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Abstract

The idea of a "jet" was introduced by Charles Ehresmann in 1951

as an equivalence class of maps, all de�ned in some neighbourhood

of a given point, and with the same value and derivatives (up to a

given order) at that point. Conceptually, therefore, a jet may be

considered as an abstract Taylor polynomial.

In this talk I shall expand on this de�nition, and explain the

structure of various spaces of jets (of which the simplest is the

tangent bundle of a di�erentiable manifold).

I shall also explain how the use of jets can give a precise meaning

to certain aspects of the Euler-Lagrange equations of the calculus

of variations, such as the ideas of "di�erentiating with respect to

derivatives" and of "total derivative".
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The Euler�Lagrange equations

Problems in the calculus of variations give rise to equations like

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0

What does this mean?

• How can you di�erentiate with respect to a derivative q̇i?

• How can you then take the `total derivative' with respect to t?

A formal approach uses the concept of

tangent vectors on a manifold
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Tangent vectors: the classical approach

Take a manifold M : a locally Euclidean topological space

whose charts x : U → Rn, U ⊂M are di�erentiably related

(we'll assume that maps x̂ ◦ x−1 : x(U ∩ Û)→ x̂(U ∩ Û) are C∞)

A classical tangent vector ξ is a list of numbers (ξi) which

transforms like a vector, so that

ξ̂i =
∂x̂i

∂xj
ξj (sum over repeated indices)

Formally, ξ =
[(

(ξi), x
)]
∈ TpM where (ξi) ∈ Rn, p ∈ U ⊂M ,

x : U → Rn and(
(ξi), x

)
∼
(
(ξ̂i), x̂

)
if ξ̂i =

∂x̂i

∂xj

∣∣∣∣
p

ξj

TpM is the tangent space to M at p



Abstract Tangent vectors Jets of sections Higher order jets Toolbox Applications Other types of jet

Tangent vectors: the classical approach

Take a manifold M : a locally Euclidean topological space

whose charts x : U → Rn, U ⊂M are di�erentiably related

(we'll assume that maps x̂ ◦ x−1 : x(U ∩ Û)→ x̂(U ∩ Û) are C∞)
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A classical tangent vector ξ is a list of numbers (ξi) which

transforms like a vector, so that

ξ̂i =
∂x̂i

∂xj
ξj (sum over repeated indices)

Formally, ξ =
[(

(ξi), x
)]
∈ TpM where (ξi) ∈ Rn, p ∈ U ⊂M ,

x : U → Rn and(
(ξi), x

)
∼
(
(ξ̂i), x̂

)
if ξ̂i =

∂x̂i

∂xj

∣∣∣∣
p

ξj

TpM is the tangent space to M at p



Abstract Tangent vectors Jets of sections Higher order jets Toolbox Applications Other types of jet

Tangent vectors: the classical approach

Take a manifold M : a locally Euclidean topological space

whose charts x : U → Rn, U ⊂M are di�erentiably related

(we'll assume that maps x̂ ◦ x−1 : x(U ∩ Û)→ x̂(U ∩ Û) are C∞)
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Tangent vectors: the algebraic approach

Take R(ε), ε2 = 0, as the algebra of `dual numbers'.

An algebraic tangent vector ξ at p ∈M is an algebra

homomorphism C∞(M)→ R(ε) satisfying

ξ(f) = f(p) mod ε (f ∈ C∞(M))

De�ne δξ : C∞(M)→ R by

δξf · ε = ξ(f)− f(p)

δξ is a derivation: δξ(fg) = g(p)δξf + f(p)δξ(g)

Algebraic and classical tangent vectors may be identi�ed ...

in the C∞ case!
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Tangent vectors: the jet approach

Let γ : R→M be a curve with γ(0) = p.

