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Surfaces of constant astigmatism – definition
Definition: A surface is said to be of constant astigmatism (CA)
if the difference ρ2 − ρ1 between the principal radii of curvature is
a nonzero constant.
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Results from 19th century

L. Bianchi, Ricerche sulle superficie elicoidali e sulle superficie
a curvatura costante, Ann. Scuola Norm. Sup. Pisa, I 2 (1879)
285–341.

I evolutes (focal surfaces) of surfaces of CA are pseudospherical

I involutes corresponding to parabolic geodesic systems on
pseudospherical surfaces are of constant astigmatism

I some surfaces of constant astigmatism were obtained
explicitly, for example involute corresponding to Dini’s
pseudospherical helicoid



Figure: Dini’s pseudospherical surface (left) and its involute (right)



Results from 19th century
R. Lipschitz, Zur Theorie der krummen Oberflächen, Acta Math.
10 (1887) 131–136

r̃(φ, θ) =
1

2



(2P +Mφ) cos θ − 2Q+ Lφ

(2P +Mφ) sin θ cosφ− L cos θ+M
sin θ sinφ

(2P +Mφ) sin θ sinφ+ L cos θ+M
sin θ cosφ


,

where L,M are real constants and P,Q are defined by formulas

P =

∫ √
sin4 θ − (L+M cos θ)2

sin3 θ
cos θ dθ,

Q =

∫ √
sin4 θ − (L+M cos θ)2

sin3 θ
dθ.



Results from 19th century

Figure: Lipschitz surfaces of constant astigmatism



Results from 19th century

R. von Lilienthal, Bemerkung über diejenigen Flächen bei denen
die Differenz der Hauptkrümmungsradien constant ist, Acta
Mathematica 11 (1887) 391–394.

The one parameter family of von Lilienthal surfaces of revolution
(involutes of the pseudosphere) in terms of principal coordinates
x, y is given by

r(x, y) =


(x− a+ 1)e−x cos y

(x− a+ 1)e−x sin y

arccosh ex − (x− a+ 1)
√

1− e−2x

 ,

where a is a real constant.



Example 1 – Gallery of von Lilienthal surfaces
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I the constant astigmatism equation (CAE)

zyy +

(
1

z

)
xx

+ 2 = 0

I transformation to the sine-Gordon equation

zyy +

(
1

z

)
xx

+ 2 = 0 ←→ uξη = sinu
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1. The constant astigmatism equation (CAE)



Parameterization by lines of curvature

Under parameterization by the lines of curvature (principal
coordinates), the fundamental forms of every regular surface can
be written as

I = u2 dx2 + v2 dy2 ,

II =
u2

ρ1
dx2 +

v2

ρ2
dy2 ,

III =
u2

ρ21
dx2 +

v2

ρ22
dy2 ,

where ρ1 and ρ2 are the principal radii of curvature of the surface.

We assume the ambient space to be scaled so that ρ2 − ρ1 = ±1.



Adapted parameterization by lines of curvature

Definition: A parameterization by lines of curvature is said to be
adapted if

uv = ±ρ1ρ2 (1)

holds.

Every CA surface can be equipped with an adapted
parameterization by lines of curvature. Moreover, the nonzero
coefficients of the three fundamental forms of a surface of constant
astigmatism can be expressed through a single function z(x, y):

u =
z

1
2 (ln z − 2)

2
, v =

ln z

2z
1
2

, ρ1 =
ln z − 2

2
, ρ2 =

ln z

2
.

Obviously, ρ2 − ρ1 = 1 and the condition (1) also holds.
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Gauss–Weingarten equations

Let r(x, y) be the surface of constant astigmatism and let n(x, y)
denote the unit normal vector. Then r,n satisfy the
Gauss–Weingarten system

rxx =
(ln z)zx

2(ln z − 2)z
rx −

(ln z − 2)zzy
2 ln z

ry +
1

2
(ln z − 2)zn,

rxy =
(ln z)zy

2(ln z − 2)z
rx −

(ln z − 2)zzx
2 ln z

ry,

ryy =
(ln z)zx

2(ln z − 2)z3
rx −

(ln z − 2)zy
2z ln z

ry +
ln z

2z
n,

nx = − 2

ln z − 2
rx, ny = − 2

ln z
ry.



Constant astigmatism equation

Compatibility conditions of the Gauss–Weingarten system reduce
to the constant astigmatism equation (CAE)

zyy +

(
1

z

)
xx

+ 2 = 0 .

