Geometric Structures on Lie groups and post Lie algebras

Dietrich Burde Universität Wien

24.10.2017

¹Research supported by the FWF, Project P28079 and Project I3248

A pre-Lie algebra (V, \cdot) is a vector space V over a field K equipped with a binary operation $(x, y) \mapsto x \cdot y$ such that for all $x, y, z \in V$

A pre-Lie algebra (V, \cdot) is a vector space V over a field K equipped with a binary operation $(x, y) \mapsto x \cdot y$ such that for all $x, y, z \in V$

$$(x \cdot y) \cdot z - x \cdot (y \cdot z) = (y \cdot x) \cdot z - y \cdot (x \cdot z).$$

A pre-Lie algebra (V, \cdot) is a vector space V over a field K equipped with a binary operation $(x, y) \mapsto x \cdot y$ such that for all $x, y, z \in V$

$$(x \cdot y) \cdot z - x \cdot (y \cdot z) = (y \cdot x) \cdot z - y \cdot (x \cdot z).$$

• If (V, \cdot) is a pre-Lie algebra, then for $x, y \in V$ the binary operation

$$[x,y] := x \cdot y - y \cdot x$$

defines a Lie algebra.

A bilinear product $x \cdot y$ on $\mathfrak{g} \times \mathfrak{g}$ is called a pre-Lie algebra structure on \mathfrak{g} , if it satisfies

$$\begin{aligned} x \cdot y - y \cdot x &= [x, y], \\ [x, y] \cdot z &= x \cdot (y \cdot z) - y \cdot (x \cdot z), \end{aligned}$$

for all $x, y, z \in \mathfrak{g}$.

A bilinear product $x \cdot y$ on $\mathfrak{g} \times \mathfrak{g}$ is called a pre-Lie algebra structure on \mathfrak{g} , if it satisfies

$$\begin{aligned} x \cdot y - y \cdot x &= [x, y], \\ [x, y] \cdot z &= x \cdot (y \cdot z) - y \cdot (x \cdot z), \end{aligned}$$

for all $x, y, z \in \mathfrak{g}$.

Definition

A Lie algebra \mathfrak{g} over a field K is said to admit a pre-Lie algebra structure, if there exists a pre-Lie algebra structure on \mathfrak{g} .

Example

The Heisenberg Lie algebra $n_3(K)$ of dimension 3 with basis $\{e_1, e_2, e_3\}$ and Lie brackets $[e_1, e_2] = e_3$ admits a pre-Lie algebra structure, given by

$$e_1 \cdot e_2 = \frac{1}{2}e_3,$$
$$e_2 \cdot e_1 = -\frac{1}{2}e_3.$$

Example

The Heisenberg Lie algebra $n_3(K)$ of dimension 3 with basis $\{e_1, e_2, e_3\}$ and Lie brackets $[e_1, e_2] = e_3$ admits a pre-Lie algebra structure, given by

$$e_1 \cdot e_2 = \frac{1}{2}e_3,$$
$$e_2 \cdot e_1 = -\frac{1}{2}e_3.$$

Example

The Lie algebra $\mathfrak{sl}_2(K)$ over a field K of characteristic zero does not admit a pre-Lie algebra structure.

The affine group

• Denote by $\operatorname{Aff}(\mathbb{R}^n) \simeq \mathbb{R}^n \rtimes GL_n(\mathbb{R})$ the group of affine transformations of \mathbb{R}^n .

The affine group

• Denote by $\operatorname{Aff}(\mathbb{R}^n) \simeq \mathbb{R}^n \rtimes GL_n(\mathbb{R})$ the group of affine transformations of \mathbb{R}^n .

• We may represent the elements of $\operatorname{Aff}(\mathbb{R}^n)$ by block matrices $\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix}$ with $A \in GL_n(\mathbb{R})$, $v \in \mathbb{R}^n$ and multiplication

$$\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} B & w \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} AB & Aw + v \\ 0 & 1 \end{pmatrix}$$

The affine group

• Denote by $\operatorname{Aff}(\mathbb{R}^n) \simeq \mathbb{R}^n \rtimes GL_n(\mathbb{R})$ the group of affine transformations of \mathbb{R}^n .

• We may represent the elements of $\operatorname{Aff}(\mathbb{R}^n)$ by block matrices $\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix}$ with $A \in GL_n(\mathbb{R})$, $v \in \mathbb{R}^n$ and multiplication

$$\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} B & w \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} AB & Aw + v \\ 0 & 1 \end{pmatrix}$$

• $\operatorname{Aff}(\mathbb{R}^n)$ acts on \mathbb{R}^n by

$$\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} Ax + v \\ 1 \end{pmatrix}.$$

• The affine group is a linear algebraic group represented by

$$\operatorname{Aff}(\mathbb{R}^n) = \left\{ \begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \mid A \in GL_n(\mathbb{R}), v \in \mathbb{R}^n \right\}.$$

