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Pre-Lie algebras

Definition
A pre-Lie algebra (V , ·) is a vector space V over a field K equipped
with a binary operation (x , y) 7→ x · y such that for all x , y , z ∈ V

(x · y) · z − x · (y · z) = (y · x) · z − y · (x · z).

• If (V , ·) is a pre-Lie algebra, then for x , y ∈ V the binary operation

[x , y ] := x · y − y · x

defines a Lie algebra.
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Definition
A bilinear product x · y on g× g is called a pre-Lie algebra structure
on g, if it satisfies

x · y − y · x = [x , y ],

[x , y ] · z = x · (y · z)− y · (x · z),

for all x , y , z ∈ g.

Definition
A Lie algebra g over a field K is said to admit a pre-Lie algebra
structure, if there exists a pre-Lie algebra structure on g.
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Example
The Heisenberg Lie algebra n3(K ) of dimension 3 with basis
{e1, e2, e3} and Lie brackets [e1, e2] = e3 admits a pre-Lie algebra
structure, given by

e1 · e2 =
1

2
e3,

e2 · e1 = −1

2
e3.

Example
The Lie algebra sl2(K ) over a field K of characteristic zero does not
admit a pre-Lie algebra structure.
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The affine group

• Denote by Aff(Rn) ' Rn o GLn(R) the group of affine trans-
formations of Rn.

• We may represent the elements of Aff(Rn) by block matrices(
A v
0 1

)
with A ∈ GLn(R), v ∈ Rn and multiplication

(
A v
0 1

)(
B w
0 1

)
=

(
AB Aw + v
0 1

)
.

• Aff(Rn) acts on Rn by(
A v
0 1

)(
x
1

)
=

(
Ax + v

1

)
.
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• The affine group is a linear algebraic group represented by

Aff(Rn) =

{(
A v
0 1

)
| A ∈ GLn(R), v ∈ Rn

}
.

• It generalizes the isometry group of Rn,

Iso(Rn) =

{(
A v
0 1

)
| A ∈ On(R), v ∈ Rn

}
.

• The translations in Aff(Rn) form a normal subgroup, given by

T (n) =

{(
In v
0 1

)
| v ∈ Rn

}
.
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Simply transitive groups

• A group G acts simply transitively on Rn by affine transformations
if there is a homomorphism ρ : G → Aff(Rn) letting G act on Rn,
such that for all y1, y2 ∈ Rn there is a unique g ∈ G such that
ρ(g)(y1) = y2.

• L. Auslander named such groups simply transitive groups of affine
motions. They are connected, simply connected n-dimensional Lie
groups homeomorphic to Rn.

• An example of a simply transitive group of affine motions is the
normal subgroup T (n) of translations.
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Proposition (L. Auslander 1977)
Let G be a simply transitive group of affine motions. Then G is
solvable.

More generally the following result holds, which more or less can be
found in G. Hochschild’s book The Structure of Lie Groups (1965).

Proposition
Let G be a Lie group which is homeomorphic to Rn for some n ≥ 1.
If G admits a faithful linear representation then G is solvable.
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Affinely flat manifolds

• An affinely flat structure on an n-dimensional manifold M is a
collection of coordinate homeomorphisms

fα : Uα → Vα ⊆ Rn,

where the Uα are open sets covering M , and the Vα are open subsets
of Rn; whenever Uα ∩ Uβ 6= ∅, it is required that the change of
coordinate homeomorphism

fβf
−1
α : fα(Uα ∩ Uβ)→ fβ(Uα ∩ Uβ)

extends to an affine transformation in Aff(Rn). We call M together
with this structure an affinely flat manifold, or affine manifold.
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• A special case of affine flat manifolds are Riemannian-flat
manifolds, where the coordinate changes extend to isometries in
Iso(Rn), i.e., to affine transformations x 7→ Ax + b with A ∈ On(R).

Theorem (Benzecri 1959)
A closed surface admits an affine (affinely flat) structure if and only if
its Euler characteristic vanishes.

• In particular, a closed surface different from the 2-torus or the Klein
bottle does not admit any affine structure.
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Proposition
There is a bijective correspondence between affinely flat structures on
a manifold M and flat, torisonfree affine connections ∇ on M.

• An affine connection ∇ is called torsionfree if

∇X (Y )−∇Y (X )− [X ,Y ] = 0 (1)

for all X ,Y ∈ X, where X denotes the Lie algebra of all differential
vector fields on M .