Thus, under parameterization by adapted lines of curvature
surfaces of constant astigmatism correspond to solutions of
the constant astigmatism equation.



The simplest example – von Lilienthal solutions

The CAE:

zyy +

(
1

z

)
xx

+ 2 = 0

The simplest solutions of the CAE – solutions corresponding to von
Lilienthal surfaces:

z = −y2 + c1, z =
1

−x2 + c2



2. Construction of the CA surfaces and solutions of
the CAE



Construction of the CA surface from the pair of
complementary evolutes

Proposition 1: Let ω(1)(ξ, η, c) be a Bäcklund transformation of
ω(ξ, η), where c is an integration constant. Let r and r(1) be pair
of complementary pseudospherical surfaces. Denote

ñ = r(1) − r =
sin(ω − ω(1))

sin(2ω)
rξ +

sin(ω + ω(1))

sin(2ω)
rη.

Then

r̃ = r− f ñ, where f = ln
dω(1)

dc
,

is a surface of constant astigmatism having surfaces r and r(1) as
evolutes.

Proposition 1 shows that the constant astigmatism surfaces can be
found by purely algebraic manipulations and differentiation once a
one-parameter family of functions ω(1) is known.



Construction of the corresponding solution of the CAE

Proposition 2: Let ω(1)(ξ, η, c) be a Bäcklund transformation of
ω(ξ, η), where c is an integration constant. Let f = ln(dω(1)/dc)
and x = df/dc. Let y(ξ, η) be a solution of the system

yξ = e−f sin(ω + ω(1)), yη = e−f sin(ω − ω(1)).

Then x, y are adapted curvature coordinates on the surface r̃.
Moreover, if z = e−2f , then z(x, y) is a solution of the constant
astigmatism equation. Finally, z dx2 + dy2/z is an orthogonal
equiareal pattern on the unit sphere ñ, while ξ, η is the associated
slip line field.

Proposition 2 allows us to construct one of the curvature
coordinates by purely algebraic manipulations and differentiation,
while the other curvature coordinate has to be obtained by
integration.



3. Superposition principle for the CAE



Associated potentials (solutions of the CAE)

g
(λ)
ξ = g(λ)λ cos(ω(λ) + ω), g(λ)η = g(λ)

1

λ
cos(ω(λ) − ω),

x
(λ)
ξ = λg(λ) sin(ω(λ) + ω), x(λ)η =

1

λ
g(λ) sin(ω(λ) − ω),

y
(λ)
ξ =

λ sin(ω(λ) + ω)

g(λ)
, y(λ)η = −sin(ω(λ) − ω)

λg(λ)
.

Expressing z(λ) = 1/g(λ)
2

in terms of x(λ) and y(λ) one obtains a
solution of the CAE.



Superposition principle for the CAE
Proposition 3: Let ω, ω(λ1), ω(λ2), ω(λ1λ2) be four sine-Gordon
solutions related by the Bianchi superposition principle. Then
g(λ1λ2), x(λ1λ2), y(λ1λ2) corresponding to the pair ω(λ1), ω(λ1λ2) are
related to g(λ2), x(λ2), y(λ2) corresponding to the pair ω, ω(λ2) by
formulas

g(λ1λ2) =
−λ1λ2

λ21 + λ22 − 2λ1λ2 cos(ω(λ1) − ω(λ2))
g(λ2),

x(λ1λ2) =
λ1λ2
λ21 − λ22

(
x(λ2) − 2λ1λ2 sin(ω(λ1) − ω(λ2))

λ21 + λ22 − 2λ1λ2 cos(ω(λ1) − ω(λ2))
g(λ2)

)
,

y(λ1λ2) =
λ21 − λ22
λ1λ2

y(λ2) − 2 sin(ω(λ1) − ω(λ2))

g(λ2)
.

up to an additive constant.

ω

ω(λ1)

ω(λ2)

ω(λ1λ2)

f (λ1λ2), x(λ1λ2), y(λ1λ2)

f (λ2), x(λ2), y(λ2)



4. Orthogonal equiareal patterns



Orthogonal equiareal patterns

Definition: By an orthogonal equiareal pattern (OEP) on
a surface S we shall mean a parameterization x, y such that the
corresponding first fundamental form is

IS = z dx2 +
1

z
dy2 ,

z being an arbitrary function of x, y.



