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1. The inverse problem, related problems
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- The multiplier problem.

Applications in calculus of variations, geome-
try, classical mechanics, quantum mechanics



Helmholtz conditions (Douglas 1941, Sarlet
1982) necessary and sufficient conditions on
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Significance

e Non-existence.

No Lagrangian
— NoO action integral or cost function
— dissipation and/or coupling to blame?

e Non-unigueness.

Too many Lagrangians
— Which one is optimal? Are constraints
required?

Question:

Can we decide the U & E question without
heavy calculation?

Answer:

Yes, by using a Douglas-type classification



3. Timeline: What’'s known, what’s not

1886 Sonin solves IP for one equation (n = 1)

1887 Helmholtz states problem

1898 Hirsch states problem

1941 Douglas solves IP for n = 2

1982 Henneaux & Shepley algorithm for solv-
ing general IP, identify QM difficulties

1982 Sarlet reformulates HH conditions

1984 Crampin, Prince, Thompson geometrise
problem



1986

1992

1994

1999

2003

2016

Marmo gives seminal talk at Ghent work-
shop

Anderson & Thompson apply EDS tech-
nique and solve first arbitrary n subcase

Crampin et al reframe Douglas in geo-
metric terms

Crampin, Prince, Sarlet & Thompson solve
more arbitrary n cases

Aldridge applies EDS to Douglas n = 2
and some arbitrary n

Do and Prince deliver the classification
structure for arbitrary n and apply it to

n=—=23



4. Geometric formulation of the IP

When #¢ = F%(¢, 2, 2%) are (normalized) Euler-
Lagrange equations, then " is the unique vec-
tors field on E s.t.

. do; = 0,dt(r) =1
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Theorem (CPT 1984) Given a semispray
[, necessary and sufficient conditions for the
existence of a Lagrangian whose E — L field
is [T are that there exists Q € A2(E) :

1. €2 has max’l rank

2. Q(V1,Vo) =0VVq, Vo € V(FE)

3. 1,2=0

4. d€2 =20



Usually begin the search for €2 by assuming
1, 2, 3 i.e.

Q = g N6, |gap| # O
and requiring

dS2 = 0.

dQ2(X,Y,Z) = 0 give the Helmholtz condi-
tions e.qg.

dQ2(I", Vo, Hy) = 0 < T (940) — gl gacrb =0
dQ2(I", Va, V) = 0 & gup = 9ua
d2(C, Ha, Hy) = 0 & guc®) = g P

etc.



5. EDS and the Inverse Problem

EDS reference Bryant, Chern et al 1991.

IP reference Anderson and Thompson 1992.
In EDS terms, the I.P. is

“Find all closed, maximal rank 2-forms in
> = Sp{y?A0°} C A2(E)"

3 steps

1. Find the largest differential ideal gener-
ated by 2. An algebraic and iterative
process.

2. Create a Pfaffian system from the closure
condition on this ideal. A differential pro-
Cess.

3. Apply Cartan-Kahler to determine the gen-
erality of the solution of this Pfaffian sys-
tem. An art form!



The differential ideal step.
Q. Set X0 := X = Sp{yeA6°}.
Is (>9) closed?
A. Yes - donel
No - define X1 :={w e X0 : dw e (X))
Q. Is (1) closed?

etc.

This process terminates for some (possibly
trivial) xfinal,

If >final hon-trivial go to step 2.



Notes

1. The differential ideal steps
ZO N Zl Y Zfinal

generate hierarchies of algebraic condi-
tions on the multiplier, eg if w € =F then

w( XV Y)Yy =w(yV, xH)
w(@(X)V, vy =we®@)V, xH)

S(TFOXNY, Y H) = w((Tra(v)Y, xH)

There is a similar hierarchy of curvature
conditions.

2. If =k is a differential ideal then we get
conditions on &, eg, ¢ = AI.

3. If =k is a differential ideal and contains
closed 2 forms then we get differential
conditions on the multiplier (EDS step
2).



Example 1. (n=3)

51 = Spfwll, w??,w,33)

CLEERINTD

>2 — Sp{wl — wll—l—r%wz”?’, w2 = w22—|—r§w33}

For w=wl 4+ pw? € X2 I A, :
dw € (Z?) «—

dw! + pdw? = M Awl + X0 Aw? (1)

Now we use dw!,dw? € (X1) and

wl = il + r%wg’?’, w2 = w22 -+ r§w33

to get (1) in terms of wll w22



We get a linear system of 4 equations in 5
unknowns (p and 4 components of A1, A>)
whose rank depends on the known coeffi-

cients r3,7%.

