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Pre-Lie algebras

Definition
A pre-Lie algebra (V) is a vector space V over a field K equipped
with a binary operation (x,y) — x -y such that for all x,y,z € V

(x-y)z=x-(y-2)=(y-x)-z—y-(x-2)

e If (V,-) is a pre-Lie algebra, then for x, y € V the binary operation

.yl =x-y—y-x

defines a Lie algebra.
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Definition
A bilinear product x -y on g X g is called a pre-Lie algebra structure
on g, if it satisfies
X y—y-x= [Xa_y]7
oyl z=x-(y-2) =y~ (x-2)

forall x,y,z € g.
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Definition
A bilinear product x -y on g X g is called a pre-Lie algebra structure
on g, if it satisfies

x-y—y-x=[xyl,
X,yl-z=x-(y-2z) —y-(x-2),

forall x,y,z € g.
Definition

A Lie algebra g over a field K is said to admit a pre-Lie algebra
structure, if there exists a pre-Lie algebra structure on g.
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Example
The Heisenberg Lie algebra n3(K) of dimension 3 with basis
{e1, e, 3} and Lie brackets [e1, &3] = e3 admits a pre-Lie algebra

structure, given by

€1 -6 = €3,

&€ = —es.
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Example

The Heisenberg Lie algebra n3(K) of dimension 3 with basis

{e1, e, 3} and Lie brackets [e1, &3] = e3 admits a pre-Lie algebra
structure, given by

1
€16 = 56‘37
1
€6 = —593-

Example
The Lie algebra sl,(K) over a field K of characteristic zero does not

admit a pre-Lie algebra structure.
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The affine group

e Denote by Aff(R") ~ R” x GL,(R) the group of affine trans-
formations of R".
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The affine group

e Denote by Aff(R") ~ R” x GL,(R) the group of affine trans-
formations of R".

e We may represent the elements of Aff(R") by block matrices
(A V) with A € GL,(R), v € R" and multiplication

01
A v B w\ [(AB Aw+v
01 0 1) \0 1 '

o Aff(R") acts on R” by

()0-()
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e The affine group is a linear algebraic group represented by

AFF(R") = {(g‘ ‘1/> | A€ GL,(R),v € R"}.
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e The affine group is a linear algebraic group represented by

AFF(R") = {(g‘ ‘{) | A€ GL,(R),v € ]R”}.

e It generalizes the isometry group of R”,

Tso(R") = {(g‘ ‘1/> | A€ 0,(R),v e ]R”} .
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e The affine group is a linear algebraic group represented by

AH(R”)—{(S‘ 1>|AeGL( )ve]R"}.

e It generalizes the isometry group of R”,

ISO(R")_{G‘ 1) | A€ O,(R )VGR”}.

e The translations in Aff(R") form a normal subgroup, given by

T(n) = {(g 1>|VGR”}
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Simply transitive groups

e A group G acts simply transitively on R” by affine transformations
if there is a homomorphism p: G — Aff(R") letting G act on R”,
such that for all y;, y» € R” there is a unique g € G such that

p(g)(y1) = ye
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e L. Auslander named such groups simply transitive groups of affine
motions. They are connected, simply connected n-dimensional Lie
groups homeomorphic to R".
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Simply transitive groups

e A group G acts simply transitively on R” by affine transformations
if there is a homomorphism p: G — Aff(R") letting G act on R”,
such that for all y;, y» € R” there is a unique g € G such that

p(g)(y1) = ye

e L. Auslander named such groups simply transitive groups of affine
motions. They are connected, simply connected n-dimensional Lie
groups homeomorphic to R".

e An example of a simply transitive group of affine motions is the
normal subgroup T(n) of translations.
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Proposition (L. Auslander 1977)

Let G be a simply transitive group of affine motions. Then G is
solvable.
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Proposition (L. Auslander 1977)

Let G be a simply transitive group of affine motions. Then G is
solvable.

More generally the following result holds, which more or less can be
found in G. Hochschild's book The Structure of Lie Groups (1965).

