Jets
 or, how to geometrize the differential calculus

D.J. Saunders

Ostrava, November 2016

Abstract

The idea of a "jet" was introduced by Charles Ehresmann in 1951 as an equivalence class of maps, all defined in some neighbourhood of a given point, and with the same value and derivatives (up to a given order) at that point. Conceptually, therefore, a jet may be considered as an abstract Taylor polynomial.

In this talk I shall expand on this definition, and explain the structure of various spaces of jets (of which the simplest is the tangent bundle of a differentiable manifold).

I shall also explain how the use of jets can give a precise meaning to certain aspects of the Euler-Lagrange equations of the calculus of variations, such as the ideas of "differentiating with respect to derivatives" and of "total derivative".

The Euler-Lagrange equations

Problems in the calculus of variations give rise to equations like

$$
\frac{\partial L}{\partial q^{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}=0
$$

What does this mean?

The Euler-Lagrange equations

Problems in the calculus of variations give rise to equations like

$$
\frac{\partial L}{\partial q^{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}=0
$$

What does this mean?

- How can you differentiate with respect to a derivative \dot{q}^{i} ?

The Euler-Lagrange equations

Problems in the calculus of variations give rise to equations like

$$
\frac{\partial L}{\partial q^{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}=0
$$

What does this mean?

- How can you differentiate with respect to a derivative \dot{q}^{i} ?
- How can you then take the 'total derivative' with respect to t ?

The Euler-Lagrange equations

Problems in the calculus of variations give rise to equations like

$$
\frac{\partial L}{\partial q^{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}=0
$$

What does this mean?

- How can you differentiate with respect to a derivative \dot{q}^{i} ?
- How can you then take the 'total derivative' with respect to t ?

A formal approach uses the concept of tangent vectors on a manifold

Tangent vectors: the classical approach

Take a manifold M : a locally Euclidean topological space whose charts $x: U \rightarrow \mathbb{R}^{n}, U \subset M$ are differentiably related (we'll assume that maps $\hat{x} \circ x^{-1}: x(U \cap \hat{U}) \rightarrow \hat{x}(U \cap \hat{U})$ are $\left.C^{\infty}\right)$

Tangent vectors: the classical approach

Take a manifold M : a locally Euclidean topological space whose charts $x: U \rightarrow \mathbb{R}^{n}, U \subset M$ are differentiably related (we'll assume that maps $\hat{x} \circ x^{-1}: x(U \cap \hat{U}) \rightarrow \hat{x}(U \cap \hat{U})$ are $\left.C^{\infty}\right)$

A classical tangent vector ξ is a list of numbers $\left(\xi^{i}\right)$ which transforms like a vector, so that

$$
\hat{\xi}^{i}=\frac{\partial \hat{x}^{i}}{\partial x^{j}} \xi^{j}
$$

(sum over repeated indices)

Tangent vectors: the classical approach

Take a manifold M : a locally Euclidean topological space whose charts $x: U \rightarrow \mathbb{R}^{n}, U \subset M$ are differentiably related (we'll assume that maps $\hat{x} \circ x^{-1}: x(U \cap \hat{U}) \rightarrow \hat{x}(U \cap \hat{U})$ are $\left.C^{\infty}\right)$

A classical tangent vector ξ is a list of numbers $\left(\xi^{i}\right)$ which transforms like a vector, so that

$$
\hat{\xi}^{i}=\frac{\partial \hat{x}^{i}}{\partial x^{j}} \xi^{j}
$$

(sum over repeated indices)

Formally, $\xi=\left[\left(\left(\xi^{i}\right), x\right)\right] \in T_{p} M$ where $\left(\xi^{i}\right) \in \mathbb{R}^{n}, p \in U \subset M$, $x: U \rightarrow \mathbb{R}^{n}$ and

$$
\left(\left(\xi^{i}\right), x\right) \sim\left(\left(\hat{\xi}^{i}\right), \hat{x}\right) \quad \text { if } \quad \hat{\xi}^{i}=\left.\frac{\partial \hat{x}^{i}}{\partial x^{j}}\right|_{p} \xi^{j}
$$

Tangent vectors: the classical approach

Take a manifold M : a locally Euclidean topological space whose charts $x: U \rightarrow \mathbb{R}^{n}, U \subset M$ are differentiably related (we'll assume that maps $\hat{x} \circ x^{-1}: x(U \cap \hat{U}) \rightarrow \hat{x}(U \cap \hat{U})$ are $\left.C^{\infty}\right)$

A classical tangent vector ξ is a list of numbers $\left(\xi^{i}\right)$ which transforms like a vector, so that

$$
\hat{\xi}^{i}=\frac{\partial \hat{x}^{i}}{\partial x^{j}} \xi^{j}
$$

(sum over repeated indices)

Formally, $\xi=\left[\left(\left(\xi^{i}\right), x\right)\right] \in T_{p} M$ where $\left(\xi^{i}\right) \in \mathbb{R}^{n}, p \in U \subset M$, $x: U \rightarrow \mathbb{R}^{n}$ and

$$
\left(\left(\xi^{i}\right), x\right) \sim\left(\left(\hat{\xi}^{i}\right), \hat{x}\right) \quad \text { if } \quad \hat{\xi}^{i}=\left.\frac{\partial \hat{x}^{i}}{\partial x^{j}}\right|_{p} \xi^{j}
$$

$T_{p} M$ is the tangent space to M at p

Tangent vectors: the algebraic approach

Take $\mathbb{R}(\epsilon), \epsilon^{2}=0$, as the algebra of 'dual numbers'.
An algebraic tangent vector ξ at $p \in M$ is an algebra homomorphism $C^{\infty}(M) \rightarrow \mathbb{R}(\epsilon)$ satisfying

$$
\xi(f)=f(p) \quad \bmod \epsilon \quad\left(f \in C^{\infty}(M)\right)
$$

Tangent vectors: the algebraic approach

Take $\mathbb{R}(\epsilon), \epsilon^{2}=0$, as the algebra of 'dual numbers'.
An algebraic tangent vector ξ at $p \in M$ is an algebra homomorphism $C^{\infty}(M) \rightarrow \mathbb{R}(\epsilon)$ satisfying

$$
\xi(f)=f(p) \quad \bmod \epsilon \quad\left(f \in C^{\infty}(M)\right)
$$

Define $\delta_{\xi}: C^{\infty}(M) \rightarrow \mathbb{R}$ by

$$
\delta_{\xi} f \cdot \epsilon=\xi(f)-f(p)
$$

Tangent vectors: the algebraic approach

Take $\mathbb{R}(\epsilon), \epsilon^{2}=0$, as the algebra of 'dual numbers'.
An algebraic tangent vector ξ at $p \in M$ is an algebra homomorphism $C^{\infty}(M) \rightarrow \mathbb{R}(\epsilon)$ satisfying

$$
\xi(f)=f(p) \quad \bmod \epsilon \quad\left(f \in C^{\infty}(M)\right)
$$

Define $\delta_{\xi}: C^{\infty}(M) \rightarrow \mathbb{R}$ by

$$
\delta_{\xi} f \cdot \epsilon=\xi(f)-f(p)
$$

δ_{ξ} is a derivation: $\delta_{\xi}(f g)=g(p) \delta_{\xi} f+f(p) \delta_{\xi}(g)$

Tangent vectors: the algebraic approach

Take $\mathbb{R}(\epsilon), \epsilon^{2}=0$, as the algebra of 'dual numbers'.
An algebraic tangent vector ξ at $p \in M$ is an algebra homomorphism $C^{\infty}(M) \rightarrow \mathbb{R}(\epsilon)$ satisfying

$$
\xi(f)=f(p) \quad \bmod \epsilon \quad\left(f \in C^{\infty}(M)\right)
$$

Define $\delta_{\xi}: C^{\infty}(M) \rightarrow \mathbb{R}$ by

$$
\delta_{\xi} f \cdot \epsilon=\xi(f)-f(p)
$$

δ_{ξ} is a derivation: $\delta_{\xi}(f g)=g(p) \delta_{\xi} f+f(p) \delta_{\xi}(g)$
Algebraic and classical tangent vectors may be identified ...

Tangent vectors: the algebraic approach

Take $\mathbb{R}(\epsilon), \epsilon^{2}=0$, as the algebra of 'dual numbers'.
An algebraic tangent vector ξ at $p \in M$ is an algebra homomorphism $C^{\infty}(M) \rightarrow \mathbb{R}(\epsilon)$ satisfying

$$
\xi(f)=f(p) \quad \bmod \epsilon \quad\left(f \in C^{\infty}(M)\right)
$$

Define $\delta_{\xi}: C^{\infty}(M) \rightarrow \mathbb{R}$ by

$$
\delta_{\xi} f \cdot \epsilon=\xi(f)-f(p)
$$

δ_{ξ} is a derivation: $\delta_{\xi}(f g)=g(p) \delta_{\xi} f+f(p) \delta_{\xi}(g)$
Algebraic and classical tangent vectors may be identified ... in the C^{∞} case!

