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Jets
or, how to geometrize the differential calculus
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Abstract

The idea of a "jet" was introduced by Charles Ehresmann in 1951
as an equivalence class of maps, all defined in some neighbourhood
of a given point, and with the same value and derivatives (up to a
given order) at that point. Conceptually, therefore, a jet may be
considered as an abstract Taylor polynomial.

In this talk | shall expand on this definition, and explain the
structure of various spaces of jets (of which the simplest is the
tangent bundle of a differentiable manifold).

| shall also explain how the use of jets can give a precise meaning
to certain aspects of the Euler-Lagrange equations of the calculus
of variations, such as the ideas of "differentiating with respect to
derivatives" and of "total derivative".
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The Euler-Lagrange equations

Problems in the calculus of variations give rise to equations like

oL oL _
dgt  dt gt

What does this mean?
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Problems in the calculus of variations give rise to equations like
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What does this mean?

e How can you differentiate with respect to a derivative ¢*?

e How can you then take the ‘total derivative’ with respect to t7
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The Euler-Lagrange equations

Problems in the calculus of variations give rise to equations like

oL oL _
dgt  dt gt

What does this mean?

e How can you differentiate with respect to a derivative ¢*?

e How can you then take the ‘total derivative’ with respect to t7

A formal approach uses the concept of
tangent vectors on a manifold

OJ
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Tangent vectors: the classical approach

Take a manifold M: a locally Euclidean topological space
whose charts z : U — R", U C M are differentiably related

(we'll assume that maps oz~ : 2(UNU) — (U NTU) are C)
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Tangent vectors: the classical approach

Take a manifold M: a locally Euclidean topological space
whose charts z : U — R", U C M are differentiably related

(we'll assume that maps oz~ : 2(UNU) — (U NTU) are C)

A classical tangent vector ¢ is a list of numbers (£%) which
transforms like a vector, so that
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Tangent vectors: the classical approach
Take a manifold M: a locally Euclidean topological space
whose charts z : U — R", U C M are differentiably related
(we'll assume that maps oz~ : 2(UNU) — (U NTU) are C)

A classical tangent vector ¢ is a list of numbers (£%) which
transforms like a vector, so that

i
0z j

¢ = Ou

(sum over repeated indices)

Formally, £ = [((52),37)] € T,M where () eR", pe U C M,
z:U — R"™ and

892'1

gj

p

((€),2) ~ ((€),2) if &=
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Tangent vectors: the classical approach

Take a manifold M: a locally Euclidean topological space
whose charts z : U — R", U C M are differentiably related

(we'll assume that maps oz~ : 2(UNU) — (U NTU) are C)

A classical tangent vector ¢ is a list of numbers (£%) which
transforms like a vector, so that

0zt
- Oxd
Formally, £ = [((52),1')] € T,M where () eR", pe U C M,
z:U — R" and

¢ (sum over repeated indices)

éi

i b A e g O
((g )?x)N((g ),l‘) if &= i 13

p

T,M is the tangent space to M at p O
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Tangent vectors: the algebraic approach

Take R(e), €2 =0, as the algebra of ‘dual numbers’.

An algebraic tangent vector £ at p € M is an algebra
homomorphism C*>°(M) — R(e) satisfying

§(f)=fp) mode  (fecC™(M))



Tangent vectors
[e]e] o)

Tangent vectors: the algebraic approach

Take R(e), €2 =0, as the algebra of ‘dual numbers’.

An algebraic tangent vector £ at p € M is an algebra
homomorphism C*>°(M) — R(e) satisfying

§(f)=fp) mode  (fecC™(M))
Define 6¢ : C>°(M) — R by

def -e=¢&(f) — fp)
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Tangent vectors: the algebraic approach

Take R(e), €2 =0, as the algebra of ‘dual numbers’.

An algebraic tangent vector £ at p € M is an algebra
homomorphism C*>°(M) — R(e) satisfying

§(f) = f(p) mode  (feC®(M))
Define 6¢ : C>°(M) — R by
d¢f - e=&(f) = f(p)

d¢ is a derivation: d¢(fg) = g(p)dcf + f(p)de(9)



Tangent vectors
[e]e] o)

Tangent vectors: the algebraic approach

Take R(e), €2 =0, as the algebra of ‘dual numbers’.

An algebraic tangent vector £ at p € M is an algebra
homomorphism C*>°(M) — R(e) satisfying

§(f) = f(p) mode  (feC*(M))
Define 6 : C>(M) — R by
d¢f - e=&(f) = f(p)
J¢ is a derivation: d0¢(fg) = g(p)ocf + [(p)dc(g)

Algebraic and classical tangent vectors may be identified ...
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Tangent vectors: the algebraic approach

Take R(e), €2 =0, as the algebra of ‘dual numbers’.