Geometric meaning of z(x, y)

The third fundamental form of the constant astigmatism surface
turns out to be

III = z dx2 +
1

z
dy2 .

Hence, one obtains orthogonal equiareal parameterization of the
Gaussian sphere.



Geometric meaning of z(x, y)

Gaussian map n(x, y)

constant astigmatism surface r(x, y)
(x, y. . . principal coordinates)

orthogonal equiareal pattern
on unit sphere



The Archimedean projection.

Example: The Archimedean projection. Consider the

parameterization (x, y) 7→
(√

1− x2 cos y,
√

1− x2 sin y, x
)

. The

corresponding first fundamental form is

IArch =
dx2

1− x2 + (1− x2) dy2,

i.e., z = 1/(1− x2). This solution of the CAE corresponds to von
Lilienthal surfaces.



Figure: The Archimedean equiareal parameterization of the unit sphere



5. Slip line fields



Slip line fields

Definition: By a slip line field associated with the OEP

IS = z dx2 +
1

z
dy2

on a surface S we shall mean a parameterization ξ, η such that the
angle between ∂x and ∂ξ as well as the angle between ∂y and ∂η is
equal to 1

4π.

∂x

∂y

∂ξ

∂η

π
4

π
4

Example: The net of slip lines corresponding to the Archimedean
equiareal pattern is, by definition, formed by the ±45◦ loxodromes.
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Example: The net of slip lines corresponding to the Archimedean
equiareal pattern is, by definition, formed by the ±45◦ loxodromes.



Figure: Sphere’s slip line field composed of loxodromes





Example of using the superposition principle

0

ω(1)

ω(λ)

ω(λ1)

1

1

λ

λ



The corresponding constant astigmatism surface (λ = 0.9, ci = 0):

evolute

evolute
evolute



The associated slip line field on the Gaussian sphere:



6. Reciprocal transformations



Reciprocal transformations

We introduce two (interrelated) auto-transformations X and Y
that, in geometric terms, correspond to taking the involute of the
evolute.



Formulas for transformations

Let us introduce functions η, ξ satisfying

ηx = xzy, ηy = x
zx
z2

+
1

z
− x2,

ξx = −yzy + z − y2, ξy = −y zx
z2
.

Compatibility of these equations is equivalent to the CAE.



Proposition: Let z(x, y) be a solution of the CAE. Denote
X (x, y, z) = (x′, y′, z′) and Y(x, y, z) = (x∗, y∗, z∗), where

x′ = − xz

x2z + 1
, y′ = η, z′ =

(x2z + 1)2

z

and
x∗ = ξ, y∗ = − y

z + y2
, z∗ =

z

(z + y2)2
.

Then z′(x′, y′) and z∗(x∗, y∗) are solutions of the CAE.



Properties of reciprocal transformations

I The following identities hold:

X ◦ X = Id, Y ◦ Y = Id.

I The connection between X and Y can be expressed using the
involution I(x, y, z) = (y, x, 1/z):

X ◦ I = I ◦ Y.

I On the level of sine-Gordon solutions:
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Example – von Lilienthal solution

Let us apply the transformations X and Y to the von Lilienthal
solution

z = −y2 + l ,

where l > 0.



Example – von Lilienthal solution

Then X (x, y, z) = (x′, y′, z′), where

x′ =
x(l − y2)

x2(l − y2) + 1
, y′ =

1√
l
arctanh

y√
l
− x2y + c1 ,

z′ =
(x2(l − y2) + 1)2

l − y2
and Y(x, y, z) = (x∗, y∗, z∗), where

x∗ = lx+ c2 , y∗ = −y
l
, z∗ =

l − y2
l2

,

c1, c2 being the integration constants.

I z∗ = −y∗2 + 1/l is another von Lilienthal solution

I z′(x′, y′) is a substantially new solution of the CAE, which
cannot be expressed explicitly using elementary functions
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Example – von Lilienthal solution

An implicit formula for the solution z′(x′, y′) is

y′ =
1√
l

arctanh

√
lz′ − (x′2z′ + 1)2

lz′
−
x′2z′

3
2

√
lz′ − (x′2z′ + 1)2

(x′2z′ + 1)2
+c1 .



Example – von Lilienthal solution
Continuing the previous example we provide a picture of the surface
of constant astigmatism generated from the von Lilienthal seed:

Figure: A transformed von Lilienthal surface.



