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Surfaces of constant astigmatism — definition
Definition: A surface is said to be of constant astigmatism (CA)
if the difference pa — p1 between the principal radii of curvature is
a nonzero constant.




Results from 19th century

L. Bianchi, Ricerche sulle superficie elicoidali e sulle superficie
a curvatura costante, Ann. Scuola Norm. Sup. Pisa, |2 (1879)
285-341.

» evolutes (focal surfaces) of surfaces of CA are pseudospherical

> involutes corresponding to parabolic geodesic systems on
pseudospherical surfaces are of constant astigmatism

» some surfaces of constant astigmatism were obtained
explicitly, for example involute corresponding to Dini's
pseudospherical helicoid
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Figure: Dini's pseudospherical surface (left) and its involute (right)



Results from 19th century

R. Lipschitz, Zur Theorie der krummen Oberflachen, Acta Math.
10 (1887) 131-136
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Results from 19th century

Figure: Lipschitz surfaces of constant astigmatism



Results from 19th century

R. von Lilienthal, Bemerkung tiber diejenigen Flachen bei denen
die Differenz der Hauptkriimmungsradien constant ist, Acta
Mathematica 11 (1887) 391-394.

The one parameter family of von Lilienthal surfaces of revolution
(involutes of the pseudosphere) in terms of principal coordinates
x,y is given by
(x—a+1)e *cosy
r(z,y) = (x —a+1)e *siny ;

arccoshe® — (x —a + 1)m

where a is a real constant.



Example 1 — Gallery of von Lilienthal surfaces

a=-1.00
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Baran & Marvan 2009, 2010

H. Baran and M. Marvan, On integrability of Weingarten surfaces:
a forgotten class, J. Phys. A: Math. Theor. 42 (2009)

H. Baran and M. Marvan, Classification of integrable Weingarten

surfaces possessing an sl(2)-valued zero curvature representation,
Nonlinearity 23 (2010)

» the constant astigmatism equation (CAE)

1
zyy+<z> +2=0
Tr

» transformation to the sine-Gordon equation

1
Zyy+<z> +2=0 —> Ugy = Sinu
rxr
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1. The constant astigmatism equation (CAE)



Parameterization by lines of curvature

Under parameterization by the lines of curvature (principal
coordinates), the fundamental forms of every regular surface can
be written as
I=u?da? + 0% dy?,
2 2
u v
II = —dz? + — dy?,

P1 P2
2 2

I = 5 da? + 2 dy?,
P1 1)

where p; and po are the principal radii of curvature of the surface.

We assume the ambient space to be scaled so that p2 — p; = £1.



Adapted parameterization by lines of curvature

Definition: A parameterization by lines of curvature is said to be
adapted if
uv = £p1p2 (1)

holds.



Adapted parameterization by lines of curvature

Definition: A parameterization by lines of curvature is said to be
adapted if
uv = £p1p2 (1)

holds.

Every CA surface can be equipped with an adapted
parameterization by lines of curvature. Moreover, the nonzero
coefficients of the three fundamental forms of a surface of constant
astigmatism can be expressed through a single function z(z,y):

B z%(lnz—Q) _Inz ~Inz-2 _Inz
U= 2 ) U_2Z%a p1 = 2 ’ P2 = 9 -

Obviously, p2 — p1 = 1 and the condition (1) also holds.



Gauss—Weingarten equations

Let r(z,y) be the surface of constant astigmatism and let n(z,y)
denote the unit normal vector. Then r, n satisfy the
Gauss—Weingarten system
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Constant astigmatism equation

Compatibility conditions of the Gauss—Weingarten system reduce
to the constant astigmatism equation (CAE)

1
zyy—i-() +2=0.
z T

Thus, under parameterization by adapted lines of curvature
surfaces of constant astigmatism correspond to solutions of
the constant astigmatism equation.