A geometric tangent vector is an equivalence class [γ] where
γ̃ ∼ γ if

γ̃(0) = γ(0) = p

and

(f ◦ γ̃)′(0) = (f ◦ γ)′(0) for every f ∈ C∞(M)

Geometric and classical tangent vectors may be identi�ed

An equivalence class de�ned in this way is called a jet
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1-jets of sections

We start with a �bred manifold (surjective submersion) π : E →M

Take p ∈M . Two local sections φ, φ̃ de�ned near p are

1-equivalent at p if

• φ̃(p) = φ(p) and

• (f ◦ φ̃ ◦ γ)′(0) = (f ◦ φ ◦ γ)′(0) for every f ∈ C∞(E)
and every curve γ in M with γ(0) = p

The 1-jet of φ at p is the equivalence class; denoted by j1
pφ

The second condition may be written in �bred coordinates (xi, uα)
on E around φ(p) as

∂φ̃α

∂xi

∣∣∣∣∣
p

=
∂φα

∂xi

∣∣∣∣
p
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The 1-jet manifold

The set of all 1-jets of π : E →M is denoted by J1π:

J1π = {j1
pφ : p ∈M,φ a local section near p}

The source map π1 and the target map π1,0 are

π1 : J1π →M π1,0 : J1π → E

π1(j1
pφ) = p π1,0(j1

pφ) = φ(p)

J1π is a manifold with coordinates (xi, uα, uαi ) where

uαi (j1
pφ) =

∂φα

∂xi

∣∣∣∣
p

The source map π1 de�nes a �bred manifold

The target map π1,0 de�nes an a�ne bundle (always!)
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The a�ne structure
Why is π1,0 : J1π → E an a�ne bundle?

Because Tpφ̃, Tpφ : TpM → Tφ(p)E so that

Tpφ̃, Tpφ ∈ Hom(TpM,Tφ(p)E) ∼= T ∗pM ⊗ Tφ(p)E

and j1
p φ̃ = j1

pφ when Tpφ̃ = Tpφ

So regard J1π as a sub-bundle of π∗T ∗M ⊗E TE
(an a�ne sub-bundle because Tφ(p)π ◦ Tpφ = idTpM )

the associated vector bundle is π∗T ∗M ⊗E V π → E

In coordinates

j1
pφ ∼ dxi|p ⊗

(
∂

∂xi

∣∣∣∣
φ(p)

+
∂φα

∂xi

∣∣∣∣
p

∂

∂uα

∣∣∣∣
φ(p)

)
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Prolonging local sections

Suppose U ⊂M is open, and φ : U → E is a local section

For each p ∈ U there is a 1-jet j1
pφ ∈ J1π

De�ne a local section j1φ : U → J1π by j1φ(p) = j1
pφ called

the prolongation of φ

In coordinates

uα ◦ j1φ = φα , uαi ◦ j1φ =
∂φα

∂xi

NOT EVERY LOCAL SECTION OF π1 : J1π →M
IS A PROLONGATION!
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Example: connections

J1π
π1,0−→ E

π−→M

A connection is a section Γ : E → J1π of π1,0

A local section φ of π is a solution of Γ if j1φ = Γ ◦ φ

In coordinates, put Γαi = uαi ◦ Γ; then

∂φα

∂xi
= uαi ◦ j1φ = Γαi ◦ φ

the equation (Γ(E) ⊂ J1π) is conceptually distinct from

the set of its solutions

Thinking of a jet j1
pφ as a tensor at φ(p) ∈ E,

a connection is a tensor �eld (horizontal projector)
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Jet connections and `other' connections

J1π
π1,0−→ E

π−→M

A connection is a section Γ : E → J1π of π1,0

If π : E →M is a principal G-bundle:

Γ is a principal connection

if I − PΓ takes its values in fundamental vector �elds

(and so may be considered as a g-valued form on E)

If π : E →M is a vector bundle then so is π1 : J1π →M
Γ is a linear connection if it is a splitting of

0→ T ∗M ⊗M E −→ J1π
π1,0−→ E → 0

the covariant di�erential ∇Γ is de�ned by

∇Γφ = j1φ− Γ ◦ φ
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k-jets of sections

Continue with a �bred manifold π : E →M

Take p ∈M . Two local sections φ, φ̃ de�ned near p are

k-equivalent at p if

• φ̃(p) = φ(p) and

• (f ◦ φ̃ ◦ γ)(r)(0) = (f ◦ φ ◦ γ)(r)(0) for every f ∈ C∞(E)
and every curve γ in M with γ(0) = p (1 ≤ r ≤ k)