Tangent vectors: the jet approach

Let $\gamma: \mathbb{R} \rightarrow M$ be a curve with $\gamma(0)=p$.
A geometric tangent vector is an equivalence class [γ] where $\tilde{\gamma} \sim \gamma$ if

$$
\tilde{\gamma}(0)=\gamma(0)=p
$$

and

$$
(f \circ \tilde{\gamma})^{\prime}(0)=(f \circ \gamma)^{\prime}(0) \quad \text { for every } f \in C^{\infty}(M)
$$

Tangent vectors: the jet approach

Let $\gamma: \mathbb{R} \rightarrow M$ be a curve with $\gamma(0)=p$.
A geometric tangent vector is an equivalence class [γ] where $\tilde{\gamma} \sim \gamma$ if

$$
\tilde{\gamma}(0)=\gamma(0)=p
$$

and

$$
(f \circ \tilde{\gamma})^{\prime}(0)=(f \circ \gamma)^{\prime}(0) \quad \text { for every } f \in C^{\infty}(M)
$$

Geometric and classical tangent vectors may be identified

Tangent vectors: the jet approach

Let $\gamma: \mathbb{R} \rightarrow M$ be a curve with $\gamma(0)=p$.
A geometric tangent vector is an equivalence class $[\gamma]$ where $\tilde{\gamma} \sim \gamma$ if

$$
\tilde{\gamma}(0)=\gamma(0)=p
$$

and

$$
(f \circ \tilde{\gamma})^{\prime}(0)=(f \circ \gamma)^{\prime}(0) \quad \text { for every } f \in C^{\infty}(M)
$$

Geometric and classical tangent vectors may be identified
An equivalence class defined in this way is called a jet

1-jets of sections

We start with a fibred manifold (surjective submersion) $\pi: E \rightarrow M$

1-jets of sections

We start with a fibred manifold (surjective submersion) $\pi: E \rightarrow M$
Take $p \in M$. Two local sections $\phi, \tilde{\phi}$ defined near p are 1-equivalent at p if

- $\tilde{\phi}(p)=\phi(p)$ and
- $(f \circ \tilde{\phi} \circ \gamma)^{\prime}(0)=(f \circ \phi \circ \gamma)^{\prime}(0)$ for every $f \in C^{\infty}(E)$ and every curve γ in M with $\gamma(0)=p$

The 1-jet of ϕ at p is the equivalence class; denoted by $j_{p}^{1} \phi$

1-jets of sections

We start with a fibred manifold (surjective submersion) $\pi: E \rightarrow M$
Take $p \in M$. Two local sections $\phi, \tilde{\phi}$ defined near p are 1-equivalent at p if

- $\tilde{\phi}(p)=\phi(p)$ and
- $(f \circ \tilde{\phi} \circ \gamma)^{\prime}(0)=(f \circ \phi \circ \gamma)^{\prime}(0)$ for every $f \in C^{\infty}(E)$ and every curve γ in M with $\gamma(0)=p$

The 1-jet of ϕ at p is the equivalence class; denoted by $j_{p}^{1} \phi$
The second condition may be written in fibred coordinates $\left(x^{i}, u^{\alpha}\right)$ on E around $\phi(p)$ as

$$
\left.\frac{\partial \tilde{\phi}^{\alpha}}{\partial x^{i}}\right|_{p}=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}
$$

The 1-jet manifold

The set of all 1-jets of $\pi: E \rightarrow M$ is denoted by $J^{1} \pi$:

$$
J^{1} \pi=\left\{j_{p}^{1} \phi: p \in M, \phi \text { a local section near } p\right\}
$$

The 1-jet manifold

The set of all 1-jets of $\pi: E \rightarrow M$ is denoted by $J^{1} \pi$:

$$
J^{1} \pi=\left\{j_{p}^{1} \phi: p \in M, \phi \text { a local section near } p\right\}
$$

The source $\operatorname{map} \pi_{1}$ and the target map $\pi_{1,0}$ are

$$
\left.\begin{array}{rlrl}
\pi_{1}: J^{1} \pi & \rightarrow M & \pi_{1,0}: J^{1} \pi & \rightarrow E \\
\pi_{1}\left(j_{p}^{1} \phi\right) & =p & & \pi_{1,0}\left(j_{p}^{1} \phi\right)
\end{array}\right) \phi(p)
$$

The 1-jet manifold

The set of all 1-jets of $\pi: E \rightarrow M$ is denoted by $J^{1} \pi$:

$$
J^{1} \pi=\left\{j_{p}^{1} \phi: p \in M, \phi \text { a local section near } p\right\}
$$

The source $\operatorname{map} \pi_{1}$ and the target map $\pi_{1,0}$ are

$$
\begin{array}{lrl}
\pi_{1}: J^{1} \pi \rightarrow M & & \pi_{1,0}: J^{1} \pi \rightarrow E \\
\pi_{1}\left(j_{p}^{1} \phi\right)=p & & \pi_{1,0}\left(j_{p}^{1} \phi\right)=\phi(p)
\end{array}
$$

$J^{1} \pi$ is a manifold with coordinates $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha}\right)$ where

$$
u_{i}^{\alpha}\left(j_{p}^{1} \phi\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}
$$

The 1 -jet manifold

The set of all 1-jets of $\pi: E \rightarrow M$ is denoted by $J^{1} \pi$:

$$
J^{1} \pi=\left\{j_{p}^{1} \phi: p \in M, \phi \text { a local section near } p\right\}
$$

The source $\operatorname{map} \pi_{1}$ and the target map $\pi_{1,0}$ are

$$
\begin{array}{lrl}
\pi_{1}: J^{1} \pi \rightarrow M & & \pi_{1,0}: J^{1} \pi \rightarrow E \\
\pi_{1}\left(j_{p}^{1} \phi\right)=p & & \pi_{1,0}\left(j_{p}^{1} \phi\right)=\phi(p)
\end{array}
$$

$J^{1} \pi$ is a manifold with coordinates $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha}\right)$ where

$$
u_{i}^{\alpha}\left(j_{p}^{1} \phi\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}
$$

The source map π_{1} defines a fibred manifold

The 1-jet manifold

The set of all 1-jets of $\pi: E \rightarrow M$ is denoted by $J^{1} \pi$:

$$
J^{1} \pi=\left\{j_{p}^{1} \phi: p \in M, \phi \text { a local section near } p\right\}
$$

The source $\operatorname{map} \pi_{1}$ and the target map $\pi_{1,0}$ are

$$
\begin{array}{lrl}
\pi_{1}: J^{1} \pi \rightarrow M & & \pi_{1,0}: J^{1} \pi \rightarrow E \\
\pi_{1}\left(j_{p}^{1} \phi\right)=p & & \pi_{1,0}\left(j_{p}^{1} \phi\right)=\phi(p)
\end{array}
$$

$J^{1} \pi$ is a manifold with coordinates $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha}\right)$ where

$$
u_{i}^{\alpha}\left(j_{p}^{1} \phi\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}
$$

The source map π_{1} defines a fibred manifold The target map $\pi_{1,0}$ defines an affine bundle (always!)

The affine structure
Why is $\pi_{1,0}: J^{1} \pi \rightarrow E$ an affine bundle?

The affine structure

Why is $\pi_{1,0}: J^{1} \pi \rightarrow E$ an affine bundle?
Because $T_{p} \tilde{\phi}, T_{p} \phi: T_{p} M \rightarrow T_{\phi(p)} E$

The affine structure

Why is $\pi_{1,0}: J^{1} \pi \rightarrow E$ an affine bundle?
Because $T_{p} \tilde{\phi}, T_{p} \phi: T_{p} M \rightarrow T_{\phi(p)} E$ so that

$$
T_{p} \tilde{\phi}, T_{p} \phi \in \operatorname{Hom}\left(T_{p} M, T_{\phi(p)} E\right) \cong T_{p}^{*} M \otimes T_{\phi(p)} E
$$

The affine structure

Why is $\pi_{1,0}: J^{1} \pi \rightarrow E$ an affine bundle?
Because $T_{p} \tilde{\phi}, T_{p} \phi: T_{p} M \rightarrow T_{\phi(p)} E$ so that

$$
T_{p} \tilde{\phi}, T_{p} \phi \in \operatorname{Hom}\left(T_{p} M, T_{\phi(p)} E\right) \cong T_{p}^{*} M \otimes T_{\phi(p)} E
$$

and $j_{p}^{1} \tilde{\phi}=j_{p}^{1} \phi$ when $T_{p} \tilde{\phi}=T_{p} \phi$

The affine structure

Why is $\pi_{1,0}: J^{1} \pi \rightarrow E$ an affine bundle?
Because $T_{p} \tilde{\phi}, T_{p} \phi: T_{p} M \rightarrow T_{\phi(p)} E$ so that

$$
T_{p} \tilde{\phi}, T_{p} \phi \in \operatorname{Hom}\left(T_{p} M, T_{\phi(p)} E\right) \cong T_{p}^{*} M \otimes T_{\phi(p)} E
$$

and $j_{p}^{1} \tilde{\phi}=j_{p}^{1} \phi$ when $T_{p} \tilde{\phi}=T_{p} \phi$
So regard $J^{1} \pi$ as a sub-bundle of $\pi^{*} T^{*} M \otimes_{E} T E$ (an affine sub-bundle because $T_{\phi(p)} \pi \circ T_{p} \phi=\mathrm{id}_{T_{p} M}$) the associated vector bundle is $\pi^{*} T^{*} M \otimes_{E} V \pi \rightarrow E$