• The affine group is a linear algebraic group represented by

$$\operatorname{Aff}(\mathbb{R}^n) = \left\{ \begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \mid A \in GL_n(\mathbb{R}), v \in \mathbb{R}^n \right\}$$

• It generalizes the isometry group of \mathbb{R}^n ,

$$\operatorname{Iso}(\mathbb{R}^n) = \left\{ \begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \mid A \in O_n(\mathbb{R}), v \in \mathbb{R}^n \right\}$$

٠

٠

• The affine group is a linear algebraic group represented by

$$\operatorname{Aff}(\mathbb{R}^n) = \left\{ \begin{pmatrix} \mathsf{A} & \mathsf{v} \\ 0 & 1 \end{pmatrix} \mid \mathsf{A} \in \operatorname{GL}_n(\mathbb{R}), \mathsf{v} \in \mathbb{R}^n \right\}.$$

• It generalizes the isometry group of \mathbb{R}^n ,

$$\operatorname{Iso}(\mathbb{R}^n) = \left\{ \begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \mid A \in O_n(\mathbb{R}), v \in \mathbb{R}^n \right\}$$

• The translations in $Aff(\mathbb{R}^n)$ form a normal subgroup, given by

$$T(n) = \left\{ \begin{pmatrix} I_n & v \\ 0 & 1 \end{pmatrix} \mid v \in \mathbb{R}^n \right\}.$$

• A group G acts simply transitively on \mathbb{R}^n by affine transformations if there is a homomorphism $\rho: G \to \operatorname{Aff}(\mathbb{R}^n)$ letting G act on \mathbb{R}^n , such that for all $y_1, y_2 \in \mathbb{R}^n$ there is a unique $g \in G$ such that $\rho(g)(y_1) = y_2$. • A group G acts simply transitively on \mathbb{R}^n by affine transformations if there is a homomorphism $\rho: G \to \operatorname{Aff}(\mathbb{R}^n)$ letting G act on \mathbb{R}^n , such that for all $y_1, y_2 \in \mathbb{R}^n$ there is a unique $g \in G$ such that $\rho(g)(y_1) = y_2$.

• L. Auslander named such groups simply transitive groups of affine motions. They are connected, simply connected *n*-dimensional Lie groups homeomorphic to \mathbb{R}^n .

• A group G acts simply transitively on \mathbb{R}^n by affine transformations if there is a homomorphism $\rho: G \to \operatorname{Aff}(\mathbb{R}^n)$ letting G act on \mathbb{R}^n , such that for all $y_1, y_2 \in \mathbb{R}^n$ there is a unique $g \in G$ such that $\rho(g)(y_1) = y_2$.

• L. Auslander named such groups simply transitive groups of affine motions. They are connected, simply connected *n*-dimensional Lie groups homeomorphic to \mathbb{R}^n .

• An example of a simply transitive group of affine motions is the normal subgroup T(n) of translations.

Proposition (L. Auslander 1977)

Let G be a simply transitive group of affine motions. Then G is solvable.

Proposition (L. Auslander 1977)

Let G be a simply transitive group of affine motions. Then G is solvable.

More generally the following result holds, which more or less can be found in G. Hochschild's book The Structure of Lie Groups (1965).

Proposition

Let G be a Lie group which is homeomorphic to \mathbb{R}^n for some $n \ge 1$. If G admits a faithful linear representation then G is solvable. • An affinely flat structure on an *n*-dimensional manifold *M* is a collection of coordinate homeomorphisms

$$f_{\alpha}\colon U_{\alpha}\to V_{\alpha}\subseteq \mathbb{R}^n,$$

where the U_{α} are open sets covering M, and the V_{α} are open subsets of \mathbb{R}^n ; whenever $U_{\alpha} \cap U_{\beta} \neq \emptyset$, it is required that the change of coordinate homeomorphism

$$f_{\beta}f_{\alpha}^{-1} \colon f_{\alpha}(U_{\alpha} \cap U_{\beta}) \to f_{\beta}(U_{\alpha} \cap U_{\beta})$$

extends to an affine transformation in $Aff(\mathbb{R}^n)$. We call M together with this structure an affinely flat manifold, or affine manifold.

• A special case of affine flat manifolds are Riemannian-flat manifolds, where the coordinate changes extend to isometries in $Iso(\mathbb{R}^n)$, i.e., to affine transformations $x \mapsto Ax + b$ with $A \in O_n(\mathbb{R})$.

• A special case of affine flat manifolds are Riemannian-flat manifolds, where the coordinate changes extend to isometries in $Iso(\mathbb{R}^n)$, i.e., to affine transformations $x \mapsto Ax + b$ with $A \in O_n(\mathbb{R})$.

Theorem (Benzecri 1959)

A closed surface admits an affine (affinely flat) structure if and only if its Euler characteristic vanishes. • A special case of affine flat manifolds are Riemannian-flat manifolds, where the coordinate changes extend to isometries in $Iso(\mathbb{R}^n)$, i.e., to affine transformations $x \mapsto Ax + b$ with $A \in O_n(\mathbb{R})$.