If there is no condition on p then (X2) is a
differential ideal and we are finished.

The differential ideal step generates all
the necessary and sufficient conditions in
a basis calculation.



2. Pfaffian system step.

Let =Nl = Sp{wk}, k=1,....d
then dwk = ¢FAWN

¢r € AL(E) are known.

In order to find w 1= rpwk with dw = 0 we will
need

pr € NYE) 1 ppAw® =0

Suppose the solutions are
(i) = (ot pf), A=1,... e
with
p?/\wk =0

- an e-dim’l module of d-tuples of 1-forms
on FE.



Then w = rpwk with dw = 0, r, € F(E)

becomes

d(rkwk) =0

drpAw® + rdw® = 0
driAw® + rpeF A = 0
(dry, + ripEH AW = 0
dry + re&f, = —papj;

R A

o 1= dry, + re€f + papjy =0




Define

N :=EQXRR!Q R

co-ords: (t,z% u® rpipa)
y/vb

which are sections of N over E.

Basis for AL(N) :

{a,ua OkyTA -— dpA}
{an} a basis for /\1(E) pulled back by the section.

So

e aijN...Nag,41 7 0 on the image of the
section.

INDEPENDENCE CONDITION



Frobenius integrability of D1 = Sp{o;} :

Want dop,. = 0 mod o,

But
dop, = mha + ol «
part part
e —
never zero
on section

a\a part is the “torsion” - an obstruction to
integrability.

If oA part can’t be absorbed into mAa part
by = — 7™ there is no solution.

So absorb torsion and go to Cartan-Kahler
theorem.



3. Cartan-Kahler thm to determine general-
ity of solutions.

doy, = 7, Ay (mod o)

a1 Qa2 a2n+41
do1 7'('% 7'(‘% Coe e W%n_l_l
dog 7Tcll 7Tc2i coe e 7Tc2in+1

(a) “Optimise” this tableau and calculate Car-
tan characters

8$1,-.-,80,0,...0 s1>sp2>--+2>25>0
2n+1

(b) Apply Cartan involution test.

Involutive? No - prolong and start again.



7 Involutive
Yes!!

- general solution g, specified by s, arbitrary
functions of ¢ variables.

Calculate L!
Notes
o w = rkwk are not explicitly calculated.

e computations are easy for a given F% (in
low dim'n).

e classification a la Douglas proceeds by ex-
amining diagonalisability of &.

e usual ¢, R hierachies appear at diff’l ideal
step.



5. The classification for arbitrary n

Do and Prince 2015.

A. & = A, & (Z0)is a differential ideal

B. & diagonalisable with distinct eigenvalues

— Subcases according to the integrabil-
ity of eigenspaces of ® i.e. p eigenspaces
are non-integrable and n — p are inte-
grable

— Non-existence: no differential ideal be-
fore step p 4+ 1 = no non-degenerate
multiplier.

— EXistence subcases: a differential ideal
IS generated at step 1, step 2,..., up
to step p.

— Further subcases: integrable subspaces
of non-integrable eigenspaces.



C. @ is diagonalisable with repeated eigen-
values
Subcases: similar to case B above.

D. ® is not diagonalisable
Subcases: integrability of normal forms
of &P.

Douglas treated the differential ideal condi-
tions first and the eigenspace integrability
second!



Examples

Theorem (Do, 2016)

Assume that ® is diagonalisable with dis-
tinct (real) eigenvalues and with p > 2 non-
integrable eigen co-distributions. Suppose
that eigen co-distributions are ordered such
that Sp{¢3V,¢pAH}, A =1,... parenon-integrable.
Suppose further that rank(A1) = p—1. Then
the necessary and sufficient conditions for the
existence of a solution for the associated in-
verse problem are that the given conditions
hold. Moreover, the solution (if it exists)
depends on n — p arbitrary functions of 2
variables each.

Example n = 4 (Do, 2016)

s 0 =Y o
r=ux, Y= ,z—g,w—w

has no solution (condition checking alone, no
PDEs!)



Question

What can we do we couldn’t do before?

Answers

e Decide and elaborate variationality by check-
ing, not integrating

e EXxplicitly find all Lagrangians for partic-
ular examples at any dimension

e EXplicitly elaborate all n = 3 cases

e Retire the problem?