The affine structure

Why is $\pi_{1,0}: J^{1} \pi \rightarrow E$ an affine bundle?
Because $T_{p} \tilde{\phi}, T_{p} \phi: T_{p} M \rightarrow T_{\phi(p)} E$ so that

$$
T_{p} \tilde{\phi}, T_{p} \phi \in \operatorname{Hom}\left(T_{p} M, T_{\phi(p)} E\right) \cong T_{p}^{*} M \otimes T_{\phi(p)} E
$$

and $j_{p}^{1} \tilde{\phi}=j_{p}^{1} \phi$ when $T_{p} \tilde{\phi}=T_{p} \phi$
So regard $J^{1} \pi$ as a sub-bundle of $\pi^{*} T^{*} M \otimes_{E} T E$ (an affine sub-bundle because $T_{\phi(p)} \pi \circ T_{p} \phi=\mathrm{id}_{T_{p} M}$)
the associated vector bundle is $\pi^{*} T^{*} M \otimes_{E} V \pi \rightarrow E$
In coordinates

$$
\left.j_{p}^{1} \phi \sim d x^{i}\right|_{p} \otimes\left(\left.\frac{\partial}{\partial x^{i}}\right|_{\phi(p)}+\left.\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p} \frac{\partial}{\partial u^{\alpha}}\right|_{\phi(p)}\right)
$$

Prolonging local sections

Suppose $U \subset M$ is open, and $\phi: U \rightarrow E$ is a local section
For each $p \in U$ there is a 1-jet $j_{p}^{1} \phi \in J^{1} \pi$

Prolonging local sections

Suppose $U \subset M$ is open, and $\phi: U \rightarrow E$ is a local section
For each $p \in U$ there is a 1 -jet $j_{p}^{1} \phi \in J^{1} \pi$
Define a local section $j^{1} \phi: U \rightarrow J^{1} \pi$ by $j^{1} \phi(p)=j_{p}^{1} \phi$ called the prolongation of ϕ

Prolonging local sections

Suppose $U \subset M$ is open, and $\phi: U \rightarrow E$ is a local section For each $p \in U$ there is a 1 -jet $j_{p}^{1} \phi \in J^{1} \pi$
Define a local section $j^{1} \phi: U \rightarrow J^{1} \pi$ by $j^{1} \phi(p)=j_{p}^{1} \phi$ called the prolongation of ϕ

In coordinates

$$
u^{\alpha} \circ j^{1} \phi=\phi^{\alpha}, \quad u_{i}^{\alpha} \circ j^{1} \phi=\frac{\partial \phi^{\alpha}}{\partial x^{i}}
$$

Prolonging local sections
Suppose $U \subset M$ is open, and $\phi: U \rightarrow E$ is a local section
For each $p \in U$ there is a 1 -jet $j_{p}^{1} \phi \in J^{1} \pi$
Define a local section $j^{1} \phi: U \rightarrow J^{1} \pi$ by $j^{1} \phi(p)=j_{p}^{1} \phi$ called the prolongation of ϕ

In coordinates

$$
u^{\alpha} \circ j^{1} \phi=\phi^{\alpha}, \quad u_{i}^{\alpha} \circ j^{1} \phi=\frac{\partial \phi^{\alpha}}{\partial x^{i}}
$$

NOT EVERY LOCAL SECTION OF $\pi_{1}: J^{1} \pi \rightarrow M$ IS A PROLONGATION!

Example: connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$

Example: connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
A local section ϕ of π is a solution of Γ if $j^{1} \phi=\Gamma \circ \phi$

Example: connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
A local section ϕ of π is a solution of Γ if $j^{1} \phi=\Gamma \circ \phi$
In coordinates, put $\Gamma_{i}^{\alpha}=u_{i}^{\alpha} \circ \Gamma$; then

$$
\frac{\partial \phi^{\alpha}}{\partial x^{i}}=u_{i}^{\alpha} \circ j^{1} \phi=\Gamma_{i}^{\alpha} \circ \phi
$$

Example: connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
A local section ϕ of π is a solution of Γ if $j^{1} \phi=\Gamma \circ \phi$
In coordinates, put $\Gamma_{i}^{\alpha}=u_{i}^{\alpha} \circ \Gamma$; then

$$
\frac{\partial \phi^{\alpha}}{\partial x^{i}}=u_{i}^{\alpha} \circ j^{1} \phi=\Gamma_{i}^{\alpha} \circ \phi
$$

the equation $\left(\Gamma(E) \subset J^{1} \pi\right)$ is conceptually distinct from the set of its solutions

Example: connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
A local section ϕ of π is a solution of Γ if $j^{1} \phi=\Gamma \circ \phi$
In coordinates, put $\Gamma_{i}^{\alpha}=u_{i}^{\alpha} \circ \Gamma$; then

$$
\frac{\partial \phi^{\alpha}}{\partial x^{i}}=u_{i}^{\alpha} \circ j^{1} \phi=\Gamma_{i}^{\alpha} \circ \phi
$$

the equation $\left(\Gamma(E) \subset J^{1} \pi\right)$ is conceptually distinct from the set of its solutions

Thinking of a jet $j_{p}^{1} \phi$ as a tensor at $\phi(p) \in E$, a connection is a tensor field (horizontal projector)

$$
P_{\Gamma}=d x^{i} \otimes\left(\frac{\partial}{\partial x^{i}}+\Gamma_{i}^{\alpha} \frac{\partial}{\partial u^{\alpha}}\right)
$$

Jet connections and 'other' connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$

Jet connections and 'other' connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
If $\pi: E \rightarrow M$ is a principal G-bundle:

Jet connections and 'other' connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
If $\pi: E \rightarrow M$ is a principal G-bundle:
Γ is a principal connection
if $I-P_{\Gamma}$ takes its values in fundamental vector fields
(and so may be considered as a \mathfrak{g}-valued form on E)

Jet connections and 'other' connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
If $\pi: E \rightarrow M$ is a principal G-bundle:
Γ is a principal connection
if $I-P_{\Gamma}$ takes its values in fundamental vector fields
(and so may be considered as a \mathfrak{g}-valued form on E)
If $\pi: E \rightarrow M$ is a vector bundle then so is $\pi_{1}: J^{1} \pi \rightarrow M$

Jet connections and 'other' connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
If $\pi: E \rightarrow M$ is a principal G-bundle:
Γ is a principal connection
if $I-P_{\Gamma}$ takes its values in fundamental vector fields (and so may be considered as a \mathfrak{g}-valued form on E)

If $\pi: E \rightarrow M$ is a vector bundle then so is $\pi_{1}: J^{1} \pi \rightarrow M$
Γ is a linear connection if it is a splitting of

$$
0 \rightarrow T^{*} M \otimes_{M} E \longrightarrow J^{1} \pi \xrightarrow{\pi_{1,0}} E \rightarrow 0
$$

Jet connections and 'other' connections

$$
J^{1} \pi \xrightarrow{\pi_{1,0}} E \xrightarrow{\pi} M
$$

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}$
If $\pi: E \rightarrow M$ is a principal G-bundle:
Γ is a principal connection
if $I-P_{\Gamma}$ takes its values in fundamental vector fields (and so may be considered as a \mathfrak{g}-valued form on E)

If $\pi: E \rightarrow M$ is a vector bundle then so is $\pi_{1}: J^{1} \pi \rightarrow M$ Γ is a linear connection if it is a splitting of

$$
0 \rightarrow T^{*} M \otimes_{M} E \longrightarrow J^{1} \pi \xrightarrow{\pi_{1,0}} E \rightarrow 0
$$

the covariant differential ∇^{Γ} is defined by

$$
\nabla^{\Gamma} \phi=j^{1} \phi-\Gamma \circ \phi
$$

k-jets of sections

Continue with a fibred manifold $\pi: E \rightarrow M$
Take $p \in M$. Two local sections $\phi, \tilde{\phi}$ defined near p are k-equivalent at p if

- $\tilde{\phi}(p)=\phi(p)$ and
- $(f \circ \tilde{\phi} \circ \gamma)^{(r)}(0)=(f \circ \phi \circ \gamma)^{(r)}(0)$ for every $f \in C^{\infty}(E)$ and every curve γ in M with $\gamma(0)=p \quad(1 \leq r \leq k)$

k-jets of sections

Continue with a fibred manifold $\pi: E \rightarrow M$
Take $p \in M$. Two local sections $\phi, \tilde{\phi}$ defined near p are k-equivalent at p if

- $\tilde{\phi}(p)=\phi(p)$ and
- $(f \circ \tilde{\phi} \circ \gamma)^{(r)}(0)=(f \circ \phi \circ \gamma)^{(r)}(0)$ for every $f \in C^{\infty}(E)$ and every curve γ in M with $\gamma(0)=p \quad(1 \leq r \leq k)$

The k-jet of ϕ at p is the equivalence class; denoted by $j_{p}^{k} \phi$

k-jets of sections

Continue with a fibred manifold $\pi: E \rightarrow M$
Take $p \in M$. Two local sections $\phi, \tilde{\phi}$ defined near p are k-equivalent at p if

- $\tilde{\phi}(p)=\phi(p)$ and
- $(f \circ \tilde{\phi} \circ \gamma)^{(r)}(0)=(f \circ \phi \circ \gamma)^{(r)}(0)$ for every $f \in C^{\infty}(E)$ and every curve γ in M with $\gamma(0)=p \quad(1 \leq r \leq k)$

The k-jet of ϕ at p is the equivalence class; denoted by $j_{p}^{k} \phi$
The set of all k-jets of $\pi: E \rightarrow M$ is denoted by $J^{k} \pi$:

$$
J^{k} \pi=\left\{j_{p}^{k} \phi: p \in M, \phi \text { a local section near } p\right\}
$$

The bundle structure of k-jets

The source $\operatorname{map} \pi_{k}$, the target map $\pi_{k, 0}$ and the order-reduction map $\pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi(1 \leq l \leq k)$ are

$$
\begin{array}{crl}
\pi_{k}: J^{k} \pi \rightarrow M & \pi_{k, 0}: J^{k} \pi \rightarrow E & \pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi \\
\pi_{k}\left(j_{p}^{k} \phi\right)=p & \pi_{k, 0}\left(j_{p}^{k} \phi\right)=\phi(p) & \pi_{k, l}\left(j_{p}^{k} \phi\right)=j_{p}^{l} \phi
\end{array}
$$