An algebraic tangent vector £ at p € M is an algebra
homomorphism C*>°(M) — R(e) satisfying

§(f) = f(p) mode  (feC*(M))
Define 6 : C%°(M) — R by
def-e=8&(f) = fp)
J¢ is a derivation: 0¢(fg) = g(p)dcf + [(p)de(9)

Algebraic and classical tangent vectors may be identified ...
in the C'*° case!

O
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Tangent vectors: the jet approach

Let v: R — M be a curve with v(0) = p.

A geometric tangent vector is an equivalence class [y] where
y o~y if

and
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and
(fo3)(0)=(fon)(0)  forevery f € C®(M)

Geometric and classical tangent vectors may be identified
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Tangent vectors: the jet approach

Let v: R — M be a curve with v(0) = p.

A geometric tangent vector is an equivalence class [y] where
y o~y if

and
(fo3)(0) = (fon)'(0)  forevery f € C°(M)
Geometric and classical tangent vectors may be identified

An equivalence class defined in this way is called a jet

O
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1-jets of sections

We start with a fibred manifold (surjective submersion) 7 : E — M
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1-jets of sections

We start with a fibred manifold (surjective submersion) 7 : E — M

Take p € M. Two local sections ¢, ¢ defined near p are
l-equivalent at p if

* &(p) = ¢(p) and

o (fo$07)(0)=(fopor)(0) forevery f € C=(E)
and every curve v in M with y(0) = p

The 1-jet of ¢ at p is the equivalence class; denoted by j}l)(D
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1-jets of sections

We start with a fibred manifold (surjective submersion) 7 : E — M

Take p € M. Two local sections ¢, ¢ defined near p are
l-equivalent at p if

* (p) = ¢(p) and

o (f o¢o v)'(0) = (f o p o) (0) for every f € C°(E)

and every curve 7y in M with v(0) = p
The 1-jet of ¢ at p is the equivalence class; denoted by j}l)(D
The second condition may be written in fibred coordinates (%, u®)
on E around ¢(p) as 93 o
oxt|  Oxt

P p
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The 1-jet manifold
The set of all 1-jets of 7 : E — M is denoted by .J'7:

Jin = {j;gzs :p € M, ¢ a local section near p}
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The 1-jet manifold
The set of all 1-jets of 7 : E — M is denoted by .J'7:
Jir = {j;gzﬁ :p € M, ¢ a local section near p}
The source map m and the target map m are

7T1!J17T—)M 7r170:J17r—>E

T (jpd) = p m1.0(jp®) = ¢(p)
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The 1-jet manifold
The set of all 1-jets of 7 : E — M is denoted by .J'7:
Jir = {j;gzﬁ :p € M, ¢ a local section near p}
The source map m and the target map m are

7T1!J17T—)M 7r170:J17r—>E
T (jpd) = p m1.0(jp®) = ¢(p)
Jlm is a manifold with coordinates (2%, u®, u$) where

_ 9¢°

- i
amp

uf (jp )
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The 1-jet manifold
The set of all 1-jets of 7 : E — M is denoted by .J'7:
Jir = {j;gzﬁ :p € M, ¢ a local section near p}

The source map m and the target map m are

7T1!J17T—)M 7r170:J17r—>E
T (jpd) = p m1.0(jp®) = ¢(p)
Jlm is a manifold with coordinates (2%, u®, u$) where
0p”
ailyy = 22
i (7p9) = 55 ,

The source map 71 defines a fibred manifold
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The 1-jet manifold
The set of all 1-jets of 7 : E — M is denoted by .J'7:
Jir = {j;gzﬁ :p € M, ¢ a local section near p}

The source map m and the target map m are

7T1!J17T—)M 7r170:J17r—>E
T (jpd) = p m1.0(jp®) = ¢(p)
Jlm is a manifold with coordinates (2%, u®, u$) where
0p”
ailyy = 22
i (7p9) = 55 ,

The source map 71 defines a fibred manifold
The target map 71 o defines an affine bundle (always!)
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The affine structure
Why is w10 : J'm — E an affine bundle?
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The affine structure
Why is w10 : J'm — E an affine bundle?

Because qu;, Tpo : TyM — Ty E

Other types of jet
000
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The affine structure
Why is w10 : J'm — E an affine bundle?

Because qu;, Tp¢ : TyM — Ty, E so that

Ty, Ty € Hom(T, M, Ty E) = Ty M ® Ty, E
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The affine structure
Why is w10 : J'm — E an affine bundle?

Because qu;, Tp¢ : TyM — Ty, E so that
Ty, Ty € Hom(T, M, Ty E) = Ty M ® Ty, E

and jl¢ = jlo when T,¢ = Tp¢
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The affine structure
Why is w10 : J'm — E an affine bundle?

