A classification scheme for the inverse problem in arbitrary dimension

THoan Do \& Geoff Prince

Ostrava

July 7, 2016.

A classification scheme for the inverse problem in arbitrary dimension

1. The Problem
2. Timeline: what's known, what's not
3. Geometric formulation of the IP
4. EDS
5. The classification for arbitrary n
6. An example of the progress

1. The inverse problem, related problems

"When are the solutions of

$$
\ddot{x}^{a}=F^{a}\left(t, x^{b}, \dot{x}^{b}\right) \quad a, b=1, \ldots, n
$$

the solutions of

$$
\frac{\partial^{2} L}{\partial \dot{x}^{a} \partial \dot{x}^{b}} \ddot{x}^{b}+\frac{\partial^{2} L}{\partial x^{b} \partial \dot{x}^{a}} \dot{x}^{b}+\frac{\partial^{2} L}{\partial t \partial \dot{x}^{a}}=\frac{\partial L}{\partial x^{a}}
$$

for some $L\left(t, x^{a}, \dot{x}^{a}\right)$?'"

So, find regular $g_{a b}$ (and L) so that

$$
g_{a b}\left(\ddot{x}^{b}-F^{b}\right) \equiv \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)-\frac{\partial L}{\partial \dot{x}^{a}}
$$

- The multiplier problem.

Applications in calculus of variations, geometry, classical mechanics, quantum mechanics

Helmholtz conditions (Douglas 1941, Sarlet 1982) necessary and sufficient conditions on $g_{a b}$:

$$
\begin{aligned}
g_{a b} & =g_{b a}, \quad \Gamma\left(g_{a b}\right)=g_{a c} \Gamma_{b}^{c}+g_{b c} \Gamma_{a}^{c} \\
g_{a c} \Phi_{b}^{c} & =g_{b c} \Phi_{a}^{c}, \quad \frac{\partial g_{a b}}{\partial \dot{x}^{c}}=\frac{\partial g_{a c}}{\partial \dot{x}^{b}}
\end{aligned}
$$

where

$$
\left.\begin{array}{rl}
\Gamma_{b}^{a} & : \\
\Phi_{b}^{a} & :=-\frac{1}{2} \frac{\partial F^{a}}{\partial \dot{x}^{b}} \\
\Gamma & : \\
\Gamma F^{a} & =\frac{\partial}{\partial t}+\Gamma_{b}^{c} \Gamma_{c}^{a}-\Gamma\left(\Gamma_{b}^{a}\right) \\
\partial x^{a}
\end{array}+F^{a} \frac{\partial}{\partial \dot{x}^{a}}\right)
$$

Significance

- Non-existence.

No Lagrangian
\rightarrow No action integral or cost function
\rightarrow dissipation and/or coupling to blame?

- Non-uniqueness.

Too many Lagrangians
\rightarrow Which one is optimal? Are constraints required?

Question:

Can we decide the $U \& E$ question without heavy calculation?

Answer:

Yes, by using a Douglas-type classification

3. Timeline: What's known, what's not

1886 Sonin solves IP for one equation ($n=1$)

1887 Helmholtz states problem

1898 Hirsch states problem

1941 Douglas solves IP for $n=2$

1982 Henneaux \& Shepley algorithm for solving general IP, identify QM difficulties

1982 Sarlet reformulates HH conditions

1984 Crampin, Prince, Thompson geometrise problem

1986 Marmo gives seminal talk at Ghent workshop

1992 Anderson \& Thompson apply EDS technique and solve first arbitrary n subcase

1994 Crampin et al reframe Douglas in geometric terms

1999 Crampin, Prince, Sarlet \& Thompson solve more arbitrary n cases

2003 Aldridge applies EDS to Douglas $n=2$ and some arbitrary n

2016 Do and Prince deliver the classification structure for arbitrary n and apply it to $n=3$

4. Geometric formulation of the IP

When $\ddot{x}^{a}=F^{a}\left(t, x^{b}, \dot{x}^{b}\right)$ are (normalized) EulerLagrange equations, then Γ is the unique vectors field on E s.t.