The bundle structure of k-jets

The source $\operatorname{map} \pi_{k}$, the target map $\pi_{k, 0}$ and the order-reduction map $\pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi(1 \leq l \leq k)$ are

$$
\begin{array}{ccc}
\pi_{k}: J^{k} \pi \rightarrow M & \pi_{k, 0}: J^{k} \pi \rightarrow E & \pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi \\
\pi_{k}\left(j_{p}^{k} \phi\right)=p & \pi_{k, 0}\left(j_{p}^{k} \phi\right)=\phi(p) & \pi_{k, l}\left(j_{p}^{k} \phi\right)=j_{p}^{l} \phi
\end{array}
$$

The source map π_{l} defines a fibred manifold

The bundle structure of k-jets

The source $\operatorname{map} \pi_{k}$, the target map $\pi_{k, 0}$ and the order-reduction map $\pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi(1 \leq l \leq k)$ are

$$
\begin{array}{lll}
\pi_{k}: J^{k} \pi \rightarrow M & \pi_{k, 0}: J^{k} \pi \rightarrow E & \pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi \\
\pi_{k}\left(j_{p}^{k} \phi\right)=p & \pi_{k, 0}\left(j_{p}^{k} \phi\right)=\phi(p) & \pi_{k, l}\left(j_{p}^{k} \phi\right)=j_{p}^{l} \phi
\end{array}
$$

The source map π_{l} defines a fibred manifold The target map $\pi_{l, 0}$ and order-reduction maps $\pi_{k, l}$ define fibre bundles

The bundle structure of k-jets

The source $\operatorname{map} \pi_{k}$, the target map $\pi_{k, 0}$ and the order-reduction map $\pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi(1 \leq l \leq k)$ are

$$
\begin{array}{lll}
\pi_{k}: J^{k} \pi \rightarrow M & \pi_{k, 0}: J^{k} \pi \rightarrow E & \pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi \\
\pi_{k}\left(j_{p}^{k} \phi\right)=p & \pi_{k, 0}\left(j_{p}^{k} \phi\right)=\phi(p) & \pi_{k, l}\left(j_{p}^{k} \phi\right)=j_{p}^{l} \phi
\end{array}
$$

The source map π_{l} defines a fibred manifold The target map $\pi_{l, 0}$ and order-reduction maps $\pi_{k, l}$ define fibre bundles
The order-reduction map $\pi_{k, k-1}$ defines an affine bundle

The bundle structure of k-jets

The source $\operatorname{map} \pi_{k}$, the target map $\pi_{k, 0}$ and the order-reduction map $\pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi(1 \leq l \leq k)$ are

$$
\begin{array}{crl}
\pi_{k}: J^{k} \pi \rightarrow M & \pi_{k, 0}: J^{k} \pi \rightarrow E & \pi_{k, l}: J^{k} \pi \rightarrow J^{l} \pi \\
\pi_{k}\left(j_{p}^{k} \phi\right)=p & \pi_{k, 0}\left(j_{p}^{k} \phi\right)=\phi(p) & \pi_{k, l}\left(j_{p}^{k} \phi\right)=j_{p}^{l} \phi
\end{array}
$$

The source map π_{l} defines a fibred manifold The target map $\pi_{l, 0}$ and order-reduction maps $\pi_{k, l}$ define fibre bundles
The order-reduction map $\pi_{k, k-1}$ defines an affine bundle
If $\phi: U \rightarrow E$ is a local section,
Define a local section $j^{k} \phi: U \rightarrow J^{k} \pi$ by $j^{k} \phi(p)=j_{p}^{k} \phi$ called the prolongation of ϕ

Symmetric coordinates and multi-indices $J^{2} \pi$ is a manifold with coordinates $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha}, u_{i j}^{\alpha}\right)$ where

$$
u_{i}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}, \quad u_{i j}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial^{2} \phi^{\alpha}}{\partial x^{i} \partial x^{j}}\right|_{p}
$$

Symmetric coordinates and multi-indices

$J^{2} \pi$ is a manifold with coordinates $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha}, u_{i j}^{\alpha}\right)$ where

$$
u_{i}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}, \quad u_{i j}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial^{2} \phi^{\alpha}}{\partial x^{i} \partial x^{j}}\right|_{p}
$$

WARNING: If $f \in C^{\infty}\left(J^{2} \pi\right)$ then

$$
d f=\frac{\partial f}{\partial x^{i}} d x^{i}+\frac{\partial f}{\partial u^{\alpha}} d u^{\alpha}+\frac{\partial f}{\partial u_{i}^{\alpha}} d u^{\alpha}+\frac{1}{\#(i j)} \frac{\partial f}{\partial u_{i j}^{\alpha}} d u_{i j}^{\alpha}
$$

where $\#(i j)=1$ if $i=j, \#(i j)=2$ if $i \neq j$

Symmetric coordinates and multi-indices

$J^{2} \pi$ is a manifold with coordinates $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha}, u_{i j}^{\alpha}\right)$ where

$$
u_{i}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}, \quad u_{i j}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial^{2} \phi^{\alpha}}{\partial x^{i} \partial x^{j}}\right|_{p}
$$

WARNING: If $f \in C^{\infty}\left(J^{2} \pi\right)$ then

$$
d f=\frac{\partial f}{\partial x^{i}} d x^{i}+\frac{\partial f}{\partial u^{\alpha}} d u^{\alpha}+\frac{\partial f}{\partial u_{i}^{\alpha}} d u^{\alpha}+\frac{1}{\#(i j)} \frac{\partial f}{\partial u_{i j}^{\alpha}} d u_{i j}^{\alpha}
$$

where $\#(i j)=1$ if $i=j, \#(i j)=2$ if $i \neq j$
Options:

- Use numerical coefficients with the summation convention

Symmetric coordinates and multi-indices

$J^{2} \pi$ is a manifold with coordinates $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha}, u_{i j}^{\alpha}\right)$ where

$$
u_{i}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}, \quad u_{i j}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial^{2} \phi^{\alpha}}{\partial x^{i} \partial x^{j}}\right|_{p}
$$

WARNING: If $f \in C^{\infty}\left(J^{2} \pi\right)$ then

$$
d f=\frac{\partial f}{\partial x^{i}} d x^{i}+\frac{\partial f}{\partial u^{\alpha}} d u^{\alpha}+\frac{\partial f}{\partial u_{i}^{\alpha}} d u^{\alpha}+\frac{1}{\#(i j)} \frac{\partial f}{\partial u_{i j}^{\alpha}} d u_{i j}^{\alpha}
$$

where $\#(i j)=1$ if $i=j, \#(i j)=2$ if $i \neq j$
Options:

- Use numerical coefficients with the summation convention
- Use non-decreasing indices and explicit sums

Symmetric coordinates and multi-indices

$J^{2} \pi$ is a manifold with coordinates $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha}, u_{i j}^{\alpha}\right)$ where

$$
u_{i}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{i}}\right|_{p}, \quad u_{i j}^{\alpha}\left(j_{p}^{2} \phi\right)=\left.\frac{\partial^{2} \phi^{\alpha}}{\partial x^{i} \partial x^{j}}\right|_{p}
$$

WARNING: If $f \in C^{\infty}\left(J^{2} \pi\right)$ then

$$
d f=\frac{\partial f}{\partial x^{i}} d x^{i}+\frac{\partial f}{\partial u^{\alpha}} d u^{\alpha}+\frac{\partial f}{\partial u_{i}^{\alpha}} d u^{\alpha}+\frac{1}{\#(i j)} \frac{\partial f}{\partial u_{i j}^{\alpha}} d u_{i j}^{\alpha}
$$

where $\#(i j)=1$ if $i=j, \#(i j)=2$ if $i \neq j$
Options:

- Use numerical coefficients with the summation convention
- Use non-decreasing indices and explicit sums
- Use vector multi-indices u_{I}^{α} with $I \in \mathbb{N}^{\operatorname{dim} M}$

Repeated jets

The source map $\pi_{1}: J^{1} \pi \rightarrow M$ is a fibred manifold

Repeated jets

The source map $\pi_{1}: J^{1} \pi \rightarrow M$ is a fibred manifold The set of all 1-jets of π_{1} is the repeated jet manifold:

$$
J^{1} \pi_{1}=\left\{j_{p}^{1} \psi: x \in M, \psi \text { a local section of } \pi_{1} \text { near } p\right\}
$$

Repeated jets

The source map $\pi_{1}: J^{1} \pi \rightarrow M$ is a fibred manifold The set of all 1 -jets of π_{1} is the repeated jet manifold:

$$
J^{1} \pi_{1}=\left\{j_{p}^{1} \psi: x \in M, \psi \text { a local section of } \pi_{1} \text { near } p\right\}
$$

Coordinates on $J^{1} \pi_{1}$ are $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha} ; u_{, j}^{\alpha}, u_{i, j}^{\alpha}\right)$:

$$
u_{i}^{\alpha}\left(j_{p}^{1} \psi\right)=\psi_{i}^{\alpha}(p), \quad u_{\cdot, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi^{\alpha}}{\partial x^{j}}\right|_{p}, \quad u_{i, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}\right|_{p}
$$