Acting of reciprocal transformations on the OEP
The construction:

n

ψ
2

ψ
2

1
x
√
z

1
x
√
z
= 1
x′
√
z′

nx

X(n)

Example:



7. Lipschitz solutions



Theorem: The general Lipschitz solution of the CAE depends on
four real parameters h11, h10, h01, h00 and is a nonzero root of the
quadratic polynomial

h2yz
2 + (h2 − 1)z + h2x,

where
h = h11xy + h10x+ h01y + h00,

hy = h11x+ h01, hx = h11y + h10,

under the condition that h is not a constant (i.e., at least one of
the coefficients h11, h10, h01 is not zero).



Proposition: The class of Lipschitz solutions coincides with the
class of solutions invariant under linear combinations of the Lie
symmetries T x, T y,S.



Proposition: Denote

Ea,b =

∫ h

h0

√
(1− χ2)2 − 4(aχ− b)2
2(aχ− b)(1− χ2)

dχ,

choosing the lower integration limit h0 so that Ea,b is real. Then
the orthogonal equiareal pattern corresponding to the general
Lipschitz solution is given by the unit vector
n = (cosφ sin θ, sinφ sin θ, cos θ), where θ = arccosh and

φ =
1

2a
ln
hx
hy
± Ea,b if a 6= 0,

φ =
h01y − h10x+ h00

2b
± E0,b if a = 0, b 6= 0.



The corresponding sine–Gordon solutions turn out to be well known
travelling wave solution also known as a “fluxon chain”. The
simplest analytic expression for it through the Jacobi amplitude is

q = 2 am (kξ + η, k−1/2) + π.



OEP corresponding to Lipschitz surfaces

Figure: Orthogonal equiareal patterns on the sphere corresponding to
Lipschitz solutions



8. Algebraic formula producing infinitely many exact
solutions



How to iterate the superposition for the CAE?

Let ω[0] = ω̄[0] be some seed solution of the sine-Gordon equation.
Fix Bäcklund parameters λ1, . . . , λk+1 and let us denote

ω[k] = ω(λ1λ2...λk), ω̄[k] = ω(λ2λ3...λk+1)



How to iterate the superposition for the CAE?

Let g[j], x[j], y[j] denote the associated potentials corresponding to
the pair ω̄[j−1], ω[j]. In this notation, the superposition formulas
turn out to be

x[j+1] =
λj+1λ1
λ2j+1 − λ21

(
x[j] − 2λj+1λ1 sin(ω̄[j] − ω[j])

λ2j+1 + λ21 − 2λj+1λ1 cos(ω̄[j] − ω[j])
g[j]

)
,

y[j+1] =
λ2j+1 − λ21
λj+1λ1

y[j] − 2 sin(ω̄[j] − ω[j])

g[j]
,

g[j+1] =
−λj+1λ1

λ2j+1 + λ21 − 2λj+1λ1 cos(ω̄[j] − ω[j])
g[j].

The above formulas constitute recurrence relations for the
quantities x[n], y[n], g[n] with the initial conditions

x[1] = x1, y[1] = y1, g[1] = g1.



Solving the recurrence relations
Proposition: 

x[n]

y[n]

g[n]

1/g[n]

 =

(
n−1∏
i=1

S[i]

)


x1

y1

g1

1/g1

 ,

where S[j] are 4× 4 matrices with entries defined by formulas

S
[j]
11 =

λj+1λ1

λ2
j+1 − λ2

1

, S
[j]
13 = −

λ2
j+1λ

2
1

λ2
j+1 − λ2

1

· 2 sin(ω̄[j] − ω[j])

λ2
j+1 + λ2

1 − 2λj+1λ1 cos(ω̄[j] − ω[j])
,

S
[j]
22 =

λ2
j+1 − λ2

1

λj+1λ1
, S

[j]
24 = −2 sin(ω̄[j] − ω[j]),

S
[j]
33 =

1

S
[j]
44

=
−λj+1λ1

λ2
j+1 + λ2

1 − 2λj+1λ1 cos(ω̄[j] − ω[j])

all the other entries being zero. Moreover, if z[n] = 1/g[n]
2
, then

z[n](x[n], y[n]) is a solution of the CAE.



9. Multisoliton solutions of the CAE



Multisoliton solutions of the sine-Gordon equation

Let ω[0] = 0. Let us define

ai := e
λiξ+

η
λi

+ci .