Proposition
Let G be a Lie group which is homeomorphic to R" for some n > 1.
If G admits a faithful linear representation then G is solvable.
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Affinely flat manifolds

e An affinely flat structure on an n-dimensional manifold M is a
collection of coordinate homeomorphisms

fo: Uy — V, CR"

where the U, are open sets covering M, and the V,, are open subsets
of R"; whenever U, N Us # 0, it is required that the change of
coordinate homeomorphism

fgf_li fa(Ua N Uﬁ) — fﬁ(Ua N Uﬁ)

«

extends to an affine transformation in Aff(R"). We call M together
with this structure an affinely flat manifold, or affine manifold.
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e A special case of affine flat manifolds are Riemannian-flat
manifolds, where the coordinate changes extend to isometries in
Iso(R"), i.e., to affine transformations x — Ax + b with A € O,(R).
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e A special case of affine flat manifolds are Riemannian-flat
manifolds, where the coordinate changes extend to isometries in
Iso(R"), i.e., to affine transformations x — Ax + b with A € O,(R).

Theorem (Benzecri 1959)

A closed surface admits an affine (affinely flat) structure if and only if
its Euler characteristic vanishes.
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e A special case of affine flat manifolds are Riemannian-flat
manifolds, where the coordinate changes extend to isometries in
Iso(R"), i.e., to affine transformations x — Ax + b with A € O,(R).

Theorem (Benzecri 1959)

A closed surface admits an affine (affinely flat) structure if and only if
its Euler characteristic vanishes.

e In particular, a closed surface different from the 2-torus or the Klein
bottle does not admit any affine structure.
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Proposition
There is a bijective correspondence between affinely flat structures on
a manifold M and flat, torisonfree affine connections V on M.
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for all X, Y € X, where X denotes the Lie algebra of all differential
vector fields on M.
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Proposition
There is a bijective correspondence between affinely flat structures on
a manifold M and flat, torisonfree affine connections V on M.

e An affine connection V is called torsionfree if
Vx(Y)=Vy(X)=[X,Y]=0 (1)

for all X, Y € X, where X denotes the Lie algebra of all differential
vector fields on M.

e An affine connection V is called flat if
VxVy =VyVx =Vixy =0 (2)

forall X, Y € X.
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e A torisonfree flat affine connection determines a covariant
differentiation Vx : X — X via Y +— Vx(Y) for vector fields
X, Y exXx.
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e A torisonfree flat affine connection determines a covariant
differentiation Vx : X — X via Y — Vx(Y) for vector fields
X, Y exXx.

e Setting
XY :=Vx(Y),

we obtain an R-bilinear product on X. Because of (1) and (2) this
product turns X into a pre-Lie algebra:

X-Y-Y-X—[X Y]=0,
X (Y-2)-Y - (X-2)=[X,Y]-Z
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Left-invariant affine structures on Lie groups

e An affine structure on a Lie group G is called left-invariant if each
left-multiplication map L(g): G — G is an affine diffeomorphism.
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Left-invariant affine structures on Lie groups

e An affine structure on a Lie group G is called left-invariant if each
left-multiplication map L(g): G — G is an affine diffeomorphism.

e An affing structure on G is called complete, if the universal
covering G is affinely diffeomorphic to R".

Theorem

There is a canonical bijection between complete left-invariant affine
structures on G and simply transitive actions of G on R" by affine
transformations.
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Theorem
There is a canonical bijection between left-invariant affine structures
on G and pre-Lie algebra structures on g.
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Theorem

There is a canonical bijection between left-invariant affine structures
on G and pre-Lie algebra structures on g.

Theorem

There is a canonical bijection between simply transitive affine actions
of G and complete pre-Lie algebra structures on g.
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Theorem
There is a canonical bijection between left-invariant affine structures
on G and pre-Lie algebra structures on g.