Because qu;,TPQS 1Ty M — Ty, E so that
Ty, Ty € Hom(T, M, Ty E) = Ty M ® Ty, E
and jl¢ = jlo when T,¢ = Tp¢

So regard J'm as a sub-bundle of 7*T*M @5 TE
(an affine sub-bundle because T,y o Ty, = id7, 1)

the associated vector bundle is 7*T*M Qg V7 — E
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The affine structure
Why is w10 : J'm — E an affine bundle?

Because qu;,TPQS 1Ty M — Ty, E so that
Ty, Ty € Hom(T, M, Ty E) = Ty M ® Ty, E
and jl¢ = jlo when T,¢ = Tp¢

So regard J'm as a sub-bundle of 7*T*M @5 TE
(an affine sub-bundle because T,y o Ty, = id7, 1)

the associated vector bundle is 7*T*M Qg V7 — E

¢(p)>

In coordinates

ol
+ ozt

0

(0%
pau

, 0
-1 7
o~y (g

(p)
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Prolonging local sections
Suppose U C M is open, and ¢ : U — E is a local section

For each p € U there is a 1-jet ji¢ € J'm
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Prolonging local sections

Suppose U C M is open, and ¢ : U — E is a local section

For each p € U there is a 1-jet ji¢ € J'm

Define a local section jl¢: U — Jlm by j'o(p) = jll)qﬁ called
the prolongation of ¢
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Prolonging local sections
Suppose U C M is open, and ¢ : U — E is a local section

For each p € U there is a 1-jet ji¢ € J'm

Define a local section jl¢: U — Jlm by j'o(p) = jll)qﬁ called
the prolongation of ¢

In coordinates

O™
oxt

uojlp=19"  ufojle=
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Prolonging local sections
Suppose U C M is open, and ¢ : U — E is a local section

For each p € U there is a 1-jet ji¢ € J'm

Define a local section jl¢: U — Jlm by j'o(p) = j;(;ﬁ called
the prolongation of ¢

In coordinates

0¢”

S 1
utojid=¢%  uilojé=o5

NOT EVERY LOCAL SECTION OF 7 : Jir — M
IS A PROLONGATION!
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Example: connections

1,0
Jr—3E- S M

A connection is a section I' : E — Jl7 of my g
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Example: connections

1,0
Jir S E- LM
A connection is a section I' : E — Jl7 of my g

A local section ¢ of 7 is a solution of T if jl¢p =T o0 ¢
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Example: connections

Jr 8 E s M
A connection is a section I' : E — Jl7 of my g
A local section ¢ of 7 is a solution of T if jl¢p =T o0 ¢
In coordinates, put I'{" = u$* o I'; then
0P
ox’

=ufojl¢=T¢o¢



Abstract Tangent vectors Jets of sections Higher order jets Toolbox Applications
o] 0000 0O000e0 00000 00000 000

Example: connections

1,0
Jir S E- LM
A connection is a section I' : E — Jl7 of my g

A local section ¢ of 7 is a solution of T if jl¢p =T o0 ¢
In coordinates, put I'{" = u$* o I'; then
0P
ox’

=ufojig=Tfo¢

the equation (I'(E) C J'r) is conceptually distinct from
the set of its solutions

Other types of jet
000
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Example: connections

1,0
Jlr = E - M
A connection is a section I' : E — Jl7 of my g

A local section ¢ of 7 is a solution of T if jl¢p =T o0 ¢

In coordinates, put I'{" = u$* o I'; then
0¢*

G = Ui 0i'6=Tfo0

the equation (I'(E) C J'7) is conceptually distinct from
the set of its solutions

Thinking of a jet jzl)qﬁ as a tensor at ¢(p) € F,
a connection is a tensor field (horizontal projector)

A 9 lo' 9
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Jet connections and ‘other’ connections

1,0
Jr—3E- S M

A connection is a section I' : E — J'7 of my g
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Jet connections and ‘other’ connections

1,0
Jin =S E - M
A connection is a section I' : E — J'7 of my g

If 7: E— M is a principal G-bundle:
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Jet connections and ‘other’ connections

1,0
Jir S E- LM
A connection is a section I' : E — J'7 of my g

If 7: E— M is a principal G-bundle:

I is a principal connection

if I — Pr takes its values in fundamental vector fields
(and so may be considered as a g-valued form on E)
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Jet connections and ‘other’ connections

Jin BT M
A connection is a section I' : E — J'7 of my g
If 7: E— M is a principal G-bundle:
I is a principal connection

if I — Pr takes its values in fundamental vector fields
(and so may be considered as a g-valued form on E)

If 7: E — M is a vector bundle then so is w1 : J'm — M
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Jet connections and ‘other’ connections

1,0
Jir S E- LM
A connection is a section I' : E — J'7 of my g

If 7: E— M is a principal G-bundle:

I is a principal connection

if I — Pr takes its values in fundamental vector fields
(and so may be considered as a g-valued form on E)

If 7: E — M is a vector bundle then so is w1 : J'm — M
I is a linear connection if it is a splitting of

0T Moy E— J'r 22 B 50
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Jet connections and ‘other’ connections