Repeated jets

The source map $\pi_{1}: J^{1} \pi \rightarrow M$ is a fibred manifold The set of all 1 -jets of π_{1} is the repeated jet manifold:

$$
J^{1} \pi_{1}=\left\{j_{p}^{1} \psi: x \in M, \psi \text { a local section of } \pi_{1} \text { near } p\right\}
$$

Coordinates on $J^{1} \pi_{1}$ are $\left(x^{i}, u^{\alpha}, u_{i}^{\alpha} ; u_{, j}^{\alpha}, u_{i, j}^{\alpha}\right)$:
$u_{i}^{\alpha}\left(j_{p}^{1} \psi\right)=\psi_{i}^{\alpha}(p), \quad u_{\cdot, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi^{\alpha}}{\partial x^{j}}\right|_{p}, \quad u_{i, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}\right|_{p}$
In general $u_{i}^{\alpha} \neq u_{\cdot, i}^{\alpha}$ and $u_{i ; j}^{\alpha} \neq u_{j ; i}^{\alpha}$

Holonomic and semiholonomic jets

$$
u_{i}^{\alpha}\left(j_{p}^{1} \psi\right)=\psi_{i}^{\alpha}(p), \quad u_{i, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi^{\alpha}}{\partial x^{j}}\right|_{p}, \quad u_{i, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}\right|_{p}
$$

Holonomic and semiholonomic jets

$u_{i}^{\alpha}\left(j_{p}^{1} \psi\right)=\psi_{i}^{\alpha}(p), \quad u_{\cdot, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi^{\alpha}}{\partial x^{j}}\right|_{p}, \quad u_{i, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}\right|_{p}$
If $\psi=j^{1} \phi$ is a prolongation then

$$
\begin{aligned}
u_{\cdot, j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right) & =\left.\frac{\partial \phi^{\alpha}}{\partial x^{j}}\right|_{p}=u_{j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right), \\
u_{i, j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right) & =\left.\frac{\partial}{\partial x^{j}}\right|_{p} \frac{\partial \phi^{\alpha}}{\partial x^{i}}=\left.\frac{\partial}{\partial x^{i}}\right|_{p} \frac{\partial \phi^{\alpha}}{\partial x^{j}}=u_{j, i}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right)
\end{aligned}
$$

so that $J^{2} \pi \subset J^{1} \pi_{1}$ - the holonomic jet submanifold

Holonomic and semiholonomic jets

$$
u_{i}^{\alpha}\left(j_{p}^{1} \psi\right)=\psi_{i}^{\alpha}(p), \quad u_{\cdot, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi^{\alpha}}{\partial x^{j}}\right|_{p}, \quad u_{i, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}\right|_{p}
$$

If $\psi=j^{1} \phi$ is a prolongation then

$$
\begin{aligned}
u_{,, j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right) & =\left.\frac{\partial \phi^{\alpha}}{\partial x^{j}}\right|_{p}=u_{j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right) \\
u_{i, j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right) & =\left.\frac{\partial}{\partial x^{j}}\right|_{p} \frac{\partial \phi^{\alpha}}{\partial x^{i}}=\left.\frac{\partial}{\partial x^{i}}\right|_{p} \frac{\partial \phi^{\alpha}}{\partial x^{j}}=u_{j, i}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right)
\end{aligned}
$$

so that $J^{2} \pi \subset J^{1} \pi_{1}$ - the holonomic jet submanifold
There is, in general, no canonical projection $J^{1} \pi_{1} \rightarrow J^{2} \pi$.
But there is a submanifold $\hat{J}^{2} \pi \subset J^{1} \pi_{1}$ of semiholonomic jets where $u_{,, j}^{\alpha}=u_{j}^{\alpha}$, but $u_{i, j}^{\alpha}$ need not be symmetric

Holonomic and semiholonomic jets

$$
u_{i}^{\alpha}\left(j_{p}^{1} \psi\right)=\psi_{i}^{\alpha}(p), \quad u_{i, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi^{\alpha}}{\partial x^{j}}\right|_{p}, \quad u_{i, j}^{\alpha}\left(j_{p}^{1} \psi\right)=\left.\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}\right|_{p}
$$

If $\psi=j^{1} \phi$ is a prolongation then

$$
\begin{aligned}
& u_{,, j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right)=\left.\frac{\partial \phi^{\alpha}}{\partial x^{j}}\right|_{p}=u_{j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right), \\
& u_{i, j}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right)=\left.\frac{\partial}{\partial x^{j}}\right|_{p} \frac{\partial \phi^{\alpha}}{\partial x^{i}}=\left.\frac{\partial}{\partial x^{i}}\right|_{p} \frac{\partial \phi^{\alpha}}{\partial x^{j}}=u_{j, i}^{\alpha}\left(j_{p}^{1}\left(j^{1} \phi\right)\right)
\end{aligned}
$$

so that $J^{2} \pi \subset J^{1} \pi_{1}$ - the holonomic jet submanifold
There is, in general, no canonical projection $J^{1} \pi_{1} \rightarrow J^{2} \pi$.
But there is a submanifold $\hat{J}^{2} \pi \subset J^{1} \pi_{1}$ of semiholonomic jets where $u_{\cdot, j}^{\alpha}=u_{j}^{\alpha}$, but $u_{i, j}^{\alpha}$ need not be symmetric and $\hat{J}^{2} \pi=J^{2} \pi \oplus_{J^{1}} \pi\left(\bigwedge^{2} \pi_{1}^{*} T^{*} M \otimes \pi_{1,0}^{*} V \pi\right)$

Contact forms

How can you tell if a local section ψ of $\pi_{k}: J^{k} \pi \rightarrow M$ is a prolongation?

Contact forms

How can you tell if a local section ψ of $\pi_{k}: J^{k} \pi \rightarrow M$ is a prolongation?

A differential r-form ω on $J^{k} \pi$ is a contact form if $\left(j^{k} \phi\right)^{*} \omega=0$ for every prolonged local section $j^{k} \phi$

Contact forms

How can you tell if a local section ψ of $\pi_{k}: J^{k} \pi \rightarrow M$ is a prolongation?

A differential r-form ω on $J^{k} \pi$ is a contact form if $\left(j^{k} \phi\right)^{*} \omega=0$ for every prolonged local section $j^{k} \phi$ ψ is a prolongation if $\psi^{*} \omega=0$ for every contact form ω

Contact forms

How can you tell if a local section ψ of $\pi_{k}: J^{k} \pi \rightarrow M$ is a prolongation?

A differential r-form ω on $J^{k} \pi$ is a contact form if $\left(j^{k} \phi\right)^{*} \omega=0$ for every prolonged local section $j^{k} \phi$ ψ is a prolongation if $\psi^{*} \omega=0$ for every contact form ω

Contact 1-forms on $J^{1} \pi$ generated by $\theta_{\alpha}=d u^{\alpha}-u_{i}^{\alpha} d x^{i}$

Contact forms

How can you tell if a local section ψ of $\pi_{k}: J^{k} \pi \rightarrow M$ is a prolongation?

A differential r-form ω on $J^{k} \pi$ is a contact form if $\left(j^{k} \phi\right)^{*} \omega=0$ for every prolonged local section $j^{k} \phi$ ψ is a prolongation if $\psi^{*} \omega=0$ for every contact form ω

Contact 1-forms on $J^{1} \pi$ generated by $\theta_{\alpha}=d u^{\alpha}-u_{i}^{\alpha} d x^{i}$ Contact 1-forms on $J^{k} \pi$ generated by $\theta_{I}^{\alpha}=d u_{I}^{\alpha}-u_{I+1_{i}}^{\alpha} d x^{i}$ $(|I|<k)$

Contact forms

How can you tell if a local section ψ of $\pi_{k}: J^{k} \pi \rightarrow M$ is a prolongation?

A differential r-form ω on $J^{k} \pi$ is a contact form if $\left(j^{k} \phi\right)^{*} \omega=0$ for every prolonged local section $j^{k} \phi$ ψ is a prolongation if $\psi^{*} \omega=0$ for every contact form ω

Contact 1-forms on $J^{1} \pi$ generated by $\theta_{\alpha}=d u^{\alpha}-u_{i}^{\alpha} d x^{i}$ Contact 1-forms on $J^{k} \pi$ generated by $\theta_{I}^{\alpha}=d u_{I}^{\alpha}-u_{I+1_{i}}^{\alpha} d x^{i}$ $(|I|<k)$

Contact r-forms are generated by contact 1-forms θ_{I}^{α} and their exterior derivatives $d \theta_{I}^{\alpha}$

Contact forms

How can you tell if a local section ψ of $\pi_{k}: J^{k} \pi \rightarrow M$ is a prolongation?