Theorem (Benzecri 1959)

A closed surface admits an affine (affinely flat) structure if and only if its Euler characteristic vanishes.

• In particular, a closed surface different from the 2-torus or the Klein bottle does not admit any affine structure.

Proposition

There is a bijective correspondence between affinely flat structures on a manifold M and flat, torisonfree affine connections ∇ on M.

Proposition

There is a bijective correspondence between affinely flat structures on a manifold M and flat, torisonfree affine connections ∇ on M.

 \bullet An affine connection ∇ is called torsionfree if

$$\nabla_X(Y) - \nabla_Y(X) - [X, Y] = 0 \tag{1}$$

for all $X, Y \in \mathfrak{X}$, where \mathfrak{X} denotes the Lie algebra of all differential vector fields on M.

Proposition

There is a bijective correspondence between affinely flat structures on a manifold M and flat, torisonfree affine connections ∇ on M.

 \bullet An affine connection ∇ is called torsionfree if

$$\nabla_X(Y) - \nabla_Y(X) - [X, Y] = 0 \tag{1}$$

for all $X, Y \in \mathfrak{X}$, where \mathfrak{X} denotes the Lie algebra of all differential vector fields on M.

 \bullet An affine connection ∇ is called flat if

$$\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]} = 0 \tag{2}$$

for all $X, Y \in \mathfrak{X}$.

• A torisonfree flat affine connection determines a covariant differentiation $\nabla_X : \mathfrak{X} \to \mathfrak{X}$ via $Y \mapsto \nabla_X(Y)$ for vector fields $X, Y \in \mathfrak{X}$.

• A torisonfree flat affine connection determines a covariant differentiation $\nabla_X : \mathfrak{X} \to \mathfrak{X}$ via $Y \mapsto \nabla_X(Y)$ for vector fields $X, Y \in \mathfrak{X}$.

• Setting

$$X\cdot Y:=\nabla_X(Y),$$

we obtain an \mathbb{R} -bilinear product on \mathfrak{X} . Because of (1) and (2) this product turns \mathfrak{X} into a pre-Lie algebra:

$$X \cdot Y - Y \cdot X - [X, Y] = 0,$$

$$X \cdot (Y \cdot Z) - Y \cdot (X \cdot Z) = [X, Y] \cdot Z$$

• An affine structure on a Lie group G is called left-invariant if each left-multiplication map $L(g): G \to G$ is an affine diffeomorphism.

- An affine structure on a Lie group G is called left-invariant if each left-multiplication map $L(g): G \to G$ is an affine diffeomorphism.
- An affine structure on G is called complete, if the universal covering \widetilde{G} is affinely diffeomorphic to \mathbb{R}^n .

- An affine structure on a Lie group G is called left-invariant if each left-multiplication map $L(g): G \to G$ is an affine diffeomorphism.
- An affine structure on G is called complete, if the universal covering \widetilde{G} is affinely diffeomorphic to \mathbb{R}^n .

There is a canonical bijection between complete left-invariant affine structures on G and simply transitive actions of G on \mathbb{R}^n by affine transformations.

There is a canonical bijection between left-invariant affine structures on G and pre-Lie algebra structures on g.

There is a canonical bijection between left-invariant affine structures on G and pre-Lie algebra structures on g.

Theorem

There is a canonical bijection between simply transitive affine actions of G and complete pre-Lie algebra structures on g.

There is a canonical bijection between left-invariant affine structures on G and pre-Lie algebra structures on g.

Theorem

There is a canonical bijection between simply transitive affine actions of G and complete pre-Lie algebra structures on g.

• Here a pre-Lie algebra structure on \mathfrak{g} is complete, if all right multiplications R(x) in $\operatorname{End}(\mathfrak{g})$ are nilpotent.

Question (Milnor 1977)

Does every solvable n-dimensional Lie group G admit a complete left-invariant affine structure, or equivalently, does the universal covering group \widetilde{G} act simply transitively by affine transformations on \mathbb{R}^n ?

Question (Milnor 1977)

Does every solvable n-dimensional Lie group G admit a complete left-invariant affine structure, or equivalently, does the universal covering group \widetilde{G} act simply transitively by affine transformations on \mathbb{R}^n ?

Milnor's Question - algebraic version

Does every solvable Lie algebra over a field of characteristic zero admit a (complete) pre-Lie algebra structure?

• Milnor's question has a positive answer for 2-step and 3-step nilpotent Lie groups.

• Milnor's question has a positive answer for 2-step and 3-step nilpotent Lie groups.

• Milnor's question has a positive answer for Lie groups whose Lie algebra admits a nonsingular derivation. Such Lie algebras (and hence such Lie groups) are necessarily nilpotent.

• Milnor's question has a positive answer for 2-step and 3-step nilpotent Lie groups.

• Milnor's question has a positive answer for Lie groups whose Lie algebra admits a nonsingular derivation. Such Lie algebras (and hence such Lie groups) are necessarily nilpotent.