The Bäcklund transformations of zero solution are one-soliton
solutions of the sine-Gordon equation

ω[1] = 2 arctan a1, ω̄[1] = 2 arctan a2

and, applying the superposition principle we easily obtain the
two-soliton solutions

ω[2] = 2 arctan
(λ1 + λ2)(a1 − a2)
(λ1 − λ2)(1 + a1a2)

,

ω̄[2] = 2 arctan
(λ2 + λ3)(a2 − a3)
(λ2 − λ3)(1 + a2a3)

.



Multisoliton solutions of the sine-Gordon equation

An exact analytic n-soliton solution, in our notation ω[n], is of the
form

ω[n] =
1

2
arccosϕ[n],

where

ϕ[n] = 1− 2
∂2

∂ξ ∂η
ln detM

M being the n× n matrix with entries

Mij =
1

λi + λj

(
√
aiaj +

1
√
aiaj

)
.



Multisoliton solutions of the CAE

Definition: By a j-soliton solution of the constant astigmatism
equation we shall mean a triple (x[j], y[j], g[j]) formed by
associated potentials corresponding to the j-soliton solution ω[j]

and the (j − 1)-soliton solution ω̄[j−1] of the sine-Gordon equation.



One-soliton solution of the CAE

A one-soliton solution of the CAE is easy to construct:

g1 =
2e
λ1ξ+

η
λ1

+c1

e
2(λ1ξ+

η
λ1

+c1) + 1
,

x1 =
e
2(λ1ξ+

η
λ1

+c1) − 1

e
2(λ1ξ+

η
λ1

+c1) + 1
,

y1 = λ1ξ −
η

λ1
+ k1.

Setting z1 = 1/g21 and eliminating ξ, η one reveals the
von Lilienthal solution

z =
1

1− x2 .



One-soliton solutions

Figure: Pseudosphere (upper left); von Lilienthal surface (upper right);
Gaussian map (lower left); solution z = 1/(1− x2) of the CAE (lower
right).



Multisoliton solutions of the CAE
Proposition: Let us denote A[j] = 2ϕ̄[j]ϕ[j] and

B[j] = 2

√
(ϕ̄[j]2 − 1)(ϕ[j]2 − 1). Then the n-soliton solution of

the CAE is given by the formula
x[n]

y[n]

g[n]

1/g[n]

 =

(
n−1∏
i=1

S[i]

)


x1

y1

g1

1/g1

 ,

where the only nonzero entries of matrices S[j] are given by

S
[j]
11 =

λj+1λ1

λ2
j+1 − λ2

1

, S
[j]
13 =

λ2
j+1λ

2
1

λ2
1 − λ2

j+1

·
√

2−A[j] −B[j]

λ2
1 + λ2

j+1 − λj+1λ1

√
2 +A[j] +B[j]

S
[j]
22 =

λ2
j+1 − λ2

1

λj+1λ1
, S

[j]
24 = −

√
2−A[j] −B[j],

S
[j]
33 =

1

S
[j]
44

=
−λj+1λ1

λ2
1 + λ2

j+1 − λj+1λ1

√
2 +A[j] +B[j]

.



Examples



Two-soliton solutions

ω[2] = 2 arctan
(λ1 + λ2)(a1 − a2)
(λ1 − λ2)(1 + a1a2)

Figure: Two-soliton pseudospherical surface



Two-soliton solution of the CAE

x[2] =
λ1λ2
λ22 − λ21

· (λ1 + λ2)2(a21 − a22) + (λ1 − λ2)2(a21a
2
2 − 1)

(λ1 + λ2)2(a21 + a22) + (λ1 − λ2)2(a21a
2
2 + 1)− 8λ1λ2a1a2

,

y[2] =
λ22 − λ21
λ21λ2

(λ21ξ − η) +
2(1 + a1a2)(a1 − a2)

a1(1 + a22)
,

g[2] =
−2λ1λ2a1(1 + a22)

(λ1 + λ2)2(a21 + a22) + (λ1 − λ2)2(a21a
2
2 + 1)− 8λ1λ2a1a2

,

z[2] =
1

g[2]
2 =

(
(λ1 + λ2)2(a21 + a22) + (λ1 − λ2)2(a21a

2
2 + 1)− 8λ1λ2a1a2

2λ1λ2a1(1 + a22)

)2

.