• An affine connection ∇ is called flat if

∇X∇Y −∇Y∇X −∇[X ,Y ] = 0 (2)

for all X ,Y ∈ X.
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• A torisonfree flat affine connection determines a covariant
differentiation ∇X : X→ X via Y 7→ ∇X (Y ) for vector fields
X ,Y ∈ X.

• Setting
X · Y := ∇X (Y ),

we obtain an R-bilinear product on X. Because of (1) and (2) this
product turns X into a pre-Lie algebra:

X · Y − Y · X − [X ,Y ] = 0,

X · (Y · Z )− Y · (X · Z ) = [X ,Y ] · Z .
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Left-invariant affine structures on Lie groups

• An affine structure on a Lie group G is called left-invariant if each
left-multiplication map L(g) : G → G is an affine diffeomorphism.

• An affine structure on G is called complete, if the universal
covering G̃ is affinely diffeomorphic to Rn.

Theorem
There is a canonical bijection between complete left-invariant affine
structures on G and simply transitive actions of G on Rn by affine
transformations.
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Theorem
There is a canonical bijection between left-invariant affine structures
on G and pre-Lie algebra structures on g.

Theorem
There is a canonical bijection between simply transitive affine actions
of G and complete pre-Lie algebra structures on g.

• Here a pre-Lie algebra structure on g is complete, if all right
multiplications R(x) in End(g) are nilpotent.
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Milnor’s question

Question (Milnor 1977)
Does every solvable n-dimensional Lie group G admit a complete
left-invariant affine structure, or equivalently, does the universal
covering group G̃ act simply transitively by affine transformations on
Rn ?

Milnor’s Question - algebraic version
Does every solvable Lie algebra over a field of characteristic zero
admit a (complete) pre-Lie algebra structure?
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Positive evidence for Milnor’s question

• Milnor’s question has a positive answer for 2-step and 3-step
nilpotent Lie groups.

• Milnor’s question has a positive answer for Lie groups whose Lie
algebra admits a nonsingular derivation. Such Lie algebras (and
hence such Lie groups) are necessarily nilpotent.

• Milnor’s question has a positive answer for all (connected and
simply connected) nilpotent Lie groups of dimension n ≤ 7.

• Milnor’s question has a positive answer for all 2-step solvable Lie
groups whose Lie algebra is a semidirect product ao b of two abelian
Lie algebras.
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A negative answer to Milnor’s question

Proposition (Benoist 1995)
There exists a 11-dimensional nilpotent group Lie group of nilpotency
class 10 not admitting any left-invariant affine structure.

Proposition (B.-Grunewald 1995)
There exist families of nilpotent Lie groups of dimension 11 and
nilpotency class 10 not admitting any left-invariant affine structure.

Proposition (B. 1996)
There exist families of nilpotent Lie groups of dimension 10 and
nilpotency class 9 not admitting any left-invariant affine structure.
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Theorem
Let G be a n-dimensional Lie group with Lie algebra g. Suppose that
G admits a left-invariant affine structure. Then g admits a faithful
linear Lie algebra representation ϕ : g→ gln+1(R) of degree n + 1.

Proof: The left-invariant affine structure on G induces a pre-Lie
algebra structure x · y = L(x)y on g, so that

L : g→ gl(g), x 7→ L(x)

is a linear representation of degree n. The corresponding g-module gL
need not be faithful, but using a nonsingular 1-cocycle we can
construct a faithful g-module of dimension n + 1 from it.
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Because of [x , y ] = x · y − y · x , the 1-cocycle

ω = id ∈ Z 1(g, gL)

is nonsingular. Hence we have ker(ω) = 0, and Vω := R× gL is a
faithful g-module of dimension n + 1, with action

x .(t, v) = (0, x .v + tω(x))

for x ∈ g, v ∈ gL and t ∈ R.

Definition
Let g be a Lie algebra over a field K of dimension n. Denote by µ(g)
the minimal dimension of a faithful linear representation of g.
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Theorem (B. 1996)
There exists families of 10-dimensional filiform nilpotent Lie algebras
g such that µ(g) ≥ 12. These algebras give a negative answer to
Milnor’s question.

Theorem (B., Moens 2010)
For every filiform nilpotent Lie algebra of dimension 10 we have

10 ≤ µ(g) ≤ 18

There is a classification of such algebras satisfying µ(g) ≤ 11,
respectively µ(g) ≥ 12.
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Nil-affine transformations

• Let N be a nilpotent Lie group and

Aff(N) = N o Aut(N)

be the group of affine transformations of N .

