Geometric Structures on Lie groups and post Lie algebras

Dietrich Burde
Universität Wien
1
24.10.2017

Pre-Lie algebras

Definition

A pre-Lie algebra (V, \cdot) is a vector space V over a field K equipped with a binary operation $(x, y) \mapsto x \cdot y$ such that for all $x, y, z \in V$

Pre-Lie algebras

Definition

A pre-Lie algebra (V, \cdot) is a vector space V over a field K equipped with a binary operation $(x, y) \mapsto x \cdot y$ such that for all $x, y, z \in V$

$$
(x \cdot y) \cdot z-x \cdot(y \cdot z)=(y \cdot x) \cdot z-y \cdot(x \cdot z)
$$

Pre-Lie algebras

Definition

A pre-Lie algebra (V, \cdot) is a vector space V over a field K equipped with a binary operation $(x, y) \mapsto x \cdot y$ such that for all $x, y, z \in V$

$$
(x \cdot y) \cdot z-x \cdot(y \cdot z)=(y \cdot x) \cdot z-y \cdot(x \cdot z)
$$

- If (V, \cdot) is a pre-Lie algebra, then for $x, y \in V$ the binary operation

$$
[x, y]:=x \cdot y-y \cdot x
$$

defines a Lie algebra.

Definition

A bilinear product $x \cdot y$ on $\mathfrak{g} \times \mathfrak{g}$ is called a pre-Lie algebra structure on \mathfrak{g}, if it satisfies

$$
\begin{aligned}
x \cdot y-y \cdot x & =[x, y] \\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z)
\end{aligned}
$$

for all $x, y, z \in \mathfrak{g}$.

Definition

A bilinear product $x \cdot y$ on $\mathfrak{g} \times \mathfrak{g}$ is called a pre-Lie algebra structure on \mathfrak{g}, if it satisfies

$$
\begin{aligned}
x \cdot y-y \cdot x & =[x, y] \\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z)
\end{aligned}
$$

for all $x, y, z \in \mathfrak{g}$.

Definition
A Lie algebra \mathfrak{g} over a field K is said to admit a pre-Lie algebra structure, if there exists a pre-Lie algebra structure on \mathfrak{g}.

Example

The Heisenberg Lie algebra $\mathfrak{n}_{3}(K)$ of dimension 3 with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ and Lie brackets $\left[e_{1}, e_{2}\right]=e_{3}$ admits a pre-Lie algebra structure, given by

$$
\begin{aligned}
e_{1} \cdot e_{2} & =\frac{1}{2} e_{3}, \\
e_{2} \cdot e_{1} & =-\frac{1}{2} e_{3} .
\end{aligned}
$$

Example

The Heisenberg Lie algebra $\mathfrak{n}_{3}(K)$ of dimension 3 with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ and Lie brackets $\left[e_{1}, e_{2}\right]=e_{3}$ admits a pre-Lie algebra structure, given by

$$
\begin{aligned}
e_{1} \cdot e_{2} & =\frac{1}{2} e_{3} \\
e_{2} \cdot e_{1} & =-\frac{1}{2} e_{3}
\end{aligned}
$$

Example

The Lie algebra $\mathfrak{s l}_{2}(K)$ over a field K of characteristic zero does not admit a pre-Lie algebra structure.

The affine group

- Denote by $\operatorname{Aff}\left(\mathbb{R}^{n}\right) \simeq \mathbb{R}^{n} \rtimes G L_{n}(\mathbb{R})$ the group of affine transformations of \mathbb{R}^{n}.

The affine group

- Denote by $\operatorname{Aff}\left(\mathbb{R}^{n}\right) \simeq \mathbb{R}^{n} \rtimes G L_{n}(\mathbb{R})$ the group of affine transformations of \mathbb{R}^{n}.
- We may represent the elements of $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ by block matrices $\left(\begin{array}{ll}A & v \\ 0 & 1\end{array}\right)$ with $A \in G L_{n}(\mathbb{R}), v \in \mathbb{R}^{n}$ and multiplication

$$
\left(\begin{array}{ll}
A & v \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
B & w \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
A B & A w+v \\
0 & 1
\end{array}\right) .
$$

The affine group

- Denote by $\operatorname{Aff}\left(\mathbb{R}^{n}\right) \simeq \mathbb{R}^{n} \rtimes G L_{n}(\mathbb{R})$ the group of affine transformations of \mathbb{R}^{n}.
- We may represent the elements of $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ by block matrices $\left(\begin{array}{ll}A & v \\ 0 & 1\end{array}\right)$ with $A \in G L_{n}(\mathbb{R}), v \in \mathbb{R}^{n}$ and multiplication

$$
\left(\begin{array}{ll}
A & v \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
B & w \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
A B & A w+v \\
0 & 1
\end{array}\right) .
$$

- $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ acts on \mathbb{R}^{n} by

$$
\left(\begin{array}{ll}
A & v \\
0 & 1
\end{array}\right)\binom{x}{1}=\binom{A x+v}{1}
$$

- The affine group is a linear algebraic group represented by

$$
\operatorname{Aff}\left(\mathbb{R}^{n}\right)=\left\{\left.\left(\begin{array}{ll}
A & v \\
0 & 1
\end{array}\right) \right\rvert\, A \in G L_{n}(\mathbb{R}), v \in \mathbb{R}^{n}\right\}
$$