Two-soliton solution of the CAE

Eliminating ξ, η one obtains an implicit formula for the function
z(x, y) = z[2](x[2], y[2]), namely

y = 2 ln a2 −
(λ21 + λ22) ln a1

λ1λ2
+

2(1 + a1a2)(a1 − a2)
a1(1 + a22)

,

where

a1 =
−(x2λ	

12

2 − λ2
1λ

2
2)2z2 − 2λ+

12

4
(x2λ−

12

4 − λ2
1λ

2
2)z + 2Kλ1λ2λ

+
12

2√
z − λ	

12

4

(xλ	
12 + λ1λ2)2(4λ2

1λ
2
2z

3
2 +Kz) + 4λ2

1λ
2
2λ

	
12

2√
z +Kλ	

12

2 ,

a2 =
4λ2

2λ
2
1

√
z +K

λ	
12

2
+ (x2λ	

12

2 − λ2
1λ

2
2)z

, K = 16λ4
2λ

4
1z−[λ	

12

2
+(x2λ	

12

2−λ2
1λ

2
2)z]2.

Here we have denoted

λ+12 := λ1 + λ2, λ−12 := λ1 − λ2, λ	12 := λ21 − λ22.



Two-soliton solutions

Figure: Two soliton solution of the CAE, λ1 = 1.2, λ2 = 1.5, ci = 0.
Right part of the figure shows the behavior around the origin.



Two-soliton solutions

Figure: Slip line field ñ[2], λ2 = 1.5, ci = 0 with coordinate lines ξ = 0
and η = 0 highlighted (thick black curves).



Two-soliton solutions

To obtain an associated orthogonal equiareal pattern one needs to
invert the transformation (x, y)↔ (ξ, η) given by

x =
λ1λ2
λ22 − λ21

· (λ1 + λ2)2(a21 − a22) + (λ1 − λ2)2(a21a
2
2 − 1)

(λ1 + λ2)2(a21 + a22) + (λ1 − λ2)2(a21a
2
2 + 1)− 8λ1λ2a1a2

,

y =
λ22 − λ21
λ21λ2

(λ21ξ − η) +
2(1 + a1a2)(a1 − a2)

a1(1 + a22)
,

which is not possible in terms of elementary functions. The
parameterisation ñ[2](x, y) then would provide orthogonal equiareal
net sought.



Two-soliton solutions

Figure: Two soliton surface r̃[2] of constant astigmatism, λ2 = 1.5,
ci = 0, k = 1.



Three-soliton solutions

ω
[3]

= 2 arctan

(
λ+
12λ

+
13λ

−
23a1 − λ+

12λ
−
13λ

+
23a2 + λ−

12λ
+
13λ

+
23a3 + λ−

12λ
−
13λ

−
23a1a2a3

λ−
12λ

+
13λ

+
23a1a2 − λ+

12λ
−
13λ

+
23a1a3 + λ+

12λ
+
13λ

−
23a2a3 + λ−

12λ
−
13λ

−
23

)

Figure: Three-soliton pseudospherical surface r[3].



Three-soliton solutions

Figure: Three soliton solution of the CAE, λ1 = 1.2, λ2 = 1.5, λ2 = 1.8,
ci = 0. Right part of the figure shows the behavior around the origin.



Three-soliton solutions

Figure: Slip line field ñ[3], λ2 = 1.5, λ3 = 1.8, ci = 0 with coordinate
lines ξ = 0 and η = 0 highlighted (thick black curves).



Three-soliton solutions

Figure: Three soliton surface r̃[3] of constant astigmatism, λ2 = 1.5,
λ3 = 1.8, ci = 0, k = 1.



Unfinished work – simplest case when ω[0] 6= 0
Solution of the s-G equation corresponding to Lipchitz’s solution of
the CAE satisfies

ωξ = kωη,

where k is a nonzero constant. Thus, it is of the form
ω(kξ + η + C), where C is a constant.



In coordinates α = kξ + η and β = kξ − η the sine-Gordon
equation turns out to be

ωαα − ωββ =
1

k
sinω.

The condition ωξ = kωη reduces to

ωβ = 0

and, therefore, the sine-Gordon equation transforms to the ODE

kωαα = sinω.

Moreover, one can reduce the order of the equation which
becomes

kω2
α = −2 cosω + 2l,

l being a constant. Solving for ωα one obtains

ωα = ±
√

2l − 2 cosω

k
.



In coordinates α = kξ + η and β = kξ − η the sine-Gordon
equation turns out to be

ωαα − ωββ =
1

k
sinω.