Theorem
There is a canonical bijection between simply transitive affine actions
of G and complete pre-Lie algebra structures on g.

e Here a pre-Lie algebra structure on g is complete, if all right
multiplications R(x) in End(g) are nilpotent.
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Milnor's question

Question (Milnor 1977)

Does every solvable n-dimensional Lie group G admit a complete
left-invariant affine structure, or equivalently, does the universal

covering group G act simply transitively by affine transformations on
R" 7
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Milnor's question

Question (Milnor 1977)

Does every solvable n-dimensional Lie group G admit a complete
left-invariant affine structure, or equivalently, does the universal

covering group G act simply transitively by affine transformations on
R" 7

Milnor's Question - algebraic version

Does every solvable Lie algebra over a field of characteristic zero
admit a (complete) pre-Lie algebra structure?
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Positive evidence for Milnor's question

e Milnor's question has a positive answer for 2-step and 3-step
nilpotent Lie groups.
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Positive evidence for Milnor's question

e Milnor's question has a positive answer for 2-step and 3-step
nilpotent Lie groups.

e Milnor's question has a positive answer for Lie groups whose Lie
algebra admits a nonsingular derivation. Such Lie algebras (and
hence such Lie groups) are necessarily nilpotent.

e Milnor's question has a positive answer for all (connected and
simply connected) nilpotent Lie groups of dimension n < 7.

e Milnor's question has a positive answer for all 2-step solvable Lie
groups whose Lie algebra is a semidirect product a x b of two abelian
Lie algebras.
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A negative answer to Milnor’s question

Proposition (Benoist 1995)

There exists a 11-dimensional nilpotent group Lie group of nilpotency
class 10 not admitting any left-invariant affine structure.
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A negative answer to Milnor’s question

Proposition (Benoist 1995)

There exists a 11-dimensional nilpotent group Lie group of nilpotency
class 10 not admitting any left-invariant affine structure.

Proposition (B.-Grunewald 1995)

There exist families of nilpotent Lie groups of dimension 11 and
nilpotency class 10 not admitting any left-invariant affine structure.

Proposition (B. 1996)

There exist families of nilpotent Lie groups of dimension 10 and
nilpotency class 9 not admitting any left-invariant affine structure.
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Theorem

Let G be a n-dimensional Lie group with Lie algebra g. Suppose that
G admits a left-invariant affine structure. Then g admits a faithful
linear Lie algebra representation ¢: g — gl,.,(R) of degree n+ 1.
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Theorem

Let G be a n-dimensional Lie group with Lie algebra g. Suppose that
G admits a left-invariant affine structure. Then g admits a faithful
linear Lie algebra representation ¢: g — gl,.,(R) of degree n+ 1.

Proof: The left-invariant affine structure on G induces a pre-Lie
algebra structure x - y = L(x)y on g, so that

L:g— gl(g), x — L(x)

is a linear representation of degree n. The corresponding g-module g,
need not be faithful, but using a nonsingular 1-cocycle we can
construct a faithful g-module of dimension n+ 1 from it.
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Because of [x,y] = x -y — y - x, the 1-cocycle
w=id € Z'(g, g.)

is nonsingular. Hence we have ker(w) =0, and V,, :=R x g, is a
faithful g-module of dimension n+ 1, with action

x.(t,v) = (0, x.v + tw(x))

forxeg, veg, andt e R n
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Because of [x,y] = x -y — y - x, the 1-cocycle
w=id € Z'(g, g.)

is nonsingular. Hence we have ker(w) =0, and V,, :=R x g, is a
faithful g-module of dimension n+ 1, with action

x.(t,v) = (0, x.v + tw(x))
forxeg, veg, andt e R n
Definition

Let g be a Lie algebra over a field K of dimension n. Denote by ji(g)
the minimal dimension of a faithful linear representation of g.
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Theorem (B. 1996)

There exists families of 10-dimensional filiform nilpotent Lie algebras

g such that ji(g) > 12. These algebras give a negative answer to
Milnor’s question.
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Theorem (B. 1996)

There exists families of 10-dimensional filiform nilpotent Lie algebras
g such that ji(g) > 12. These algebras give a negative answer to
Milnor’s question.

Theorem (B., Moens 2010)

For every filiform nilpotent Lie algebra of dimension 10 we have

10 < pu(g) < 18

There is a classification of such algebras satisfying j(g) < 11,
respectively ji(g) > 12.
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Nil-affine transformations

e Let N be a nilpotent Lie group and
Aff(N) = N x Aut(N)

be the group of affine transformations of N.
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Nil-affine transformations

e Let N be a nilpotent Lie group and

Aff(N) = N x Aut(N)
be the group of affine transformations of N.
e Aff(N) acts on N by (n,«) - m = na(m).