The simplest example — von Lilienthal solutions

The CAE:

1
Zyy+<z) +2:0
xxr

The simplest solutions of the CAE — solutions corresponding to von
Lilienthal surfaces:
1

) _
Z=—Yy" +c, 27—x2+62



2. Construction of the CA surfaces and solutions of
the CAE



Construction of the CA surface from the pair of

complementary evolutes

Proposition 1: Let w()(¢,7,¢) be a Bicklund transformation of
w(&,7n), where ¢ is an integration constant. Let r and r(M) be pair
of complementary pseudospherical surfaces. Denote

A=) _p— Sin((‘u — W(l))rg . Sin(?u n u1(1))1‘77.
sin(2w) sin(2w)
Then .
d
r=r— fn, where f=1In w 7
de

is a surface of constant astigmatism having surfaces r and r(!) as
evolutes.

Proposition 1 shows that the constant astigmatism surfaces can be
found by purely algebraic manipulations and differentiation once a
one-parameter family of functions w(®) is known.



Construction of the corresponding solution of the CAE

Proposition 2: Let w(M) (€, 7, ¢) be a Backlund transformation of
w(&,m), where c is an integration constant. Let f = In(dw(/dc)
and x = df/de. Let y(£,n) be a solution of the system

ye = e sin(w + wD), Yy, = e ¥ sin(w — w).

Then x,y are adapted curvature coordinates on the surface r.
Moreover, if z = ¢=2f, then z(z,y) is a solution of the constant
astigmatism equation. Finally, zdz? + dy?/z is an orthogonal
equiareal pattern on the unit sphere nn, while &, 7 is the associated
slip line field.

Proposition 2 allows us to construct one of the curvature
coordinates by purely algebraic manipulations and differentiation,
while the other curvature coordinate has to be obtained by
integration.



3. Superposition principle for the CAE



Associated potentials (solutions of the CAE)

g0 = grcos(@® +w), g = gV cos(w™ — w),

mé’\) = )\g()‘) sin(w()‘) + w), ac,({\) = %g(k) sin(w()‘) —w),
) )\sin(wo‘) +w) o) _ _sin(w(’\) —w)
= W

Expressing 2V = l/g()‘)2 in terms of ) and yM one obtains a
solution of the CAE.



Superposition principle for the CAE
Proposition 3: Let w,w®) w(*2) ,(MA2) pe four sine-Gordon
solutions related by the Bianchi superposition principle. Then

gMA2) - p(Made) g (MA2) corresponding to the pair wM)| w(122) are
related to g*2), 2(*2), (%) corresponding to the pair w,w*2) by
formulas
g(>\1>\2) — —A1 Ao g(AQ)
)\% + )\% - 2)\1)\2 COS(w(/\l) — w(/\z)) ’
L) A1 A2 L0a) 2X1 A\ sin(wM) — w(X2)) 40
A= A3 A2 + A2 — 201 \g cos(wP) — w(X2)) ’

(AMA2) )‘1 )‘2 (A2) _ QSin(w(Al) — w()\2))
Y )‘1)\2 A g(>\2) .

up to an additive constant.

s /

A2)



4. Orthogonal equiareal patterns



Orthogonal equiareal patterns

Definition: By an orthogonal equiareal pattern (OEP) on
a surface S we shall mean a parameterization z,y such that the
corresponding first fundamental form is

1
I = zdz? + = dy?,
z

z being an arbitrary function of x, y.



Geometric meaning of z(z,y)

The third fundamental form of the constant astigmatism surface
turns out to be

1
III = zda?® + —dy?.
z

Hence, one obtains orthogonal equiareal parameterization of the
Gaussian sphere.
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The Archimedean projection.

Example: The Archimedean projection. Consider the
parameterization (z,y) — ( 1 —a22cosy, V1 — x2siny, x) The
corresponding first fundamental form is

da?