The k-jet of φ at p is the equivalence class; denoted by jkpφ

The set of all k-jets of π : E →M is denoted by Jkπ:

Jkπ = {jkpφ : p ∈M,φ a local section near p}
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The bundle structure of k-jets

The source map πk, the target map πk,0
and the order-reduction map πk,l : Jkπ → J lπ (1 ≤ l ≤ k) are

πk : Jkπ →M πk,0 : Jkπ → E πk,l : Jkπ → J lπ

πk(j
k
pφ) = p πk,0(jkpφ) = φ(p) πk,l(j

k
pφ) = jlpφ

The source map πl de�nes a �bred manifold

The target map πl,0 and order-reduction maps πk,l
de�ne �bre bundles

The order-reduction map πk,k−1 de�nes an a�ne bundle

If φ : U → E is a local section,

De�ne a local section jkφ : U → Jkπ by jkφ(p) = jkpφ called

the prolongation of φ
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Symmetric coordinates and multi-indices

J2π is a manifold with coordinates (xi, uα, uαi , u
α
ij) where

uαi (j2
pφ) =

∂φα

∂xi

∣∣∣∣
p

, uαij(j
2
pφ) =

∂2φα

∂xi∂xj

∣∣∣∣
p

WARNING: If f ∈ C∞(J2π) then

df =
∂f

∂xi
dxi +

∂f

∂uα
duα +

∂f

∂uαi
duα +

1

#(ij)

∂f

∂uαij
duαij

where #(ij) = 1 if i = j, #(ij) = 2 if i 6= j

Options:

• Use numerical coe�cients with the summation convention

• Use non-decreasing indices and explicit sums

• Use vector multi-indices uαI with I ∈ NdimM
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Repeated jets

The source map π1 : J1π →M is a �bred manifold

The set of all 1-jets of π1 is the repeated jet manifold:

J1π1 = {j1
pψ : x ∈M,ψ a local section of π1 near p}

Coordinates on J1π1 are (xi, uα, uαi ;uα·,j , u
α
i,j):

uαi (j1
pψ) = ψαi (p) , uα·,j(j

1
pψ) =

∂ψα

∂xj

∣∣∣∣
p

, uαi,j(j
1
pψ) =

∂ψαi
∂xj

∣∣∣∣
p

In general uαi 6= uα·,i and u
α
i;j 6= uαj;i
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Holonomic and semiholonomic jets

uαi (j1
pψ) = ψαi (p) , uα·,j(j

1
pψ) =

∂ψα

∂xj

∣∣∣∣
p

, uαi,j(j
1
pψ) =

∂ψαi
∂xj

∣∣∣∣
p

If ψ = j1φ is a prolongation then

uα·,j(j
1
p(j1φ)) =

∂φα

∂xj

∣∣∣∣
p

= uαj (j1
p(j1φ)) ,

uαi,j(j
1
p(j1φ)) =

∂

∂xj

∣∣∣∣
p

∂φα

∂xi
=

∂

∂xi

∣∣∣∣
p

∂φα

∂xj
= uαj,i(j

1
p(j1φ))

so that J2π ⊂ J1π1 � the holonomic jet submanifold

There is, in general, no canonical projection J1π1 → J2π.

But there is a submanifold Ĵ2π ⊂ J1π1 of semiholonomic jets

where uα·,j = uαj , but u
α
i,j need not be symmetric

and Ĵ2π = J2π ⊕J1π

(∧2 π∗1T
∗M ⊗ π∗1,0V π

)
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so that J2π ⊂ J1π1 � the holonomic jet submanifold

There is, in general, no canonical projection J1π1 → J2π.

But there is a submanifold Ĵ2π ⊂ J1π1 of semiholonomic jets

where uα·,j = uαj , but u
α
i,j need not be symmetric

and Ĵ2π = J2π ⊕J1π

(∧2 π∗1T
∗M ⊗ π∗1,0V π

)
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But there is a submanifold Ĵ2π ⊂ J1π1 of semiholonomic jets

where uα·,j = uαj , but u
α
i,j need not be symmetric
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Contact forms

How can you tell if a local section ψ of πk : Jkπ →M is a

prolongation?