• Aff(N) acts on N by (n, α) ·m = nα(m).

• For N = Rn we obtain again Aff(Rn) = Rn o Aut(Rn).
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• We say that G admits a simply transitively action by nil-affine
transformations on N , if there is a homomorphism ρ : G → Aff(N)
letting G act simply transitively on N .

• In the nil-affine setting, Milnor’s question has a positive answer:

Proposition (Dekimpe 2003, Baues 2004)
Let G be a solvable Lie group. Then G admits a simply transitive
action by nil-affine transformations on some simply connected
nilpotent Lie group N. Conversely, assume that G admits such an
action. Then G is solvable.
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Reduction to the Lie algebra level

Theorem (B-D-V 2012)
Let G and N be nilpotent Lie groups. Then there exists a simply
transitive action by nil-affine transformations of G on N if and only if
there exists a Lie algebra h ∼= g such that the corresponding pair of
Lie algebras (h, n) admits a complete post-Lie algebra structure.

• In the classical case N = Rn a complete post-Lie algebra structure
on (g,Rn) is just a complete pre-Lie algebra structure on g; also
called an affine structure on g.

• In the other extreme case G = Rn a complete post-Lie algebra
structure on (Rn, n) is a complete LR-structure on n [B-D-D 2009].
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Post-Lie algebra structures

Definition (B. Vallette 2007)
A post-Lie algebra (V , ·, { , }) is a vectorspace V over a field k
equipped with two k-bilinear operations x · y and {x , y}, such that
g = (V , { , }) is a Lie algebra, and

{x , y} · z = (y · x) · z − y · (x · z)− (x · y) · z + x · (y · z) (3)

x · {y , z} = {x · y , z}+ {y , x · z} (4)

for all x , y , z ∈ V .
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• If g is abelian then (V , ·) is a pre-Lie algebra.

• We can associate to a post-Lie algebra (V , ·, {, }) a second Lie
algebra n = (V , [ , ]) via

[x , y ] := x · y − y · x + {x , y}. (5)

• This Lie bracket satisfies the following identity

[x , y ] · z = x · (y · z)− y · (x · z), (6)

i.e., the post-Lie algebra is a left module over the Lie algebra n.
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Definition (B-D-V 2012)
Let (g, [x , y ]), (n, {x , y}) be two Lie brackets on a vector space V . A
post-Lie algebra structure on the pair (g, n) is a k-bilinear product
x · y satisfying the identities

x · y − y · x = [x , y ]− {x , y} (7)

[x , y ] · z = x · (y · z)− y · (x · z) (8)

x · {y , z} = {x · y , z}+ {y , x · z} (9)

for all x , y , z ∈ V .

• These identities imply (3)− (6), so that (V , ·, [ , ]) is a post-Lie
algebra with associated Lie algebra n.
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• If n is abelian then the conditions (7), (8), (9) reduce to

x · y − y · x = [x , y ],

[x , y ] · z = x · (y · z)− y · (x · z),

so that x · y is a pre-Lie algebra structure on g.

• If g is abelian then the conditions reduce to

x · y − y · x = −{x , y}
x · (y · z) = y · (x · z),

(x · y) · z = (x · z) · y ,

so that −x · y is an LR-structure on n.



27 / 36

• If n is abelian then the conditions (7), (8), (9) reduce to

x · y − y · x = [x , y ],

[x , y ] · z = x · (y · z)− y · (x · z),

so that x · y is a pre-Lie algebra structure on g.

• If g is abelian then the conditions reduce to

x · y − y · x = −{x , y}
x · (y · z) = y · (x · z),

(x · y) · z = (x · z) · y ,

so that −x · y is an LR-structure on n.



28 / 36

Algebraic structure results

Theorem (B-D-D 2009)
Let n be a Lie algebra admitting an LR-structure. Then n is two-step
solvable.

Theorem (B-D-D 2009)
Let n be 2-step nilpotent, or let n be 3-step nilpotent with at most 3
generators. Then n admits a complete LR-structure.

Theorem (B-D-D 2009)
There are examples of 4-generated 3-step nilpotent Lie algebras n of
dimension n ≥ 13 not admitting any LR-structure.
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Theorem (B-D-V 2012)
Let (V , ·) be a post-Lie algebra structure on the pair (g, n), where g
is nilpotent. Then n is solvable.

Theorem (B-D 2013)
Let (g, n) be a pair of Lie algebras, where g is semisimple and n is
solvable. Then there is no post-Lie algebra structure on (g, n).