— 2 2
T = 1o + (1= %) dy?,

i.e., z=1/(1 — 2?). This solution of the CAE corresponds to von
Lilienthal surfaces.
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Figure: The Archimedean equiareal parameterization of the unit sphere



5. Slip line fields



Slip line fields
Definition: By a slip line field associated with the OEP
2 1.9
Ig =zdz"+ - dy
z
on a surface S we shall mean a parameterization &, 7 such that the

angle between 0, and O¢ as well as the angle between 0, and 0, is
equal to %TF.




Slip line fields
Definition: By a slip line field associated with the OEP
2 1.9
Ig =z2da”+ —dy
z
on a surface S we shall mean a parameterization &, 7 such that the

angle between 0, and O¢ as well as the angle between 0, and 0, is
equal to %TF.

Example: The net of slip lines corresponding to the Archimedean
equiareal pattern is, by definition, formed by the £45° loxodromes.



Figure: Sphere's slip line field composed of loxodromes
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Example of using the superposition principle
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The corresponding constant astigmatism surface (A = 0.9, ¢; = 0):
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The associated slip line field on the Gaussian sphere:
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6. Reciprocal transformations



Reciprocal transformations

We introduce two (interrelated) auto-transformations X and
that, in geometric terms, correspond to taking the involute of the
evolute.



Formulas for transformations

Let us introduce functions 7, £ satisfying

zg 1 9

Ne = T2y, My =25+ =T
z

G=-yutz-v, &=y

Compatibility of these equations is equivalent to the CAE.



Proposition: Let z(x,y) be a solution of the CAE. Denote
X(z,y,2) = (2',y,7') and Y(z,y, 2) = (=*,y*, 2*), where

R C e
2z 41 z
and y ,
x*:§7 y*: X

E—— Z = —.
z+y? (z +y?)?
Then 2/(2',1y/) and 2*(z*, y*) are solutions of the CAE.



Properties of reciprocal transformations

» The following identities hold:

XoX=Id, YoY=Id



Properties of reciprocal transformations

» The following identities hold:

XoX=1Id, YoY=Id

» The connection between X and ) can be expressed using the
involution Z(z,y, 2) = (y,x,1/2):

XoZl=To).



Properties of reciprocal transformations

» The following identities hold:

X oX =1d, Yo) =

» The connection between X and ) can be expressed using the
involution Z(z,y, 2) = (y,x,1/2):

XoZl=To).

» On the level of sine-Gordon solutions:

ENAANANANAN
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Example — von Lilienthal solution

Let us apply the transformations X and ) to the von Lilienthal
solution
z = _y2 + l )

where [ > 0.



Example — von Lilienthal solution

Then X(z,y,2) = (2/,y/, 2'), where

’ z(l — y2)

1 Y
T = 5757 7 ' = —_arctanh-—~ — 2?2
20— 11 Yy \[larcan i Yy + e,
S (xQ(l y2) 1)2

l—y?
and Y(z,y,z) = (z*,y*, 2*), where
[ —

x*:lx+027 y*:_% * Yy

c1, co being the integration constants.



Example — von Lilienthal solution

Then X(z,y,2) = (2/,y/, 2'), where

/ x(l y2) / 1 ) 2
=, = —arctanh— — + ¢,
xr 2(l y2) 1 y \/Za.rc an \/Z Ty C1
S (xQ(l y2) 1)2

l—y?
and Y(z,y,z) = (z*,y*, 2*), where

g * l_y
l

¥ =lr+c, y=-2, 2FF=-—",

c1, co being the integration constants.

» 2* = —y*2 4+ 1/1 is another von Lilienthal solution



Example — von Lilienthal solution

Then X(z,y,2) = (2/,y/, 2'), where

/ (! y2) / 1 Y 2
= 7 1> = —=arctanh—- — +c1,
x 2(l yQ) 1 y \/Za.rc aln \/Z Ty C1
S (xQ(l y2) 1)2

l—y?
and Y(z,y,z) = (z*,y*, 2*), where

g * l_y
l

¥ =lr+c, y=-2, 2FF=-—",

c1, co being the integration constants.