A di�erential r-form ω on Jkπ is a contact form

if (jkφ)∗ω = 0 for every prolonged local section jkφ

ψ is a prolongation if ψ∗ω = 0 for every contact form ω

Contact 1-forms on J1π generated by θα = duα − uαi dxi
Contact 1-forms on Jkπ generated by θαI = duαI − uαI+1i

dxi

(|I| < k)

Contact r-forms are generated by contact 1-forms θαI
and their exterior derivatives dθαI

Can also de�ne q-contact r-forms and exactly q-contact r-forms

(q ≤ r)
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Total derivatives

Total derivatives are `vector �elds' that annihilate contact 1-forms

They are vector �elds along a map, not on a manifold

Given a vector ξ ∈ TpM and a local section φ de�ned near p
the tangent vector Tjkφ(ξ) ∈ TjkpφJ

kπ depends on derivatives

of order k + 1 (that is, on jk+1
p φ)

So given a vector �eld X on M , the corresponding total derivative

is

Jk+1π → TJkπ , jk+1
p φ 7→ Tjkφ(Xp)

In coordinates

Xi ∂

∂xi
becomes Xi d

dxi
= Xi

(
∂

∂xi
+

k∑
|I|=0

uαI+1i

∂

∂uαI

)
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Prolongations of �bred maps

Take π : E →M and ρ : F → N �bred manifolds

A map f : E → F is a �bred map if y, z ∈ Ep implies f(y) = f(z)
and

the map f̄ : M → N de�ned by f̄(p) = ρ(f(y)) (any y ∈ Ep)
is a di�eomorphism

The prolongation of f is the map Jkf : Jkπ → Jkρ

Jkf(jkpφ) = jkf̄−1(p)(f ◦ φ ◦ f̄
−1)

Jk is a functor on the category of �bred manifolds and �bred maps

In coordinates

uαI ◦ Jkφ =
d|I|φα

dxI
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Prolongations of vector �elds

Take a projectable vector �eld X on E

The �ow φt of X is a family of �bred maps,

so the prolongations Jkφt de�ne the �ow prolongation Xk on Jkπ
If

X = Xi ∂

∂xi
+Xα ∂

∂uα

then

Xk = Xi ∂

∂xi
+

k∑
|I|=0

(
d|I|Xα

dxI
−

∑
J+K=I
J 6=0

I!

J !K!

∂|J |Xj

∂xJ
uαK+1j

)
∂

∂uαI

This works even if the �ow is not global

If X is not projectable, it can still be prolonged!

(Unlike di�eomorphisms)
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Prolongations and contact forms

A contact transformation is a di�eomorphism F : Jkπ → Jkπ
such that F ∗ω is a contact form whenever ω is a contact form

If f : E → E is a �bred di�eomorphism (over M)

then Jkf : Jkπ → Jkπ is a contact transformation

`Usually' a contact transformation F : Jkπ → Jkπ
projects to a �bred di�eomorphism f : E → E, and then F = Jkf .

EXCEPTION when dimE = dimM + 1
so that dim J1π − dimE = dimM

Example: the map (xi, u, ui) 7→ (ui, x
iui − u, xi)

is a contact transformation (the Hodograph transformation)

An in�nitesimal contact transformation is a vector �eld X on Jkπ
such that LXω is a contact form whenever ω is a contact form
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The calculus of variations
A Lagrangian form is a horizontal m-form λ on Jkπ (m = dimM)