- The affine group is a linear algebraic group represented by

$$
\operatorname{Aff}\left(\mathbb{R}^{n}\right)=\left\{\left.\left(\begin{array}{cc}
A & v \\
0 & 1
\end{array}\right) \right\rvert\, A \in G L_{n}(\mathbb{R}), v \in \mathbb{R}^{n}\right\} .
$$

- It generalizes the isometry group of \mathbb{R}^{n},

$$
\operatorname{Iso}\left(\mathbb{R}^{n}\right)=\left\{\left.\left(\begin{array}{cc}
A & v \\
0 & 1
\end{array}\right) \right\rvert\, A \in O_{n}(\mathbb{R}), v \in \mathbb{R}^{n}\right\} .
$$

- The affine group is a linear algebraic group represented by

$$
\operatorname{Aff}\left(\mathbb{R}^{n}\right)=\left\{\left.\left(\begin{array}{ll}
A & v \\
0 & 1
\end{array}\right) \right\rvert\, A \in G L_{n}(\mathbb{R}), v \in \mathbb{R}^{n}\right\}
$$

- It generalizes the isometry group of \mathbb{R}^{n},

$$
\operatorname{Iso}\left(\mathbb{R}^{n}\right)=\left\{\left.\left(\begin{array}{cc}
A & v \\
0 & 1
\end{array}\right) \right\rvert\, A \in O_{n}(\mathbb{R}), v \in \mathbb{R}^{n}\right\}
$$

- The translations in $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ form a normal subgroup, given by

$$
T(n)=\left\{\left.\left(\begin{array}{cc}
I_{n} & v \\
0 & 1
\end{array}\right) \right\rvert\, v \in \mathbb{R}^{n}\right\}
$$

Simply transitive groups

- A group G acts simply transitively on \mathbb{R}^{n} by affine transformations if there is a homomorphism $\rho: G \rightarrow \operatorname{Aff}\left(\mathbb{R}^{n}\right)$ letting G act on \mathbb{R}^{n}, such that for all $y_{1}, y_{2} \in \mathbb{R}^{n}$ there is a unique $g \in G$ such that $\rho(g)\left(y_{1}\right)=y_{2}$.

Simply transitive groups

- A group G acts simply transitively on \mathbb{R}^{n} by affine transformations if there is a homomorphism $\rho: G \rightarrow \operatorname{Aff}\left(\mathbb{R}^{n}\right)$ letting G act on \mathbb{R}^{n}, such that for all $y_{1}, y_{2} \in \mathbb{R}^{n}$ there is a unique $g \in G$ such that $\rho(g)\left(y_{1}\right)=y_{2}$.
- L. Auslander named such groups simply transitive groups of affine motions. They are connected, simply connected n-dimensional Lie groups homeomorphic to \mathbb{R}^{n}.

Simply transitive groups

- A group G acts simply transitively on \mathbb{R}^{n} by affine transformations if there is a homomorphism $\rho: G \rightarrow \operatorname{Aff}\left(\mathbb{R}^{n}\right)$ letting G act on \mathbb{R}^{n}, such that for all $y_{1}, y_{2} \in \mathbb{R}^{n}$ there is a unique $g \in G$ such that $\rho(g)\left(y_{1}\right)=y_{2}$.
- L. Auslander named such groups simply transitive groups of affine motions. They are connected, simply connected n-dimensional Lie groups homeomorphic to \mathbb{R}^{n}.
- An example of a simply transitive group of affine motions is the normal subgroup $T(n)$ of translations.

Proposition (L. Auslander 1977)

Let G be a simply transitive group of affine motions. Then G is solvable.

Proposition (L. Auslander 1977)

Let G be a simply transitive group of affine motions. Then G is solvable.

More generally the following result holds, which more or less can be found in G. Hochschild's book The Structure of Lie Groups (1965).

Proposition

Let G be a Lie group which is homeomorphic to \mathbb{R}^{n} for some $n \geq 1$. If G admits a faithful linear representation then G is solvable.

Affinely flat manifolds

- An affinely flat structure on an n-dimensional manifold M is a collection of coordinate homeomorphisms

$$
f_{\alpha}: U_{\alpha} \rightarrow V_{\alpha} \subseteq \mathbb{R}^{n}
$$

where the U_{α} are open sets covering M, and the V_{α} are open subsets of \mathbb{R}^{n}; whenever $U_{\alpha} \cap U_{\beta} \neq \emptyset$, it is required that the change of coordinate homeomorphism

$$
f_{\beta} f_{\alpha}^{-1}: f_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow f_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

extends to an affine transformation in $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$. We call M together with this structure an affinely flat manifold, or affine manifold.

- A special case of affine flat manifolds are Riemannian-flat manifolds, where the coordinate changes extend to isometries in Iso $\left(\mathbb{R}^{n}\right)$, i.e., to affine transformations $x \mapsto A x+b$ with $A \in O_{n}(\mathbb{R})$.
- A special case of affine flat manifolds are Riemannian-flat manifolds, where the coordinate changes extend to isometries in Iso $\left(\mathbb{R}^{n}\right)$, i.e., to affine transformations $x \mapsto A x+b$ with $A \in O_{n}(\mathbb{R})$.

Theorem (Benzecri 1959)
A closed surface admits an affine (affinely flat) structure if and only if its Euler characteristic vanishes.

- A special case of affine flat manifolds are Riemannian-flat manifolds, where the coordinate changes extend to isometries in Iso $\left(\mathbb{R}^{n}\right)$, i.e., to affine transformations $x \mapsto A x+b$ with $A \in O_{n}(\mathbb{R})$.