$$
\Gamma_{\lrcorner} d \theta_{L}=0, d t(\Gamma)=1
$$

where

$$
\begin{gathered}
\theta_{L}:=L d t+d L \circ S=L d t+\frac{\partial L}{\partial u^{a}} \theta^{a} \\
d \theta_{L}=\frac{\partial^{2} L}{\partial u^{a} \partial u^{b}} \psi^{a} \wedge \theta^{b} \quad \text { Cartan 2-form }
\end{gathered}
$$

Theorem (CPT 1984) Given a semispray Γ, necessary and sufficient conditions for the existence of a Lagrangian whose $E-L$ field is Γ are that there exists $\Omega \in \Lambda^{2}(E)$:

1. Ω has max'l rank
2. $\Omega\left(V_{1}, V_{2}\right)=0 \forall V_{1}, V_{2} \in V(E)$
3. $\Gamma\lrcorner \Omega=0$
4. $d \Omega=0$

Usually begin the search for Ω by assuming 1, 2, 3 i.e.

$$
\Omega=g_{a b} \psi^{a} \wedge \theta^{b},\left|g_{a b}\right| \neq 0
$$

and requiring

$$
d \Omega=0
$$

$d \Omega(X, Y, Z)=0$ give the Helmholtz conditions e.g.

$$
\begin{aligned}
& d \Omega\left(\Gamma, V_{a}, H_{b}\right)=0 \Leftrightarrow \Gamma\left(g_{a b}\right)-g_{b c} \Gamma_{a}^{c}-g_{a c} \Gamma_{b}^{c}=0 \\
& d \Omega\left(\Gamma, V_{a}, V_{b}\right)=0 \Leftrightarrow g_{a b}=g_{b a} \\
& d \Omega\left(\Gamma, H_{a}, H_{b}\right)=0 \Leftrightarrow g_{a c} \Phi_{b}^{c}=g_{b c} \Phi_{a}^{c} \\
& \text { etc. }
\end{aligned}
$$

5. EDS and the Inverse Problem

EDS reference Bryant, Chern et al 1991.
IP reference Anderson and Thompson 1992.
In EDS terms, the I.P. is
"Find all closed, maximal rank 2-forms in $\Sigma:=S p\left\{\psi^{a} \wedge \theta^{b}\right\} \subset \wedge^{2}(E) "$

3 steps

1. Find the largest differential ideal generated by Σ. An algebraic and iterative process.
2. Create a Pfaffian system from the closure condition on this ideal. A differential process.
3. Apply Cartan-Kähler to determine the generality of the solution of this Pfaffian system. An art form!

The differential ideal step.

Q. Set $\Sigma^{0}:=\Sigma=\operatorname{Sp}\left\{\psi^{a} \wedge \theta^{b}\right\}$.

Is $\left\langle\Sigma^{0}\right\rangle$ closed?
A. Yes - done!

No - define $\Sigma^{1}:=\left\{\omega \in \Sigma^{0}: d \omega \in\left\langle\Sigma^{0}\right\rangle\right\}$
Q. Is $\left\langle\Sigma^{1}\right\rangle$ closed?
etc.

This process terminates for some (possibly trivial) $\Sigma^{\text {final }}$.

If $\Sigma^{\text {final }}$ non-trivial go to step 2.

Notes

1. The differential ideal steps

$$
\Sigma^{0} \rightarrow \Sigma^{1} \rightarrow \cdots \rightarrow \Sigma^{\text {final }}
$$

generate hierarchies of algebraic conditions on the multiplier, eg if $\omega \in \Sigma^{k}$ then
$\omega\left(X^{V}, Y^{H}\right)=\omega\left(Y^{V}, X^{H}\right)$
$\omega\left(\Phi(X)^{V}, Y^{H}\right)=\omega\left(\Phi(Y)^{V}, X^{H}\right)$
$\omega\left(\left(\nabla^{k} \Phi(X)\right)^{V}, Y^{H}\right)=\omega\left(\left(\nabla^{k} \Phi(Y)\right)^{V}, X^{H}\right)$
There is a similar hierarchy of curvature conditions.
2. If Σ^{k} is a differential ideal then we get conditions on Φ, eg, $\Phi=\lambda I$.
3. If Σ^{k} is a differential ideal and contains closed 2 forms then we get differential conditions on the multiplier (EDS step 2).