• Milnor's question has a positive answer for all (connected and simply connected) nilpotent Lie groups of dimension $n \leq 7$.

• Milnor's question has a positive answer for 2-step and 3-step nilpotent Lie groups.

• Milnor's question has a positive answer for Lie groups whose Lie algebra admits a nonsingular derivation. Such Lie algebras (and hence such Lie groups) are necessarily nilpotent.

• Milnor's question has a positive answer for all (connected and simply connected) nilpotent Lie groups of dimension $n \leq 7$.

• Milnor's question has a positive answer for all 2-step solvable Lie groups whose Lie algebra is a semidirect product $\mathfrak{a} \rtimes \mathfrak{b}$ of two abelian Lie algebras.

Proposition (Benoist 1995)

There exists a 11-dimensional nilpotent group Lie group of nilpotency class 10 not admitting any left-invariant affine structure.

A negative answer to Milnor's question

Proposition (Benoist 1995)

There exists a 11-dimensional nilpotent group Lie group of nilpotency class 10 not admitting any left-invariant affine structure.

Proposition (B.-Grunewald 1995)

There exist families of nilpotent Lie groups of dimension 11 and nilpotency class 10 not admitting any left-invariant affine structure.

A negative answer to Milnor's question

Proposition (Benoist 1995)

There exists a 11-dimensional nilpotent group Lie group of nilpotency class 10 not admitting any left-invariant affine structure.

Proposition (B.-Grunewald 1995)

There exist families of nilpotent Lie groups of dimension 11 and nilpotency class 10 not admitting any left-invariant affine structure.

Proposition (B. 1996)

There exist families of nilpotent Lie groups of dimension 10 and nilpotency class 9 not admitting any left-invariant affine structure.

Theorem

Let G be a n-dimensional Lie group with Lie algebra g. Suppose that G admits a left-invariant affine structure. Then g admits a faithful linear Lie algebra representation $\varphi \colon \mathfrak{g} \to \mathfrak{gl}_{n+1}(\mathbb{R})$ of degree n + 1.

Theorem

Let G be a n-dimensional Lie group with Lie algebra g. Suppose that G admits a left-invariant affine structure. Then g admits a faithful linear Lie algebra representation $\varphi \colon \mathfrak{g} \to \mathfrak{gl}_{n+1}(\mathbb{R})$ of degree n + 1.

Proof: The left-invariant affine structure on G induces a pre-Lie algebra structure $x \cdot y = L(x)y$ on \mathfrak{g} , so that

 $L: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}), \ x \mapsto L(x)$

is a linear representation of degree n. The corresponding \mathfrak{g} -module \mathfrak{g}_L need not be faithful, but using a nonsingular 1-cocycle we can construct a faithful \mathfrak{g} -module of dimension n + 1 from it.

Because of $[x, y] = x \cdot y - y \cdot x$, the 1-cocycle $\omega = \mathrm{id} \in Z^1(\mathfrak{g}, \mathfrak{g}_L)$

is nonsingular. Hence we have ker(ω) = 0, and $V_{\omega} := \mathbb{R} \times \mathfrak{g}_L$ is a faithful g-module of dimension n + 1, with action

$$x.(t,v) = (0, x.v + t\omega(x))$$

for $x \in \mathfrak{g}$, $v \in \mathfrak{g}_L$ and $t \in \mathbb{R}$.

Because of $[x, y] = x \cdot y - y \cdot x$, the 1-cocycle $\omega = \mathrm{id} \in Z^1(\mathfrak{g}, \mathfrak{g}_L)$

is nonsingular. Hence we have ker(ω) = 0, and $V_{\omega} := \mathbb{R} \times \mathfrak{g}_L$ is a faithful \mathfrak{g} -module of dimension n + 1, with action

$$x.(t,v) = (0, x.v + t\omega(x))$$

for $x \in \mathfrak{g}$, $v \in \mathfrak{g}_L$ and $t \in \mathbb{R}$.

Definition

Let \mathfrak{g} be a Lie algebra over a field K of dimension n. Denote by $\mu(\mathfrak{g})$ the minimal dimension of a faithful linear representation of \mathfrak{g} .

Theorem (B. 1996)

There exists families of 10-dimensional filiform nilpotent Lie algebras \mathfrak{g} such that $\mu(\mathfrak{g}) \geq 12$. These algebras give a negative answer to Milnor's question.

Theorem (B. 1996)

There exists families of 10-dimensional filiform nilpotent Lie algebras \mathfrak{g} such that $\mu(\mathfrak{g}) \geq 12$. These algebras give a negative answer to Milnor's question.

Theorem (B., Moens 2010)

For every filiform nilpotent Lie algebra of dimension 10 we have

 $10 \leq \mu(\mathfrak{g}) \leq 18$

There is a classification of such algebras satisfying $\mu(\mathfrak{g}) \leq 11$, respectively $\mu(\mathfrak{g}) \geq 12$.