1,0
Jir S E- LM
A connection is a section I' : E — J'7 of my g

If 7: E— M is a principal G-bundle:

I is a principal connection

if I — Pr takes its values in fundamental vector fields
(and so may be considered as a g-valued form on E)

If 7: E — M is a vector bundle then so is w1 : J'm — M
I is a linear connection if it is a splitting of

0= T*MoyE— J'n ™3 E—0
the covariant differential V' is defined by

Vig=j'¢—Tod¢
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k-jets of sections

Continue with a fibred manifold 7 : E — M

Take p € M. Two local sections ¢, ¢ defined near p are
k-equivalent at p if
e &(p) = ¢(p) and

e (fopor)(0) = (fopor)(0) for every f € C=(E)
and every curve v in M with v(0) =p (1 <r <k)
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Continue with a fibred manifold 7 : E — M

Take p € M. Two local sections ¢, ¢ defined near p are
k-equivalent at p if

* 3(p) = ¢(p) and

e (fopor)(0) = (fopor)(0) for every f € C=(E)
and every curve v in M with v(0) =p (1 <r <k)

The k-jet of ¢ at p is the equivalence class; denoted by j]lf(/)
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k-jets of sections

Continue with a fibred manifold 7 : E — M

Take p € M. Two local sections ¢, ¢ defined near p are
k-equivalent at p if

* 3(p) = ¢(p) and

e (fopor)(0) = (fopor)(0) for every f € C=(E)
and every curve v in M with v(0) =p (1 <r <k)

The k-jet of ¢ at p is the equivalence class; denoted by j]‘;’(/)
The set of all k-jets of 7 : E — M is denoted by J"7:

Jhr = {j;f¢ :p € M, ¢ a local section near p}
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The bundle structure of k-jets

The source map my,, the target map m,
and the order-reduction map 7y : JEm — Jlm (1 <1< k) are

7rk:Jk7r—>M 7Tk70:<]k7T—>E Wk’ltjkﬂ'—}Jlﬂ'
me(jhe) =p Teo(ind) = o(p)  mra(ise) = ipé
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The bundle structure of k-jets

The source map my,, the target map m,
and the order-reduction map 7y : JEm — Jlm (1 <1< k) are

7rk:Jk7r—>M 7Tk70:<]k7T—>E Wk’lljkﬂ'—}Jlﬂ'
me(jhe) =p Teo(ind) = o(p)  mra(ise) = ipé

The source map m; defines a fibred manifold



Higher order jets
O@000

The bundle structure of k-jets

The source map my,, the target map m,
and the order-reduction map 7y : JEm — Jlm (1 <1< k) are
.7k . 7k .7k 1
s J T — M Tho:J m—FE Ty m—Jw
m(jpd) = p mo0(ip®) = 6(p)  ma(ipd) = G

The source map m; defines a fibred manifold

The target map m; ¢ and order-reduction maps 7y ;
define fibre bundles
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The bundle structure of k-jets

The source map my,, the target map m,
and the order-reduction map 7y : JEm — Jlm (1 <1< k) are

7rk:Jk7r—>M 7Tk70:<]k7T—>E Wk’lljkﬂ'—}Jlﬂ'
me(jhe) =p Teo(ind) = o(p)  mra(ise) = ipé

The source map m; defines a fibred manifold

The target map m; ¢ and order-reduction maps 7y ;
define fibre bundles
The order-reduction map 7, ;1 defines an affine bundle
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The bundle structure of k-jets

The source map my,, the target map m,
and the order-reduction map Tk = Jix (1<I<E)are

7rk:Jk7r—>M 7Tk70'<]k7T—>E Wk’l'Jkﬂ'—>Jl

me(ind) =p mo(ig®) = ¢(p)  mra(ife) = jho

The source map m; defines a fibred manifold
The target map m; ¢ and order-reduction maps 7y ;
define fibre bundles

The order-reduction map 7, ;1 defines an affine bundle

If :U — E is a local section,
Define a local section j*¢ : U — J*7 by j*¢(p) = qub called
the prolongation of ¢
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Symmetric coordinates and multi-indices

J? is a manifold with coordinates (xz,u"‘,u?,u%) where

_ 9¢°

==,
(9a:p

B 82¢a

C 9xtoxd »

uf (7o) ufy (7 )
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Symmetric coordinates and multi-indices

J?m is a manifold with coordinates (2%, u®, u§ i ug;) where

o (z)a 82 ¢a

U?(Jz@ - Oz ) 1]( 2¢) axzax]
p
WARNING: If f € C°(.J%r) then
8f of f L af .
Af = gide + guadu® + s ey ous, dui;

where #(ij) = 1if i = j, #(ij) =2 if i # j
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Symmetric coordinates and multi-indices