Theorem (Benzecri 1959)
A closed surface admits an affine (affinely flat) structure if and only if its Euler characteristic vanishes.

- In particular, a closed surface different from the 2-torus or the Klein bottle does not admit any affine structure.

Proposition

There is a bijective correspondence between affinely flat structures on a manifold M and flat, torisonfree affine connections ∇ on M.

Proposition

There is a bijective correspondence between affinely flat structures on a manifold M and flat, torisonfree affine connections ∇ on M.

- An affine connection ∇ is called torsionfree if

$$
\begin{equation*}
\nabla_{X}(Y)-\nabla_{Y}(X)-[X, Y]=0 \tag{1}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}$, where \mathfrak{X} denotes the Lie algebra of all differential vector fields on M.

Proposition

There is a bijective correspondence between affinely flat structures on a manifold M and flat, torisonfree affine connections ∇ on M.

- An affine connection ∇ is called torsionfree if

$$
\begin{equation*}
\nabla_{X}(Y)-\nabla_{Y}(X)-[X, Y]=0 \tag{1}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}$, where \mathfrak{X} denotes the Lie algebra of all differential vector fields on M.

- An affine connection ∇ is called flat if

$$
\begin{equation*}
\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}=0 \tag{2}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}$.

- A torisonfree flat affine connection determines a covariant differentiation $\nabla_{X}: \mathfrak{X} \rightarrow \mathfrak{X}$ via $Y \mapsto \nabla_{X}(Y)$ for vector fields $X, Y \in \mathfrak{X}$.
- A torisonfree flat affine connection determines a covariant differentiation $\nabla_{X}: \mathfrak{X} \rightarrow \mathfrak{X}$ via $Y \mapsto \nabla_{X}(Y)$ for vector fields $X, Y \in \mathfrak{X}$.
- Setting

$$
X \cdot Y:=\nabla_{X}(Y)
$$

we obtain an \mathbb{R}-bilinear product on \mathfrak{X}. Because of (1) and (2) this product turns \mathfrak{X} into a pre-Lie algebra:

$$
\begin{aligned}
X \cdot Y-Y \cdot X-[X, Y] & =0 \\
X \cdot(Y \cdot Z)-Y \cdot(X \cdot Z) & =[X, Y] \cdot Z .
\end{aligned}
$$

Left-invariant affine structures on Lie groups

- An affine structure on a Lie group G is called left-invariant if each left-multiplication map $L(g): G \rightarrow G$ is an affine diffeomorphism.

Left-invariant affine structures on Lie groups

- An affine structure on a Lie group G is called left-invariant if each left-multiplication map $L(g): G \rightarrow G$ is an affine diffeomorphism.
- An affine structure on G is called complete, if the universal covering \widetilde{G} is affinely diffeomorphic to \mathbb{R}^{n}.

Left-invariant affine structures on Lie groups

- An affine structure on a Lie group G is called left-invariant if each left-multiplication map $L(g): G \rightarrow G$ is an affine diffeomorphism.
- An affine structure on G is called complete, if the universal covering \widetilde{G} is affinely diffeomorphic to \mathbb{R}^{n}.

Theorem
There is a canonical bijection between complete left-invariant affine structures on G and simply transitive actions of G on \mathbb{R}^{n} by affine transformations.

Theorem
There is a canonical bijection between left-invariant affine structures on G and pre-Lie algebra structures on \mathfrak{g}.

Theorem
There is a canonical bijection between left-invariant affine structures on G and pre-Lie algebra structures on \mathfrak{g}.

Theorem

There is a canonical bijection between simply transitive affine actions of G and complete pre-Lie algebra structures on \mathfrak{g}.

Theorem
There is a canonical bijection between left-invariant affine structures on G and pre-Lie algebra structures on \mathfrak{g}.

Theorem

There is a canonical bijection between simply transitive affine actions of G and complete pre-Lie algebra structures on \mathfrak{g}.

- Here a pre-Lie algebra structure on \mathfrak{g} is complete, if all right multiplications $R(x)$ in $\operatorname{End}(\mathfrak{g})$ are nilpotent.

Milnor's question

Question (Milnor 1977)

Does every solvable n-dimensional Lie group G admit a complete left-invariant affine structure, or equivalently, does the universal covering group \widetilde{G} act simply transitively by affine transformations on \mathbb{R}^{n} ?

Milnor's question

Question (Milnor 1977)

Does every solvable n-dimensional Lie group G admit a complete left-invariant affine structure, or equivalently, does the universal covering group \widetilde{G} act simply transitively by affine transformations on \mathbb{R}^{n} ?

Milnor's Question - algebraic version Does every solvable Lie algebra over a field of characteristic zero admit a (complete) pre-Lie algebra structure?

Positive evidence for Milnor's question

- Milnor's question has a positive answer for 2-step and 3-step nilpotent Lie groups.

Positive evidence for Milnor's question

- Milnor's question has a positive answer for 2-step and 3-step nilpotent Lie groups.
- Milnor's question has a positive answer for Lie groups whose Lie algebra admits a nonsingular derivation. Such Lie algebras (and hence such Lie groups) are necessarily nilpotent.

Positive evidence for Milnor's question

- Milnor's question has a positive answer for 2-step and 3-step nilpotent Lie groups.
- Milnor's question has a positive answer for Lie groups whose Lie algebra admits a nonsingular derivation. Such Lie algebras (and hence such Lie groups) are necessarily nilpotent.
- Milnor's question has a positive answer for all (connected and simply connected) nilpotent Lie groups of dimension $n \leq 7$.