• Let N be a nilpotent Lie group and

 $\mathrm{Aff}(N) = N \rtimes Aut(N)$

be the group of affine transformations of N.

• Let N be a nilpotent Lie group and

 $\mathrm{Aff}(N) = N \rtimes Aut(N)$

be the group of affine transformations of N.

• Aff(N) acts on N by $(n, \alpha) \cdot m = n\alpha(m)$.

• Let N be a nilpotent Lie group and

 $\mathrm{Aff}(N) = N \rtimes Aut(N)$

be the group of affine transformations of N.

- Aff(N) acts on N by $(n, \alpha) \cdot m = n\alpha(m)$.
- For $N = \mathbb{R}^n$ we obtain again $Aff(\mathbb{R}^n) = \mathbb{R}^n \rtimes Aut(\mathbb{R}^n)$.

• We say that G admits a simply transitively action by nil-affine transformations on N, if there is a homomorphism $\rho: G \to \text{Aff}(N)$ letting G act simply transitively on N.

- We say that G admits a simply transitively action by nil-affine transformations on N, if there is a homomorphism $\rho: G \to \text{Aff}(N)$ letting G act simply transitively on N.
- In the nil-affine setting, Milnor's question has a positive answer:

- We say that *G* admits a simply transitively action by nil-affine transformations on *N*, if there is a homomorphism $\rho: G \to \text{Aff}(N)$ letting *G* act simply transitively on *N*.
- In the nil-affine setting, Milnor's question has a positive answer:

Proposition (Dekimpe 2003, Baues 2004)

Let G be a solvable Lie group. Then G admits a simply transitive action by nil-affine transformations on some simply connected nilpotent Lie group N. Conversely, assume that G admits such an action. Then G is solvable.

Reduction to the Lie algebra level

Theorem (B-D-V 2012)

Let *G* and *N* be nilpotent Lie groups. Then there exists a simply transitive action by nil-affine transformations of *G* on *N* if and only if there exists a Lie algebra $\mathfrak{h} \cong \mathfrak{g}$ such that the corresponding pair of Lie algebras $(\mathfrak{h}, \mathfrak{n})$ admits a complete post-Lie algebra structure.

Reduction to the Lie algebra level

Theorem (B-D-V 2012)

Let *G* and *N* be nilpotent Lie groups. Then there exists a simply transitive action by nil-affine transformations of *G* on *N* if and only if there exists a Lie algebra $\mathfrak{h} \cong \mathfrak{g}$ such that the corresponding pair of Lie algebras $(\mathfrak{h}, \mathfrak{n})$ admits a complete post-Lie algebra structure.

• In the classical case $N = \mathbb{R}^n$ a complete post-Lie algebra structure on $(\mathfrak{g}, \mathbb{R}^n)$ is just a complete pre-Lie algebra structure on \mathfrak{g} ; also called an affine structure on \mathfrak{g} .

Reduction to the Lie algebra level

Theorem (B-D-V 2012)

Let *G* and *N* be nilpotent Lie groups. Then there exists a simply transitive action by nil-affine transformations of *G* on *N* if and only if there exists a Lie algebra $\mathfrak{h} \cong \mathfrak{g}$ such that the corresponding pair of Lie algebras $(\mathfrak{h}, \mathfrak{n})$ admits a complete post-Lie algebra structure.

• In the classical case $N = \mathbb{R}^n$ a complete post-Lie algebra structure on $(\mathfrak{g}, \mathbb{R}^n)$ is just a complete pre-Lie algebra structure on \mathfrak{g} ; also called an affine structure on \mathfrak{g} .

• In the other extreme case $G = \mathbb{R}^n$ a complete post-Lie algebra structure on $(\mathbb{R}^n, \mathfrak{n})$ is a complete LR-structure on \mathfrak{n} [B-D-D 2009].

Definition (B. Vallette 2007)

A post-Lie algebra $(V, \cdot, \{,\})$ is a vectorspace V over a field k equipped with two k-bilinear operations $x \cdot y$ and $\{x, y\}$, such that $g = (V, \{,\})$ is a Lie algebra, and

Definition (B. Vallette 2007)

A post-Lie algebra $(V, \cdot, \{,\})$ is a vectorspace V over a field k equipped with two k-bilinear operations $x \cdot y$ and $\{x, y\}$, such that $g = (V, \{,\})$ is a Lie algebra, and

$$\{x, y\} \cdot z = (y \cdot x) \cdot z - y \cdot (x \cdot z) - (x \cdot y) \cdot z + x \cdot (y \cdot z)$$

$$x \cdot \{y, z\} = \{x \cdot y, z\} + \{y, x \cdot z\}$$

$$(4)$$

for all $x, y, z \in V$.

• If \mathfrak{g} is abelian then (V, \cdot) is a pre-Lie algebra.