The condition ωξ = kωη reduces to

ωβ = 0

and, therefore, the sine-Gordon equation transforms to the ODE

kωαα = sinω.

Moreover, one can reduce the order of the equation which
becomes

kω2
α = −2 cosω + 2l,

l being a constant. Solving for ωα one obtains

ωα = ±
√

2l − 2 cosω

k
.



Explicit form of sine-Gordon seed ω0

The results of integration can be written in the form

(a)

ω
(a)
0 = 2 arccos

[
sn

(−αp√
k

;
1

p

)]
for l/k > 1/k,

(b)

ω
(b)
0 = 2 arcsin

[
dn

(
α√
k

; p

)]
for |l/k| < 1/k,

(c)

ω
(c)
0 = 4 arctan

(
exp

α√
k

)
for l = 1,

where p =
√

(1 + l)/2.



A Bäcklund transformation of the travelling wave solution
of the s-G eq.

Let ω be a solution of kωαα = sinω. Its Bäcklund transformation
with parameter λ can be conveniently written as1

ω(λ) = 4 arctan δ(λ) − ω,

where δ(λ) satisfies the system

δ(λ)α =

(
δ(λ)

2 − 1
)

sinω + 2δ(λ)
(

cosω + λ2

k

)
+ λ

(
δ(λ)

2
+ 1
)
ωα

4λ
,

δ
(λ)
β =

(
−δ(λ)2 + 1

)
sinω − 2δ(λ)

(
cosω − λ2

k

)
+ λ

(
δ(λ)

2
+ 1
)
ωα

4λ
.

1C.A. Hoenselaers and S. Miccichè, Transcendental solutions of the
sine-Gordon equation, in: A. Coley, D. Levi, R. Milson, C. Rogers and
P. Winternitz, eds., Bäcklund and Darboux transformations. The geometry of
solitons, AARMS-CRM Workshop, Halifax, 1999, CRM Proc. Lecture Notes 29
(Amer. Math. Soc., Providence, RI, 2001) 261–271.



A Bäcklund transformation of the travelling wave solution
of the s-G eq.

The equation for δ
(λ)
β is separable and it has a solution

δ(λ) =
f

ak2
+

c

ak
tanh c(β + b(α) +K),

where

a =
sinω

4kλ
− ωα

4k
, f =

λ

4
− k cosω

4λ
,

c =

√
λ4 − 2kλ2 cosω − k2(λ2ω2

α − 1)

4kλ

and b(α) is yet unknown function of α.



A Bäcklund transformation of the travelling wave solution
of the s-G eq.

Substituting into the equation for δ
(λ)
α one obtains the equation for

b, namely

bα =
λωα + sinω

λωα − sinω
.



Associated potentials g(λ), x(λ), y(λ)

Proposition:Let ω be a solution of the sine-Gordon equation
kωαα = sinω and let ω(λ) = 4 arctan δ(λ) − ω be its Bäcklund
transformation with parameter λ. Then the associated potentials
x(λ), y(λ), g(λ) corresponding to the pair ω, ω(λ) are given by
formulas



Associated potentials g(λ), x(λ), y(λ)

x(λ) =
8c2kf cosh 2B + 4c(f2 + k4a2 + c2k2) sinh 2B

(f2 + k4a2 + c2k2) cosh 2B + 2ckf sinh 2B + f2 + k4a2 − c2k2 ,

y(λ) =

(
f sinω

16λc2k2a
− 2f − λ

8c2k

)
cosh 2B

−
(

(k4a2 − c2k2 − f2) sinω

32λc3k3a
+
f(2f − λ)

8c3k2

)
sinh 2B

−
(

(k4a2 + c2k2 − f2) sinω

16λc2k3a
+
f(2f − λ)

4c2k2

)
β

+
λ4 + k2

2(λ4 − 2klλ2 + k2)
α− kλ2

λ4 − 2klλ2 + k2

∫
cosω dα,

g(λ) =
4c2k3a(1− tanh2B)

k4a2 + f2 + 2ckf tanhB + c2k2 tanh2B
,

where B = c(β + b+K) and l is a constant. Moreover, if

z(λ) = 1/g(λ)
2
, then z(λ)(x(λ), y(λ)) is a solution of the constant

astigmatism equation.



Figure: From the left: Pseudospherical surfaces corresponding to the case
(a), (b) and (c) respectively.



Figure: Transformed case (b).
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