Positive evidence for Milnor's question

- Milnor's question has a positive answer for 2-step and 3-step nilpotent Lie groups.
- Milnor's question has a positive answer for Lie groups whose Lie algebra admits a nonsingular derivation. Such Lie algebras (and hence such Lie groups) are necessarily nilpotent.
- Milnor's question has a positive answer for all (connected and simply connected) nilpotent Lie groups of dimension $n \leq 7$.
- Milnor's question has a positive answer for all 2-step solvable Lie groups whose Lie algebra is a semidirect product $\mathfrak{a} \rtimes \mathfrak{b}$ of two abelian Lie algebras.

A negative answer to Milnor's question

Proposition (Benoist 1995)
There exists a 11-dimensional nilpotent group Lie group of nilpotency class 10 not admitting any left-invariant affine structure.

A negative answer to Milnor's question

Proposition (Benoist 1995)

There exists a 11-dimensional nilpotent group Lie group of nilpotency class 10 not admitting any left-invariant affine structure.

Proposition (B.-Grunewald 1995)

There exist families of nilpotent Lie groups of dimension 11 and nilpotency class 10 not admitting any left-invariant affine structure.

A negative answer to Milnor's question

Proposition (Benoist 1995)

There exists a 11-dimensional nilpotent group Lie group of nilpotency class 10 not admitting any left-invariant affine structure.

Proposition (B.-Grunewald 1995)

There exist families of nilpotent Lie groups of dimension 11 and nilpotency class 10 not admitting any left-invariant affine structure.

Proposition (B. 1996)

There exist families of nilpotent Lie groups of dimension 10 and nilpotency class 9 not admitting any left-invariant affine structure.

Theorem

Let G be a n-dimensional Lie group with Lie algebra \mathfrak{g}. Suppose that G admits a left-invariant affine structure. Then \mathfrak{g} admits a faithful linear Lie algebra representation $\varphi: \mathfrak{g} \rightarrow \mathfrak{g l}_{n+1}(\mathbb{R})$ of degree $n+1$.

Theorem

Let G be a n-dimensional Lie group with Lie algebra \mathfrak{g}. Suppose that G admits a left-invariant affine structure. Then \mathfrak{g} admits a faithful linear Lie algebra representation $\varphi: \mathfrak{g} \rightarrow \mathfrak{g l}_{n+1}(\mathbb{R})$ of degree $n+1$.

Proof: The left-invariant affine structure on G induces a pre-Lie algebra structure $x \cdot y=L(x) y$ on \mathfrak{g}, so that

$$
L: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g}), x \mapsto L(x)
$$

is a linear representation of degree n. The corresponding \mathfrak{g}-module \mathfrak{g}_{L} need not be faithful, but using a nonsingular 1-cocycle we can construct a faithful \mathfrak{g}-module of dimension $n+1$ from it.

Because of $[x, y]=x \cdot y-y \cdot x$, the 1-cocycle

$$
\omega=\mathrm{id} \in Z^{1}\left(\mathfrak{g}, \mathfrak{g}_{L}\right)
$$

is nonsingular. Hence we have $\operatorname{ker}(\omega)=0$, and $V_{\omega}:=\mathbb{R} \times \mathfrak{g}_{L}$ is a faithful \mathfrak{g}-module of dimension $n+1$, with action

$$
x \cdot(t, v)=(0, x \cdot v+t \omega(x))
$$

for $x \in \mathfrak{g}, v \in \mathfrak{g}_{L}$ and $t \in \mathbb{R}$.

Because of $[x, y]=x \cdot y-y \cdot x$, the 1-cocycle

$$
\omega=\mathrm{id} \in Z^{1}\left(\mathfrak{g}, \mathfrak{g}_{L}\right)
$$

is nonsingular. Hence we have $\operatorname{ker}(\omega)=0$, and $V_{\omega}:=\mathbb{R} \times \mathfrak{g}_{L}$ is a faithful \mathfrak{g}-module of dimension $n+1$, with action

$$
x \cdot(t, v)=(0, x \cdot v+t \omega(x))
$$

for $x \in \mathfrak{g}, v \in \mathfrak{g}_{L}$ and $t \in \mathbb{R}$.

Definition

Let \mathfrak{g} be a Lie algebra over a field K of dimension n. Denote by $\mu(\mathfrak{g})$ the minimal dimension of a faithful linear representation of \mathfrak{g}.

Theorem (B. 1996)

There exists families of 10-dimensional filiform nilpotent Lie algebras
\mathfrak{g} such that $\mu(\mathfrak{g}) \geq 12$. These algebras give a negative answer to Milnor's question.

Theorem (B. 1996)

There exists families of 10-dimensional filiform nilpotent Lie algebras \mathfrak{g} such that $\mu(\mathfrak{g}) \geq 12$. These algebras give a negative answer to Milnor's question.

Theorem (B., Moens 2010)
For every filiform nilpotent Lie algebra of dimension 10 we have

$$
10 \leq \mu(\mathfrak{g}) \leq 18
$$

There is a classification of such algebras satisfying $\mu(\mathfrak{g}) \leq 11$, respectively $\mu(\mathfrak{g}) \geq 12$.

Nil-affine transformations

- Let N be a nilpotent Lie group and

$$
\operatorname{Aff}(N)=N \rtimes \operatorname{Aut}(N)
$$

be the group of affine transformations of N.