Example 1. $(\mathrm{n}=3)$

$$
\Sigma^{1}=S p\left\{\omega^{11}, \omega^{22}, \omega^{33}\right\}
$$

$$
\left(\omega^{a a}:=\psi^{a} \wedge \theta^{a}\right)
$$

$\Sigma^{2}=S p\left\{\omega^{1}:=\omega^{11}+r \frac{1}{3} \omega^{33}, \omega^{2}:=\omega^{22}+r \frac{2}{3} \omega^{33}\right\}$

For $\omega=\omega^{1}+p \omega^{2} \in \Sigma^{2}, \exists \lambda_{1}, \lambda_{2}$:

$$
\begin{gather*}
d \omega \in\left\langle\Sigma^{2}\right\rangle \Longleftrightarrow \\
d \omega^{1}+p d \omega^{2}=\lambda_{1} \wedge \omega^{1}+\lambda_{2} \wedge \omega^{2} \tag{1}
\end{gather*}
$$

Now we use $d \omega^{1}, d \omega^{2} \in\left\langle\Sigma^{1}\right\rangle$ and

$$
\omega^{1}:=\omega^{11}+r \frac{1}{3} \omega^{33}, \omega^{2}:=\omega^{22}+r_{3}^{2} \omega^{33}
$$

to get (1) in terms of ω^{11}, ω^{22}.

We get a linear system of 4 equations in 5 unknowns (p and 4 components of λ_{1}, λ_{2}) whose rank depends on the known coefficients r_{3}^{1}, r_{3}^{2}.

If there is no condition on p then $\left\langle\Sigma^{2}\right\rangle$ is a differential ideal and we are finished.

The differential ideal step generates all the necessary and sufficient conditions in a basis calculation.
2. Pfaffian system step.

Let $\Sigma^{\text {final }}=S p\left\{\omega^{k}\right\}, k=1, \ldots, d$
then $d \omega^{k}=\xi_{h}^{k} \wedge \omega^{h}$
$\xi_{h}^{k} \in \Lambda^{1}(E)$ are known.

In order to find $\omega:=r_{k} \omega^{k}$ with $d \omega=0$ we will need

$$
\rho_{k} \in \wedge^{1}(E): \rho_{k} \wedge \omega^{k}=0
$$

Suppose the solutions are

$$
\left(\rho_{k}^{A}\right):=\left(\rho_{1}^{A}, \ldots, \rho_{d}^{A}\right), A=1, \ldots, e
$$

with

$$
\rho_{k}^{A} \wedge \omega^{k}=0
$$

- an e-dim'l module of d-tuples of 1 -forms on E.

Then $\omega=r_{k} \omega^{k}$ with $d \omega=0, r_{k} \in \mathcal{F}(E)$
becomes

$$
\begin{aligned}
& d\left(r_{k} \omega^{k}\right)=0 \\
\Rightarrow & d r_{k} \wedge \omega^{k}+r_{k} d \omega^{k}=0 \\
\Rightarrow & d r_{k} \wedge \omega^{k}+r_{k} \xi_{h}^{k} \wedge \omega^{h}=0 \\
\Rightarrow & \left(d r_{k}+r_{k} \xi_{h}^{k}\right) \wedge \omega^{h}=0 \\
\Rightarrow & d r_{k}+r_{k} \xi_{h}^{k}=-p_{A} \rho_{k}^{A} \\
\Rightarrow & \sigma_{k}:=d r_{k}+r_{k} \xi_{h}^{k}+p_{A} \rho_{k}^{A}=0
\end{aligned}
$$

Define

$$
N:=E \bigotimes \mathbb{R}^{d} \bigotimes \mathbb{R}^{e}
$$

co-ords: $(\underbrace{t, x^{a}, u^{a}}_{y^{\mu}} ; r_{k} ; p_{A})$
which are sections of N over E.

Basis for $\Lambda^{1}(N)$:
$\left\{\alpha_{\mu}, \sigma_{k}, \pi_{A}:=d p_{A}\right\}$
$\left\{\alpha_{\mu}\right\}$ a basis for $\Lambda^{1}(E)$ pulled back by the section.

So

- $\alpha_{1} \wedge \ldots \wedge \alpha_{2 n+1} \neq 0$ on the image of the section.