J?7 is a manifold with coordinates (z%, u®, u$, u) where

» g Yig
. 8¢a 82¢a
a2 -2
U, <]p¢) - 81'Z ) Z]( ¢) axzax]
p
WARNING: If f € C*(J%7) then

of 4.i . 9f of 1 of . .
df = e + gad” + aug i #(ij) au;;d“ij

where #(ij) = 1if i = j, #(ij) = 2if i £ j
Options:

e Use numerical coefficients with the summation convention
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Symmetric coordinates and multi-indices

J?7 is a manifold with coordinates (z%, u®, u$, u) where

» Yq s Y
. 8¢a 82¢a
a2 -2
Uu; (jp¢) = Oz ) 2]( ¢) axzax]
p
WARNING: If f € C°(J?x) then

Of 4.i . 9f of 1 of . .
df = e + gad” + aug i #(ij) Ous, du;

where #(ij) = 1if i = j, #(ij) = 2if i £ j
Options:

e Use numerical coefficients with the summation convention
e Use non-decreasing indices and explicit sums
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Symmetric coordinates and multi-indices

J?7 is a manifold with coordinates (z%, u®, u$, u) where

» Yq s Y
. 8¢a 82¢a
a2 -2
Uu; (jp¢) = Oz ) 2]( ¢) axzax]
p
WARNING: If f € C°(J?x) then

Of 4.i . 9f of 1 of . .
df = e + gad” + aug i #(ij) Ous, du;

where #(ij) = 1if i = j, #(ij) = 2if i £ j
Options:

e Use numerical coefficients with the summation convention
e Use non-decreasing indices and explicit sums
e Use vector multi-indices u§ with I € Ndim M

O
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Repeated jets

The source map 7y : J'm — M is a fibred manifold
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Repeated jets

The source map 7y : J'm — M is a fibred manifold

The set of all 1-jets of 71 is the repeated jet manifold:

Jir = {j;w :x € M, a local section of 71 near p}
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Repeated jets

The source map 7y : J'm — M is a fibred manifold

The set of all 1-jets of 71 is the repeated jet manifold:
Jir = {j;w :x € M, a local section of 71 near p}

Coordinates on J'my are (2, u®, ug; u®;, ug;):
« (0%
Y o O

uf Gp) =9 ), wylpw) = 55| - ullpY) = 55
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Higher order jets
[e]e]e] o}

Repeated jets

The source map 7y : J'm — M is a fibred manifold

The set of all 1-jets of 71 is the repeated jet manifold:
Jir = {j;w :x € M, a local section of 71 near p}

Coordinates on J'my are (2, u®, ug; u®;, ug;):

. . o .
W) =, G = 20| i)
P

[ (03 87 e
In general ui* # u?; and ug; # uf,

_ o

j
axp
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Holonomic and semiholonomic jets

o*

j M
8mp

Iy

J
aasp

u (o) =0 (p),  u(ipw) = ugs (o) =
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Holonomic and semiholonomic jets

o/ 1 o a (.1 _ 8¢a a (.1 _ alr[}za
U; (]pd]) - % (p)7 U’](jpd}) - 8507 ) ) U’L,_](jp/l/}) - 8333 »
If ) = j'¢ is a prolongation then

uAe) = f] =39
6(;50‘ 0P o sl
,](Jp( 1¢)) @ Oxt = Ot ) % = uj,i(j;(J1¢))

so that J2m C J'm — the holonomic jet submanifold
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s o o (s oy a (s oy
U; (J; ) =i (p) U-,j(J; )= oz | Ui,j(]éi/)) = i
p P
If » = j'¢ is a prolongation then
a1y olok ay -
uly (G (7' 0) = = (L5 9)),
1. 0 | 0¢“ 0 | 09 s,
o (iliilg))y = = A
ui,j(.]p(] ¢)) - 8.Tj , al‘l 81‘1 ) a$j uj,l(jp(.] ¢))

so that J2m C J'm — the holonomic jet submanifold
There is, in general, no canonical projection J'm; — J%7.

But there is a submanifold J27 C J'7; of semiholonomic jets
where u; = uf, but uf’; need not be symmetric
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[e]e]ee] }

Holonomic and semiholonomic jets

s o o (s oy a (s oy
U; (J; ) =i (p) U-,j(J; )= oz | Ui,j(]éi/)) = i
p P
If » = j'¢ is a prolongation then
a1y olok ay -
uly (G (7' 0) = = (L5 9)),
1. 0 | 0¢“ 0 | 09 s,
o (iliilg))y = = A
ui,j(.]p(] ¢)) - 8.Tj , al‘l 81‘1 ) a$j uj,l(jp(.] ¢))

so that J2m C J'm — the holonomic jet submanifold
There is, in general, no canonical projection J'm; — J%7.