Nil-affine transformations

- Let N be a nilpotent Lie group and

$$
\operatorname{Aff}(N)=N \rtimes \operatorname{Aut}(N)
$$

be the group of affine transformations of N.

- $\operatorname{Aff}(N)$ acts on N by $(n, \alpha) \cdot m=n \alpha(m)$.

Nil-affine transformations

- Let N be a nilpotent Lie group and

$$
\operatorname{Aff}(N)=N \rtimes \operatorname{Aut}(N)
$$

be the group of affine transformations of N.

- $\operatorname{Aff}(N)$ acts on N by $(n, \alpha) \cdot m=n \alpha(m)$.
- For $N=\mathbb{R}^{n}$ we obtain again $\operatorname{Aff}\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n} \rtimes \operatorname{Aut}\left(\mathbb{R}^{n}\right)$.
- We say that G admits a simply transitively action by nil-affine transformations on N, if there is a homomorphism $\rho: G \rightarrow \operatorname{Aff}(N)$ letting G act simply transitively on N.
- We say that G admits a simply transitively action by nil-affine transformations on N, if there is a homomorphism $\rho: G \rightarrow \operatorname{Aff}(N)$ letting G act simply transitively on N.
- In the nil-affine setting, Milnor's question has a positive answer:
- We say that G admits a simply transitively action by nil-affine transformations on N, if there is a homomorphism $\rho: G \rightarrow \operatorname{Aff}(N)$ letting G act simply transitively on N.
- In the nil-affine setting, Milnor's question has a positive answer:

Proposition (Dekimpe 2003, Baues 2004)

Let G be a solvable Lie group. Then G admits a simply transitive action by nil-affine transformations on some simply connected nilpotent Lie group N. Conversely, assume that G admits such an action. Then G is solvable.

Reduction to the Lie algebra level

Theorem (B-D-V 2012)
Let G and N be nilpotent Lie groups. Then there exists a simply transitive action by nil-affine transformations of G on N if and only if there exists a Lie algebra $\mathfrak{h} \cong \mathfrak{g}$ such that the corresponding pair of Lie algebras ($\mathfrak{h}, \mathfrak{n}$) admits a complete post-Lie algebra structure.

Reduction to the Lie algebra level

Theorem (B-D-V 2012)

Let G and N be nilpotent Lie groups. Then there exists a simply transitive action by nil-affine transformations of G on N if and only if there exists a Lie algebra $\mathfrak{h} \cong \mathfrak{g}$ such that the corresponding pair of Lie algebras ($\mathfrak{h}, \mathfrak{n}$) admits a complete post-Lie algebra structure.

- In the classical case $N=\mathbb{R}^{n}$ a complete post-Lie algebra structure on $\left(\mathfrak{g}, \mathbb{R}^{n}\right)$ is just a complete pre-Lie algebra structure on \mathfrak{g}; also called an affine structure on \mathfrak{g}.

Reduction to the Lie algebra level

Theorem (B-D-V 2012)
Let G and N be nilpotent Lie groups. Then there exists a simply transitive action by nil-affine transformations of G on N if and only if there exists a Lie algebra $\mathfrak{h} \cong \mathfrak{g}$ such that the corresponding pair of Lie algebras ($\mathfrak{h}, \mathfrak{n}$) admits a complete post-Lie algebra structure.

- In the classical case $N=\mathbb{R}^{n}$ a complete post-Lie algebra structure on $\left(\mathfrak{g}, \mathbb{R}^{n}\right)$ is just a complete pre-Lie algebra structure on \mathfrak{g}; also called an affine structure on \mathfrak{g}.
- In the other extreme case $G=\mathbb{R}^{n}$ a complete post-Lie algebra structure on $\left(\mathbb{R}^{n}, \mathfrak{n}\right)$ is a complete LR-structure on \mathfrak{n} [B-D-D 2009].

Post-Lie algebra structures

Definition (B. Vallette 2007)

A post-Lie algebra $(V, \cdot,\{\}$,$) is a vectorspace V$ over a field k equipped with two k-bilinear operations $x \cdot y$ and $\{x, y\}$, such that $\mathfrak{g}=(V,\{\}$,$) is a Lie algebra, and$

Post-Lie algebra structures

Definition (B. Vallette 2007)

A post-Lie algebra $(V, \cdot,\{\}$,$) is a vectorspace V$ over a field k equipped with two k-bilinear operations $x \cdot y$ and $\{x, y\}$, such that $\mathfrak{g}=(V,\{\}$,$) is a Lie algebra, and$

$$
\begin{align*}
\{x, y\} \cdot z & =(y \cdot x) \cdot z-y \cdot(x \cdot z)-(x \cdot y) \cdot z+x \cdot(y \cdot z) \tag{3}\\
x \cdot\{y, z\} & =\{x \cdot y, z\}+\{y, x \cdot z\} \tag{4}
\end{align*}
$$

for all $x, y, z \in V$.

