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Motivation 1: secure guantum communication
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X. Song Ma et al, Quantum teleportation over 143 kilometres Ji-Gang Ren et al, Ground-to-satellite qguantum
using active feed-forward, Nature 489, 269 (2012) teleportation, Nature 549, 70-73 (2017)



Motivation 2: quantum computing

120 Years of Moore’s Law
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Database search

A fast quantum mechanical algorithm for database search
Lov K. Grover
3C-404A, Bell Labs
600 Mountain Avenue
Murray Hill NJ 07974
lkgrover@bell-labs.com

Summary

Imagine a phone directory contamning N names
arranged in completely random order. In order to find

. - |
someone's phone number with a probability of 5. any

classical algorithm (whether deterministic or probabilis-

: . . - N
tic) will need to look at a minimum of 7 hames. Quan-

tum mechamnical systems can be in a superposition of
states and simultaneously examine multiple names. By
properly adjusting the phases of various operations, suc-
cessful computations reinforce each other while others
mterfere randomly. As a result, the desired phone num-

ber can be obtained in only O(./N) steps. The algo-
rithm is within a small constant factor of the fastest
possible quantum mechanical algorithm.

L. Grover, Proc. 28th ACM Symposium on the Theory of Computing (STOC), 212-219 (1996)

This paper applies quantum computing to a
mundane problem in information processing and pre-
sents an algorithm that is significantly faster than any
classical algorithm can be. The problem is this: there is
an unsorted database containing N items out of which
just one item satisfies a given condition - that one item
has to be retrieved. Once an item is examined, it is pos-
sible to tell whether or not it satisfies the condition in
one step. However, there does not exist any sorting on
the database that would aid its selection. The most effi-
cient classical algorithm for this is to examine the items
in the database one by one. If an item satisfies the
required condition stop; if it does not, keep track of this
item so that it is not examined again. It is easily seen

N

that this algorithm will need to look at an average of >

itemns before finding the desired item.
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Prime factorization

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer”

Peter W. Shor

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration, This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

P. Shor, SIAM J.Sci.Statist.Comput. 26, 1484 (1997)

Table 5: Quantum factorization records

Number # of factors # of qubits Algorithm . Year
needed implemented

15 2 8 Shor 2001 [2]

2 8 Shor 2007 [3]

2 8 Shor 2007 [3]

2 8 Shor 2009 [5]

2 8 Shor 2012 [6]

21 2 10 Shor 2012 [7]
143 2 4 minimization 2012 [1]
56153 2 4 minimization 2012 [1]
291311 2 6 minimization not yet
175 3 3 minimization not yet

Nikesh S. Dattani, Nathaniel Bryans, Quantum factorization
of 56153 with only 4 qubits, arXiv:1411.6758 (2014)



Combinatorial designs



Hadamard matrices

Matrices having entries =1
and orthogonal columns



Existence of Hadamard matrices

Only possible for size d = 2 or d multiple of four.
Tensor product of two Hadamard matrices is a Hadamard matrix

First open caseisd=4x 167 = 668

Hadamard Conjecture

There exists a Hadamard matrix for every size d multiple of four



Latin squares

Square arrangements of size d having d different symbols.
Symbols are not repeated along every row/column.
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Graeco-Latin squares

Graeco-Latin squares exist for every finite size d>2, except d=6



36 officers of Euler

How can a delegation of six regiments, each
of which sends a coronel, a lieutenant-
colonel, a major, a captain, a lieutenant,
and a sub-lieutenant be arranged in a
regular 6 x 6 array such that no row or
column duplicates a rank or a regiment?

Euler conjectured in 1782 that
such configuration is not possible.

The conjecture was proved by
Gaston Tarry in 1901




36 officers of Euler

How can a delegation of six regiments, each
of which sends a coronel, a lieutenant-
colonel, a major, a captain, a lieutenant,
and a sub-lieutenant be arranged in a
regular 6 x 6 array such that no row or
column duplicates a rank or a regiment?

Euler conjectured in 1782 that
such configuration is not possible.