But there is a submanifold J27 C J'7; of semiholonomic jets
where u; = uf, but uf’; need not be symmetric

and J2rm = J2r @1, (/\2 T T*M ® WT’OVTI') O
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Contact forms

How can you tell if a local section v of 7, : J*7m — M is a
prolongation?
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1) is a prolongation if ¢)*w = 0 for every contact form w
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Contact 1-forms on J'7 generated by 0, = du® — ufdz’
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Contact forms
How can you tell if a local section v of 7, : J*7m — M is a
prolongation?
A differential r-form w on J*r is a contact form
if (j%¢)*w = 0 for every prolonged local section j*¢
1) is a prolongation if ¢)*w = 0 for every contact form w
Contact 1-forms on J'7 generated by 0, = du® — ufdz’

Contact 1-forms on J*7 generated by 0 = duy — uf, da’
(M <k)
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Contact 1-forms on J*7 generated by 0 = duy — uf, da’
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Contact r-forms are generated by contact 1-forms 6%
and their exterior derivatives df¢
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Contact forms

How can you tell if a local section v of 7, : J*7m — M is a
prolongation?

A differential r-form w on J*7 is a contact form
if (j%¢)*w = 0 for every prolonged local section j*¢

1) is a prolongation if ¢)*w = 0 for every contact form w
Contact 1-forms on J'7 generated by 0, = du® — ufdz’
Contact 1-forms on J*7 generated by 0 = duy — uf, da’
(111 < k)

Contact r-forms are generated by contact 1-forms 6%
and their exterior derivatives df¢

Can also define g-contact r-forms and exactly g-contact r-forms
(¢ <) O
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Total derivatives

Total derivatives are ‘vector fields’ that annihilate contact 1-forms
They are vector fields along a map, not on a manifold

Given a vector £ € T, M and a local section ¢ defined near p
the tangent vector Tj%¢ (&) € le;;-d,JkTr depends on derivatives

of order k + 1
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Total derivatives

Total derivatives are ‘vector fields’ that annihilate contact 1-forms
They are vector fields along a map, not on a manifold

Given a vector £ € T, M and a local section ¢ defined near p
the tangent vector Tj%¢ (&) € le;;-d,JkTr depends on derivatives

of order k + 1 (that is, on j5™1¢)
So given a vector field X on M, the corresponding total derivative

is
Jk—i—lﬂ'—)TJkﬂ', k+1¢|—>T]k¢( )
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Total derivatives

Total derivatives are ‘vector fields’ that annihilate contact 1-forms
They are vector fields along a map, not on a manifold

Given a vector £ € T, M and a local section ¢ defined near p
the tangent vector Tj%¢ (&) € le;;-d,JkTr depends on derivatives

of order k + 1 (that is, on j5™1¢)

So given a vector field X on M, the corresponding total derivative
is
Jk—i—lﬂ'—)TJkﬂ', k+1¢|—>T]k¢( )

In coordinates

k
i 0 i d if 9 o 0
X e becomes X o =X (8:pi + |Iz:0u”1i0u?>
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Prolongations of fibred maps

Take m: EE— M and p : FF — N fibred manifolds

A map f: E— Fis a fibred map if y,z € E, implies f(y) = f(z)
and

the map f: M — N defined by f(p) = p(f(v)) (any y € E,)

is a diffeomorphism
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Prolongations of fibred maps

Take m: EE— M and p : FF — N fibred manifolds

A map f: E— Fis a fibred map if y,z € E, implies f(y) = f(z)
and

the map f: M — N defined by f(p) = p(f(v)) (any y € E,)

is a diffeomorphism

The prolongation of f is the map J*f : Jkr — J*p

TGy d) = Gy (fodo f)
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Prolongations of fibred maps

Take m: EE— M and p : FF — N fibred manifolds

A map f: E— Fis a fibred map if y,z € E, implies f(y) = f(z)
and

the map f: M — N defined by f(p) = p(f(v)) (any y € E,)

is a diffeomorphism

The prolongation of f is the map J*f : Jkn — J¥p
T f(Gp9) = Jf1py(fodo f7)

J* is a functor on the category of fibred manifolds and fibred maps
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Prolongations of fibred maps

Take m: EE— M and p : FF — N fibred manifolds

A map f: E— Fis a fibred map if y,z € E, implies f(y) = f(z)
and

the map f: M — N defined by f(p) = p(f(v)) (any y € E,)

is a diffeomorphism

The prolongation of f is the map J*f : Jkn — J¥p
T f(Gp9) = Jf1py(fodo f7)

J* is a functor on the category of fibred manifolds and fibred maps

In coordinates
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Prolongations of vector fields

Take a projectable vector field X on E
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Take a projectable vector field X on E

The flow ¢; of X is a family of fibred maps,
so the prolongations J*¢; define the flow prolongation X* on Jkr
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Prolongations of vector fields

Take a projectable vector field X on E

The flow ¢; of X is a family of fibred maps,
so the prolongations J*¢; define the flow prolongation X* on Jkr