- If \mathfrak{g} is abelian then (V, \cdot) is a pre-Lie algebra.
- If \mathfrak{g} is abelian then (V, \cdot) is a pre-Lie algebra.
- We can associate to a post-Lie algebra $(V, \cdot,\{\}$,$) a second Lie$ algebra $\mathfrak{n}=(V,[]$,$) via$

$$
\begin{equation*}
[x, y]:=x \cdot y-y \cdot x+\{x, y\} \tag{5}
\end{equation*}
$$

- If \mathfrak{g} is abelian then (V, \cdot) is a pre-Lie algebra.
- We can associate to a post-Lie algebra $(V, \cdot,\{\}$,$) a second Lie$ algebra $\mathfrak{n}=(V,[]$,$) via$

$$
\begin{equation*}
[x, y]:=x \cdot y-y \cdot x+\{x, y\} \tag{5}
\end{equation*}
$$

- This Lie bracket satisfies the following identity

$$
\begin{equation*}
[x, y] \cdot z=x \cdot(y \cdot z)-y \cdot(x \cdot z) \tag{6}
\end{equation*}
$$

i.e., the post-Lie algebra is a left module over the Lie algebra \mathfrak{n}.

Definition (B-D-V 2012)

Let $(\mathfrak{g},[x, y]),(\mathfrak{n},\{x, y\})$ be two Lie brackets on a vector space V. A post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$ is a k-bilinear product $x \cdot y$ satisfying the identities

$$
\begin{align*}
x \cdot y-y \cdot x & =[x, y]-\{x, y\} \tag{7}\\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z) \tag{8}\\
x \cdot\{y, z\} & =\{x \cdot y, z\}+\{y, x \cdot z\} \tag{9}
\end{align*}
$$

for all $x, y, z \in V$.

Definition (B-D-V 2012)

Let $(\mathfrak{g},[x, y]),(\mathfrak{n},\{x, y\})$ be two Lie brackets on a vector space V. A post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$ is a k-bilinear product $x \cdot y$ satisfying the identities

$$
\begin{align*}
x \cdot y-y \cdot x & =[x, y]-\{x, y\} \tag{7}\\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z) \tag{8}\\
x \cdot\{y, z\} & =\{x \cdot y, z\}+\{y, x \cdot z\} \tag{9}
\end{align*}
$$

for all $x, y, z \in V$.

- These identities imply $(3)-(6)$, so that $(V, \cdot,[]$,$) is a post-Lie$ algebra with associated Lie algebra \mathfrak{n}.
- If \mathfrak{n} is abelian then the conditions (7), (8), (9) reduce to

$$
\begin{aligned}
x \cdot y-y \cdot x & =[x, y] \\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z)
\end{aligned}
$$

so that $x \cdot y$ is a pre-Lie algebra structure on \mathfrak{g}.

- If \mathfrak{n} is abelian then the conditions (7), (8), (9) reduce to

$$
\begin{aligned}
x \cdot y-y \cdot x & =[x, y] \\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z)
\end{aligned}
$$

so that $x \cdot y$ is a pre-Lie algebra structure on \mathfrak{g}.

- If \mathfrak{g} is abelian then the conditions reduce to

$$
\begin{aligned}
x \cdot y-y \cdot x & =-\{x, y\} \\
x \cdot(y \cdot z) & =y \cdot(x \cdot z) \\
(x \cdot y) \cdot z & =(x \cdot z) \cdot y
\end{aligned}
$$

so that $-x \cdot y$ is an LR-structure on \mathfrak{n}.

Algebraic structure results

Theorem (B-D-D 2009)
Let \mathfrak{n} be a Lie algebra admitting an $L R$-structure. Then \mathfrak{n} is two-step solvable.

Algebraic structure results

Theorem (B-D-D 2009)
Let \mathfrak{n} be a Lie algebra admitting an $L R$-structure. Then \mathfrak{n} is two-step solvable.

Theorem (B-D-D 2009)
Let \mathfrak{n} be 2-step nilpotent, or let \mathfrak{n} be 3-step nilpotent with at most 3 generators. Then \mathfrak{n} admits a complete $L R$-structure.

Algebraic structure results

Theorem (B-D-D 2009)
Let \mathfrak{n} be a Lie algebra admitting an $L R$-structure. Then \mathfrak{n} is two-step solvable.

Theorem (B-D-D 2009)
Let \mathfrak{n} be 2-step nilpotent, or let \mathfrak{n} be 3-step nilpotent with at most 3 generators. Then \mathfrak{n} admits a complete $L R$-structure.

Theorem (B-D-D 2009)
There are examples of 4-generated 3 -step nilpotent Lie algebras \mathfrak{n} of dimension $n \geq 13$ not admitting any $L R$-structure.

Theorem (B-D-V 2012)

Let (V, \cdot) be a post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$, where \mathfrak{g} is nilpotent. Then \mathfrak{n} is solvable.

Theorem (B-D-V 2012)

Let (V, \cdot) be a post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$, where \mathfrak{g} is nilpotent. Then \mathfrak{n} is solvable.

Theorem (B-D 2013)
Let $(\mathfrak{g}, \mathfrak{n})$ be a pair of Lie algebras, where \mathfrak{g} is semisimple and \mathfrak{n} is solvable. Then there is no post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$.

Theorem (B-D-V 2012)

Let (V, \cdot) be a post-Lie algebra structure on the pair $(\mathfrak{g}, \mathfrak{n})$, where \mathfrak{g} is nilpotent. Then \mathfrak{n} is solvable.

Theorem (B-D 2013)
Let $(\mathfrak{g}, \mathfrak{n})$ be a pair of Lie algebras, where \mathfrak{g} is semisimple and \mathfrak{n} is solvable. Then there is no post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$.

Theorem (B-D 2013)
Let \mathfrak{n} be a semisimple Lie algebra and \mathfrak{g} be a solvable Lie algebra. Assume that \mathfrak{g} is unimodular. Then there is no post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$.

