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1. The inverse problem, related problems

“When are the solutions of

ẍa = F a(t, xb, ẋb) a, b = 1, . . . , n

the solutions of

∂2L

∂ẋa∂ẋb
ẍb+

∂2L

∂xb∂ẋa
ẋb+

∂2L

∂t∂ẋa
=

∂L

∂xa

for some L(t, xa, ẋa)?”

So, find regular gab (and L) so that

gab(ẍ
b − F b) ≡

d

dt

(
∂L

∂ẋa

)
−
∂L

∂ẋa

- The multiplier problem.

Applications in calculus of variations, geome-

try, classical mechanics, quantum mechanics



Helmholtz conditions (Douglas 1941, Sarlet

1982) necessary and sufficient conditions on

gab:

gab = gba, Γ(gab) = gacΓ
c
b+ gbcΓ

c
a

gacΦ
c
b = gbcΦ

c
a,

∂gab
∂ẋc

=
∂gac

∂ẋb

where

Γab : = −
1

2

∂F a

∂ẋb
,

Φa
b : = −

∂F a

∂xb
− ΓcbΓ

a
c − Γ(Γab)

Γ : =
∂

∂t
+ ua

∂

∂xa
+ F a

∂

∂ẋa



Significance

• Non-existence.

No Lagrangian

→ No action integral or cost function

→ dissipation and/or coupling to blame?

• Non-uniqueness.

Too many Lagrangians

→ Which one is optimal? Are constraints

required?

Question:

Can we decide the U & E question without

heavy calculation?

Answer:

Yes, by using a Douglas-type classification



3. Timeline: What’s known, what’s not

1886 Sonin solves IP for one equation (n = 1)

1887 Helmholtz states problem

1898 Hirsch states problem

1941 Douglas solves IP for n = 2

1982 Henneaux & Shepley algorithm for solv-

ing general IP, identify QM difficulties

1982 Sarlet reformulates HH conditions

1984 Crampin, Prince, Thompson geometrise

problem



1986 Marmo gives seminal talk at Ghent work-

shop

1992 Anderson & Thompson apply EDS tech-

nique and solve first arbitrary n subcase

1994 Crampin et al reframe Douglas in geo-

metric terms

1999 Crampin, Prince, Sarlet & Thompson solve

more arbitrary n cases

2003 Aldridge applies EDS to Douglas n = 2

and some arbitrary n

2016 Do and Prince deliver the classification

structure for arbitrary n and apply it to

n = 3



4. Geometric formulation of the IP

When ẍa = F a(t, xb, ẋb) are (normalized) Euler-

Lagrange equations, then Γ is the unique vec-

tors field on E s.t.

Γ dθL = 0, dt(Γ) = 1

where

θL := Ldt+ dL ◦ S = Ldt+
∂L

∂ua
θa

dθL =
∂2L

∂ua∂ub
ψa ∧ θb Cartan 2-form



Theorem (CPT 1984) Given a semispray

Γ, necessary and sufficient conditions for the

existence of a Lagrangian whose E − L field

is Γ are that there exists Ω ∈ Λ2(E) :

1. Ω has max’l rank

2. Ω(V1, V2) = 0 ∀V1, V2 ∈ V (E)

3. Γ Ω = 0

4. dΩ = 0



Usually begin the search for Ω by assuming

1, 2, 3 i.e.

Ω = gabψ
aΛθb, |gab| ̸= 0

and requiring

dΩ = 0.

dΩ(X,Y, Z) = 0 give the Helmholtz condi-

tions e.g.

dΩ(Γ, Va, Hb) = 0 ⇔ Γ(gab)− gbcΓ
c
a − gacΓ

c
b = 0

dΩ(Γ, Va, Vb) = 0 ⇔ gab = gba

dΩ(Γ, Ha, Hb) = 0 ⇔ gacΦ
c
b = gbcΦ

c
a

etc.



5. EDS and the Inverse Problem

EDS reference Bryant, Chern et al 1991.

IP reference Anderson and Thompson 1992.

In EDS terms, the I.P. is

“Find all closed, maximal rank 2-forms in
Σ := Sp{ψaΛθb} ⊂ Λ2(E)”

3 steps

1. Find the largest differential ideal gener-
ated by Σ. An algebraic and iterative
process.

2. Create a Pfaffian system from the closure
condition on this ideal. A differential pro-
cess.

3. Apply Cartan-Kähler to determine the gen-
erality of the solution of this Pfaffian sys-
tem. An art form!



The differential ideal step.

Q. Set Σ0 := Σ = Sp{ψaΛθb}.

Is ⟨Σ0⟩ closed?

A. Yes - done!

No - define Σ1 := {ω ∈ Σ0 : dω ∈ ⟨Σ0⟩}

Q. Is ⟨Σ1⟩ closed?

etc.

This process terminates for some (possibly

trivial) Σfinal.

If Σfinal non-trivial go to step 2.



Notes

1. The differential ideal steps

Σ0 → Σ1 → · · · → Σfinal

generate hierarchies of algebraic condi-
tions on the multiplier, eg if ω ∈ Σk then

ω(XV , Y H) = ω(Y V , XH)

ω(Φ(X)V , Y H) = ω(Φ(Y )V , XH)

. . .

ω((∇kΦ(X))V , Y H) = ω((∇kΦ(Y ))V , XH)

There is a similar hierarchy of curvature
conditions.

2. If Σk is a differential ideal then we get
conditions on Φ, eg, Φ = λI.

3. If Σk is a differential ideal and contains
closed 2 forms then we get differential
conditions on the multiplier (EDS step
2).