A differential r-form ω on $J^{k} \pi$ is a contact form if $\left(j^{k} \phi\right)^{*} \omega=0$ for every prolonged local section $j^{k} \phi$ ψ is a prolongation if $\psi^{*} \omega=0$ for every contact form ω

Contact 1-forms on $J^{1} \pi$ generated by $\theta_{\alpha}=d u^{\alpha}-u_{i}^{\alpha} d x^{i}$ Contact 1-forms on $J^{k} \pi$ generated by $\theta_{I}^{\alpha}=d u_{I}^{\alpha}-u_{I+1_{i}}^{\alpha} d x^{i}$ $(|I|<k)$

Contact r-forms are generated by contact 1-forms θ_{I}^{α} and their exterior derivatives $d \theta_{I}^{\alpha}$

Can also define q-contact r-forms and exactly q-contact r-forms $(q \leq r)$

Total derivatives

Total derivatives are 'vector fields' that annihilate contact 1-forms

Total derivatives

Total derivatives are 'vector fields' that annihilate contact 1-forms They are vector fields along a map, not on a manifold

Total derivatives

Total derivatives are 'vector fields' that annihilate contact 1-forms They are vector fields along a map, not on a manifold

Given a vector $\xi \in T_{p} M$ and a local section ϕ defined near p the tangent vector $T j^{k} \phi(\xi) \in T_{j_{p}^{k} \phi} J^{k} \pi$ depends on derivatives of order $k+1$

Total derivatives

Total derivatives are 'vector fields' that annihilate contact 1-forms They are vector fields along a map, not on a manifold

Given a vector $\xi \in T_{p} M$ and a local section ϕ defined near p the tangent vector $T j^{k} \phi(\xi) \in T_{j_{p}^{k} \phi} J^{k} \pi$ depends on derivatives of order $k+1$ (that is, on $j_{p}^{k+1} \phi$)

Total derivatives

Total derivatives are 'vector fields' that annihilate contact 1-forms They are vector fields along a map, not on a manifold

Given a vector $\xi \in T_{p} M$ and a local section ϕ defined near p the tangent vector $T j^{k} \phi(\xi) \in T_{j_{p}^{k} \phi} J^{k} \pi$ depends on derivatives of order $k+1$ (that is, on $j_{p}^{k+1} \phi$)
So given a vector field X on M, the corresponding total derivative is

$$
J^{k+1} \pi \rightarrow T J^{k} \pi, \quad j_{p}^{k+1} \phi \mapsto T j^{k} \phi\left(X_{p}\right)
$$

Total derivatives

Total derivatives are 'vector fields' that annihilate contact 1-forms They are vector fields along a map, not on a manifold

Given a vector $\xi \in T_{p} M$ and a local section ϕ defined near p the tangent vector $T j^{k} \phi(\xi) \in T_{j_{p}^{k} \phi} J^{k} \pi$ depends on derivatives of order $k+1$ (that is, on $j_{p}^{k+1} \phi$)

So given a vector field X on M, the corresponding total derivative is

$$
J^{k+1} \pi \rightarrow T J^{k} \pi, \quad j_{p}^{k+1} \phi \mapsto T j^{k} \phi\left(X_{p}\right)
$$

In coordinates

$$
X^{i} \frac{\partial}{\partial x^{i}} \quad \text { becomes } \quad X^{i} \frac{d}{d x^{i}}=X^{i}\left(\frac{\partial}{\partial x^{i}}+\sum_{|I|=0}^{k} u_{I+1_{i}}^{\alpha} \frac{\partial}{\partial u_{I}^{\alpha}}\right)
$$

Take $\pi: E \rightarrow M$ and $\rho: F \rightarrow N$ fibred manifolds

Prolongations of fibred maps

Take $\pi: E \rightarrow M$ and $\rho: F \rightarrow N$ fibred manifolds
A map $f: E \rightarrow F$ is a fibred map if $y, z \in E_{p}$ implies $f(y)=f(z)$ and the map $\bar{f}: M \rightarrow N$ defined by $\bar{f}(p)=\rho(f(y))$ (any $y \in E_{p}$) is a diffeomorphism

Prolongations of fibred maps

Take $\pi: E \rightarrow M$ and $\rho: F \rightarrow N$ fibred manifolds
A map $f: E \rightarrow F$ is a fibred map if $y, z \in E_{p}$ implies $f(y)=f(z)$ and the map $\bar{f}: M \rightarrow N$ defined by $\bar{f}(p)=\rho(f(y))$ (any $y \in E_{p}$) is a diffeomorphism

The prolongation of f is the map $J^{k} f: J^{k} \pi \rightarrow J^{k} \rho$

$$
J^{k} f\left(j_{p}^{k} \phi\right)=j_{\bar{f}^{-1}(p)}^{k}\left(f \circ \phi \circ \bar{f}^{-1}\right)
$$

Prolongations of fibred maps

Take $\pi: E \rightarrow M$ and $\rho: F \rightarrow N$ fibred manifolds
A map $f: E \rightarrow F$ is a fibred map if $y, z \in E_{p}$ implies $f(y)=f(z)$ and the map $\bar{f}: M \rightarrow N$ defined by $\bar{f}(p)=\rho(f(y))$ (any $y \in E_{p}$) is a diffeomorphism

The prolongation of f is the map $J^{k} f: J^{k} \pi \rightarrow J^{k} \rho$

$$
J^{k} f\left(j_{p}^{k} \phi\right)=j_{f^{-1}(p)}^{k}\left(f \circ \phi \circ \bar{f}^{-1}\right)
$$

J^{k} is a functor on the category of fibred manifolds and fibred maps

Prolongations of fibred maps

Take $\pi: E \rightarrow M$ and $\rho: F \rightarrow N$ fibred manifolds
A map $f: E \rightarrow F$ is a fibred map if $y, z \in E_{p}$ implies $f(y)=f(z)$ and the map $\bar{f}: M \rightarrow N$ defined by $\bar{f}(p)=\rho(f(y))$ (any $y \in E_{p}$) is a diffeomorphism

The prolongation of f is the map $J^{k} f: J^{k} \pi \rightarrow J^{k} \rho$

$$
J^{k} f\left(j_{p}^{k} \phi\right)=j_{f^{-1}(p)}^{k}\left(f \circ \phi \circ \bar{f}^{-1}\right)
$$

J^{k} is a functor on the category of fibred manifolds and fibred maps In coordinates

$$
u_{I}^{\alpha} \circ J^{k} \phi=\frac{d^{|I|} \phi^{\alpha}}{d x^{I}}
$$

Prolongations of vector fields

Take a projectable vector field X on E

Prolongations of vector fields

Take a projectable vector field X on E
The flow ϕ_{t} of X is a family of fibred maps, so the prolongations $J^{k} \phi_{t}$ define the flow prolongation X^{k} on $J^{k} \pi$

Prolongations of vector fields

Take a projectable vector field X on E
The flow ϕ_{t} of X is a family of fibred maps, so the prolongations $J^{k} \phi_{t}$ define the flow prolongation X^{k} on $J^{k} \pi$ If

$$
X=X^{i} \frac{\partial}{\partial x^{i}}+X^{\alpha} \frac{\partial}{\partial u^{\alpha}}
$$

then

$$
X^{k}=X^{i} \frac{\partial}{\partial x^{i}}+\sum_{|I|=0}^{k}\left(\frac{d^{|I|} X^{\alpha}}{d x^{I}}-\sum_{\substack{J+K=I \\ J \neq 0}} \frac{I!}{J!K!} \frac{\partial^{|J|} X^{j}}{\partial x^{J}} u_{K+1_{j}}^{\alpha}\right) \frac{\partial}{\partial u_{I}^{\alpha}}
$$

This works even if the flow is not global

Prolongations of vector fields

Take a projectable vector field X on E
The flow ϕ_{t} of X is a family of fibred maps, so the prolongations $J^{k} \phi_{t}$ define the flow prolongation X^{k} on $J^{k} \pi$ If

$$
X=X^{i} \frac{\partial}{\partial x^{i}}+X^{\alpha} \frac{\partial}{\partial u^{\alpha}}
$$

then

$$
X^{k}=X^{i} \frac{\partial}{\partial x^{i}}+\sum_{|I|=0}^{k}\left(\frac{d^{|I|} X^{\alpha}}{d x^{I}}-\sum_{\substack{J+K=I \\ J \neq 0}} \frac{I!}{J!K!} \frac{\partial^{|J|} X^{j}}{\partial x^{J}} u_{K+1_{j}}^{\alpha}\right) \frac{\partial}{\partial u_{I}^{\alpha}}
$$

This works even if the flow is not global
If X is not projectable, it can still be prolonged!
(Unlike diffeomorphisms)

Prolongations and contact forms

A contact transformation is a diffeomorphism $F: J^{k} \pi \rightarrow J^{k} \pi$ such that $F^{*} \omega$ is a contact form whenever ω is a contact form

Prolongations and contact forms

A contact transformation is a diffeomorphism $F: J^{k} \pi \rightarrow J^{k} \pi$ such that $F^{*} \omega$ is a contact form whenever ω is a contact form

If $f: E \rightarrow E$ is a fibred diffeomorphism (over M) then $J^{k} f: J^{k} \pi \rightarrow J^{k} \pi$ is a contact transformation

Prolongations and contact forms

A contact transformation is a diffeomorphism $F: J^{k} \pi \rightarrow J^{k} \pi$ such that $F^{*} \omega$ is a contact form whenever ω is a contact form

If $f: E \rightarrow E$ is a fibred diffeomorphism (over M) then $J^{k} f: J^{k} \pi \rightarrow J^{k} \pi$ is a contact transformation
'Usually' a contact transformation $F: J^{k} \pi \rightarrow J^{k} \pi$ projects to a fibred diffeomorphism $f: E \rightarrow E$, and then $F=J^{k} f$.

Prolongations and contact forms

A contact transformation is a diffeomorphism $F: J^{k} \pi \rightarrow J^{k} \pi$ such that $F^{*} \omega$ is a contact form whenever ω is a contact form

If $f: E \rightarrow E$ is a fibred diffeomorphism (over M) then $J^{k} f: J^{k} \pi \rightarrow J^{k} \pi$ is a contact transformation
'Usually' a contact transformation $F: J^{k} \pi \rightarrow J^{k} \pi$ projects to a fibred diffeomorphism $f: E \rightarrow E$, and then $F=J^{k} f$.