Theorem (B-D-V 2012)

Let $(\mathfrak{g}, \mathfrak{n})$ be a pair of simple Lie algebras. Then there exists a post-Lie algebra structure on ($\mathfrak{g}, \mathfrak{n}$) if and only if $\mathfrak{g} \cong \mathfrak{n}$, in which case there are only two trivial possibilities:

$$
\begin{aligned}
& x \cdot y=0, \quad[x, y]=\{x, y\} \\
& x \cdot y=[x, y]=-\{x, y\}
\end{aligned}
$$

Theorem (B-D-V 2012)

Let $(\mathfrak{g}, \mathfrak{n})$ be a pair of simple Lie algebras. Then there exists a post-Lie algebra structure on ($\mathfrak{g}, \mathfrak{n}$) if and only if $\mathfrak{g} \cong \mathfrak{n}$, in which case there are only two trivial possibilities:

$$
\begin{aligned}
& x \cdot y=0, \quad[x, y]=\{x, y\} \\
& x \cdot y=[x, y]=-\{x, y\}
\end{aligned}
$$

Example

Let $\mathfrak{g} \cong \mathfrak{n} \cong \mathfrak{s l}_{2}(\mathbb{C}) \oplus \mathfrak{s l}_{2}(\mathbb{C})$. Then there exist non-trivial post-Lie algebra structures on ($\mathfrak{g}, \mathfrak{n}$).

- Let $e_{1}, f_{1}, h_{1}, e_{2}, f_{2}, h_{2}$ be a basis of $\mathfrak{n}=\mathfrak{s l}_{2}(\mathbb{C}) \oplus \mathfrak{s l}_{2}(\mathbb{C})$ with Lie brackets

$$
\begin{array}{ll}
\left\{e_{1}, f_{1}\right\}=h_{1}, & \left\{e_{2}, f_{2}\right\}=h_{2} \\
\left\{e_{1}, h_{1}\right\}=-2 e_{1}, & \left\{e_{2}, h_{2}\right\}=-2 e_{2} \\
\left\{f_{1}, h_{1}\right\}=2 f_{1}, & \left\{f_{2}, h_{2}\right\}=2 f_{2}
\end{array}
$$

- Let $e_{1}, f_{1}, h_{1}, e_{2}, f_{2}, h_{2}$ be a basis of $\mathfrak{n}=\mathfrak{s l}_{2}(\mathbb{C}) \oplus \mathfrak{s l}_{2}(\mathbb{C})$ with Lie brackets

$$
\begin{array}{ll}
\left\{e_{1}, f_{1}\right\}=h_{1}, & \left\{e_{2}, f_{2}\right\}=h_{2} \\
\left\{e_{1}, h_{1}\right\}=-2 e_{1}, & \left\{e_{2}, h_{2}\right\}=-2 e_{2} \\
\left\{f_{1}, h_{1}\right\}=2 f_{1}, & \left\{f_{2}, h_{2}\right\}=2 f_{2}
\end{array}
$$

- The following product defines a post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$, with $\mathfrak{g} \cong \mathfrak{n}$:

$$
\begin{array}{lll}
e_{1} \cdot e_{2}=-4 e_{2}+h_{2}, & f_{1} \cdot e_{2}=2 e_{2}-h_{2}, & h_{1} \cdot e_{2}=6 e_{2}-2 h_{2} \\
e_{1} \cdot f_{2}=4 f_{2}+4 h_{2}, & f_{1} \cdot f_{2}=-2 f_{2}-h_{2}, & h_{1} \cdot f_{2}=-6 f_{2}-4 h_{2}, \\
e_{1} \cdot h_{2}=-8 e_{2}-2 f_{2}, & f_{1} \cdot h_{2}=2 e_{2}+2 f_{2}, & h_{1} \cdot h_{2}=8 e_{2}+4 f_{2}
\end{array}
$$

Existence of post-Lie algebra structures - a table

$(\mathfrak{g}, \mathfrak{n})$	\mathfrak{n} abe	\mathfrak{n} nil	\mathfrak{n} sol	\mathfrak{n} sim	\mathfrak{n} sem	\mathfrak{n} red	\mathfrak{n} com
\mathfrak{g} abelian	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark
\mathfrak{g} nilpotent	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark
\mathfrak{g} solvable	\checkmark						
\mathfrak{g} simple	-	-	-	\checkmark	-	-	-
\mathfrak{g} semisimple	-	-	-	\checkmark	\checkmark	$?$	-
\mathfrak{g} reductive	\checkmark	$?$	$?$	\checkmark	\checkmark	\checkmark	\checkmark
\mathfrak{g} complete	\checkmark	\checkmark	\checkmark	$?$	$?$	\checkmark	\checkmark

Commutative post-Lie algebra structures

Definition

A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra \mathfrak{g} is a k-bilinear product $x \cdot y$ satisfying the identities:

$$
\begin{aligned}
x \cdot y & =y \cdot x \\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z) \\
x \cdot[y, z] & =[x \cdot y, z]+[y, x \cdot z]
\end{aligned}
$$

for all $x, y, z \in V$.

Commutative post-Lie algebra structures

Definition

A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra \mathfrak{g} is a k-bilinear product $x \cdot y$ satisfying the identities:

$$
\begin{aligned}
x \cdot y & =y \cdot x \\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z) \\
x \cdot[y, z] & =[x \cdot y, z]+[y, x \cdot z]
\end{aligned}
$$

for all $x, y, z \in V$.