- If \mathfrak{g} is abelian then (V, \cdot) is a pre-Lie algebra.
- We can associate to a post-Lie algebra ($V, \cdot, \{,\}$) a second Lie algebra $\mathfrak{n} = (V, [\,,])$ via

$$[x,y] := x \cdot y - y \cdot x + \{x,y\}.$$
(5)

- If \mathfrak{g} is abelian then (V, \cdot) is a pre-Lie algebra.
- We can associate to a post-Lie algebra ($V, \cdot, \{,\}$) a second Lie algebra $\mathfrak{n} = (V, [\,,])$ via

$$[x, y] := x \cdot y - y \cdot x + \{x, y\}.$$
 (5)

• This Lie bracket satisfies the following identity

$$[x, y] \cdot z = x \cdot (y \cdot z) - y \cdot (x \cdot z), \tag{6}$$

i.e., the post-Lie algebra is a left module over the Lie algebra \mathfrak{n} .

Definition (B-D-V 2012)

Let $(\mathfrak{g}, [x, y])$, $(\mathfrak{n}, \{x, y\})$ be two Lie brackets on a vector space V. A post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$ is a k-bilinear product $x \cdot y$ satisfying the identities

$$x \cdot y - y \cdot x = [x, y] - \{x, y\}$$

$$\tag{7}$$

$$[x, y] \cdot z = x \cdot (y \cdot z) - y \cdot (x \cdot z) \tag{8}$$

$$x \cdot \{y, z\} = \{x \cdot y, z\} + \{y, x \cdot z\}$$
(9)

for all $x, y, z \in V$.

Definition (B-D-V 2012)

Let $(\mathfrak{g}, [x, y])$, $(\mathfrak{n}, \{x, y\})$ be two Lie brackets on a vector space V. A post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$ is a k-bilinear product $x \cdot y$ satisfying the identities

$$x \cdot y - y \cdot x = [x, y] - \{x, y\}$$
 (7)

$$[x, y] \cdot z = x \cdot (y \cdot z) - y \cdot (x \cdot z)$$
(8)

$$x \cdot \{y, z\} = \{x \cdot y, z\} + \{y, x \cdot z\}$$
(9)

for all $x, y, z \in V$.

• These identities imply (3) - (6), so that $(V, \cdot, [,])$ is a post-Lie algebra with associated Lie algebra \mathfrak{n} .

• If n is abelian then the conditions (7), (8), (9) reduce to

$$\begin{aligned} x \cdot y - y \cdot x &= [x, y], \\ [x, y] \cdot z &= x \cdot (y \cdot z) - y \cdot (x \cdot z), \end{aligned}$$

so that $x \cdot y$ is a pre-Lie algebra structure on \mathfrak{g} .

• If n is abelian then the conditions (7), (8), (9) reduce to

$$\begin{aligned} x \cdot y - y \cdot x &= [x, y], \\ [x, y] \cdot z &= x \cdot (y \cdot z) - y \cdot (x \cdot z), \end{aligned}$$

so that $x \cdot y$ is a pre-Lie algebra structure on \mathfrak{g} .

 \bullet If ${\mathfrak g}$ is abelian then the conditions reduce to

$$x \cdot y - y \cdot x = -\{x, y\}$$

$$x \cdot (y \cdot z) = y \cdot (x \cdot z),$$

$$(x \cdot y) \cdot z = (x \cdot z) \cdot y,$$

so that $-x \cdot y$ is an LR-structure on \mathfrak{n} .

Theorem (B-D-D 2009)

Let \mathfrak{n} be a Lie algebra admitting an LR-structure. Then \mathfrak{n} is two-step solvable.

Theorem (B-D-D 2009)

Let \mathfrak{n} be a Lie algebra admitting an LR-structure. Then \mathfrak{n} is two-step solvable.

Theorem (B-D-D 2009)

Let \mathfrak{n} be 2-step nilpotent, or let \mathfrak{n} be 3-step nilpotent with at most 3 generators. Then \mathfrak{n} admits a complete LR-structure.

Algebraic structure results

Theorem (B-D-D 2009)

Let \mathfrak{n} be a Lie algebra admitting an LR-structure. Then \mathfrak{n} is two-step solvable.

Theorem (B-D-D 2009)

Let \mathfrak{n} be 2-step nilpotent, or let \mathfrak{n} be 3-step nilpotent with at most 3 generators. Then \mathfrak{n} admits a complete LR-structure.

Theorem (B-D-D 2009)

There are examples of 4-generated 3-step nilpotent Lie algebras \mathfrak{n} of dimension $n \ge 13$ not admitting any LR-structure.

Theorem (B-D-V 2012)

Let (V, \cdot) be a post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$, where \mathfrak{g} is nilpotent. Then \mathfrak{n} is solvable.

Theorem (B-D-V 2012)

Let (V, \cdot) be a post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$, where \mathfrak{g} is nilpotent. Then \mathfrak{n} is solvable.

Theorem (B-D 2013)

Let $(\mathfrak{g}, \mathfrak{n})$ be a pair of Lie algebras, where \mathfrak{g} is semisimple and \mathfrak{n} is solvable. Then there is no post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$.