EXCEPTION when $\operatorname{dim} E=\operatorname{dim} M+1$

Prolongations and contact forms

A contact transformation is a diffeomorphism $F: J^{k} \pi \rightarrow J^{k} \pi$ such that $F^{*} \omega$ is a contact form whenever ω is a contact form

If $f: E \rightarrow E$ is a fibred diffeomorphism (over M) then $J^{k} f: J^{k} \pi \rightarrow J^{k} \pi$ is a contact transformation
'Usually' a contact transformation $F: J^{k} \pi \rightarrow J^{k} \pi$ projects to a fibred diffeomorphism $f: E \rightarrow E$, and then $F=J^{k} f$.

EXCEPTION when $\operatorname{dim} E=\operatorname{dim} M+1$
so that $\operatorname{dim} J^{1} \pi-\operatorname{dim} E=\operatorname{dim} M$

Prolongations and contact forms

A contact transformation is a diffeomorphism $F: J^{k} \pi \rightarrow J^{k} \pi$ such that $F^{*} \omega$ is a contact form whenever ω is a contact form

If $f: E \rightarrow E$ is a fibred diffeomorphism (over M) then $J^{k} f: J^{k} \pi \rightarrow J^{k} \pi$ is a contact transformation
'Usually' a contact transformation $F: J^{k} \pi \rightarrow J^{k} \pi$ projects to a fibred diffeomorphism $f: E \rightarrow E$, and then $F=J^{k} f$.

EXCEPTION when $\operatorname{dim} E=\operatorname{dim} M+1$
so that $\operatorname{dim} J^{1} \pi-\operatorname{dim} E=\operatorname{dim} M$
Example: the map $\quad\left(x^{i}, u, u_{i}\right) \mapsto\left(u_{i}, x^{i} u_{i}-u, x^{i}\right)$ is a contact transformation (the Hodograph transformation)

Prolongations and contact forms

A contact transformation is a diffeomorphism $F: J^{k} \pi \rightarrow J^{k} \pi$ such that $F^{*} \omega$ is a contact form whenever ω is a contact form

If $f: E \rightarrow E$ is a fibred diffeomorphism (over M) then $J^{k} f: J^{k} \pi \rightarrow J^{k} \pi$ is a contact transformation
'Usually' a contact transformation $F: J^{k} \pi \rightarrow J^{k} \pi$ projects to a fibred diffeomorphism $f: E \rightarrow E$, and then $F=J^{k} f$.

EXCEPTION when $\operatorname{dim} E=\operatorname{dim} M+1$
so that $\operatorname{dim} J^{1} \pi-\operatorname{dim} E=\operatorname{dim} M$
Example: the map $\left(x^{i}, u, u_{i}\right) \mapsto\left(u_{i}, x^{i} u_{i}-u, x^{i}\right)$ is a contact transformation (the Hodograph transformation)

An infinitesimal contact transformation is a vector field X on $J^{k} \pi$ such that $\mathcal{L}_{X} \omega$ is a contact form whenever ω is a contact form

The calculus of variations

A Lagrangian form is a horizontal m-form λ on $J^{k} \pi(m=\operatorname{dim} M)$ The variational problem defined by λ and a compact connected m-dimensional submanifold $C \subset M$ is

$$
\frac{d}{d t} \int_{C}\left(j^{k} \phi_{t}\right)^{*} \lambda=0
$$

The calculus of variations

A Lagrangian form is a horizontal m-form λ on $J^{k} \pi(m=\operatorname{dim} M)$
The variational problem defined by λ and a compact connected m-dimensional submanifold $C \subset M$ is

$$
\frac{d}{d t} \int_{C}\left(j^{k} \phi_{t}\right)^{*} \lambda=0
$$

Define an m-form θ_{λ} on $J^{2 k-1} \pi$, horizontal over $J^{k-1} \pi$, to be a Lepage equivalent of λ if

- $\pi_{2 k-1, k}^{*} \lambda-\theta_{\lambda}$ is a contact form, and
- $i_{X} d \theta_{\lambda}$ is a contact form whenever X is vertical over E

The calculus of variations

A Lagrangian form is a horizontal m-form λ on $J^{k} \pi(m=\operatorname{dim} M)$
The variational problem defined by λ and a compact connected m-dimensional submanifold $C \subset M$ is

$$
\frac{d}{d t} \int_{C}\left(j^{k} \phi_{t}\right)^{*} \lambda=0
$$

Define an m-form θ_{λ} on $J^{2 k-1} \pi$, horizontal over $J^{k-1} \pi$, to be a Lepage equivalent of λ if

- $\pi_{2 k-1, k}^{*} \lambda-\theta_{\lambda}$ is a contact form, and
- $i_{X} d \theta_{\lambda}$ is a contact form whenever X is vertical over E

The 1-contact part ε_{λ} of $d \theta_{\lambda}$ is called the Euler-Lagrange form In coordinates, if $\lambda=L d x^{1} \wedge \cdots \wedge d x^{m}$ then

$$
\varepsilon_{\lambda}=\left(\frac{\partial L}{\partial u^{\alpha}}-\sum_{|I|=1}^{2 k-1}(-1)^{|I|-1} \frac{d^{|I|}}{d x^{I}} \frac{\partial L}{\partial u_{I}^{\alpha}}\right) d u^{\alpha} \wedge d x^{1} \wedge \cdots \wedge d x^{m} .
$$

Connections and integrability

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}: J^{1} \pi \rightarrow E$ so it is a fibred map from $\pi: E \rightarrow M$ to $\pi_{1}: J^{1} \pi \rightarrow M$

Connections and integrability

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}: J^{1} \pi \rightarrow E$ so it is a fibred map from $\pi: E \rightarrow M$ to $\pi_{1}: J^{1} \pi \rightarrow M$

Consider the prolongation $J^{1} \Gamma: J^{1} \pi \rightarrow J^{1} \pi_{1}$
The composite $J^{1} \Gamma \circ \Gamma$ takes its values in the semiholonomic manifold $\hat{J}^{2} \pi \subset J^{1} \pi_{1}$

Connections and integrability

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}: J^{1} \pi \rightarrow E$
so it is a fibred map from $\pi: E \rightarrow M$ to $\pi_{1}: J^{1} \pi \rightarrow M$
Consider the prolongation $J^{1} \Gamma: J^{1} \pi \rightarrow J^{1} \pi_{1}$
The composite $J^{1} \Gamma \circ \Gamma$ takes its values in the semiholonomic manifold $\hat{J}^{2} \pi \subset J^{1} \pi_{1}$

As

$$
\hat{J}^{2} \pi=J^{2} \pi \oplus_{J^{1} \pi}\left(\bigwedge^{2} \pi_{1}^{*} T^{*} M \otimes \pi_{1,0}^{*} V \pi\right)
$$

the composite $J^{1} \Gamma \circ \Gamma$ decomposes into symmetric and skewsymmetric parts

Connections and integrability

A connection is a section $\Gamma: E \rightarrow J^{1} \pi$ of $\pi_{1,0}: J^{1} \pi \rightarrow E$
so it is a fibred map from $\pi: E \rightarrow M$ to $\pi_{1}: J^{1} \pi \rightarrow M$
Consider the prolongation $J^{1} \Gamma: J^{1} \pi \rightarrow J^{1} \pi_{1}$
The composite $J^{1} \Gamma \circ \Gamma$ takes its values in the semiholonomic manifold $\hat{J}^{2} \pi \subset J^{1} \pi_{1}$

As

$$
\hat{J}^{2} \pi=J^{2} \pi \oplus_{J^{1} \pi}\left(\bigwedge^{2} \pi_{1}^{*} T^{*} M \otimes \pi_{1,0}^{*} V \pi\right)
$$

the composite $J^{1} \Gamma \circ \Gamma$ decomposes into symmetric and skewsymmetric parts

The skew-symmetric part is the curvature of the connection

Formal integrability of PDEs

Let $R \subset J^{k} \pi$ be a closed fibred submanifold with $\pi_{k}(R)=M$
R is a differential equation
A local section $\phi: U \rightarrow E$ with $j^{k} \phi(U) \subset R$ is a solution

Formal integrability of PDEs

Let $R \subset J^{k} \pi$ be a closed fibred submanifold with $\pi_{k}(R)=M$
R is a differential equation
A local section $\phi: U \rightarrow E$ with $j^{k} \phi(U) \subset R$ is a solution
Let $R^{l}=J^{l}\left(\left.\pi_{k}\right|_{R}\right) \cap J^{k+l} \pi$ be the prolongation of R

Formal integrability of PDEs

Let $R \subset J^{k} \pi$ be a closed fibred submanifold with $\pi_{k}(R)=M$
R is a differential equation
A local section $\phi: U \rightarrow E$ with $j^{k} \phi(U) \subset R$ is a solution
Let $R^{l}=J^{l}\left(\left.\pi_{k}\right|_{R}\right) \cap J^{k+l} \pi$ be the prolongation of R
R is formally integrable if $\pi_{k+l, k}\left(R^{l}\right)=R$ for all $k>0$
(there is a formal Taylor series solution at any point of M)

Formal integrability of PDEs

Let $R \subset J^{k} \pi$ be a closed fibred submanifold with $\pi_{k}(R)=M$
R is a differential equation
A local section $\phi: U \rightarrow E$ with $j^{k} \phi(U) \subset R$ is a solution
Let $R^{l}=J^{l}\left(\left.\pi_{k}\right|_{R}\right) \cap J^{k+l} \pi$ be the prolongation of R
R is formally integrable if $\pi_{k+l, k}\left(R^{l}\right)=R$ for all $k>0$ (there is a formal Taylor series solution at any point of M)

Algebraic techniques (Spencer cohomology, Cartan-Kähler Theorem) can check formal integrability

Formal integrability of PDEs

Let $R \subset J^{k} \pi$ be a closed fibred submanifold with $\pi_{k}(R)=M$
R is a differential equation
A local section $\phi: U \rightarrow E$ with $j^{k} \phi(U) \subset R$ is a solution
Let $R^{l}=J^{l}\left(\left.\pi_{k}\right|_{R}\right) \cap J^{k+l} \pi$ be the prolongation of R
R is formally integrable if $\pi_{k+l, k}\left(R^{l}\right)=R$ for all $k>0$ (there is a formal Taylor series solution at any point of M)

Algebraic techniques (Spencer cohomology, Cartan-Kähler Theorem) can check formal integrability

For C^{∞} systems the formal series might not define a solution!