If
0 o
X=X +X*—
ox? + ou®
then
k .
-9 dll xe I allxi G,
PUED - LI A e 9
o T 2 < T K 027 “K“J) guo
[1]=0 J—f—}[;():]

This works even if the flow is not global
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Prolongations of vector fields

Take a projectable vector field X on E

The flow ¢; of X is a family of fibred maps,
so the prolongations J*¢; define the flow prolongation X* on Jkr

If
0 o
X=X +X*—
ox? + ou®
then
k .
-9 dll xe I allxi G,
PUED - LI A e 9
o T 2 < T K 027 “K“J') guo
[1]=0 J—f—}[;():[

This works even if the flow is not global

If X is not projectable, it can still be prolonged!
(Unlike diffeomorphisms) O
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Prolongations and contact forms

A contact transformation is a diffeomorphism F : Jk7 — Jkr
such that F*w is a contact form whenever w is a contact form
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If f: E — Eis a fibred diffeomorphism (over M)
then J*f : J*7 — JFr is a contact transformation
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A contact transformation is a diffeomorphism F : Jk7 — Jkr
such that F*w is a contact form whenever w is a contact form

If f: E — Eis a fibred diffeomorphism (over M)
then J*f : J*7 — JFr is a contact transformation

‘Usually’ a contact transformation F : Jk7m — Jkr
projects to a fibred diffeomorphism f : E — E, and then F = J*f.
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projects to a fibred diffeomorphism f : E — E, and then F = J*f.

EXCEPTION when dim F = dim M + 1
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Prolongations and contact forms

A contact transformation is a diffeomorphism F : Jk7 — Jkr
such that F*w is a contact form whenever w is a contact form

If f: E — Eis a fibred diffeomorphism (over M)

then J*f : J*7 — JFr is a contact transformation

‘Usually’ a contact transformation F : Jk7m — Jkr

projects to a fibred diffeomorphism f : E — E, and then F = J*f.
EXCEPTION when dim F = dim M + 1

so that dim J'7 — dim E = dim M

Example: the map (2%, u,w;) — (u;, v'u; — u, z°)
is a contact transformation (the Hodograph transformation)
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Prolongations and contact forms

A contact transformation is a diffeomorphism F : Jk7 — Jkr
such that F*w is a contact form whenever w is a contact form

If f: E — Eis a fibred diffeomorphism (over M)

then J*f : J*7 — JFr is a contact transformation

‘Usually’ a contact transformation F : Jk7m — Jkr

projects to a fibred diffeomorphism f : E — E, and then F = J*f.
EXCEPTION when dim F = dim M + 1

so that dim J'7 — dim E = dim M

Example: the map (2%, u,w;) — (u;, v'u; — u, z°)

is a contact transformation (the Hodograph transformation)

An infinitesimal contact transformation is a vector field X on Jkr
such that Lxw is a contact form whenever w is a contact form [J
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The calculus of variations
A Lagrangian form is a horizontal m-form A on J*7 (m = dim M)

The variational problem defined by A and a compact connected
m-dimensional submanifold C' C M is
d

-k *
—_— )\ =
dt O(] b1) 0
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The calculus of variations
A Lagrangian form is a horizontal m-form A on J7 (m = dim M)
The variational problem defined by A and a compact connected

m-dimensional submanifold C C M is

d &
— ] A=
dt C(] bt) 0

Define an m-form 6, on J2*~17, horizontal over J*~!7, to be
a Lepage equivalent of \ if

. :
® T3, 1 ;A — 0 is a contact form, and

e ixdf) is a contact form whenever X is vertical over



Applications
@00

The calculus of variations
A Lagrangian form is a horizontal m-form A on J7 (m = dim M)

The variational problem defined by A and a compact connected
m-dimensional submanifold C' C M is

d
Define an m-form 6, on J%*lw, horizontal over J*~17, to be

a Lepage equivalent of \ if
® T3, 1 ;A — 0 is a contact form, and

e ixdf) is a contact form whenever X is vertical over

The 1-contact part ) of df, is called the Euler-Lagrange form
In coordinates, if A = Ldz! A --- A dx™ then

or, 2l d oL
— |I\ 1 m
€ <8ua |]§_1( 1) g )du Adxt AN dx™.
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Connections and integrability

A connection is a section I': E — Jlr of myo: Jir - E

so it is a fibred map from 7 : 2 — M to m : J'nr — M
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Consider the prolongation J'I": Jl7m — Jlm

The composite J!T" o T takes its values in the semiholonomic
manifold J27 C J'm
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the composite J'T' o I' decomposes into symmetric and
skewsymmetric parts
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Connections and integrability

A connection is a section I': E — Jlr of myo: Jir - E

so it is a fibred map from 7 : 2 — M to m : J'nr — M

Consider the prolongation J'I": Jl7m — Jlm

The composite J!T" o T takes its values in the semiholonomic
manifold J27 C J'm

As
Jr = JPr Djin (/\27FTT*M ® 7TT,UVW)

the composite J'T' o I' decomposes into symmetric and
skewsymmetric parts

The skew-symmetric part is the curvature of the connection
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Formal integrability of PDEs