Theorem (B-D-V 2012)

Let (V, \cdot) be a post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$, where \mathfrak{g} is nilpotent. Then \mathfrak{n} is solvable.

Theorem (B-D 2013)

Let $(\mathfrak{g}, \mathfrak{n})$ be a pair of Lie algebras, where \mathfrak{g} is semisimple and \mathfrak{n} is solvable. Then there is no post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$.

Theorem (B-D 2013)

Let \mathfrak{n} be a semisimple Lie algebra and \mathfrak{g} be a solvable Lie algebra. Assume that \mathfrak{g} is unimodular. Then there is no post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$.

Theorem (B-D-V 2012)

Let $(\mathfrak{g}, \mathfrak{n})$ be a pair of simple Lie algebras. Then there exists a post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$ if and only if $\mathfrak{g} \cong \mathfrak{n}$, in which case there are only two trivial possibilities:

$$x \cdot y = 0, \quad [x, y] = \{x, y\},$$

 $x \cdot y = [x, y] = -\{x, y\}.$

Theorem (B-D-V 2012)

Let $(\mathfrak{g}, \mathfrak{n})$ be a pair of simple Lie algebras. Then there exists a post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$ if and only if $\mathfrak{g} \cong \mathfrak{n}$, in which case there are only two trivial possibilities:

$$x \cdot y = 0, \quad [x, y] = \{x, y\},$$

 $x \cdot y = [x, y] = -\{x, y\}.$

Example

Let $\mathfrak{g} \cong \mathfrak{n} \cong \mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C})$. Then there exist non-trivial post-Lie algebra structures on $(\mathfrak{g}, \mathfrak{n})$.

• Let $e_1, f_1, h_1, e_2, f_2, h_2$ be a basis of $n = \mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C})$ with Lie brackets

$$\{e_1, f_1\} = h_1, \qquad \{e_2, f_2\} = h_2, \\ \{e_1, h_1\} = -2e_1, \quad \{e_2, h_2\} = -2e_2, \\ \{f_1, h_1\} = 2f_1, \qquad \{f_2, h_2\} = 2f_2.$$

• Let $e_1, f_1, h_1, e_2, f_2, h_2$ be a basis of $\mathfrak{n} = \mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C})$ with Lie brackets

$$\{ e_1, f_1 \} = h_1, \qquad \{ e_2, f_2 \} = h_2, \\ \{ e_1, h_1 \} = -2e_1, \quad \{ e_2, h_2 \} = -2e_2, \\ \{ f_1, h_1 \} = 2f_1, \qquad \{ f_2, h_2 \} = 2f_2.$$

• The following product defines a post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$, with $\mathfrak{g} \cong \mathfrak{n}$:

 $\begin{array}{ll} e_1 \cdot e_2 = -4e_2 + h_2, & f_1 \cdot e_2 = 2e_2 - h_2, & h_1 \cdot e_2 = 6e_2 - 2h_2, \\ e_1 \cdot f_2 = 4f_2 + 4h_2, & f_1 \cdot f_2 = -2f_2 - h_2, & h_1 \cdot f_2 = -6f_2 - 4h_2, \\ e_1 \cdot h_2 = -8e_2 - 2f_2, & f_1 \cdot h_2 = 2e_2 + 2f_2, & h_1 \cdot h_2 = 8e_2 + 4f_2. \end{array}$

Existence of post-Lie algebra structures - a table

$(\mathfrak{g},\mathfrak{n})$	n abe	n nil	n sol	n sim	n sem	${\mathfrak n}$ red	n com
g abelian	\checkmark	\checkmark	\checkmark	_	_	_	\checkmark
\mathfrak{g} nilpotent	\checkmark	\checkmark	\checkmark	—	_	—	\checkmark
\mathfrak{g} solvable	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
g simple	_	—	—	\checkmark	_	—	—
\mathfrak{g} semisimple	_	—	_	\checkmark	\checkmark	?	—
\mathfrak{g} reductive	\checkmark	?	?	\checkmark	\checkmark	\checkmark	\checkmark
\mathfrak{g} complete	\checkmark	\checkmark	\checkmark	?	?	\checkmark	\checkmark

Definition

A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra \mathfrak{g} is a k-bilinear product $x \cdot y$ satisfying the identities:

$$x \cdot y = y \cdot x$$

[x,y] \cdot z = x \cdot (y \cdot z) - y \cdot (x \cdot z)
x \cdot [y,z] = [x \cdot y, z] + [y, x \cdot z]

for all $x, y, z \in V$.

33 / 36

Commutative post-Lie algebra structures

Definition

A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra \mathfrak{g} is a k-bilinear product $x \cdot y$ satisfying the identities:

$$x \cdot y = y \cdot x$$

[x, y] \cdot z = x \cdot (y \cdot z) - y \cdot (x \cdot z)
x \cdot [y, z] = [x \cdot y, z] + [y, x \cdot z]

for all $x, y, z \in V$.