» 2* = —y*2 + 1/l is another von Lilienthal solution

» 2/(2',y) is a substantially new solution of the CAE, which
cannot be expressed explicitly using elementary functions



Example — von Lilienthal solution

An implicit formula for the solution 2/(2',y’) is

/ 1 tanh Iz — (1,‘/2,2 + 1 x’2z’2 \/lz x/zz’ + 1)2
= —= arctan
Y v 1z (a:’2z +1)2

+c1.



Example — von Lilienthal solution
Continuing the previous example we provide a picture of the surface
of constant astigmatism generated from the von Lilienthal seed:

Figure: A transformed von Lilienthal surface.



Acting of reciprocal transformations on the OEP
The construction:

Example:




7. Lipschitz solutions



Theorem: The general Lipschitz solution of the CAE depends on
four real parameters hi1, h1g, ho1, hoo and is a nonzero root of the
quadratic polynomial

2.2 2 2
hyz® + (h* = 1)z + hg,
where
h = hi1zy + hioz + ho1y + hoo,
hy = hiiz + ho1,  ha = h11y + hio,

under the condition that A is not a constant (i.e., at least one of
the coefficients hi1, hig, hoi is not zero).



Proposition: The class of Lipschitz solutions coincides with the
class of solutions invariant under linear combinations of the Lie
symmetries 7%, 7Y, S.



Proposition: Denote

"/ =x?)? — 4(ax — b)?
oo =} B ma

choosing the lower integration limit hgy so that E, is real. Then
the orthogonal equiareal pattern corresponding to the general
Lipschitz solution is given by the unit vector

n = (cos ¢sinf, sin ¢ sin @, cos @), where § = arccos h and

hy .
(b %1 FyiEab |fa§é0,

ho1y — hioz + hoo

0= 2

:l:EO,b ifa:(), b;éO



The corresponding sine—Gordon solutions turn out to be well known
travelling wave solution also known as a “fluxon chain”. The
simplest analytic expression for it through the Jacobi amplitude is

quam(k§+7],k*1/2)+7r.
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OEP corresponding to

Lipschitz surfaces

Figure: Orthogonal equiareal patterns on the sphere corresponding to
Lipschitz solutions

N



8. Algebraic formula producing infinitely many exact
solutions



How to iterate the superposition for the CAE?

Let w9 = &[0 be some seed solution of the sine-Gordon equation.
Fix Backlund parameters Ay, ..., Ag+1 and let us denote

(A1 A2 Ag) (A2 A3 Apt1)
)

wltl = & ol = &

) 7 Y o T NI 1

NI (N

A A
Wl A2 e A




How to iterate the superposition for the CAE?

Let ¢gll, zU), 4l denote the associated potentials corresponding to
the pair @V~ wll. In this notation, the superposition formulas
turn out to be

JRPRS\INEAYES LA N (N7 I D sin@l —wll) i
)‘?H — A7 /\32-Jrl + A2 = 2)j41 A1 cos(@l] — wli) ’
y[jJrl} — )\?-‘rl B A%ym _ 28111(@[]] — w[]])
Aj+1A1 gl] ’
FEARES —AAL g

A2L1 A = 2X 11 cos(@l] — wlil)

The above formulas constitute recurrence relations for the
quantities 2" [ ¢ with the initial conditions

W=z, W=y, M=g.



Solving the recurrence relations

Proposition:
2l T
g | <'i:[1 5“’1) Y1
Q[n] - i=1 91 ’
1/9[n] 1/g1

where SUl are 4 x 4 matrices with entries defined by formulas

ngl] _ Aj+1A1 glil — _ )\?Jrl)\% . 2Sin(w[]] — w[”) v ,
A2, —ap T A=A A2+ A% — 22X 0 A cos(@lil — wlil)
. A2, — )2 . . .
Sh = e —=r, SHl = —2sin@V! - W),
Aj+1A1
ngs] _ 1 —Ajr1 A

@ = )‘?+1 + )\% —2)\j1 M cos((D[J'] — wlil)

all the other entries being zero. Moreover, if z[" = 1/9[”]2, then
27 (27 4[] is a solution of the CAE.