- A CPA-structure on \mathfrak{g} corresponds to a post-Lie algebra structure on $(\mathfrak{n}, \mathfrak{g})$ with $[x, y]=\{x, y\}$.

Theorem (B-M 2016)

Any CPA-structure on a perfect Lie algebra \mathfrak{g} is trivial, i.e., satisfies $\mathfrak{g} \cdot \mathfrak{g}=0$.

Theorem (B-M 2016)

Any CPA-structure on a perfect Lie algebra \mathfrak{g} is trivial, i.e., satisfies $\mathfrak{g} \cdot \mathfrak{g}=0$.

Theorem (B-M 2016)
Let \mathfrak{g} be a non-trivial solvable Lie algebra. Then \mathfrak{g} admits a nontrivial CPA-structure.

Theorem (B-M 2016)

Any CPA-structure on a perfect Lie algebra \mathfrak{g} is trivial, i.e., satisfies $\mathfrak{g} \cdot \mathfrak{g}=0$.

Theorem (B-M 2016)
Let \mathfrak{g} be a non-trivial solvable Lie algebra. Then \mathfrak{g} admits a nontrivial CPA-structure.

Definition

A complete Lie algebra \mathfrak{g} is called simply-complete, if no non-trivial ideal in \mathfrak{g} is complete.

Theorem (B-M 2016)

Let \mathfrak{g} be a simply-complete non-metabelian Lie algebra. Suppose that \mathfrak{g} satisfies the condition $\operatorname{nil}(\mathfrak{g})=[\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$. Denote by \mathfrak{z} the center of the ideal $I=[\mathfrak{g}, \mathfrak{g}]$. Then there is a bijective correspondence between CPA-structures on \mathfrak{g} and elements $z \in \mathfrak{z}$, given by

$$
x \cdot y=[[z, x], y] \text {. }
$$

Theorem (B-M 2016)

Let \mathfrak{g} be a simply-complete non-metabelian Lie algebra. Suppose that \mathfrak{g} satisfies the condition $\operatorname{nil}(\mathfrak{g})=[\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$. Denote by \mathfrak{z} the center of the ideal $I=[\mathfrak{g}, \mathfrak{g}]$. Then there is a bijective correspondence between CPA-structures on \mathfrak{g} and elements $z \in \mathfrak{z}$, given by

$$
x \cdot y=[[z, x], y] \text {. }
$$

- We believe that the condition $\operatorname{nil}(\mathfrak{g})=[\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$ is automatically satisfied for all complete Lie algebras \mathfrak{g}. Surprisingly this seems to be not known.

Theorem (B-M 2016)

Let \mathfrak{g} be a simply-complete non-metabelian Lie algebra. Suppose that \mathfrak{g} satisfies the condition $\operatorname{nil}(\mathfrak{g})=[\mathfrak{g}$, nil $(\mathfrak{g})]$. Denote by \mathfrak{z} the center of the ideal $I=[\mathfrak{g}, \mathfrak{g}]$. Then there is a bijective correspondence between CPA-structures on \mathfrak{g} and elements $z \in \mathfrak{z}$, given by

$$
x \cdot y=[[z, x], y] \text {. }
$$

- We believe that the condition $\operatorname{nil}(\mathfrak{g})=[\mathfrak{g}, \operatorname{nil}(\mathfrak{g})]$ is automatically satisfied for all complete Lie algebras \mathfrak{g}. Surprisingly this seems to be not known.

Example

The Lie algebra $\mathfrak{a f f}\left(\mathbb{R}^{n}\right)$ is simply-complete. All CPA-structures on $\mathfrak{a f f}\left(\mathbb{R}^{n}\right)$ are trivial for $n \geq 2$.

Theorem (B-M 2017)

Let \mathfrak{g} be a nilpotent Lie algebra satisfying $Z(\mathfrak{g}) \subseteq[\mathfrak{g}, \mathfrak{g}]$. Then any CPA-structure on \mathfrak{g} is complete, i.e., its left multiplication maps $L(x)$ are nilpotent for all $x \in \mathfrak{g}$.

Theorem (B-M 2017)

Let \mathfrak{g} be a nilpotent Lie algebra satisfying $Z(\mathfrak{g}) \subseteq[\mathfrak{g}, \mathfrak{g}]$. Then any CPA-structure on \mathfrak{g} is complete, i.e., its left multiplication maps $L(x)$ are nilpotent for all $x \in \mathfrak{g}$.

- In this case we have $L(Z(\mathfrak{g}))^{\frac{\operatorname{dim}^{2} Z(\mathfrak{g})+1}{2}}(\mathfrak{g})=0$.

Theorem (B-M 2017)

Let \mathfrak{g} be a nilpotent Lie algebra satisfying $Z(\mathfrak{g}) \subseteq[\mathfrak{g}, \mathfrak{g}]$. Then any CPA-structure on \mathfrak{g} is complete, i.e., its left multiplication maps $L(x)$ are nilpotent for all $x \in \mathfrak{g}$.

- In this case we have $L(Z(\mathfrak{g}))^{\left.\int \frac{\operatorname{dim} Z(\mathfrak{g})+1}{2}\right\rceil}(\mathfrak{g})=0$.

Conjecture

Every CPA-structure on the free-nilpotent Lie algebra $\mathfrak{g}=F_{g, c}$ with g generators and nilpotency class c, with $c \geq g \geq 3$, satisfies

$$
\mathfrak{g} \cdot \mathfrak{g} \subseteq Z(\mathfrak{g}) .
$$