Theorem (B-D 2013)
Let n be a semisimple Lie algebra and g be a solvable Lie algebra.
Assume that g is unimodular. Then there is no post-Lie algebra
structure on (g, n).
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Theorem (B-D-V 2012)
Let (g, n) be a pair of simple Lie algebras. Then there exists a
post-Lie algebra structure on (g, n) if and only if g ∼= n, in which case
there are only two trivial possibilities:

x · y = 0, [x , y ] = {x , y},
x · y = [x , y ] = −{x , y}.

Example
Let g ∼= n ∼= sl2(C)⊕ sl2(C). Then there exist non-trivial post-Lie
algebra structures on (g, n).



30 / 36

Theorem (B-D-V 2012)
Let (g, n) be a pair of simple Lie algebras. Then there exists a
post-Lie algebra structure on (g, n) if and only if g ∼= n, in which case
there are only two trivial possibilities:

x · y = 0, [x , y ] = {x , y},
x · y = [x , y ] = −{x , y}.

Example
Let g ∼= n ∼= sl2(C)⊕ sl2(C). Then there exist non-trivial post-Lie
algebra structures on (g, n).



31 / 36

• Let e1, f1, h1, e2, f2, h2 be a basis of n = sl2(C)⊕ sl2(C) with Lie
brackets

{e1, f1} = h1, {e2, f2} = h2,
{e1, h1} = −2e1, {e2, h2} = −2e2,
{f1, h1} = 2f1, {f2, h2} = 2f2.

• The following product defines a post-Lie algebra structure on
(g, n), with g ∼= n:

e1 · e2 = −4e2 + h2, f1 · e2 = 2e2 − h2, h1 · e2 = 6e2 − 2h2,
e1 · f2 = 4f2 + 4h2, f1 · f2 = −2f2 − h2, h1 · f2 = −6f2 − 4h2,
e1 · h2 = −8e2 − 2f2, f1 · h2 = 2e2 + 2f2, h1 · h2 = 8e2 + 4f2.
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Existence of post-Lie algebra structures - a table

(g, n) n abe n nil n sol n sim n sem n red n com

g abelian X X X − − − X
g nilpotent X X X − − − X
g solvable X X X X X X X
g simple − − − X − − −
g semisimple − − − X X ? −
g reductive X ? ? X X X X
g complete X X X ? ? X X
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Commutative post-Lie algebra structures

Definition
A commutative post-Lie algebra structure, or CPA-structure on a Lie
algebra g is a k-bilinear product x · y satisfying the identities:

x · y = y · x
[x , y ] · z = x · (y · z)− y · (x · z)

x · [y , z ] = [x · y , z ] + [y , x · z ]

for all x , y , z ∈ V .

• A CPA-structure on g corresponds to a post-Lie algebra structure
on (n, g) with [x , y ] = {x , y}.
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Theorem (B-M 2016)
Any CPA-structure on a perfect Lie algebra g is trivial, i.e., satisfies
g · g = 0.

Theorem (B-M 2016)
Let g be a non-trivial solvable Lie algebra. Then g admits a non-
trivial CPA-structure.

Definition
A complete Lie algebra g is called simply-complete, if no non-trivial
ideal in g is complete.
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Theorem (B-M 2016)
Let g be a simply-complete non-metabelian Lie algebra. Suppose that
g satisfies the condition nil(g) = [g, nil(g)]. Denote by z the center
of the ideal I = [g, g]. Then there is a bijective correspondence
between CPA-structures on g and elements z ∈ z, given by

x · y = [[z , x ], y ].

• We believe that the condition nil(g) = [g, nil(g)] is automatically
satisfied for all complete Lie algebras g. Surprisingly this seems to be
not known.

Example
The Lie algebra aff(Rn) is simply-complete. All CPA-structures on
aff(Rn) are trivial for n ≥ 2.
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Theorem (B-M 2017)
Let g be a nilpotent Lie algebra satisfying Z (g) ⊆ [g, g]. Then any
CPA-structure on g is complete, i.e., its left multiplication maps L(x)
are nilpotent for all x ∈ g.

• In this case we have L(Z (g))d
dim Z(g)+1

2
e(g) = 0.

Conjecture
Every CPA-structure on the free-nilpotent Lie algebra g = Fg ,c with g
generators and nilpotency class c, with c ≥ g ≥ 3, satisfies

g · g ⊆ Z (g).
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