Frobenius integrability of $D_{\sigma}^{1}=S p\left\{\sigma_{k}\right\}$:

Want $d \sigma_{k} \equiv 0 \bmod \sigma_{k}$

But

$$
d \sigma_{k} \equiv \underset{\text { part }}{\pi \wedge \alpha}+\underbrace{\alpha \wedge \alpha}_{\begin{array}{c}
\text { never zero } \\
\text { on section }
\end{array}}
$$

$\alpha \wedge \alpha$ part is the "torsion" - an obstruction to integrability.

If $\alpha \wedge \alpha$ part can't be absorbed into $\pi \wedge \alpha$ part by $\pi \rightarrow \bar{\pi}$ there is no solution.

So absorb torsion and go to Cartan-Kähler theorem.
3. Cartan-Kähler thm to determine generality of solutions.

$$
d \sigma_{k} \equiv \pi_{k}^{\mu} \wedge \alpha_{\mu}\left(\bmod \sigma_{k} .\right)
$$

	α_{1}	α_{2}				$\alpha_{2 n+1}$	
$d \sigma_{1}$	π_{1}^{1}	π_{1}^{2}	\cdot	\cdot	\cdot	\cdot	$\pi_{1}^{2 n+1}$
	\cdot	\cdot				\cdot	
	\cdot	\cdot					\cdot
	\cdot	\cdot				\cdot	
$d \sigma_{d}$	\cdot	\cdot				\cdot	
π_{d}^{1}	π_{d}^{2}	\cdot	\cdot	\cdot	\cdot	$\pi_{d}^{2 n+1}$	

(a) "Optimise" this tableau and calculate Cartan characters

$$
\underbrace{s_{1}, \ldots, s_{\ell}, 0, \ldots 0}_{2 n+1} \quad s_{1} \geq s_{2} \geq \cdots \geq s>0
$$

(b) Apply Cartan involution test.

Involutive? No - prolong and start again.

? Involutive

Yes!!

- general solution $g_{a b}$ specified by s_{ℓ} arbitrary functions of ℓ variables.

Calculate L !

Notes

- $\omega=r_{k} \omega^{k}$ are not explicitly calculated.
- computations are easy for a given F^{a} (in low dim'n).
- classification à la Douglas proceeds by examining diagonalisability of Φ.
- usual Φ, \mathbb{R} hierachies appear at diff'l ideal step.

5. The classification for arbitrary n

Do and Prince 2015.
A. $\Phi=\lambda I_{n} \Leftrightarrow\left\langle\Sigma^{0}\right\rangle$ is a differential ideal
B. Φ diagonalisable with distinct eigenvalues

- Subcases according to the integrability of eigenspaces of Φ i.e. p eigenspaces are non-integrable and $n-p$ are integrable
- Non-existence: no differential ideal before step $p+1 \Rightarrow$ no non-degenerate multiplier.
- Existence subcases: a differential ideal is generated at step 1 , step $2, \ldots$, up to step p.
- Further subcases: integrable subspaces of non-integrable eigenspaces.
C. Φ is diagonalisable with repeated eigenvalues
Subcases: similar to case B above.
D. Φ is not diagonalisable

Subcases: integrability of normal forms of Φ.

Douglas treated the differential ideal conditions first and the eigenspace integrability second!

Examples

Theorem (Do, 2016)
Assume that Φ is diagonalisable with distinct (real) eigenvalues and with $p \geq 2$ nonintegrable eigen co-distributions. Suppose that eigen co-distributions are ordered such that $S p\left\{\phi^{A V}, \phi^{A H}\right\}, A=1, \ldots, p$ are non-integrable. Suppose further that $\operatorname{rank}\left(\mathbf{A}_{1}\right)=p-1$. Then the necessary and sufficient conditions for the existence of a solution for the associated inverse problem are that the given conditions hold. Moreover, the solution (if it exists) depends on $n-p$ arbitrary functions of 2 variables each.

Example $n=4$ (Do, 2016)

$$
\ddot{x}=x, \ddot{y}=0, \ddot{z}=\frac{\dot{y}}{\dot{z}}, \ddot{w}=\dot{w}
$$

has no solution (condition checking alone, no PDEs!)

Question

What can we do we couldn't do before?

Answers

- Decide and elaborate variationality by checking, not integrating
- Explicitly find all Lagrangians for particular examples at any dimension
- Explicitly elaborate all $n=3$ cases
- Retire the problem?