9. Multisoliton solutions of the CAE



Multisoliton solutions of the sine-Gordon equation

Let wl% = 0. Let us define

= e)\if‘F%‘FCi'

The Backlund transformations of zero solution are one-soliton
solutions of the sine-Gordon equation

Wl = 2 arctan ai, ol = 2 arctan as

and, applying the superposition principle we easily obtain the
two-soliton solutions

(a1 — a2)
1+ ajas)’
(a2 — a3)
1+ a2a3) '

(A1 + A2
(A1 = A2)
()\2 + A3
(A2 — A3)

w? = 2 arctan

o2 = 2 arctan

—_ =



Multisoliton solutions of the sine-Gordon equation

An exact analytic n-soliton solution, in our notation w!™ is of the
form

n]

1
w = 5 arccos ol

where
2

o0& On

M being the n X n matrix with entries

Indet M

oM =1-2

1 1
Mij = 7)\1 n )\j (,/aiaj + aiaj) .



Multisoliton solutions of the CAE

Definition: By a j-soliton solution of the constant astigmatism
equation we shall mean a triple (zV!, ylil, gl'l) formed by
associated potentials corresponding to the j-soliton solution w!
and the (j — 1)-soliton solution @~ of the sine-Gordon equation.

U 7 o B 1 ) O T s e 1
A1 l Al J{ A1 l A L M l/




One-soliton solution of the CAE

A one-soliton solution of the CAE is easy to construct:

o
26)\1£+ M +c1

g = 62(A1£+;¢1+C1) i 1’
G2t Fea) _
T = ez()\lﬁJr%Jrcl) N !

3/1:)\15—)\1—1-/?1.
1

Setting 21 = 1/g7 and eliminating &, 7 one reveals the
von Lilienthal solution .
i=1 "2



One-soliton solutions

Figure: Pseudosphere (upper left); von Lilienthal surface (upper right);
Gaussian map (lower left); solution z = 1/(1 — 22) of the CAE (lower
right).



Multisoliton solutions of the CAE
Proposition: Let us denote AUl = 2501yl and

BUl = 2\/(<ﬁ[j]2 — 1)(¢l1* — 1). Then the n-soliton solution of
the CAE is given by the formula

2] T

y!"! _ <ﬁ Sm) Y1

g™ s 91 ,
1/9[n] 1/g1

where the only nonzero entries of matrices Sl are given by

sbil = N1 sl — At 2 — AUl — BU
Al — AT M= X4, — Aav2+ AGl+ B
b _ Ae = A 1) T BO
S2J2 _ &7)\7 5’2]4 = —v/2 — AUl — Bl
JH1AL
sl — 1 —Aj+1 M

SN2 A2, — Npiav2 + AU £ BT



Examples



Two-soliton solutions

w2 = 2 arctan

(A1 + A2)(a1 — a2)
(A1 —A2) (1 + ara2)

Figure:

Two-soliton pseudospherical surface




Two-soliton solution of the CAE

L2 - e (A1 +A2)?(af — a3) + (M — N2)?(afa3 — 1)
/\% — )\% (/\1 + )\2) (al + a2) ()\1 /\2) (a1a2 + 1) 8/\1)\2&1&2’
A2 —\2 2(14 ajaz)(a; — az)
2 _ A2 = AT o 1a2)(a1 — az
Y )\%)\2 ( 16 7]) + a1(1 + a%) )
g[Q] . —2/\1)\2a1(1 + a%)

o ()\1 + )\2)2(0/% + a%) + ()\1 - )\2) (a1a2 + ].) - 8)\1)\2&10,2

o Lo (()‘1 +X2)%(af + a3) + (M — Ap)?(afa3 +1) — 8)\1)\2%@2)2
g[2]2 2X\1\2a1 (1 4 a3)