Let R C J*7 be a closed fibred submanifold with 73 (R) = M

R is a differential equation
A local section ¢ : U — E with j*¢(U) C R is a solution
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R is a differential equation
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Let R' = J'(m|r) N J**!7 be the prolongation of R
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Let R C J*7 be a closed fibred submanifold with 73 (R) = M
R is a differential equation

A local section ¢ : U — E with j*¢(U) C R is a solution

Let R! = J!(m|r) N J**!n be the prolongation of R

R is formally integrable if 1 ;(R') = R for all k > 0
(there is a formal Taylor series solution at any point of M)
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Let R! = J!(m|r) N J**!n be the prolongation of R
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(there is a formal Taylor series solution at any point of M)

Algebraic techniques (Spencer cohomology, Cartan-Kahler
Theorem) can check formal integrability



Applications
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Formal integrability of PDEs

Let R C J*7 be a closed fibred submanifold with 73 (R) = M

R is a differential equation
A local section ¢ : U — E with j*¢(U) C R is a solution

Let R' = J'(m|r) N J**!7 be the prolongation of R

R is formally integrable if ), (R') = R for all k > 0
(there is a formal Taylor series solution at any point of M)

Algebraic techniques (Spencer cohomology, Cartan-Kahler
Theorem) can check formal integrability

For C*° systems the formal series might not define a solution! [
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We don’t have to start with a fibred manifold
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of maps v : R" — M with v(0) =p (n < dim M)
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We don’t have to start with a fibred manifold

Take any manifold M and, for each p € M, take k-jets at zero
of maps v : R" — M with v(0) =p (n < dim M)

The set of these jets is the manifold of k-th order n-velocities
TiM = {jgy |7 : R — M, p € M, 7(0) = p}

with projection 7% : TFM — M, 75 (jk~) = ~(0)
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Example: T} M is the tangent manifold T M
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Velocities

We don’t have to start with a fibred manifold

Take any manifold M and, for each p € M, take k-jets at zero
of maps v : R" — M with v(0) =p (n < dim M)

The set of these jets is the manifold of k-th order n-velocities
TyM = {jfv|~v:R" = M, p € M, 7(0) = p}

with projection 7% : TFM — M, 75 (jk~) = ~(0)

Example: T} M is the tangent manifold T M

Consider also the submanifold T:°¥ of regular velocities
where 7 is an immersion near zero O
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Jet groups

Take k-jets at zero of diffeomorphisms ¢ : R” — R™ satisfying
p(0) =0
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Jet groups

Take k-jets at zero of diffeomorphisms ¢ : R” — R™ satisfying
¢(0) =0

The set of these jets is the k-th order n-dimensional jet group
LE = {jbo| o, 07 iR = R™, (0) =0
n=1dople, 0™ : , ¢(0) = 0}

Example: L = GL(n)
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The set of these jets is the k-th order n-dimensional jet group
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Example: L = GL(n)

The map Ay Lf — Ly, AS(G§e) = doy
is a Lie group homomorphism with an abelian kernel
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If k> 1 then L is a semidirect product of L, and ker \*
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Jet groups

Take k-jets at zero of diffeomorphisms ¢ : R” — R™ satisfying

¢(0) =0

The set of these jets is the k-th order n-dimensional jet group
Ly = {isel .9~ 1 R* = R", 9(0) = 0}

Example: L = GL(n)

The map X Ly — Ly, Ai(i5e) = o
is a Lie group homomorphism with an abelian kernel
If k> 1 then L is a semidirect product of L, and ker \*

Consider also the oriented jet group LF*
where ¢ has positive Jacobian determinant at zero O]
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Contact elements (Grassmannians)

Fix the dimension n and the order k&

The jet group LF has a right action on the regular velocity
manifold T°F M

(j&, jko) = G§(vo )



Other types of jet
ooe

Contact elements (Grassmannians)

Fix the dimension n and the order k&

The jet group LF has a right action on the regular velocity
manifold T°F M

(J67:d6) = 45 (v o )

The quotient is the manifold J*M of k-th order n-dimensional
contact elements
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(for T°F M the touching must also ‘preserve parametrization’)
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Contact elements (Grassmannians)

Fix the dimension n and the order k&

The jet group LF has a right action on the regular velocity
manifold T°F M

k. -k -k
(467, 96%) = ds(vo )
The quotient is the manifold J*M of k-th order n-dimensional
contact elements

Think of n-dimensional submanifolds ‘touching to order &’
(for T°F M the touching must also ‘preserve parametrization’)

If #: M — N is a fibred manifold with dim N =n
then J*7 C JXM is open-dense

Taking the quotient by the oriented jet group LET gives oriented
contact elements JX+ M O
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