e For N = R" we obtain again Aff(R") = R"” x Aut(R").
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e We say that G admits a simply transitively action by nil-affine
transformations on N, if there is a homomorphism p: G — Aff(N)
letting G act simply transitively on N.
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e We say that G admits a simply transitively action by nil-affine
transformations on N, if there is a homomorphism p: G — Aff(N)
letting G act simply transitively on N.

e In the nil-affine setting, Milnor's question has a positive answer:
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e We say that G admits a simply transitively action by nil-affine
transformations on N, if there is a homomorphism p: G — Aff(N)
letting G act simply transitively on N.

e In the nil-affine setting, Milnor's question has a positive answer:

Proposition (Dekimpe 2003, Baues 2004)

Let G be a solvable Lie group. Then G admits a simply transitive
action by nil-affine transformations on some simply connected
nilpotent Lie group N. Conversely, assume that G admits such an
action. Then G is solvable.
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Reduction to the Lie algebra level

Theorem (B-D-V 2012)

Let G and N be nilpotent Lie groups. Then there exists a simply
transitive action by nil-affine transformations of G on N if and only if
there exists a Lie algebra ) = g such that the corresponding pair of
Lie algebras (h,n) admits a complete post-Lie algebra structure.
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Reduction to the Lie algebra level

Theorem (B-D-V 2012)

Let G and N be nilpotent Lie groups. Then there exists a simply
transitive action by nil-affine transformations of G on N if and only if
there exists a Lie algebra ) = g such that the corresponding pair of
Lie algebras (h,n) admits a complete post-Lie algebra structure.

e |n the classical case N = R"” a complete post-Lie algebra structure
on (g,R") is just a complete pre-Lie algebra structure on g; also
called an affine structure on g.

e In the other extreme case G = R"” a complete post-Lie algebra
structure on (R”,n) is a complete LR-structure on n [B-D-D 2009].
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Post-Lie algebra structures

Definition (B. Vallette 2007)

A post-Lie algebra (V,-,{,}) is a vectorspace V over a field k
equipped with two k-bilinear operations x - y and {x,y}, such that
g=(V,{,}) is a Lie algebra, and
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Post-Lie algebra structures

Definition (B. Vallette 2007)

A post-Lie algebra (V,-,{,}) is a vectorspace V over a field k
equipped with two k-bilinear operations x - y and {x,y}, such that
g=(V,{,}) is a Lie algebra, and

xyt-z=x)z—y-(x-2)=(x-y)-z+x-(y-2) (3)
x-{y,z} ={x-y,z} +{y,x- z} (4)

forall x,y,z€ V.



e If g is abelian then (V) is a pre-Lie algebra.
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e If g is abelian then (V) is a pre-Lie algebra.

e We can associate to a post-Lie algebra (V, -, {, }) a second Lie
algebra n = (V,[,]) via

[x.yl=x-y—y -x+{xy}. (5)
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e If g is abelian then (V) is a pre-Lie algebra.

e We can associate to a post-Lie algebra (V, -, {, }) a second Lie
algebra n = (V,[,]) via

[x.yl=x-y—y -x+{xy}. (5)

e This Lie bracket satisfies the following identity

X, y]-z=x-(y-2) —y-(x-2), (6)

i.e., the post-Lie algebra is a left module over the Lie algebra n.
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Definition (B-D-V 2012)

Let (g, [x,y]), (n,{x,y}) be two Lie brackets on a vector space V. A
post-Lie algebra structure on the pair (g,n) is a k-bilinear product

x - y satisfying the identities

x-y—y-x=[xyl—{xy} (7)
X, y]-z=x-(y-2)—y-(x-2) (8)
x-Ay,z} ={x-y,z} +{y,x -z} (9)

forall x,y,z € V.
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Definition (B-D-V 2012)

Let (g, [x,y]), (n,{x,y}) be two Lie brackets on a vector space V. A
post-Lie algebra structure on the pair (g,n) is a k-bilinear product

x - y satisfying the identities

x-y—y-x=[xyl—{xy} (7)
X, y]-z=x-(y-2)—y-(x-2) (8)
x-Ay,z} ={x-y,z} +{y,x -z} (9)

forall x,y,z € V.