Example 1. (n=3)

Σ1 = Sp{ω11, ω22, ω33}

(ωaa := ψa ∧ θa)

Σ2 = Sp{ω1 := ω11+r13ω
33, ω2 := ω22+r23ω

33}

For ω = ω1 + pω2 ∈ Σ2, ∃ λ1, λ2 :

dω ∈ ⟨Σ2⟩ ⇐⇒

dω1 + pdω2 = λ1 ∧ ω1 + λ2 ∧ ω2 (1)

Now we use dω1, dω2 ∈ ⟨Σ1⟩ and

ω1 := ω11 + r13ω
33, ω2 := ω22 + r23ω

33

to get (1) in terms of ω11, ω22.



We get a linear system of 4 equations in 5

unknowns (p and 4 components of λ1, λ2)

whose rank depends on the known coeffi-

cients r13, r
2
3.

If there is no condition on p then ⟨Σ2⟩ is a

differential ideal and we are finished.

The differential ideal step generates all

the necessary and sufficient conditions in

a basis calculation.



2. Pfaffian system step.

Let Σfinal = Sp{ωk}, k = 1, . . . , d

then dωk = ξkhΛω
h

ξkh ∈ Λ1(E) are known.

In order to find ω := rkω
k with dω = 0 we will

need

ρk ∈ Λ1(E) : ρkΛω
k = 0

Suppose the solutions are

(ρAk ) := (ρA1 , . . . , ρ
A
d ), A = 1, . . . , e

with

ρAk Λω
k = 0

- an e-dim’l module of d-tuples of 1-forms

on E.



Then ω = rkω
k with dω = 0, rk ∈ F(E)

becomes

d(rkω
k) = 0

⇒ drkΛω
k + rkdω

k = 0

⇒ drkΛω
k + rkξ

k
hΛω

h = 0

⇒ (drk + rkξ
k
h)Λω

h = 0

⇒ drk + rkξ
k
h = −pAρAk

⇒ σk := drk + rkξ
k
h + pAρ

A
k = 0



Define

N := E
⊗

Rd
⊗

Re

co-ords: (t, xa, ua︸ ︷︷ ︸
yµ

; rk; pA)

which are sections of N over E.

Basis for Λ1(N) :

{αµ, σk, πA := dpA}
{αµ} a basis for Λ1(E) pulled back by the section.

So

• α1Λ . . .Λα2n+1 ̸= 0 on the image of the
section.

INDEPENDENCE CONDITION



Frobenius integrability of D1
σ = Sp{σk} :

Want dσk ≡ 0 mod σk

But

dσk ≡ πΛα
part

+ αΛ α
part︸ ︷︷ ︸

never zero

on section

αΛα part is the “torsion” - an obstruction to

integrability.

If αΛα part can’t be absorbed into πΛα part

by π → π there is no solution.

So absorb torsion and go to Cartan-Kähler

theorem.



3. Cartan-Kähler thm to determine general-

ity of solutions.

dσk ≡ π
µ
kΛαµ(mod σk.)

α1 α2 α2n+1

dσ1 π11 π21 · · · · π2n+1
1

· · ·
· · ·
· · ·
· · ·

dσd π1d π2d · · · · π2n+1
d

(a) “Optimise” this tableau and calculate Car-

tan characters

s1, . . . , sℓ,0, . . .0︸ ︷︷ ︸
2n+1

s1 ≥ s2 ≥ · · · ≥ s > 0

(b) Apply Cartan involution test.

Involutive? No - prolong and start again.



? Involutive

Yes!!

- general solution gab specified by sℓ arbitrary

functions of ℓ variables.

Calculate L!

Notes

• ω = rkω
k are not explicitly calculated.

• computations are easy for a given F a (in

low dim’n).

• classification à la Douglas proceeds by ex-

amining diagonalisability of Φ.

• usual Φ,R hierachies appear at diff’l ideal

step.



5. The classification for arbitrary n

Do and Prince 2015.

A. Φ = λIn ⇔ ⟨Σ0⟩is a differential ideal

B. Φ diagonalisable with distinct eigenvalues

– Subcases according to the integrabil-

ity of eigenspaces of Φ i.e. p eigenspaces

are non-integrable and n − p are inte-

grable

– Non-existence: no differential ideal be-

fore step p+ 1 ⇒ no non-degenerate

multiplier.

– Existence subcases: a differential ideal

is generated at step 1, step 2,..., up

to step p.

– Further subcases: integrable subspaces

of non-integrable eigenspaces.



C. Φ is diagonalisable with repeated eigen-

values

Subcases: similar to case B above.

D. Φ is not diagonalisable

Subcases: integrability of normal forms

of Φ.

Douglas treated the differential ideal condi-

tions first and the eigenspace integrability

second!



Examples

Theorem (Do, 2016)

Assume that Φ is diagonalisable with dis-

tinct (real) eigenvalues and with p ≥ 2 non-

integrable eigen co-distributions. Suppose

that eigen co-distributions are ordered such

that Sp{ϕAV , ϕAH}, A = 1, . . . , p are non-integrable.

Suppose further that rank(A1) = p−1. Then

the necessary and sufficient conditions for the

existence of a solution for the associated in-

verse problem are that the given conditions

hold. Moreover, the solution (if it exists)

depends on n− p arbitrary functions of 2

variables each.

Example n = 4 (Do, 2016)

ẍ = x, ÿ = 0, z̈ =
ẏ

ż
, ẅ = ẇ

has no solution (condition checking alone, no

PDEs!)



Question

What can we do we couldn’t do before?

Answers

• Decide and elaborate variationality by check-

ing, not integrating

• Explicitly find all Lagrangians for partic-

ular examples at any dimension

• Explicitly elaborate all n = 3 cases

• Retire the problem?