Two-soliton solution of the CAE

Eliminating &, n one obtains an implicit formula for the function
2(a,y) = 2@l y2), namely

(/\% + )\%) In aj 2(1 + alag)(al — CLQ)
)\1)\2 (11(1 —|—a§) ’

y=2Ilnay —

where
—(@®257 = AIA2)22%2 — 225 (22AL — AZAD)z 4 2K M AN, vz — A
(ZAD, 4+ AiA2)2(4N2A225 + Kz2) + 4X202A5 % /2 + KAS?

a; = y

4NNz + K
2 = )
)‘1922 + (5172)‘1@22 —AiA3)z

Here we have denoted

K = 1601 2= A5 4+ (22252 = A2A2)2)2.

My = A1+ Ag, =AM A, AL = AT - AL



Two-soliton solutions

Figure: Two soliton solution of the CAE, A\ = 1.2, Ay = 1.5, ¢; = 0.
Right part of the figure shows the behavior around the origin.




Two-soliton solutions

0 with coordinate lines £ =0

» G

1.5

Figure: Slip line field 02!, \y

and 7 = 0 highlighted (thick black curves).



Two-soliton solutions

To obtain an associated orthogonal equiareal pattern one needs to
invert the transformation (z,y) <> (£,n) given by

g M2 (A1 +A2)?(af — a3) + (M — A2)?(afad — 1)
)\% — )\% ()\1 + )\2)2(0,% —+ a%) + ()\1 — AQ)Q(Q%G% + ].) — 8/\1)\2a1a2’

A3 — A2 2(1 4+ ajaz)(ar — asz)
- A2)o ai(1+ a3)
which is not possible in terms of elementary functions. The
parameterisation nl?(z,y) then would provide orthogonal equiareal
net sought.

(A€ —n)+

b



Two-soliton solutions

Figure: Two soliton surface 72 of constant astigmatism, Ay = 1.5,
C; = 0, k=1.



Three-soliton solutions

+ 3+ 2= + 53—t =\t b

w3 Z 9 arctan <>‘12A13)‘23“1 — AlpAi3Agza2 + Ap A gAgzas + >‘12A13)‘23“1“2“3)
= — 3t T T 3= 2t 3 A - =
Ar2A3Ag3a1a2 — AfpAj3A53a1a3 + A A 3 5a2a3 + A1pA 3003

Figure: Three-soliton pseudospherical surface 3.



Three-soliton solutions

Figure: Three soliton solution of the CAE, A\; = 1.2, Ay = 1.5, Ay = 1.8,
¢; = 0. Right part of the figure shows the behavior around the origin.



Three-soliton solutions

Figure: Slip line field al®, Ay = 1.5, A3 = 1.8, ¢; = 0 with coordinate
lines £ = 0 and i = 0 highlighted (thick black curves).



Three-soliton solutions

Figure: Three soliton surface ¥[8 of constant astigmatism, Ao = 1.5,
)\3:1.8, CZ'ZO, k=1.



Unfinished work — simplest case when w!” £ 0
Solution of the s-G equation corresponding to Lipchitz's solution of
the CAE satisfies
we = kuwy,
where k is a nonzero constant. Thus, it is of the form
w(k& +n+ C), where C'is a constant.

N |
ww

,‘ ~ ~
<'~\\ ““ “
‘ Y

’ ’ Nm (l

N\\'




In coordinates o = k€ +n and 3 = k€ — 1 the sine-Gordon
equation turns out to be

Waa — Waa = T sinw.
The condition we = kw,, reduces to
wg =0
and, therefore, the sine-Gordon equation transforms to the ODE

kwaa = Sinw.