• A CPA-structure on \mathfrak{g} corresponds to a post-Lie algebra structure on $(\mathfrak{n},\mathfrak{g})$ with $[x,y] = \{x,y\}$.

Any CPA-structure on a perfect Lie algebra \mathfrak{g} is trivial, i.e., satisfies $\mathfrak{g} \cdot \mathfrak{g} = 0$.

Theorem (B-M 2016) Any CPA-structure on a perfect Lie algebra \mathfrak{g} is trivial, i.e., satisfies $\mathfrak{g} \cdot \mathfrak{g} = 0$.

Theorem (B-M 2016)

Let \mathfrak{g} be a non-trivial solvable Lie algebra. Then \mathfrak{g} admits a non-trivial CPA-structure.

Theorem (B-M 2016) Any CPA-structure on a perfect Lie algebra \mathfrak{g} is trivial, i.e., satisfies $\mathfrak{g} \cdot \mathfrak{g} = 0$.

Theorem (B-M 2016)

Let \mathfrak{g} be a non-trivial solvable Lie algebra. Then \mathfrak{g} admits a non-trivial CPA-structure.

Definition

A complete Lie algebra \mathfrak{g} is called simply-complete, if no non-trivial ideal in \mathfrak{g} is complete.

Let \mathfrak{g} be a simply-complete non-metabelian Lie algebra. Suppose that \mathfrak{g} satisfies the condition $\operatorname{nil}(\mathfrak{g}) = [\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$. Denote by \mathfrak{z} the center of the ideal $I = [\mathfrak{g}, \mathfrak{g}]$. Then there is a bijective correspondence between CPA-structures on \mathfrak{g} and elements $z \in \mathfrak{z}$, given by

$$x \cdot y = [[z, x], y].$$

Let \mathfrak{g} be a simply-complete non-metabelian Lie algebra. Suppose that \mathfrak{g} satisfies the condition $\operatorname{nil}(\mathfrak{g}) = [\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$. Denote by \mathfrak{z} the center of the ideal $I = [\mathfrak{g}, \mathfrak{g}]$. Then there is a bijective correspondence between CPA-structures on \mathfrak{g} and elements $z \in \mathfrak{z}$, given by

$$x \cdot y = [[z, x], y].$$

• We believe that the condition $\operatorname{nil}(\mathfrak{g}) = [\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$ is automatically satisfied for all complete Lie algebras \mathfrak{g} . Surprisingly this seems to be not known.

Let \mathfrak{g} be a simply-complete non-metabelian Lie algebra. Suppose that \mathfrak{g} satisfies the condition $\operatorname{nil}(\mathfrak{g}) = [\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$. Denote by \mathfrak{z} the center of the ideal $I = [\mathfrak{g}, \mathfrak{g}]$. Then there is a bijective correspondence between CPA-structures on \mathfrak{g} and elements $z \in \mathfrak{z}$, given by

$$x \cdot y = [[z, x], y].$$

• We believe that the condition $\operatorname{nil}(\mathfrak{g}) = [\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$ is automatically satisfied for all complete Lie algebras \mathfrak{g} . Surprisingly this seems to be not known.

Example

The Lie algebra $\mathfrak{aff}(\mathbb{R}^n)$ is simply-complete. All CPA-structures on $\mathfrak{aff}(\mathbb{R}^n)$ are trivial for $n \geq 2$.

Let \mathfrak{g} be a nilpotent Lie algebra satisfying $Z(\mathfrak{g}) \subseteq [\mathfrak{g}, \mathfrak{g}]$. Then any CPA-structure on \mathfrak{g} is complete, i.e., its left multiplication maps L(x) are nilpotent for all $x \in \mathfrak{g}$.

Let \mathfrak{g} be a nilpotent Lie algebra satisfying $Z(\mathfrak{g}) \subseteq [\mathfrak{g}, \mathfrak{g}]$. Then any CPA-structure on \mathfrak{g} is complete, i.e., its left multiplication maps L(x) are nilpotent for all $x \in \mathfrak{g}$.

• In this case we have $L(Z(\mathfrak{g}))^{\lceil \frac{\dim Z(\mathfrak{g})+1}{2}\rceil}(\mathfrak{g}) = 0.$

Let \mathfrak{g} be a nilpotent Lie algebra satisfying $Z(\mathfrak{g}) \subseteq [\mathfrak{g}, \mathfrak{g}]$. Then any CPA-structure on \mathfrak{g} is complete, i.e., its left multiplication maps L(x) are nilpotent for all $x \in \mathfrak{g}$.

• In this case we have
$$L(Z(\mathfrak{g}))^{\lceil \frac{\dim Z(\mathfrak{g})+1}{2}\rceil}(\mathfrak{g})=0.$$

Conjecture

Every CPA-structure on the free-nilpotent Lie algebra $\mathfrak{g} = F_{g,c}$ with g generators and nilpotency class c, with $c \ge g \ge 3$, satisfies

$$\mathfrak{g} \cdot \mathfrak{g} \subseteq Z(\mathfrak{g}).$$