e These identities imply (3) — (6), so that (V,-,[,]) is a post-Lie
algebra with associated Lie algebra n.
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e If n is abelian then the conditions (7),(8), (9) reduce to

x-y—y-x=|[xyl,
X,y]-z=x-(y-2z) —y-(x-2),

so that x - y is a pre-Lie algebra structure on g.



e If n is abelian then the conditions (7),(8), (9) reduce to

x-y—y-x=|[xyl,
X,y]-z=x-(y-2z) —y-(x-2),

so that x - y is a pre-Lie algebra structure on g.
e If g is abelian then the conditions reduce to

x-y—y-x=—{xy}
x-(y-z)=y-(x-2z),
(x-y) - z=(x-2)y,

so that —x - y is an LR-structure on n.

27 / 36
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Algebraic structure results

Theorem (B-D-D 2009)

Let n be a Lie algebra admitting an LR-structure. Then n is two-step
solvable.
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Algebraic structure results

Theorem (B-D-D 2009)

Let n be a Lie algebra admitting an LR-structure. Then n is two-step
solvable.

Theorem (B-D-D 2009)

Let n be 2-step nilpotent, or let n be 3-step nilpotent with at most 3
generators. Then n admits a complete LR-structure.

Theorem (B-D-D 2009)

There are examples of 4-generated 3-step nilpotent Lie algebras n of
dimension n > 13 not admitting any LR-structure.
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Theorem (B-D-V 2012)

Let (V,-) be a post-Lie algebra structure on the pair (g,n), where g
is nilpotent. Then n is solvable.
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Theorem (B-D-V 2012)

Let (V,-) be a post-Lie algebra structure on the pair (g,n), where g
is nilpotent. Then n is solvable.

Theorem (B-D 2013)

Let (g,n) be a pair of Lie algebras, where g is semisimple and n is
solvable. Then there is no post-Lie algebra structure on (g, n).



29 / 36

Theorem (B-D-V 2012)

Let (V,-) be a post-Lie algebra structure on the pair (g,n), where g
is nilpotent. Then n is solvable.

Theorem (B-D 2013)

Let (g,n) be a pair of Lie algebras, where g is semisimple and n is
solvable. Then there is no post-Lie algebra structure on (g, n).

Theorem (B-D 2013)

Let n be a semisimple Lie algebra and g be a solvable Lie algebra.
Assume that g is unimodular. Then there is no post-Lie algebra
structure on (g, n).
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Theorem (B-D-V 2012)

Let (g, n) be a pair of simple Lie algebras. Then there exists a
post-Lie algebra structure on (g, n) if and only if g = n, in which case
there are only two trivial possibilities:

X'y:O7 [X,y]:{X,y},
Xy = [va] = _{X7y}'
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Theorem (B-D-V 2012)

Let (g, n) be a pair of simple Lie algebras. Then there exists a
post-Lie algebra structure on (g, n) if and only if g = n, in which case
there are only two trivial possibilities:

X'y:O7 [X,y]:{X,y},
Xy = [va] = _{X7y}'

Example

Let g = n = sl,(C) @ slx(C). Then there exist non-trivial post-Lie
algebra structures on (g, n).
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o Let e, f1, h1, e, >, hy be a basis of n = sl,(C) @ sl,(C) with Lie

brackets
{617 fl} = hla {627 fZ} = h2a

{e17 hl} - —261, {627 h2} - —262,
{ﬂ;hl}zzﬂa {f—2>h2}:2f2
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o Let er, f1, hy, e, fr, hy be a basis of n = sl,(C) @ sl,(C) with Lie

brackets
{617 fl} = hla {627 fZ} = h2a

{6‘1, hl} = —2ey, {6‘2, hz} = —2e,
{ﬂ;hl}zzﬂa {f—2>h2}:2f2

e The following product defines a post-Lie algebra structure on
(g,n), with g = n:

e-e=—4e+h, f-ea=2e—h, h-e=0e—2h,
e-h=46L+4h,, f-fh=-2f—hy, hy-fhb=—6f —4hy,
61'h2:—8€2—2f2, ﬂ'h2:262+2f2, hl'h2:8€2+4f2.
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Existence of post-Lie algebra structures - a table