The variational problem de�ned by λ and a compact connected

m-dimensional submanifold C ⊂M is

d

dt

∫
C

(jkφt)
∗λ = 0

De�ne an m-form θλ on J2k−1π, horizontal over Jk−1π, to be

a Lepage equivalent of λ if

• π∗2k−1,kλ− θλ is a contact form, and

• iXdθλ is a contact form whenever X is vertical over E

The 1-contact part ελ of dθλ is called the Euler�Lagrange form

In coordinates, if λ = Ldx1 ∧ · · · ∧ dxm then

ελ =

(
∂L

∂uα
−

2k−1∑
|I|=1

(−1)|I|−1 d
|I|

dxI
∂L

∂uαI

)
duα ∧ dx1 ∧ · · · ∧ dxm .
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The variational problem de�ned by λ and a compact connected

m-dimensional submanifold C ⊂M is

d

dt

∫
C

(jkφt)
∗λ = 0

De�ne an m-form θλ on J2k−1π, horizontal over Jk−1π, to be

a Lepage equivalent of λ if

• π∗2k−1,kλ− θλ is a contact form, and

• iXdθλ is a contact form whenever X is vertical over E

The 1-contact part ελ of dθλ is called the Euler�Lagrange form

In coordinates, if λ = Ldx1 ∧ · · · ∧ dxm then

ελ =

(
∂L

∂uα
−

2k−1∑
|I|=1

(−1)|I|−1 d
|I|

dxI
∂L

∂uαI

)
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Connections and integrability

A connection is a section Γ : E → J1π of π1,0 : J1π → E

so it is a �bred map from π : E →M to π1 : J1π →M

Consider the prolongation J1Γ : J1π → J1π1

The composite J1Γ ◦ Γ takes its values in the semiholonomic

manifold Ĵ2π ⊂ J1π1

As

Ĵ2π = J2π ⊕J1π

(∧2π∗1T
∗M ⊗ π∗1,0V π

)
the composite J1Γ ◦ Γ decomposes into symmetric and

skewsymmetric parts

The skew-symmetric part is the curvature of the connection
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Formal integrability of PDEs

Let R ⊂ Jkπ be a closed �bred submanifold with πk(R) = M

R is a di�erential equation

A local section φ : U → E with jkφ(U) ⊂ R is a solution

Let Rl = J l(πk|R) ∩ Jk+lπ be the prolongation of R

R is formally integrable if πk+l,k(R
l) = R for all k > 0

(there is a formal Taylor series solution at any point of M)

Algebraic techniques (Spencer cohomology, Cartan-Kähler

Theorem) can check formal integrability

For C∞ systems the formal series might not de�ne a solution!
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Velocities

We don't have to start with a �bred manifold

Take any manifold M and, for each p ∈M , take k-jets at zero
of maps γ : Rn →M with γ(0) = p (n < dimM)

The set of these jets is the manifold of k-th order n-velocities

T knM = {jk0γ | γ : Rn →M, p ∈M, γ(0) = p}

with projection τkn : T knM →M , τkn(jk0γ) = γ(0)

Example: T 1
1M is the tangent manifold TM

Consider also the submanifold T ◦kn of regular velocities

where γ is an immersion near zero
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Jet groups

Take k-jets at zero of di�eomorphisms ϕ : Rn → Rn satisfying

ϕ(0) = 0

The set of these jets is the k-th order n-dimensional jet group

Lkn = {jk0ϕ |ϕ,ϕ−1 : Rn → Rn, ϕ(0) = 0}

Example: L1
n
∼= GL(n)

The map λkn : Lkn → L1
n, λ

k
n(jk0ϕ) = j1

0ϕ
is a Lie group homomorphism with an abelian kernel

If k > 1 then Lkn is a semidirect product of L1
n and kerλkn

Consider also the oriented jet group Lk+
n

where ϕ has positive Jacobian determinant at zero
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Contact elements (Grassmannians)

Fix the dimension n and the order k

The jet group Lkn has a right action on the regular velocity

manifold T ◦kn M (
jk0γ, j

k
0ϕ
)
7→ jk0 (γ ◦ ϕ)

The quotient is the manifold JknM of k-th order n-dimensional

contact elements

Think of n-dimensional submanifolds `touching to order k'
(for T ◦kn M the touching must also `preserve parametrization')

If π : M → N is a �bred manifold with dimN = n
then Jkπ ⊂ JknM is open-dense

Taking the quotient by the oriented jet group Lk+
n gives oriented

contact elements Jk+
n M
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