The conjecture was proved by
Gaston Tarry in 1901

Derrick Niederman (MIT)



Mutually orthogonal Latin squares

Three MOLS of size four

LS1: Orientation of Ls
LS2: Color of s
LS3: Color of squares

There are, at most, d-1 MOLS of size d



Karol Zyczkowski — Jagiellonian University



Orthogonal arrays

An orthogonal array OA(r, N, d, k) is
an arrangement of symbols taken
from the alphabet {0,...,d-1}, having r
rows and N columns such that for
every subarray made up of k columns
and r rows, all possible combination
of symbols appear along the rows.
Repetition of all possible combina-
tions of symbols are allowed.
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Orthogonal arrays

Orthogonal array of strength k: Strength k=2
every contains
all possible combination of symbols
(repetitions of all combinations are
allowed).
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Orthogonal arrays
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Hadamard matrices from orthogonal arrays

0 0 O 1 1 1 1
0 1 1 :Vt\ 1 1 -1 -1
1 0 1 1 -1 1 -1
1 1 0 1 -1 -1 1

An OA(4A,4A-1,2,2) exists if an only if a Hadamard matrix of size 4A exists



MOLS from orthogonal arrays




O =




MOLHipercubes from orthogonal arrays

In general, an OA(d”k,N,d, k) determines N-2 MOLH
of size d in dimension k



Quantum combinatorial designs



Two-qubit guantum states

A two-qubit quantum state |¢) € C* @ C? is separable if

) = |P1) @ |¢2)
Otherwise |¢) is entangled. 1.00
|p) = sina |00) + cosa [11) g?‘ 0.75 | ENTANGLED
pa = Tra(Ip)I) ol I

0 /8 /4



Maximally entangled states

Two qubit systems

IBell) = v—%(|00>+|11))

Three qubit systems

IGHZ) = %(|000)+|111))

W) = —=(]001)+|010) + [100))

1
7 (

Borromean rings

I. Bengtsson, K. Zyczkowski,
Geometry of Quantum states
Cambridge University Press (2017)




Absolutely maximally entangled states

N partite guantum pure states such that
every reduction to [N /2] parties is maximally mixed

I IAME (2,2)) = %(|00>+|11>)
I AME (3,2)) = %(|000)+ 111))
| AME(4,3)) = + (|0000)+[0121)+/0212)+

1110)+[1201)+|1022)+
2220)+|2011)+|2102))




Quantum orthogonal arrays

A quantum orthogonal array QOA(r, N, d, k), also denoted as |OA), is an
arrangement composed by d-dimensional guantum states, having r rows
and N columns such that every reduction to k columns forms a POVM.

0 1 10) |1)
0A = > |04) =
1 0 1) 10)
o Tra(10AY0A]) = [0

11,
0)0] 1)1
10y 11 (0 (1] [0)1] _[1)(0 11
0ANOAT=11) %10y <11®¢0] = [2)0] ®oya]  Tral0AXOAD = 14y
1(1]  [0X0

D. Goyeneche, Z. Raissi, S. Di Martino, K. Zyczkowski,
Entanglement and quantum combinatorial designs, arXiv:1708.05946 (2017)



Quantum orthogonal arrays
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Quantum orthogonal arrays
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@*) = (|00) £ [11))/v2

Bell basis
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Quantum Latin cube

G H Zooo)
GHZQQ1>
GH Zy10)
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Quantum Orthogonal arrays of 5 columns

0) 0) 0) D0.0)
0) 1) 1) ©0.1) 0) |do0) ... |d—1)|po.a_1)
d—1) |[d—1) |d—=2) [pa—1.a-1) d—1) [¢a—1,0) - |d—2)|da—1.a-1)
Classical part Quantum part

OA(d”2,3,d,2)  (2-qudit Bell basis) 3 MOQLS of size d



Role of QOA in guantum technologies
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for your attention
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D. Goyeneche, Z. Raissi, S. Di Martino, K. Zyczkowski,
Entanglement and quantum combinatorial designs,
arXiv:1708.05946 (2017)