(g,n) nabe nnil nsol nsim nred ncom
g abelian v v v — — — v
g nilpotent | v v v — — — v
g solvable v v v v v v v
g simple — — — v — — —
— - — v v ? -
g reductive | v’ ? ? v v v v
g complete | v v v ? ? v v
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Commutative post-Lie algebra structures

Definition
A commutative post-Lie algebra structure, or CPA-structure on a Lie
algebra g is a k-bilinear product x - y satisfying the identities:

X-y=y-x
.yl z=x-(y-2)—y-(x-2)
X-[y,Z]I[X~y7Z]—0—[y,X~Z]

forall x,y,ze V.
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Commutative post-Lie algebra structures

Definition
A commutative post-Lie algebra structure, or CPA-structure on a Lie
algebra g is a k-bilinear product x - y satisfying the identities:

X y=y-x
.yl z=x-(y-2)—y-(x-2)
X-[y,Z]I[X~y7Z]—0—[y,X~Z]

forall x,y,ze V.

e A CPA-structure on g corresponds to a post-Lie algebra structure
on (n,g) with [x,y] = {x.y}.
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Theorem (B-M 2016)
Any CPA-structure on a perfect Lie algebra g is trivial, i.e., satisfies
g-9=0.
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Theorem (B-M 2016)

Any CPA-structure on a perfect Lie algebra g is trivial, i.e., satisfies
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Let g be a non-trivial solvable Lie algebra. Then g admits a non-
trivial CPA-structure.
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Theorem (B-M 2016)

Any CPA-structure on a perfect Lie algebra g is trivial, i.e., satisfies
g-g=0.

Theorem (B-M 2016)

Let g be a non-trivial solvable Lie algebra. Then g admits a non-
trivial CPA-structure.

Definition
A complete Lie algebra g is called simply-complete, if no non-trivial
ideal in g is complete.
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Theorem (B-M 2016)

Let g be a simply-complete non-metabelian Lie algebra. Suppose that
g satisfies the condition nil(g) = [g, nil(g)]. Denote by 3 the center
of the ideal | = [g,g]. Then there is a bijective correspondence
between CPA-structures on g and elements z € 3, given by

x-y = [lz,x],y].
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Let g be a simply-complete non-metabelian Lie algebra. Suppose that
g satisfies the condition nil(g) = [g, nil(g)]. Denote by 3 the center
of the ideal | = [g,g]. Then there is a bijective correspondence
between CPA-structures on g and elements z € 3, given by

Xy = [[Z7X]ay]'
e We believe that the condition nil(g) = [g, nil(g)] is automatically

satisfied for all complete Lie algebras g. Surprisingly this seems to be
not known.
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Theorem (B-M 2016)

Let g be a simply-complete non-metabelian Lie algebra. Suppose that
g satisfies the condition nil(g) = [g, nil(g)]. Denote by 3 the center
of the ideal | = [g,g]. Then there is a bijective correspondence
between CPA-structures on g and elements z € 3, given by

x-y = [lz,x],y].

e We believe that the condition nil(g) = [g, nil(g)] is automatically
satisfied for all complete Lie algebras g. Surprisingly this seems to be
not known.

Example

The Lie algebra aff(R") is simply-complete. All CPA-structures on
aff(R") are trivial for n > 2.
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Theorem (B-M 2017)

Let g be a nilpotent Lie algebra satisfying Z(g) C [g,g8]. Then any

CPA-structure on g is complete, i.e., its left multiplication maps L(x)
are nilpotent for all x € g.
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Let g be a nilpotent Lie algebra satisfying Z(g) C [g,g8]. Then any
CPA-structure on g is complete, i.e., its left multiplication maps L(x)
are nilpotent for all x € g.

dim Z(g)+1

e In this case we have L(Z(g))!™ 2= I(g) = 0.
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Theorem (B-M 2017)

Let g be a nilpotent Lie algebra satisfying Z(g) C [g,g8]. Then any
CPA-structure on g is complete, i.e., its left multiplication maps L(x)
are nilpotent for all x € g.

dim Z(g)+1

e In this case we have L(Z(g))!™ 2= I(g) = 0.

Conjecture

Every CPA-structure on the free-nilpotent Lie algebra g = Fg . with g
generators and nilpotency class ¢, with ¢ > g > 3, satisfies

g-9C Z(g).



