOREICHIK, A spectral isoperimetric inequality for cones, *arXiv:1512.01970*.
- V. LOTOREICHIK AND T. OURMIÈRES-BONAFOS, On the bound states of Schrödinger operators with δ -interactions on conical surfaces, to appear in Comm. in Partial Differential Equations, arXiv:1510.05623.

Děkuji za pozornost!