In coordinates o = k€ +n and 3 = k€ — 1 the sine-Gordon
equation turns out to be

Waa — Waa = T sinw.
The condition we = kw,, reduces to
wg =0
and, therefore, the sine-Gordon equation transforms to the ODE
kwaa = Sinw.

Moreover, one can reduce the order of the equation which
becomes
kw? = —2cosw + 21,

[ being a constant. Solving for w, one obtains

2l — 2cosw
o =+ ——M .
“ V 2



Explicit form of sine-Gordon seed wy

The results of integration can be written in the form

(a)

(@) _ —ap, 1)]
= 2arccos |sn | —; — forl/k > 1/k,
o <o ()| o
(b)
wéb) = 2arcsin [dn <\;%;p>] for [I/k| < 1/k,
(c)

w(()c) = 4 arctan (exp \j%) forl =1,

where p = /(1 +1)/2.



A Backlund transformation of the travelling wave solution
of the s-G eq.

Let w be a solution of kwy, = sinw. Its Backlund transformation
with parameter \ can be conveniently written as?

w® = 4arctan s — w,
where 6V satisfies the system

((5(/\)2 — 1) sinw + 26 (cosw + /\172) + A <5()‘)2 + 1) Wa

5N —
@ 4\ ’
) (—6(/\)2 + 1) sinw — 26W (cosw — )}TQ> + A (5()‘)2 + 1) Wa
6ﬂ = o .

1C.A. Hoenselaers and S. Micciche, Transcendental solutions of the
sine-Gordon equation, in: A. Coley, D. Levi, R. Milson, C. Rogers and
P. Winternitz, eds., Backlund and Darboux transformations. The geometry of
solitons, AARMS-CRM Workshop, Halifax, 1999, CRM Proc. Lecture Notes 29
(Amer. Math. Soc., Providence, RI, 2001) 261-271.



A Backlund transformation of the travelling wave solution
of the s-G eq.

(N

The equation for 55 is separable and it has a solution

5N = / +ftanhc(ﬂ+b( )+ K),

ak? ' ak
where
7sinw_@ fié_kcosw
CAkN 4k 4 a4\
B \//\4 —2kN%cosw — k2(\2w2 — 1)
°= AN

and b(«) is yet unknown function of a.



A Backlund transformation of the travelling wave solution
of the s-G eq.

Substituting into the equation for 6&)‘) one obtains the equation for

b, namely
_ Awg +sinw

bo =

Ay —sinw



Associated potentials g, 2, y(N)

Proposition:Let w be a solution of the sine-Gordon equation
kwae = sinw and let w®) = 4arctan 6 — w be its Bicklund
transformation with parameter A\. Then the associated potentials
WM yN | ¢N) corresponding to the pair w,w™ are given by
formulas



Associated potentials g, 2, y(N)

N 8c2k f cosh 2B + 4c(f? + k*a® + c?k?) sinh 2B
(f2 + k*a? + c2k?) cosh 2B + 2ck f sinh 2B + f2 + k*a? — c2k?’
o) _ ( fsinw  2f —A
YT 160k T 8k
(k*a? — ?k? — f?)sinw  f(2f — \)
a < 32Xc3k3a + 8c3k?
(K*a® + 2k? — f¥)sinw  f(2f — \)
B < 16\c2k3a 4c2k? ) P
A4 k2 kX2
OO — 2KINZ + k2) " NF— 2kIN2 + K2 /COS” da,
o _ 4c¢?k3a(1 — tanh? B)
k*a? + f2 + 2ckf tanh B + ¢2k2 tanh? B’
where B =c¢(8+ b+ K) and [ is a constant. Moreover, if
2N = 1/9()‘)2, then 2V (M) (M) is a solution of the constant
astigmatism equation.

Z(

> cosh 2B

) sinh 2B
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ical surfaces corresponding to the case

: Pseudospher

From the left

Figure

and (c) respectively

b)

(@) (




Figure: Transformed case
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