Velocities

We don't have to start with a fibred manifold

Velocities

We don't have to start with a fibred manifold
Take any manifold M and, for each $p \in M$, take k-jets at zero of maps $\gamma: \mathbb{R}^{n} \rightarrow M$ with $\gamma(0)=p \quad(n<\operatorname{dim} M)$

Velocities

We don't have to start with a fibred manifold
Take any manifold M and, for each $p \in M$, take k-jets at zero of maps $\gamma: \mathbb{R}^{n} \rightarrow M$ with $\gamma(0)=p \quad(n<\operatorname{dim} M)$

The set of these jets is the manifold of k-th order n-velocities

$$
T_{n}^{k} M=\left\{j_{0}^{k} \gamma \mid \gamma: \mathbb{R}^{n} \rightarrow M, p \in M, \gamma(0)=p\right\}
$$

with projection $\tau_{n}^{k}: T_{n}^{k} M \rightarrow M, \tau_{n}^{k}\left(j_{0}^{k} \gamma\right)=\gamma(0)$

Velocities

We don't have to start with a fibred manifold
Take any manifold M and, for each $p \in M$, take k-jets at zero of maps $\gamma: \mathbb{R}^{n} \rightarrow M$ with $\gamma(0)=p \quad(n<\operatorname{dim} M)$

The set of these jets is the manifold of k-th order n-velocities

$$
T_{n}^{k} M=\left\{j_{0}^{k} \gamma \mid \gamma: \mathbb{R}^{n} \rightarrow M, p \in M, \gamma(0)=p\right\}
$$

with projection $\tau_{n}^{k}: T_{n}^{k} M \rightarrow M, \tau_{n}^{k}\left(j_{0}^{k} \gamma\right)=\gamma(0)$
Example: $T_{1}^{1} M$ is the tangent manifold $T M$

Velocities

We don't have to start with a fibred manifold
Take any manifold M and, for each $p \in M$, take k-jets at zero of maps $\gamma: \mathbb{R}^{n} \rightarrow M$ with $\gamma(0)=p \quad(n<\operatorname{dim} M)$

The set of these jets is the manifold of k-th order n-velocities

$$
T_{n}^{k} M=\left\{j_{0}^{k} \gamma \mid \gamma: \mathbb{R}^{n} \rightarrow M, p \in M, \gamma(0)=p\right\}
$$

with projection $\tau_{n}^{k}: T_{n}^{k} M \rightarrow M, \tau_{n}^{k}\left(j_{0}^{k} \gamma\right)=\gamma(0)$
Example: $T_{1}^{1} M$ is the tangent manifold $T M$
Consider also the submanifold $T_{n}^{\circ k}$ of regular velocities where γ is an immersion near zero

Jet groups

Take k-jets at zero of diffeomorphisms $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $\varphi(0)=0$

Jet groups

Take k-jets at zero of diffeomorphisms $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $\varphi(0)=0$

The set of these jets is the k-th order n-dimensional jet group

$$
L_{n}^{k}=\left\{j_{0}^{k} \varphi \mid \varphi, \varphi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \varphi(0)=0\right\}
$$

Jet groups

Take k-jets at zero of diffeomorphisms $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $\varphi(0)=0$

The set of these jets is the k-th order n-dimensional jet group

$$
L_{n}^{k}=\left\{j_{0}^{k} \varphi \mid \varphi, \varphi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \varphi(0)=0\right\}
$$

Example: $L_{n}^{1} \cong G L(n)$

Jet groups

Take k-jets at zero of diffeomorphisms $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $\varphi(0)=0$

The set of these jets is the k-th order n-dimensional jet group

$$
L_{n}^{k}=\left\{j_{0}^{k} \varphi \mid \varphi, \varphi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \varphi(0)=0\right\}
$$

Example: $L_{n}^{1} \cong G L(n)$
The map $\lambda_{n}^{k}: L_{n}^{k} \rightarrow L_{n}^{1}, \lambda_{n}^{k}\left(j_{0}^{k} \varphi\right)=j_{0}^{1} \varphi$ is a Lie group homomorphism with an abelian kernel

Jet groups

Take k-jets at zero of diffeomorphisms $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $\varphi(0)=0$

The set of these jets is the k-th order n-dimensional jet group

$$
L_{n}^{k}=\left\{j_{0}^{k} \varphi \mid \varphi, \varphi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \varphi(0)=0\right\}
$$

Example: $L_{n}^{1} \cong G L(n)$
The map $\lambda_{n}^{k}: L_{n}^{k} \rightarrow L_{n}^{1}, \lambda_{n}^{k}\left(j_{0}^{k} \varphi\right)=j_{0}^{1} \varphi$ is a Lie group homomorphism with an abelian kernel If $k>1$ then L_{n}^{k} is a semidirect product of L_{n}^{1} and $\operatorname{ker} \lambda_{n}^{k}$

Jet groups

Take k-jets at zero of diffeomorphisms $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $\varphi(0)=0$

The set of these jets is the k-th order n-dimensional jet group

$$
L_{n}^{k}=\left\{j_{0}^{k} \varphi \mid \varphi, \varphi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \varphi(0)=0\right\}
$$

Example: $L_{n}^{1} \cong G L(n)$
The map $\lambda_{n}^{k}: L_{n}^{k} \rightarrow L_{n}^{1}, \lambda_{n}^{k}\left(j_{0}^{k} \varphi\right)=j_{0}^{1} \varphi$ is a Lie group homomorphism with an abelian kernel If $k>1$ then L_{n}^{k} is a semidirect product of L_{n}^{1} and $\operatorname{ker} \lambda_{n}^{k}$

Consider also the oriented jet group L_{n}^{k+} where φ has positive Jacobian determinant at zero

Contact elements (Grassmannians)

Fix the dimension n and the order k

Contact elements (Grassmannians)

Fix the dimension n and the order k
The jet group L_{n}^{k} has a right action on the regular velocity manifold $T_{n}^{\circ k} M$

$$
\left(j_{0}^{k} \gamma, j_{0}^{k} \varphi\right) \mapsto j_{0}^{k}(\gamma \circ \varphi)
$$

Contact elements (Grassmannians)

Fix the dimension n and the order k
The jet group L_{n}^{k} has a right action on the regular velocity manifold $T_{n}^{\circ k} M$

$$
\left(j_{0}^{k} \gamma, j_{0}^{k} \varphi\right) \mapsto j_{0}^{k}(\gamma \circ \varphi)
$$

The quotient is the manifold $J_{n}^{k} M$ of k-th order n-dimensional contact elements

Contact elements (Grassmannians)

Fix the dimension n and the order k
The jet group L_{n}^{k} has a right action on the regular velocity manifold $T_{n}^{\circ k} M$

$$
\left(j_{0}^{k} \gamma, j_{0}^{k} \varphi\right) \mapsto j_{0}^{k}(\gamma \circ \varphi)
$$

The quotient is the manifold $J_{n}^{k} M$ of k-th order n-dimensional contact elements

Think of n-dimensional submanifolds 'touching to order k ' (for $T_{n}^{\circ k} M$ the touching must also 'preserve parametrization')

Contact elements (Grassmannians)

Fix the dimension n and the order k
The jet group L_{n}^{k} has a right action on the regular velocity manifold $T_{n}^{\circ k} M$

$$
\left(j_{0}^{k} \gamma, j_{0}^{k} \varphi\right) \mapsto j_{0}^{k}(\gamma \circ \varphi)
$$

The quotient is the manifold $J_{n}^{k} M$ of k-th order n-dimensional contact elements

Think of n-dimensional submanifolds 'touching to order k ' (for $T_{n}^{\circ k} M$ the touching must also 'preserve parametrization')

If $\pi: M \rightarrow N$ is a fibred manifold with $\operatorname{dim} N=n$ then $J^{k} \pi \subset J_{n}^{k} M$ is open-dense

Contact elements (Grassmannians)

Fix the dimension n and the order k
The jet group L_{n}^{k} has a right action on the regular velocity manifold $T_{n}^{\circ k} M$

$$
\left(j_{0}^{k} \gamma, j_{0}^{k} \varphi\right) \mapsto j_{0}^{k}(\gamma \circ \varphi)
$$

The quotient is the manifold $J_{n}^{k} M$ of k-th order n-dimensional contact elements

Think of n-dimensional submanifolds 'touching to order k ' (for $T_{n}^{\circ k} M$ the touching must also 'preserve parametrization')
If $\pi: M \rightarrow N$ is a fibred manifold with $\operatorname{dim} N=n$ then $J^{k} \pi \subset J_{n}^{k} M$ is open-dense

Taking the quotient by the oriented jet group L_{n}^{k+} gives oriented contact elements $J_{n}^{k+} M$

